
ESCOLA POLITÉCNICA
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

DOUTORADO EM CIÊNCIA DA COMPUTAÇÃO

RAMÃO TIAGO TIBURSKI

TASK SCHEDULING AND SECURITY FOR EDGE
DEVICES IN INTERNET OF THINGS APPLICATIONS

Porto Alegre
2021

PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
SCHOOL OF TECHNOLOGY

COMPUTER SCIENCE GRADUATE PROGRAM

TASK SCHEDULING AND
SECURITY FOR EDGE DEVICES

IN INTERNET OF THINGS
APPLICATIONS

RAMÃO TIAGO TIBURSKI

Doctoral Thesis submitted to the Pontifical
Catholic University of Rio Grande do Sul
in partial fulfillment of the requirements
for the degree of Ph. D. in Computer
Science.

Advisor: Prof. Dr. Fabiano Passuelo Hessel

Porto Alegre
2021

RAMÃO TIAGO TIBURSKI

TASK SCHEDULING AND SECURITY FOR EDGE
DEVICES IN INTERNET OF THINGS

APPLICATIONS

This Doctoral Thesis has been submitted in
partial fulfillment of the requirements for the
degree of Ph. D. in Computer Science, of
the Computer Science Graduate Program,
School of Technology of the Pontifical
Catholic University of Rio Grande do Sul

Sanctioned on March 29, 2021.

COMMITTEE MEMBERS:

Prof. Dr. Tiago Coelho Ferreto (PPGCC/PUCRS)

Prof. Dr. Jorge Luis Victória Barbosa (PPGCA/Unisinos)

Prof. Dr. Leonel Pablo Carvalho Tedesco (PPGPSI/UNISC)

Prof. Dr. Fabiano Passuelo Hessel (PPGCC/PUCRS - Advisor)

Dedico este trabalho à minha família.

ACKNOWLEDGMENTS

Agradeço primeiramente ao meu pai, Floriano, que muito batalhou para que eu
chegasse neste momento e, hoje, infelizmente, me acompanha do céu. Obrigado por tudo,
meu pai! Não menos importantes são as outras pessoas da minha família que sempre
estiveram ao meu lado, minha mãe, Clarice, minha esposa, Luana, meus filhos, Julia e
Lorenzo, e meu irmão, Rimoel. Agredeço a todos pelo apoio incondicional e compreensão
durante minha pesquisa. Obrigado por estarem ao meu lado durante todos os períodos
importantes da minha vida.

Agradeço ao meu orientador e amigo, Prof. Fabiano Hessel, pelo incentivo e con-
fiança no meu trabalho e pelos valorosos conselhos durante a caminhada do doutorado.

Agradeço aos meus amigos Everton e Willian pelo companherismo e parceria em
todas as etapas do curso e também da vida. Um agradecimento especial também aos
amigos do GSE e da PUCRS: Amaral, Moratelli, Sergio, Roben e Ramon também foram
pessoas importantes nesta jornada. Não poderia deixar de agradecer os amigos de Ere-
bango e colegas do IFSC São Lourenço do Oeste. Obrigado pela parceria!

Thank you Prof. Dr. Jemal Abawajy and Deakin University in Geelong - Australia for
receiving me and giving me the opportunity to work with you during my visiting period. Also,
special thanks to the Australian Academy of Science for the support in the 2018 Australia-
Americas PhD Research Internship Program.

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento
de Pessoal Nivel Superior – Brasil (CAPES) – Código de Financiamento 001. Agradeço à
CAPES pelo apoio financeiro prestado durante a realização do doutorado que originou esta
Tese.

ESCALONAMENTO DE TAREFAS E SEGURANÇA PARA DISPOSITIVOS
DE BORDA EM APLICAÇÕES DA INTERNET DAS COISAS

RESUMO

A evolução da Internet das Coisas, Internet of Things (IoT), e a grande quantidade
de dados que tem sido trocada entre os dispositivos e a nuvem nos levaram ao paradigma
chamado Edge Computing, ou computação de borda. Ele permite a migração da compu-
tação da nuvem para a borda da rede e pode proporcionar latência baixa e previsível para
usuários finais e aplicações, serviços de segurança e de preservação da privacidade, baixo
custo de largura de banda, entre outros. Contudo, novos desafios têm surgido nos dispo-
sitivos de borda. Primeiro, a descentralização das aplicações da IoT para a borda da rede
torna os dispositivos mais visíveis a ataques, principalmente os dispositivos de borda com
limitações de recursos que não suportam mecanismos complexos de segurança devido às
suas características. Segundo, os dispositivos de borda geralmente constituem aplicações
de baixa latência e de computação intensiva da IoT. Dados gerados por esses dispositivos
só são úteis se puderem ser processados de acordo com os requisitos de Qualidade de Ser-
viço, Quality of Service (QoS), da aplicação. Entretanto, existem vários cenários da Internet
das Coisas em que a quantidade de dados ou o tempo de processamento pode ser maior
do que o habitual, como durante momentos de pico em aplicações de baixa latência, o que
pode resultar na perda de prazos de dados. Nesse sentido, este trabalho apresenta duas
principais contribuições. Primeiro, a definição de uma arquitetura de segurança leve para
dispositivos de borda com recursos limitados. A arquitetura de segurança é baseada na
integração de um hypervisor leve e mecanismos de confiança. Segundo, a definição de um
mecanismo de alocação e escalonamento de tarefas para reduzir o número de tarefas que
são processadas depois do seu respectivo prazo durante momentos de pico em aplicações
de baixa latência da Internet das Coisas.

Palavras-Chave: Internet das Coisas, Computação de Borda, Segurança, Alocação e Es-
calonamento de Tarefas, Dispositivos de Borda.

TASK SCHEDULING AND SECURITY FOR EDGE DEVICES IN
INTERNET OF THINGS APPLICATIONS

ABSTRACT

The evolution of the Internet of Things (IoT) and the large amount of data that has
been exchanged between devices and the Cloud have pushed the horizon to the Edge com-
puting paradigm. It enables the moving of IoT computation from the high-powered central
Cloud to the edge of the network. The benefits of Edge computing result from its proxim-
ity to data sources and end-users. It allows low and predictable latency for end-users and
applications, secure and privacy-preserving services, low bandwidth cost, among others.
However, edge computing also brings new challenges to edge devices. First, the decentral-
ization of IoT applications to the edge made the devices more visible to attacks, especially
resource-constrained edge devices that do not support complex security mechanisms due
to their characteristics. Second, edge devices are usually part of low-latency and compute-
intensive applications. Thus, the data generated are only useful if they can be processed
following the Quality of Service (QoS) requirements of the application. However, there are
several IoT scenarios where the amount of data may be greater or the processing time may
take longer than usual, like during peak times, which may result in loss of data deadlines. In
this sense, this work presents two main contributions. First, the definition of a lightweight se-
curity architecture for resource-constrained edge devices. The security architecture is based
on the integration of a lightweight hypervisor and trust mechanisms. Second, the definition
of a task assignment and scheduling mechanism to reduce the number of tasks’ deadline
violations during peak times in low-latency IoT applications.

Keywords: Internet of Things, Edge Computing, Security, Task Assignment and Schedul-
ing, Edge Devices.

LIST OF FIGURES

Figure 2.1 – Edge, Fog and Cloud computing. 37

Figure 2.2 – Architecture Models involving Edge, Fog, and Cloud computing. 38

Figure 2.3 – Comparison between the different virtualization approaches. 40

Figure 2.4 – A lightweight hypervisor model. The doted sets indicate the key ar-
chitecture’s characteristics that make possible the building of a lightweight
hypervisor. 42

Figure 2.5 – Security taxonomy for edge devices. 47

Figure 2.6 – Video monitoring application in a public area of a city. 54

Figure 3.1 – The MIPSVZ privilege-ring model and its possible transitions. Dotted
arrows show the transitions used by the hypervisor implementation. 58

Figure 3.2 – Flowchart to the hypervisor’s context-switching and exception handler. 59

Figure 3.3 – Hellfire Hypervisor memory management strategy using the MIPSVZ
two-level MMU hardware support. VMs are contiguously mapped in the
physical memory. 60

Figure 3.4 – Example of inter-VM communication involving two VMs. 61

Figure 3.5 – Configuration file versus the C header generated by the genconf tool. 63

Figure 3.6 – Microchip PIC32mz. 64

Figure 3.7 – Coremark’s score for an increasing number of VMs. 67

Figure 3.8 – Cache impact for increasing number of VMs. 68

Figure 3.9 – Histograms for interrupt responsiveness for system under moderate
and heavy loads. 69

Figure 3.10 – Air quality monitoring scenario in urban areas. Additionally, smart
cities applications that can benefit from the lightweight virtualization layer. . . 70

Figure 4.1 – Code signature generation and verification process. 74

Figure 4.2 – Lightweight security architecture for resource-constrained edge de-
vices. 75

Figure 5.1 – DTAS-Edge in an Edge-Fog-Cloud architecture. 85

Figure 5.2 – The waiting queue of a core in an edge/fog/cloud device. 85

Figure 5.3 – PureEdgeSim simulation view. 88

Figure 5.4 – Comparing DTAS-Edge, DTAS-Fog, and DTAS-Cloud. 92

Figure 5.5 – Comparison with literature algorithms. 93

Figure 5.6 – Resources Utilization Graphs. 95

Figure 5.7 – Results for a Smart Surveillance Application . 96

LIST OF TABLES

Table 2.1 – Lightweight virtualization approaches for resource-constrained edge
devices. 44

Table 2.2 – Attacks on Edge Devices. 48

Table 2.3 – Shop models and their symbols classified according to the machine
environment. 51

Table 2.4 – Commonly used objective functions in the FJS scheduling problem. . . 53

Table 3.1 – Footprint results for the Hypervisor (bytes). 65

Table 3.2 – Footprint results for the hypervisor in an Air Quality Monitoring Appli-
cation (KB). 70

Table 4.1 – Footprint results (KB). 77

Table 4.2 – Performance Results for VM hash generation and signature verifica-
tion (ms). 78

Table 4.3 – Security for Edge Devices. 80

Table 5.1 – Summary of problem data (constants and sets) that define an instance
of the problem. 84

Table 5.2 – Simulation Parameters. 89

Table 5.3 – Number of tasks and devices for Experiments 1, 2 and 3. 90

Table 5.4 – Devices’ configurations. 90

Table 5.5 – Task assignment and scheduling in edge-fog-cloud. 97

Table 6.1 – Papers published during the PhD degree. 102

Table A.1 – Results for Experiments 1, 2 and 3. 123

LIST OF ALGORITHMS

Algorithm 5.1 – DTAS-Edge algorithm. 86

LIST OF ACRONYMS

ACO – Ant Colony Optimization

API – Application Programming Interface

ARM – Advanced RISC Machine

CIA – Confidentiality, Integrity, Availability

CN – Core Network

COT – Chain of Trust

CP0 – CoProcessor 0

CPU – Central Process Unit

CRC – Cyclic Redundancy Check

DDOS – Distributed Denial of Service

DOS – Denial of Service

DRAM – Dynamic Random Acess Memory

DRTM – Dynamic Root of Trust for Measurement

DTAS – Deadline-aware Task Assignment and Scheduling

ECDSA – Elliptic Curve Digital Signature Algorithm

EDF – Earliest Deadline First

EPC – Exception Program Counter

FCFS – First Come, First Served

FIFO – First In, First Out

FJS – Flexible Job Shop

GCP0 – Guest CP0

GPOS – General Purpose Operating System

GPR – General-Purpose Registers

GSE – Grupo de Sistemas Embarcados

HTTP – Hypertext Transfer Protocol

I/O – Input/Output

IIOT – Industrial Internet of Things

IL – Increase Lifetime

IOT – Internet of Things

IP – Internet Protocol

JS – Job Shop

JSON – JavaScript Object Notation

KVM – Kernel-based Virtual Machine

LAN – Local Area Network

LED – Light Emitting Diode

LLC – Last Level Cache

LOC – Lines Of Code

MCC – Mobile Cloud Computing

MEC – Mobile Edge Computing

MI – Millions of Instructions

MIPS – Millions of Instructions Per Second

MIPS32 – Microprocessor without Interlocked Pipeline Stages

MMU – Memory Management Unit

MCFEDF – Most Critical First with EDF

NIST – National Institute of Standards and Technology

OS – Operating System

OTP – One-Time-Programmable

PA – Physical Address

PAAS – Platform as a Service

PT – Page Table

PTS – Prioritized Task Scheduling

PUCRS – Pontifícia Universidade Católica do Rio Grande do Sul

PUF – Physical Unclonable Function

QOS – Quality of Service

RAM – Random Access Memory

RAN – Radio Access Network

REE – Rich Execution Environment

RISC – Reduced Instruction Set Computer

ROM – Read-Only Memory

ROT – Root of Trust

RR – Round-Robin

RSA – Rivest-Shamir-Adleman

RTOS – Real Time Operating System

SHA – Secure Hash Algorithm

SOC – System-on-a-Chip

SRAM – Static Random Access Memory

TCG – Trusted Computing Group

TCP – Transmission Control Protocol

TEE – Trusted Execution Environment

TLB – Translation Lookaside Buffer

UART – Universal Asynchrounous Receiver/Transmiter

USB – Universal Serial Bus

VA – Virtual Address

VCPU – Virtual CPU

VM – Virtual Machine

VMM – Virtual Machine Monitor

VSOT – Video Surveillance/Object Tracking

WAN – Wide Area Network

WLAN – Wireless Local Area Network

CONTENTS

1 INTRODUCTION . 29

1.1 MOTIVATION . 30

1.2 HYPOTHESES AND RESEARCH QUESTIONS . 31

1.3 OBJECTIVES . 32

1.4 CONTRIBUTION . 32

1.5 THESIS OUTLINE . 33

2 THEORETICAL BACKGROUND . 35

2.1 EDGE COMPUTING: INTEGRATING IOT AND THE CLOUD 35

2.1.1 ARCHITECTURE MODELS . 37

2.1.2 TYPES OF EDGE DEVICES . 38

2.2 VIRTUALIZATION . 39

2.2.1 VIRTUALIZATION FOR EDGE DEVICES . 39

2.2.2 LITERATURE REVIEW FOR EMBEDDED VIRTUALIZATION 44

2.3 SECURITY FOR EDGE DEVICES . 46

2.3.1 CHALLENGES AND VULNERABILITIES . 46

2.3.2 KEY SECURITY REQUIREMENTS . 49

2.4 TASK ASSIGNMENT AND SCHEDULING . 50

2.4.1 SCHEDULING NOTATION . 50

2.4.2 TASK ASSIGNMENT AND SCHEDULING PROBLEM IN AN EDGE-FOG-CLOUD
ARCHITECTURE . 53

2.5 SUMMARY . 55

3 THE HELLFIRE HYPERVISOR . 57

3.1 PRIVILEGE-LEVELS AND CONTEXT-SWITCHING . 57

3.2 MEMORY VIRTUALIZATION . 58

3.3 I/O VIRTUALIZATION . 60

3.4 INTER-VM COMMUNICATION . 61

3.5 STATIC PARTITIONING . 62

3.6 REAL-TIME SUPPORT . 63

3.7 EVALUATION . 64

3.7.1 FOOTPRINT ANALYSIS . 65

3.7.2 PERFORMANCE ANALYSIS . 66

3.7.3 INTER-VM COMMUNICATION DELAY . 67

3.7.4 REAL-TIME ANALYSIS . 68

3.7.5 SMART CITY APPLICATION - AIR QUALITY MONITORING 69

3.8 SUMMARY . 71

4 SECURITY FOR EDGE DEVICES . 73

4.1 SECURITY ARCHITECTURE DEFINITION . 73

4.1.1 CHAIN-OF-TRUST PROTECTION . 73

4.1.2 VIRTUALIZATION PROTECTION . 75

4.2 EVALUATION . 77

4.2.1 FOOTPRINT AND PERFORMANCE ANALYSIS . 77

4.2.2 SECURITY ANALYSIS . 78

4.3 RELATED WORK . 79

4.4 SUMMARY . 81

5 DEADLINE-AWARE TASK ASSIGNMENT AND SCHEDULING MECHANISM 83

5.1 PROBLEM FORMULATION . 83

5.2 PROPOSED MECHANISM . 85

5.3 EVALUATION . 87

5.3.1 ENVIRONMENT SETUP . 88

5.3.2 EXPERIMENT 1 - DTAS-EDGE ANALYSIS . 91

5.3.3 EXPERIMENT 2 - COMPARISON WITH LITERATURE ALGORITHMS 92

5.3.4 EXPERIMENT 3 - SMART SURVEILLANCE REAL WORLD APPLICATION . . . 95

5.4 RELATED WORK . 96

5.5 SUMMARY . 99

6 FINAL CONSIDERATIONS . 101

6.1 CONTRIBUTIONS . 101

6.2 PUBLICATIONS . 102

6.3 REVISITING THE HYPOTHESES AND RESEARCH QUESTIONS 103

6.4 CONCLUSION . 104

6.5 FUTURE WORK . 105

REFERENCES . 107

APPENDIX A – RESULTS FOR TASK ASSIGNMENT AND SCHEDULING EX-
PERIMENTS . 123

29

1. INTRODUCTION

The Internet of Things (IoT) has been recognized as the computing paradigm re-
sponsible for integrating heterogeneous applications, systems, and physical devices to pro-
vide smart services solutions that facilitate the daily lives of people. Several application
scenarios have served as use cases for the IoT, such as e-health, transportation, smart
cities, among others [77] [16]. IoT applications are composed of devices that can range
from resource-constrained devices with short-range low-rate communication technologies
to supercomputers in the cloud [121]. This is what has been called the cloud-to-things con-
tinuum [111].

With the explosion of data, devices, and interactions, cloud architecture on its own
can not handle the influx of information. While the cloud gives us access to compute, stor-
age, and even connectivity that we can access easily and cost-effectively, these centralized
resources can create delays and performance issues for devices and data far from a cen-
tralized public cloud or data center source.

Thus, the evolution of the IoT and the significant amount of data that has been
exchanged between devices and the Cloud have pushed the horizon to the Edge computing
paradigm [174]. It extends the cloud-based infrastructure to the edge of the network by
increasing data processing and decision-making on IoT edge devices, allowing more efficient
communication with intermediary nodes [111].

The Edge Computing paradigm enables moving the IoT computation from the high-
powered central Cloud to the edge of the network [142]. The benefits of Edge Computing
result from its proximity to data sources and end-users. It has the potential to address the fol-
lowing challenges: (i) low and predictable latency for end-users and applications; (ii) secure
and privacy-preserving services and applications; (iii) long battery life and low bandwidth
cost; and (iv) scalability [135].

However, edge computing brings new challenges to the devices [126] [76]. First,
the decentralization of IoT applications to the edge made the devices more visible to attacks
[7]. While some existing solutions in cloud computing may address many security issues at
the edge of the network, edge computing introduces new security concerns due to its distinct
characteristics, such as the protection of resource-constrained devices [111]. Second, edge
devices are usually part of low-latency and compute-intensive applications. Thus, the data
generated are only useful if they can be processed following the Quality of Service (QoS)
requirements of the application. However, there are several IoT scenarios where the amount
of data may be greater or the processing time may take longer than usual, common during
peak times, which may result in loss of data deadlines.

30

1.1 MOTIVATION

Edge Computing makes possible the decentralization of data processing and de-
creases the dependency of the cloud [62]. However, it introduces new security and data
processing challenges to edge devices [7]. In edge computing, devices are more than data
sources [126]. They can process data (e.g., filtering, abstraction, aggregation) coming from
IoT sensors, making them hot targets for attacks [7]. Once a hacker controls the device,
no higher security mechanism can identify such condition, and all system execution and
state can be compromised. Depending on the application, a compromised edge device can
represent a danger for life and business. For instance, it may involve stealing sensitive infor-
mation, manipulating information, malfunctioning the device itself, or other devices controlled
by it [102]. However, in the last three years, several attacks that compromise human life have
been noticed in edge devices [82], such as autonomous cars [166] [167].

Recent software-based solutions have been applied to mitigate security challenges
in edge devices. However, some resource-constrained edge devices cannot store a large
amount of data or execute a high complexity security algorithm. Thus, security approaches
should have a lightweight design and must be extended with security-oriented technologies
that promote hardware as the root of trust [117].

Regarding data processing, low-latency IoT applications (e.g., traffic management,
autonomous cars, surveillance systems) generate many data, which have to be processed
with minimal time latency to be useful to the application [68]. Suppose a specific area mon-
itored by cameras has a few minutes of high movement of people and objects, also known
as peak or rush hour. A camera will have more objects/faces/people to detect in that specific
time. Thus, the processing time for this data may be longer than at a time of less movement,
and, automatically, the data’s deadline, kept the same, may not be reached, invalidating its
use.

According to [163], to process data in an edge-fog-cloud architecture effectively,
three problems must be addressed jointly: (i) offloading decision, deciding which tasks are
offloaded for edge/fog/cloud devices, (ii) task assignment, deciding which layer and device
is each task assigned to for execution, and (iii) task scheduling, deciding the execution order
of the tasks for each device. Existing research surveyed in Wang et al. [163] concern only
one or two of such problems, leading to sub-optimal solutions for task scheduling.

Alizadeh et al. [6] argue that it is essential to assign and schedule the tasks in
the architecture in a way to be executed in a timely fashion and also to make optimal use of
available resources. However, an important question is how to determine which tasks should
be executed in each architecture layer [50]. The problem under consideration is similar to
the flexible job scheduling problem [85] [84], in which a set of tasks are to be executed by

31

multiple devices given a partial ordering of task execution and the delay associated with
each task.

Premises that motivated this thesis are presented next:

• Increasing of Devices-to-Cloud Communications: With the constant increase of IoT
devices, the amount of data generated and sent to the cloud increases. It can overload
the network, expose data to attacks, and delay decisions and notifications for applica-
tions.

• Trending for Edge Computing: According to investigations [18] [59] [52] [127], the Edge
computing paradigm can contribute significantly to increase security, reduce latency,
and also be robust to connectivity issues following the next years. Gartner predicts that
by 2025, three-quarters of enterprise-generated data will be created and processed at
the edge [57].

• Low-latency Applications: Current IoT applications, especially in low-latency scenar-
ios, require data to be processed respecting their deadlines to meet individual QoS
requirements. Thus, keeping applications in the cloud implies sending the generated
data to the cloud, which can delay responses and compromise applications’ results.

• Increasing of Attacks on Devices: With the migration of computing to the edge, sev-
eral hackers also migrate attacks from the cloud to the edge. However, most of the
edge devices are resource-constrained regarding storage, RAM, and CPU. Thus, they
cannot support or implement conventional highly-secured and sophisticated security
techniques, impacting the device’s security strength.

1.2 HYPOTHESES AND RESEARCH QUESTIONS

This Ph.D. thesis aims to investigate two hypotheses: (i) the integration of embed-
ded virtualization and trust mechanisms can provide a lightweight security architecture to
improve the security of resource-constrained edge devices, nonetheless, keeping a small
memory footprint; and (ii) a deadline-aware task assignment and scheduling mechanism
can reduce the number of deadline violations in low-latency IoT applications during peak
times.

Hence, the following research questions were established to support the validation
of the hypotheses:

1. Research Question: What are the most common security threats that could com-
promise edge devices, and what requirements should be considered to improve their
security?

32

2. Research Question: How to define a lightweight security architecture with a high-
security level but keeping a small footprint with tens of kilobytes?

3. Research Question: Where should a task be assigned to have a better chance of
being processed meeting its deadline?

4. Research Question: Which architecture layer should the assignment and scheduling
mechanism be deployed to reduce the number of deadline violations?

1.3 OBJECTIVES

The objective of this thesis is two-fold. The first objective is to define a lightweight
security architecture for resource-constrained edge devices. The second objective is to
define a deadline-aware task assignment and scheduling mechanism that executes on edge
devices and can reduce the number of deadline violations in low-latency IoT applications
during peak times. To achieve the research goals, the following objectives were defined:

• Studying the existing works for assignment, scheduling, and security in edge comput-
ing;

• Definition of a lightweight security architecture for resource-constrained edge devices;

• Definition of a deadline-aware task assignment and scheduling mechanism;

• Evaluation of the security architecture using a real-world resource-constrained edge
device;

• Evaluation of the deadline-aware task assignment and scheduling mechanism by sim-
ulating its applicability in low-latency IoT applications;

• Documenting and reporting the research results, publishing them in scientific confer-
ences and journal articles.

1.4 CONTRIBUTION

This research presents two main contributions: (i) the definition of a lightweight
security architecture for resource-constrained edge devices based on lightweight virtualiza-
tion and trust mechanisms, protecting devices from the hardware until the highest layer of
software and (ii) the definition of a deadline-aware mechanism to assign and schedule low-
latency IoT applications tasks during peak times, deciding on edge devices. The specific
contributions are:

33

• A review of lightweight virtualization, security for edge devices, and task assignment
and scheduling in edge-fog-cloud architectures;

• The evaluation of a lightweight virtualization layer to be used in resource-constrained
devices;

• The creation of a taxonomy of security for edge devices;

• The usage of trust mechanisms and lightweight virtualization to provide security for
resource-constrained edge devices;

• The validation of the security architecture in a real-world resource-constrained edge
device;

• A deadline-aware mechanism that executes on edge devices to decide the best as-
signment and scheduling for tasks;

• The validation of the deadline-aware mechanism in low-latency IoT applications during
peak times.

1.5 THESIS OUTLINE

The remainder of this thesis is organized as follows. Chapter 2 presents theoreti-
cal references used in this work, such as definitions of IoT, Edge Computing, virtualization,
security, and scheduling. Chapter 3 presents the Hellfire hypervisor, the virtualization layer
used to define the security architecture. Chapter 4 presents the lightweight security architec-
ture. Chapter 5 presents the deadline-aware task assignment and scheduling mechanism.
Finally, Chapter 6 presents the conclusions, author’s publications in the last years, and future
work.

34

35

2. THEORETICAL BACKGROUND

This chapter presents definitions regarding this thesis. Section 2.1 presents edge
computing concepts, architecture models, and type of edge devices. Section 2.2 presents
the lightweight virtualization concepts and a literature review for embedded virtualization.
Section 2.3 defines security for resource-constrained edge devices, presenting challenges,
attacks, and key requirements. Finally, Section 2.4 defines scheduling and describes an
instance of the task assignment and scheduling problem in an edge-fog-cloud architecture.

2.1 EDGE COMPUTING: INTEGRATING IOT AND THE CLOUD

The Internet of Things is a computing paradigm that refers to the interaction and
communication between billions of devices that produce and exchange data related to real-
world objects (i.e., things) [54]. Connected devices can be sensors, actuators, smartphones,
computers, buildings and home/work appliances, cars and road infrastructure elements, and
any other device or object that can be connected, monitored, or actuated [24]. Beyond
Internet-based communication, they can interact with each other and cooperate with neigh-
bor elements and systems to reach common goals, providing smart services solutions to
applications [77].

IoT’s features, including large-scale of things and network-level heterogeneity, make
the development of applications and services a very challenging task [124]. The IoT relies on
a set of well-known, established technologies divided into different layers: devices, network,
middleware, and applications [16]. However, it must be said that there is no consensus on
this issue. Even these layers are sometimes fused, resulting in a three or two-layer model
[121]. Moreover, IoT applications generate enormous amounts of data that should be sub-
sequently analyzed to determine reactions to events or extract analytics or statistics [16].

Cloud-oriented systems have been used for years as the bridge to connect hetero-
geneous IoT devices to higher-level and cloud-based services and applications. However,
the cloud computing paradigm applied directly to IoT presents a set of drawbacks regard-
ing latency, bandwidth, and storage because of the huge amount of data that have to be
uploaded and processed [121] [68]. Due to these limitations, Fog and Edge computing
paradigms have been introduced [25] [135].

Fog and Edge computing are firmly related concepts, but they are not synonyms
[147] [26] [112] [111] [101] [106] [79] [70] [21]. According to the OpenFog Reference Ar-
chitecture [111], Fog computing extends Cloud computing into an intermediate layer close
to IoT devices and enables data processing across domains. In contrast, Edge computing

36

involves the control and management of a standalone endpoint device individually within the
Fog domain, typically within close proximity of IoT sensors and actuators [28] [47] [3] [30].

Fog and Edge computing have become key enablers for the future IoT [129]. They
promote multi-layer and decentralized systems that facilitate the development and deploy-
ment of IoT applications at the edge/fog, which brings data processing closer to IoT devices
and can help avoid the bandwidth shortage of the Internet [55].

Literature definitions around Cloud, Fog, and Edge are given next:

• Cloud: The National Institute of Standards and Technology (NIST) defines cloud com-
puting as "a model for enabling ubiquitous and on-demand network access to a shared
pool of configurable computing resources (e.g., networks, servers, storage, applica-
tions, and services) that can be rapidly provisioned and released with minimal man-
agement effort or service provider interaction" [93]. Significant data are collected and
uploaded to be processed in cloud devices, where permanent and sufficient processing
resources are available [121].

• Fog: Bonomi et al. [25] define Fog computing as a "highly virtualized platform that pro-
vides compute, storage, and networking services between end devices and traditional
Cloud Computing Data Centers, typically, but not exclusively located at the edge of
networks". Another concept, the NIST defines fog computing as a "layered model for
enabling ubiquitous access to a shared continuum of scalable computing resources"
[73]. Finally, the OpenFog Consortium [111] defines fog computing as "an architec-
ture that distributes computation, communication, control, and storage closer to the
end-users along the cloud-to-things continuum". The fog has many similarities with the
edge, which usually leads to confusion or puts them on the same level. The Fog layer
is composed of fog devices. The main function is to process, orchestrate, and store
data received from the edge. Also, fog devices can send data selectively to the cloud
under request or based on specific rules [121]. The fog is usually placed physically
close to the edge (i.e., from tens to hundreds of milliseconds). Some examples of fog
nodes are small servers and IoT gateways. Even a powerful edge device sometimes
may be considered a fog node (e.g., a smart car with tens of sensors/actuators).

• Edge: Edge computing refers to allowing computation to be performed at the edge of
the network [135]. One of the most fundamental characteristics of the edge is that the
processing, networking, and storage are made right in the IoT devices or the sensor
nodes, meaning that communication with the fog or cloud is not mandatory [121]. One
key difference between fog and edge is that in fog, the processing is carried out in more
powerful devices than IoT nodes, such as Internet gateways. According to Portilla
et al. [121], the nature of the edge devices’ resources allows a secondary division:
edge devices and resource-constrained edge devices, being the last ones tiny devices
composed of sensors, a low-end microcontroller, among others, also known as the

37

Figure 2.1 – Edge, Fog and Cloud computing.

things. They are very limited in computing and storage capabilities to reduce costs and
enlarge their lifetime. Some authors have named this layer as the Mist [122] [20] or the
Extreme Edge [46] [121], stating that it pushes processing even further to the network
edge, involving the sensor and actuator devices. Some edge devices are IoT platforms
(e.g., Raspberry Pi, Arduino), cameras, sensors, actuators, smartphones.

The relationship between Edge, Fog, and Cloud is presented in Figure 2.1. The
Cloud works as a management layer, putting almost all the processing at the edge and fog
layers. Fog computing focuses its processing efforts at the LAN (i.e., Local Area Network)
end of the network [68]. It enables fog devices to process and control data received from
multiple edge devices and sends information exactly where it is needed [28]. Fog devices
use the Radio Access Network (RAN, e.g., WLAN, cellular networks) to interact with each
other and connect to Edge devices [106]. On the other hand, the Core Network (CN) allows
interactions between Fog and Cloud, if needed. Edge computing brings data processing
closer to or within the data sources [135]. Edge devices can be the simple integration of
sensors/actuators with microcontrollers or complex devices such as cars [47]. They use
RAN to interact with the Fog layer [106].

2.1.1 ARCHITECTURE MODELS

There are several architecture models involving edge, fog, and cloud: Edge-Cloud
[158], Fog-Cloud [160], Edge-Fog [148], Edge-Fog-Cloud [97], Mobile Edge Computing
(MEC) [129], Mobile Cloud Computing (MCC) [132], among others variations [32]. Since
mobility is out of the scope of this work, Figure 2.2 presents the most used architectures
considering edge, fog, and cloud.

Edge-Cloud: This model maintains data processing and orchestration closer to or
within edge devices. The cloud is still responsible for general management and storage.

38

Figure 2.2 – Architecture Models involving Edge, Fog, and Cloud computing.

Also, depending on the application requirements and edge devices capabilities regarding
resources, the cloud can process and orchestrate data as the edge [135]. The Edge-Cloud
model’s main advantage is low-latency to IoT applications at the edge [4]. Some works from
literature are: [158] [35] [31] [175] [159].

Fog-Cloud: This model instantiates Cloud traditional functions at the Fog layer,
which includes storage, data processing and orchestration [28]. Its main advantage is to
maintain a computing layer close to data sources devices [25]. Some works from literature
are: [160] [23] [106] [145] [53].

Edge-Fog: This model avoids the use of cloud computing. All functions are dis-
tributed among fog and edge layers. Fog is responsible for management, storage, data
processing, and orchestration. The edge can process and orchestrate data as well. The
application requirements should define what can be processed at the edge and what should
be assigned to the fog. This model has advantages that usually benefit real-time and/or
decentralized applications. Some works from literature are: [148] [71] [120] [165] [110].

Edge-Fog-Cloud: In this model, the three layers have relevant roles in the archi-
tecture model. This model is more suitable for applications that generate many data in short
periods. Thus, data can be processed and orchestrated in all layers. A storage function is
also an option in the fog. Some works from literature are: [97] [48] [51] [67] [29]

To summarize, the cloud is responsible for general management and storage in
most architecture models. Data processing and orchestration are preferred at edge and fog
layers, so it is possible to reach the edge/fog computing benefits avoiding communication
bottlenecks of wide-area networks [28] [47]. Also, end-to-end security should be ensured for
all models, i.e., starting at the edge and going until the cloud.

2.1.2 TYPES OF EDGE DEVICES

Edge devices can have different limitations in resources (storage, memory, and
CPU). In this work, two terms are used to refer to them: “edge devices” to refer to general

39

devices at the edge layer; and “resource-constrained edge devices” to refer to devices
starting with a few hundred kilobytes up to some megabytes of storage and memory, typi-
cal in IoT applications. Resource-constrained edge devices often have connectivity options,
graphic accelerators, and other hardware features that enable more complex applications.
Nevertheless, its memory capacity makes challenging the adoption of rich operation sys-
tems. For example, the PIC32mz EF family from Microchip has up to 2MB for flash and
512KB RAM with several connectivity options (USB, Ethernet, and Wi-Fi). It has a core
MIPS M5150 at 200Mhz with memory management capacity and a cryptography engine.
The PicoCore RT1-V1 is another example. It has an ARM Cortex-M7 core with 256MB of
flash and 32MB of RAM and connectivity options like USB, Ethernet, and UART.

2.2 VIRTUALIZATION

Virtualization means the creation of an environment or a virtual machine (VM) that
acts like the real target hardware from the software or user point of view [131] [102] [96].
A VM is implemented as a combination of real hardware and software aiming to execute
applications [138]. The virtualization layer is often called a Virtual Machine Monitor (VMM)
or simply hypervisor.

Hypervisors are a crucial component of virtualized systems and represent an in-
termediate software layer between VMs and the hardware [102]. Running in a privileged
context, a hypervisor has direct control of the hardware and restricts lateral movement within
the system while facilitates high-speed inter-VM communications [130].

Virtualization offers several advantages in terms of technical, environmental, and
business solutions. One of them is its ability to support heterogeneous operating-system en-
vironments to address conflicting requirements such as high-level APIs, real-time support, or
legacy software [115]. Security is another crucial advantage since virtualization can enable
a strong spatial separation between the guest OSs [118]. Also, to prevent a complete system
failure when an error occurs in one of the subsystems is another advantage. These advan-
tages make the virtualization technology useful also for embedded and real-time systems
[102].

2.2.1 VIRTUALIZATION FOR EDGE DEVICES

In the last years, virtualization has been the focus of a high amount of industrial
and academic research, mainly related to Edge computing [68] [5] [107] [143] [141] [101]
[98] [139] [100] [102] [156] [117] [90]. For a long time, the research community believed that
hypervisor-based virtualization was an overkill approach for resource-constrained devices

40

(a) Type-1 Hypervisor. The
hypervisor as the first soft-
ware layer.

(b) Type-2 Hypervisor. The
hypervisor running over a
GPOS.

(c) Containerization. Dis-
miss the use of hypervi-
sors.

Figure 2.3 – Comparison between the different virtualization approaches.

due to its inherent overhead [107, 143, 98, 100]. However, the advances in embedded
processors that enabled hardware-assisted virtualization and innovative hypervisor software
architectures changed this scene. Recent research has shown the benefit of embedded
virtualization to meet resource-constrained devices’ challenges in edge environments [5,
102, 117]. The essential characteristics for virtualized systems in the context of resource-
constrained devices are discussed next:

• Virtualization Approach: It can be a type-1 hypervisor, a type-2 one, or a container
engine. Type-1 hypervisors (Figure 2.3a) are directly executed on the hardware and are
the most adopted approach in server virtualization [19]. Differently, type-2 hypervisors
(Figure 2.3b) execute on top of an OS. They are the preferred choice for home and
office virtualization since they can run guest OSs side-by-side with user’s applications.
Containerization (Figure 2.3c) is an operating system-level virtualization method to
execute multiple isolated systems (containers) using a single kernel. A user process
can check different information about the system, like memory, process trees, files,
and directories in a typical OS. OS’s containers enforce the process isolation limiting
and prioritizing the resources (e.g., CPU, memory, I/O, network, among others) without
using virtual machines. A container engine executes on top of a host operating system,
responsible for the separation between applications using the OS’s features.

• Underlying GPOS: It refers to the need for an underlying GPOS (e.g., Linux and Win-
dows). This complex system supports a wide range of applications, like accelerated
graphics, artificial intelligence, and graphical user interfaces. Such features make
GPOS generally large in footprint and also unpredictable for real-time purposes. A
GPOS is designed to perform well on devices with more powerful processing capabil-
ities than we commonly have in resource-constrained edge devices. Although some

41

GPOS (e.g., Linux) are highly customizable, their minimal footprint is still unacceptable
to such devices.

• Spatial Separation: It allows the execution of applications inside VMs or even in-
stances of operating systems in separate boxes over the same device [102]. Spatial
separation among VMs is provided through a memory management unit (MMU), a
hardware block that provides virtual memory abstractions to the system. A hypervisor
must keep memory isolation among VMs while the OS (inside the VM) can still maintain
isolation between processes. Hardware-assisted virtualization implements the second
stage of MMU translation directly. Essentially, the hardware performs the translation
without software intervention. The hypervisor still manages its page table, but the soft-
ware inside the VM can handle the hardware in the same way as in a non-virtualized
system.

• Temporal Separation: It guarantees the correct distribution of processor’s time among
VMs according to their execution priorities [102]. Also, system interrupts are a concern
not only because of the interference on the correct timing execution but also because
it can disrupt the normal operation. Hardware-assisted virtualization can help man-
age interruptions, allowing them to be redirected to VMs without intervention from the
hypervisor. This feature is called interrupt pass-through and it minimizes the overall
hypervisor overhead and footprint.

• Inter-VM communication: It is a mechanism for communication among VMs. The
hypervisor should work as a communication arbiter, copying messages from the sender
to the destination application. Also, the hypervisor can check the size, the number of
messages and even deny forbidden communication. It can be implemented as para-
virtualized services, i.e., using a hypercall API (VM’s calls to the hypervisor).

• Real-time Support: Proper real-time support is a common feature required by embed-
ded systems. Typically, GPOS focus on performance and present poor real-time re-
sults. Otherwise, real-time operating systems (RTOS) can deal with timing constraints,
but they do not support software separation. Thereby, separation and real-time capa-
bilities are required to coexist in the same system.

The increasing demand for more complex software stacks makes modularity an
essential feature for edge devices. As said before, the containers approach can be used
to bring modularity. However, the implicit overhead cost to keep a GPOS limits the reach
for resource-constrained edge devices. Otherwise, RTOSs may deliver a certain level of
modularity but cannot deal with separation.

Figure 2.4 depicts a lightweight virtualization model that can deal with modularity,
security, and computing [102]. In this architecture, the hypervisor is the first layer of soft-
ware (type-1 virtualization), and it runs in the highest processor’s privilege level (supervisor

42

Figure 2.4 – A lightweight hypervisor model. The doted sets indicate the key architecture’s
characteristics that make possible the building of a lightweight hypervisor.

mode). Hence, it can control all hardware behavior avoiding that guests change the proces-
sor or platform configuration. The hypervisor creates the VMs’ abstraction by implementing
two basic functionalities. First, constructing memory isolation (using the MMU hardware).
Second, creating the virtual CPU abstraction (VCPU) (i.e., a data structure that keeps the
CPU context during context switches). The next software layer is the guests system. They
can be RTOSs, Unikernels, or even bare-metal applications that perform with a lower privi-
lege level (kernel mode). Any unexpected behavior (e.g., access to a not-allowed memory
location) traps the hypervisor to execute some programmed action. Thus, the software in
a VM views the system as an entirely independent machine allowing the implementation of
wholly separated applications and bringing modularity to the system.

While hypervisors for cloud computing require up to tens of megabytes of footprint,
lightweight virtualization approaches need tens of kilobytes, keeping virtualization advan-
tages like modularity and security [156]. The simplifications to provide a lightweight virtual-
ization layer to edge devices are presented and discussed next [103] [99] [9] [100]:

• Simplified memory management: A lightweight virtualization layer should simplify
page tables’ implementation, avoiding swapping [137]. The number of VMs is usually
known, which can allow the system’s partitioning at design time. Thereby, VMs can
be allocated contiguously in memory, making the management more straightforward

43

because only the base address and size are required for its mapping. This scheme
saves memory because no page tables are needed. After all, the memory mapping
can be directly written to the MMU control registers. This simplification does not af-
fect the memory management implementation at the guest’s level because how the
virtualization layer manages the memory is transparent to the guest.

• Static Partitioning: A lightweight virtualization layer targeting resource-constrained
edge devices should not support the management interface since it can determine its
setup in compilation time.

• Directly mapped devices: Direct access from applications to peripherals may be
needed. If the peripheral does not need to be shared, the virtualization layer can allow
direct mapping (bypassing) to the applications. This technique avoids the implementa-
tion of device drivers at the virtualization layer and improves performance. Otherwise,
device drivers for shared peripherals, such as Ethernet, must be implemented and
managed by the virtualization layer.

• Small hypercall API interface: Hypercalls are calls invoked from guests to the virtu-
alization layer, similar to syscalls in a typical OS [102]. The hypercall API allows the
implementation of extended services, i.e., services provided by the virtualization layer
to its guests, like inter-VM communication or access to shared devices.

• Simple and predictable scheduler: The scheduler must implement proven algorithms
to maintain predictability, like the round-robin scheduler. Additionally, the interrupt man-
agement can be simplified using the pass-through technique supported by hardware-
assisted virtualization (i.e., interrupts can be redirected to guests without the virtual-
ization layer intervention).

• Simplified VCPU management: The trap-and-emulate technique consists of emu-
lating guest’s privileged instructions (i.e., instructions that only can be performed on
supervisor mode). However, one single instruction may require tens or hundreds of in-
structions from the virtualization layer side to be emulated, increasing the VCPU man-
agement complexity and overhead. Para-virtualization is commonly used to avoid such
problems, which require the substitution of privileged instructions on guests by hyper-
calls. Thus, proper hardware-assisted virtualization can help keep the VCPU manage-
ment small and straightforward because it allows for eliminating instruction emulation
and most of the hypercalls. Nevertheless, hypercalls are still useful for virtualization
extended services like inter-VM communication or peripheral sharing.

The lightweight virtualization layer presented in Figure 2.4 follows the microkernel
approach. Hence, it can implement only the necessary hardware control and minimal ser-
vices. Sophisticated network protocols, cryptography, file systems, and other libraries can be

44

supported at the VM level. For example, a VM with the picoTCP stack [8] can be instantiated
as a separate application for network support. The same can be done with cryptographic
libraries (e.g., WolfSSL[168]). A VM with an RTOS, like FreeRTOS, can also implement real-
time services with a predictable execution in parallel. All these features result in a flexible
and lightweight approach.

2.2.2 LITERATURE REVIEW FOR EMBEDDED VIRTUALIZATION

This section presents a review of lightweight virtualization approaches that can be
adopted in a scenario involving resource-constrained edge devices. The essential charac-
teristics for virtualized systems presented in Section 2.2.1 were considered to select the
works discussed next. They are all type-1 hypervisors that do not require underlying GPOS.
Table 2.1 presents a comparative analysis of the works regarding lines of code (LOC) and
footprint (storage + RAM).

Table 2.1 – Lightweight virtualization approaches for resource-constrained edge devices.

Works Ref.
Last

Release
LOC

Memory (KB)
Storage RAM Footprint

seL4 [81] [150] 2020 9400 138 24 162
Muen [27] 2021 2700 75 16 91
Xvisor [113] 2020 440000 1024-2048 4096-18432 5120-20480
Hellfire [103] 2020 9800 21 2 23

Bao [90] 2020 5600 41 18 59

Authors in [81] [80] [150] present seL4, a high-assurance, high-performance oper-
ating system microkernel. seL4 is the most advanced member of the L4 microkernel family.
It supports virtual machines that can run a fully-fledged guest OS. Subject to seL4’s enforce-
ment of communication channels, guests and their applications can communicate with each
other and native apps. In terms of source-code size, the kernel is about 9400 LOC (ARM
and RISC-V). In terms of executable code size, the kernel has about 138 KB. Its RAM size
is about 24 KB. Regarding virtualization overhead, the authors do not present numerical
results but argue that seL4 adds minimal overhead.

The work in [27] presents Muen Separation Kernel, an open-source microker-
nel, formally proven to contain no runtime errors at the source code level. It uses Intel’s
hardware-assisted virtualization technology to provide strong separation and make its im-
plementation simpler. The Muen project makes use of emulation by employing the Bochs
IA-32 emulator. The kernel has approximately 2700 lines of code. The work does not present
performance results.

45

Authors in [113] present Xvisor, an open-source type-1 hypervisor, focused on pro-
viding a monolithic, lightweight, portable, and flexible virtualization solution. It supports ARM
virtualization extensions to provide full-virtualization and para-virtualization through optional
VirtIO compatible device drivers. It can map interrupts directly to guests, allowing guest in-
terrupts to be handled without the hypervisor’s intervention. Additionally, it provides memory
isolation between hypervisor, guests, and guest applications using the third privileged level
from ARM’s virtualization support. The kernel has approximately 440K lines of code. Exper-
imental results show that Xvisor ARM guest has lower CPU overhead and higher memory
bandwidth than KVM ARM guest and Xen ARM DomU.

The Hellfire hypervisor was developed by the GSE/PUCRS research group [2]
[103]. It is a type-1 hypervisor and supports isolation, real-time, and inter-VM communi-
cations. It is designed to be as small and straightforward as possible; thus, using hardware
support to avoid complex software implementation. It follows the microkernel approach and
is custom-made during compilation time, i.e., its data structure length is defined during the
building process. It is open-source software, mostly written in C language with a few Assem-
bly lines, resulting in 9800 lines of code. It is available online1.

Authors in [90] present Bao, a lightweight hypervisor implementation that uses a
static partitioning architecture, supporting Armv8 and RISC-V platforms. Bao strongly fo-
cuses on isolation for fault-containment and real-time behavior. Its kernel has approximately
5600 lines of code. Tests were executed in Xilinx ZCU104, a quad-core Cortex-A53 run-
ning at 1.2 GHz per-core, and a shared unified 1MB L2/LLC cache. The hypervisor code
and benchmark applications were compiled using the Arm GNU Toolchain version 8.2.1 with
O2 optimizations. Results regarding memory show that it needs 23 KB of storage and 17
KB during runtime. To evaluate virtualization performance overhead, authors employed the
MiBench Embedded Benchmark Suite [63]. Preliminary evaluation shows Bao generates an
average virtualization overhead of 1.25% (one VM) and 32.50% for multiple VMs executions.

In recent years, there has been an increasing interest in containers, which are a
vital element of modern cloud computing and play an important role in emerging edge com-
puting applications [100] [101] [9] [89]. According to Morabito et al. [100], container-based
virtualization provides a different level of abstraction in terms of virtualization and isola-
tion compared to other virtualization solutions. Containers share the same OS kernel with
the underlying host machine, making it possible to isolate standalone applications that own
independent characteristics: independent virtual network interfaces, independent process
space, and separate file systems [101]. However, it is a solution that still requires a GPOS.

After analyzing the possibilities of lightweight virtualization platforms, the Hellfire
hypervisor was chosen as the virtualization layer for the proposed security architecture de-
scribed in Chapter 4. The main motivations are the small footprint and strong isolation,

1https://github.com/hellfire-project/hellfire-hypervisor

46

important features towards security by separation in resource-constrained edge devices. A
detailed description of the Hellfire hypervisor is given in Chapter 3.

2.3 SECURITY FOR EDGE DEVICES

Security is emerging as one of the most significant challenges for edge computing
[126]. The decentralization of data processing and IoT applications to the edge made the
devices more susceptible to attacks [7]. Also, edge devices are often deployed in resource-
constrained environments without strict monitoring and protection, thereby facing all kinds
of security threats [126]. Once an attacker controls the device, it is hard to identify that
situation, and all system execution and state can be compromised. According to [174],
increasing trust in such devices is the primary challenge. Hence, some aspects must be
considered for security improvements: hardware-to-software oriented security and simple
architecture building blocks due to resource limitations of edge devices.

Considering widespread published research in the security area [87] [36] [10] [173]
[170] [136], and considering particular features of edge devices, such as processing power,
storage capacity, network conditions, and heterogeneous applications, a taxonomy of “secu-
rity for edge devices” was defined. The taxonomy presents challenges to overcome, relevant
attacks and how they can violate software, and key security requirements. It is depicted in
Figure 2.5. The security challenges and vulnerabilities are presented in Section 2.3.1 while
the key security requirements in Section 2.3.2.

2.3.1 CHALLENGES AND VULNERABILITIES

In order to provide security for resource-constrained edge devices, there are impor-
tant challenges that need to be considered:

• Constrained hardware: Edge devices can be resource-constrained devices in terms
of processing capacity, memory size, storage, and bandwidth communication [12] [77].
It can result in severe security flaws, as only lightweight-based security mechanisms
can be applied in order to protect data, applications, and the device itself [77] [66].

• Simple and low-overhead building blocks: Edge devices can deal with scenarios
involving life support and low-latency applications. Thus, security solutions should
follow a simple and low-overhead architecture to meet applications’ QoS requirements,
which is a challenging task in resource-constrained devices.

• Data Processing and Scheduling: An edge device can process data from sensors
and make decisions on it. However, some devices do not have sufficient resources to

47

Figure 2.5 – Security taxonomy for edge devices.

do it. Thus, they should send data to be processed in other devices. These scenarios
are drawing the attackers’ attention to perform new attacks.

• Applications on the Edge: Relevant IoT applications are migrating from the cloud to
edge devices, making them the primary target of attacks.

These challenges drive the rise of new threats at the edge. Also, old threats from
traditional IoT environments are inherited by edge devices. Table 2.2 presents the most
relevant attacks against them [126] [170] [1] [10] [65] [149]. Also, it describes vulnerabilities
and which security requirements can be violated in each attack.

The security of edge devices can be violated regarding unauthorized access, use,
disruption, modification, or even destruction [174] [7]. Most of the attacks aim to disrupt the
device’s software (e.g., operating system, virtualization, or key storage). However, attacks
can also explore the network. In 2016, the Mirai attack [82] exploited basic flaws in IoT
devices like hardcoded usernames and passwords for telnet. Once it successfully exploits
a device, it converts the device into a bot controlled by the command and control server.
The Mirai attack used thousands of IoT devices, such as cameras and video recorders, to
cause a DDoS, generating high loads of traffic against the target, making it unavailable.
In 2015, hackers tried to break the Jeep Cherokee’s security remotely, taking control of the
car’s critical control system [166]. As a result, they could turn off the engine with the car trav-
eling on a highway. It cost a recall for 1.4 million vehicles for the Chrysler automaker [167].
Many other attacks have caused significant damage, including Imeij [88], Brickerbot [39],
Remaiten [161], and Linux.Darlloz [22].

Regarding security violations, attacks can explore confidentiality, integrity, and avail-
ability (CIA triad), which forms the basis of any assessment of security [176]:

48

Table 2.2 – Attacks on Edge Devices.

Attacks Vulnerabilities and Security Violation

Distributed Denial-of-Service In a DDoS attack, an attacker first compromises a cluster of edge devices and takes full
control of them. Then, it commands each device to launch a denial-of-service attack tar-
geting a fog or cloud device, causing the shutdown of its services. It can happen as a
flooding-based attack, which aims to shut down the normal service of a device based on
a large amount of flooded malformed/malicious network packets, or as a zero-day attack,
which must find an unknown vulnerability in the code running on the target, causing mem-
ory corruption and resulting in a service shutdown [82]. It violates availability.

Malware Injection It injects malicious codes into the memory of edge devices. The attacker may force the
device to perform some unintended functions or even access the complete system [45].
Thus, enabling adversaries to perform hacking processes, such as bypassing authentica-
tion, stealing data, or reporting false data. Backdoor attacks are examples of malware
injection. The attacker spreads the malware in the device through unsecured entry points,
such as outdated software or a firmware update. If the attacker gains access, it can cause
damage to the device, and its applications [157]. It violates confidentiality and integrity.

Physical or Tampering It happens if attackers can access the edge device physically. Valuable and sensitive
cryptographic information can be extracted, the circuit can be tampered with, and the
software/operating-system can be modified or changed [105]. It violates confidentiality,
integrity, and availability.

Booting Edge devices are vulnerable to attacks during the boot process. It happens if the inbuilt
security processes are not enabled at that point. The attacker may take advantage of this
vulnerability and try to attack the edge device when restarting. It violates integrity.

Hyperjacking An attacker tries to subvert the existing hypervisor or inserting a rogue one. If successful,
it can control any virtual machine running on the device. It violates confidentiality and
integrity.

Hidden-Channel Exploration of vulnerabilities regarding sharing of hardware components among the de-
vice’s VMs. Data leakage across the VMs is a consequence of such an attack. It violates
confidentiality.

Privilege Escalation A malicious virtual machine can manipulate other VMs or take control of some elements of
the device. It violates confidentiality and integrity.

• Confidentiality: It means that the data is only available to authorized parties. When
information has been kept confidential, it means that other parties have not compro-
mised it. In edge devices, a breach of confidentiality may occur in different ways, such
as backdoor violations.

• Integrity: It refers to the certainty that the data is not tampered with or degraded, either
intentional or unintentional. In edge devices, integrity could also be compromised when
an attacker controls the device, like in booting or physical/tampering attacks, during
data transmission inside the device (inter-VM communication, for example) or storage.

• Availability: It means that the information is available to authorized parties when
needed. An edge device must have adequately functioning computing systems and
security controls to demonstrate availability. It must be resilient against DoS or physi-
cal/tampering attacks, which might impact the service’s availability.

49

2.3.2 KEY SECURITY REQUIREMENTS

Trusted components can be used to build trust in edge devices. However, trust
does not entail security. According to the Trusted Computing Group (TCG), “an entity can be
considered trusted if it always behaves expectedly for the intended purpose”. With hardware-
assisted trust computing, the device will consistently behave in expected ways, and that
behavior should be enforced by computer hardware and software [36]. This can be achieved
by loading the hardware with unique encryption keys inaccessible to the rest of the system.
Trusted computing is based on the concept of Chain-of-Trust (CoT). A CoT is established
by validating each component of hardware and software from the Root-of-Trust (RoT) to
the up entity, building a Trusted Execution Environment (TEE), which consists of an area of
execution of a device where all code executed and application’s data are verified for integrity
[130]. A TEE starts during the device’s power-up and persists during all system execution.

The key security requirements towards a secure architecture for edge devices in-
volve trust components and lightweight virtualization and are discussed next [174] [126]
[130] [87]:

• Isolation: It denotes a hardware-based architectural mechanism that can provide ac-
cess control for software and its data. By placing code and data inside a protected
module, no software outside can read or write its runtime state or modify its code.
Execution of code inside such a module can only be started from a single predefined
location [87]. Such an entry point ensures that attackers cannot reuse the module’s
code to extract secrets or implement malicious behavior.

• Trust Boot: To give strong security guarantees, an architecture should guarantee the
integrity of its state. An edge device with a trusted boot can ensure that the device
runs an authorized code and not a malicious code, which prevents malware installa-
tion. It can be implemented by verifying software components’ authenticity during their
initialization while preventing later modifications through isolation. It usually relies on
digital signatures to protect the code authenticity. Also, the trusted boot needs to be
anchored in an inherently trusted component referred to as RoT [130]. To be trusted,
an RoT cannot be changed or substituted. It can be implemented in different ways.
One approach is entirely in hardware, making it impossible to be replaced. Another
possibility is in bootstrap software on a read-only memory (ROM) on-chip. A third way
needs hardware capable of performing software verification based on a cryptography
key stored in a write-once memory. RoT is typically combined with isolation to protect
against attacks where an attacker changes the VM’s code after it has been verified
[87].

50

• Key Protection: A key protection scheme should be based on specialized hardware to
protect the integrity of keys. For example, root public keys can be stored in a write-once
memory to avoid key substitution. Alternatively, Physical Unclonable Functions (PUFs)
can be used not just for device authentication but also for runtime key generation,
avoiding the necessity of key storage.

• Secure VMs Communication: There is a need for protection in the interaction be-
tween VMs and other software parts of an edge device. The mechanism can be based
on a hypercall API, and the hypervisor should work as an intermediate between com-
munication from one VM to another.

2.4 TASK ASSIGNMENT AND SCHEDULING

The task scheduling problem refers to allocating resources to tasks, respecting the
imposed constraints aiming to optimize one or combining performance measures. In the
problem, we must allocate resources, usually limited, to activities to be carried out. Several
definitions for scheduling can be found in the literature. A widely known definition is given by
Pinedo [116], “Scheduling concerns the allocation of limited resources to tasks over time. It
is a decision-making process that has as a goal the optimization of one or more objectives.”
According to Leung [83], resources may be machines in an assembly plant, central process-
ing unit, memory, and input/output devices in a computer system, runways at an airport,
and mechanics in an automobile repair shop. The tasks may be operations in a production
process, take-offs and landings at an airport, stages in a construction project, executions
of computer programs, among others [116]. Each task may have a priority level, starting
time, and due date. There are also many different performance measures to optimize. One
objective may be to minimize the makespan, i.e., the time difference between the start and
finish of a sequence of operations. Another objective may be the minimization of the number
of late jobs.

To identify possible problem characteristics that are useful in modeling the task
assignment and scheduling problem in an edge-fog-cloud architecture, scheduling compo-
nents such as machine environment, constraints, and optimization criteria are addressed in
Section 2.4.1. The problem is described in Section 2.4.2.

2.4.1 SCHEDULING NOTATION

A scheduling problem can be described by a triplet α | β | γ [58]. The α field
describes the machine environment and contains just one entry. The β field provides details

51

of processing characteristics and constraints and may contain no entry at all, a single entry,
or multiple entries. The γ field describes the objective to be minimized and often contains a
single entry.

According to Pinedo et al. [116], machine environments specified in the α field are
presented in Table 2.3. The problem addressed in this work was modeled as a Flexible Job
Shop scheduling problem, a generalization of the Job Shop scheduling problem. A more
detailed description of its definition is given next.

Table 2.3 – Shop models and their symbols classified according to the machine environment.
Environment Symbol Interpretation

Single machine 1 There is only one machine. This case is a special case of all other
more complicated machine environments.

Parallel machine Pm There are m machines in parallel. Each job requires a single operation
and may be processed on any machine.

Open shop Om Each job needs to be processed exactly once on each of the m ma-
chines. The route, i.e., order in which the operations are processed,
can vary freely.

Flow shop Fm There are m machines linearly ordered and all jobs follow the same
route, i.e., they have to be processed first on machine 1, then on ma-
chine 2, and so on.

Flexible flow shop FFc A flexible flow shop is a generalization of the flow shop and the parallel
machine environments. Instead of m machines in series, there are c
stages in series with at each stage a number of identical machines in
parallel. Each job has to be processed first at stage 1, then at stage 2,
and so on.

Job shop Jm Each job has its own predetermined route to follow. It may visit some
of the m machines more than once and it may not visit some machines
at all.

Flexible job shop FJc Instead of m machines in series, there are c work centers, where each
work center consists of a number of unrelated machines in parallel.
When a job on its route through the system arrives at a bank of un-
related machines, it may be processed on any one of the machines,
but its processing time now depends on the machine on which it is
processed.

The JS scheduling problem can be stated as follows. Consider a set V = {1, 2, ... , o}
of operations, and a set M = {1, 2, ... , m} of machines. Each job Ji(i = 1, 2, ... , n) where
Ji ⊆ V consists of a set of ni operations that must be processed by machines in order to pro-
duce a product. A precedence relation saying that an operation i must be processed before
an operation j is represented by an arc (i , j) ∈ A, where A is the set of precedence relations.
In the classical JS scheduling problem, precedence relations between operations belonging
to the same job are denoted in form of chains (sequence), e.g., given an instance with two
jobs J1 = {1, 2, 3, 4} and J2 = {4, 5}, we simply have that A = {(1, 2), (2, 3), (3, 4), (4, 5)}.
There is a machine ki ∈ M and a processing time pi associated with each operation. It im-
plies that operation i must be processed for pi time units on machine ki . Thus, considering si

as the starting time of operation i , we have that the completion time ci of operation i is equal

52

to si +pi , i.e., ci = si +pi . Moreover, for each (i , j) ∈ A we have that ci ≤ sj . No operation may
be interrupted and each machine can process only one operation at a time. The problem
consists in sequencing all operations on their respective machines, i.e, ordering processing
of all operations on all machines to obtain a feasible scheduling solution.

The FJS scheduling problem, first introduced by [108], is a generalization of the JS
scheduling problem. It is considered that there may be several machines, not necessarily
identical, capable of processing each operation. Additionally to the set V of operations,
the set A of precedence relations, and the set M of machines, it is also given a function F
that associates a non-empty subset F (i) of M with each operation i ∈ V . The machines
in F (i) are those capable of processing operation i . Moreover, for each operation i and
each machine k ∈ F (i), a positive number pik is given representing the processing time of
operation i on machine k . The FJS scheduling problem is twofold, assigning one machine
to each operation (routing), and sequencing the operations on the machines (scheduling).
Firstly, routing is concerned with assigning a machine to each operation of all jobs, i.e.,
defining the “route” of the jobs through the machines. A machine assignment is a function
κ that assigns a machine κ(i) ∈ F (i) with each operation i . Given a machine assignment
κ, consequently, the processing time of operation i is equal to piκ(i). Secondly, sequencing
is concerned with ordering the processing of the operations to obtain a feasible scheduling
solution. Commonly, the objective is to minimize the makespan, however, not limited to.

The JS scheduling problem is known to be NP-hard, being considered by many
one of the most challenging problems in combinatorial optimization [56]. The scheduling
problem in an FJS is at least as hard as the JS scheduling problem because it contains an
additional problem that is assigning operations to the machines. The option of alternative
resources ensures that the FJS scheduling problem is useful for scheduling in a wider range
of applications.

The processing restrictions and constraints specified in the β field may include
multiple entries [116]. In the scope of this work, the precedence constraint should be defined.
It requires that one or more jobs be completed before another job is allowed to start its
processing. There are several forms of precedence constraints: if each job has at most one
predecessor and at most one successor, the constraints are referred to as chains. If each
job has at most one successor, the constraints are referred to as an intree. If each job has
at most one predecessor, the constraints are referred to as an outtree.

Due dates are usually not explicitly specified in the β field. The type of objective
function gives sufficient indication whether or not the jobs have due dates. The γ field is
related to the objective function to be minimized. The objective to be minimized is usu-
ally a function of the completion times of the operations, which, of course, depend on the
scheduling solution [116]. The most-used objective functions in the FJS scheduling problem
in literature are described and formulated in Table 2.4.

53

Table 2.4 – Commonly used objective functions in the FJS scheduling problem.
Objective Symbol Formulation Interpretation

Makespan Cmax max∀i∈1,...,n{Ci} The maximal completion time be-
tween all operations of all jobs.

Maximum workload WM max∀k∈1,...,m{
∑|Bk |

i=1 pik} The machine with most working time.
Appropriate to balance the workload
among machines.

Total workload WT
∑o

i=1 pik (i) Sum of the working time on all ma-
chines. Appropriate to reduce the to-
tal amount of processing time taken to
produce all operations.

Total tardiness T max∀i∈1,...,n{0, Ci − di} Positive difference between the com-
pletion time and the due date of all
jobs.

Maximum lateness Lmax max∀i∈1,...,n{Ci − di} Maximal difference between the com-
pletion time and the due date of all
jobs.

2.4.2 TASK ASSIGNMENT AND SCHEDULING PROBLEM IN AN EDGE-FOG-CLOUD
ARCHITECTURE

An edge-fog-cloud architecture comprises edge, fog, and cloud devices, with multi-
ple cores and different processing power. Also, they can perform a wide variety of tasks. In
smart city applications, tasks are generated by edge devices and processed generally at the
fog layer, where devices have more processing power. However, there are some situations
in low-latency and compute-intensive applications that may prevent the QoS requirements
as the task deadline from being met.

Video monitoring applications are typical in smart cities and are the best example
to demonstrate such situations. Smart surveillance has garnered much attention in recent
years, particularly by enabling a broad spectrum of interdisciplinary applications in areas
like public safety and security, manufacturing, transportation, and healthcare [44] [172]. The
main challenge of such a system is handling voluminous data, which are called “tasks” in
this work. Cameras continuously send captured video frames for processing, which causes
massive traffic, especially when all cameras in a system are taken into account.

In this work, a frame is considered a task requiring processing to detect something
(e.g., face, object, among others). Each task must be processed on at most one of the
multiple cores that are in the devices. Also, the tasks do not have to be processed in the
same order of generation. However, they must respect the order of assignment in a core,
i.e., a task that arrived in the device at time t cannot be processed later than one that arrived
at time t + 1.

54

Figure 2.6 – Video monitoring application in a public area of a city.

Typically, videos are segmented into frames or set of images. A single video camera
can produce about 25-30 frames/second or more with 4K and 3D video cameras depending
on the video’s sampling rate. Considering the volume and generation rate of data, algorithms
to process the video must offer real-time or near real-time solutions [109]. According to [13],
using compute capacities available on the camera itself allows for correspondingly lower
provisioning (or usage) in the fog/cloud, enabling promising applications, such as access
control in areas of interest, human identity or behavior recognition, detection of anomalous
behaviors, interactive surveillance using multiple cameras, crowd flux statistics, among oth-
ers [69]. However, let us consider the scenario illustrated in Figure 2.6. A video monitoring
application performs face recognition of people in a city’s public area at time t . The number
of people increases considerably at time t + 1, but the edge-fog-cloud architecture remains
the same. Some devices may suffer from overloading when the nearby user population be-
comes dense at some time of the day. Simultaneously, other devices may be idle most of
the time, leading to loss of task deadlines and consequently causing image detection prob-
lems for the video monitoring application [164]. Although it is rare for real-time processing
applications not to meet the deadline, it can happen [17]. The reasons may be a complete
system failure or an inability to work during the system’s peak time. If the returned results

55

exceed the deadline, they become invalid and may cause severe consequences to people
depending on the application.

The assignment and scheduling of tasks considering the whole architecture, from
the edge to the cloud, becomes fundamental towards meeting QoS requirements. It is a way
to achieve the lowest latency for each task, avoiding missing the deadline. Authors in [164]
argue that it is unnecessary always to use the closest device to assign a task, as long as
a particular QoS requirement is guaranteed. When the edge devices do not have enough
computing or storage capacity, the task can be assigned to the fog or the cloud to improve
the system’s overall performance [76].

Task assignment and scheduling should be addressed jointly in an edge-fog-cloud
architecture [163]:

• Task assignment: An edge device can choose any core in the system, including
itself, to assigned its task. The decision may be based on the propagation latency, the
occupied bandwidth, the device processing capacity, the waiting time of a task to be
processed, among others.

• Task scheduling: When assigning a task to its destination, the device’s tasks’ pro-
cessing order needs to be defined.

This thesis addresses minimizing the total tardiness of tasks generated by edge
devices during peak times of low-latency IoT applications in an edge-fog-cloud architecture.
Note that this problem is addressed in this work as static scheduling, i.e., at each time t an
instance of the problem is solved.

2.5 SUMMARY

This chapter presented concepts regarding this thesis. The concept of Edge com-
puting was defined and distinguished from Fog and Cloud concepts. Also, the architecture
models involving Edge, Fog, and Cloud were presented. Virtualization was defined in the
context of edge devices, and a literature review for embedded virtualization was conducted
to define a lightweight virtualization hypervisor to be used in the security architecture. The
security concept was presented along with challenges, attacks, and security requirements
for resource-constrained edge devices. Finally, the task assignment and scheduling problem
was presented and discussed in the context of an edge-fog-cloud architecture.

56

57

3. THE HELLFIRE HYPERVISOR

This chapter presents the features and operation of the Hellfire hypervisor, which
is used as virtualization layer in the proposed security architecture (Chapter 4). The de-
scription presented in the following sections is based on the implementation of the Hellfire
hypervisor on a MIPS32 (Microprocessor without Interlocked Pipeline Stages) architecture,
for which it was initially developed. However, it already supports RISC-V for both rv32 and
rv64 architectures.

3.1 PRIVILEGE-LEVELS AND CONTEXT-SWITCHING

Before understanding the MIPS privilege-ring and the context-switching scheme,
it is essential to know that the MIPS has the coprocessor 0 (CP0), a set of configuration
registers accessed by the special instructions mfc0 and mtc0 in privileged mode only. In
the MIPSVZ specification, a subset of these registers, named guest CP0 (GCP0), are dupli-
cated, and they may be accessed from the VM’s privilege level if allowed by the hypervisor.

Figure 3.1 shows the complete privilege-ring and all possible ring transitions to the
MIPSVZ core. It implements the root-kernel, root-user, guest-kernel, and guest-user ring
levels. A GPOS would use only the root-kernel and root-user ring levels that are backward-
compatible to the kernel and user-modes from classic architecture. The hypervisor uses the
most privileged-ring (root-kernel) and delegates the VMs to the guest-kernel mode. Keeping
the VMs in a less privileged ring allows for the hypervisor to create separation. Additionally,
it uses a subset of the ring transitions, shown in Figure 3.1 as dotted arrows. Thus, it is
possible to handle interrupts directly in the guest-kernel mode.

The flowchart in Figure 3.2 describes the operations executed during the transi-
tions. On entering the hypervisor exception handler (root-kernel), the GPRs are saved. In
the case of a timer interrupt, the CP0 context is saved, the scheduler selects the next VM
restoring its CP0 context. Any other interrupt will trigger the corresponding device driver.
Other exceptions as hypercalls or guest faults are handled accordingly. Finally, the GPR
context is restored, and the control is returned to the guest. Hence, the transition from
guest-kernel to root-kernel happens in the following situations: (i) root-kernel interrupts and
(ii) guest-kernel exceptions. For example, if an interrupt targeting the root-kernel happens,
the processor will jump to the hypervisor’s interrupt vector handler. Thus, it will perform the
GPR context saving, perform the required operation at the device driver level, restoring the
GPR, and jumping back to the guest-kernel mode. During the context restoring, two special
operations must be performed: (i) set the Exception Program Counter (EPC) (a CP0 register

58

Figure 3.1 – The MIPSVZ privilege-ring model and its possible transitions. Dotted arrows
show the transitions used by the hypervisor implementation.

that keeps the VM’s program counter); and (ii) set the CP0 guest_id register (used to select
the TLB entries and detailed in Section 3.2).

3.2 MEMORY VIRTUALIZATION

This subsystem is mainly responsible for the separation, keeping the different do-
mains isolated. Its existence relies on a hardware mechanism present in the processor: the
Memory Management Unit (MMU). Memory addresses generated by the processor’s core,
called virtual addresses (VA), need to be translated to physical addresses (PA) by the MMU
controlled by an operating system or a hypervisor. The OS needs to keep a page table (PT)
for each process mapping VA to PA. During context-switching, the OS remaps the processor
to the corresponding page table. If a process requires an address translation not present in
the page table, a trap is issued (page-fault). Thus, malfunctioning or even malicious mem-
ory access is detected and stopped. The MIPSVZ module implements hardware-assistance
for memory management with an additional translation level, called two-level MMU. In this
scheme, the guest OS configures its virtual memory using the guest CP0 in the same way
in a standalone environment. Typically, the hypervisor keeps a page table for each VM and
configures the MMU accordingly to the guest’s needs. During memory translation, the two-
level MMU generates IPA (Intermediate Physical Address) from VA based on the guest’s
MMU. The PA will result from the combination with the hypervisor’s MMU configuration. This

59

Figure 3.2 – Flowchart to the hypervisor’s context-switching and exception handler.

scheme avoids modifying the guest OS while reducing the virtual memory configuration and
translation traps. Figure 3.3 describes this mechanism.

Standard hypervisors for cloud computing implement a complete paging mecha-
nism. As stated, the Hellfire hypervisor keeps a page table to map guest OSs to physical
memory. In these systems, the guest OS does not need to be entirely loaded into the main
memory to be executed. The hypervisor can implement an on-demand paging mechanism
(swapping). Such a scheme reduces memory usage since pages that have not been used
recently can be stored in the swapping system. Additionally, it avoids the memory external
fragmentation problem because the VMs do not need to be allocated contiguously in physical
memory. However, this approach has critical drawbacks for resource-constrained edge de-
vices. First of all, swapping systems and on-demand paging mechanisms impact real-time
responsiveness. Nevertheless, some resource-constrained edge devices do not support
swapping due to storage restrictions. Moreover, a complete virtual memory management
mechanism implies a more complex hypervisor and, consequently, a larger footprint and
more processing requirements.

A simplified virtual memory management mechanism brings some advantages to
resource-constrained edge devices. First, it avoids second-stage translation misses keeping
the VM whole mapped at the hardware during its execution. Thus, bare-metal applications,
RTOSs, or Unikernels that do not implement virtual memory support will not suffer additional
delays and jitter due to hypervisor paging management. Additionally, the limited number of
virtual machines usually required by resource-constrained edge devices allows for a static
configuration. For these systems, memory fragmentation due to contiguous guest OS allo-

60

Figure 3.3 – Hellfire Hypervisor memory management strategy using the MIPSVZ two-level
MMU hardware support. VMs are contiguously mapped in the physical memory.

cation is not a significant problem. Thereby, the hellfire hypervisor simplifies the memory
management by combining two distinct techniques:

• static VM’s memory allocation (detailed in Section 3.5);

• avoiding to keep a complete page table scheme in memory. The contiguous memory
allocation is represented in Figure 3.3.

3.3 I/O VIRTUALIZATION

Some hardware peripherals need to be shared among the VMs, like Ethernet and
timers. For example, when a guest tries to read or schedule a timer interrupt, the hypervisor
will need to intercept these actions by traps or using para-virtualization to share the device
properly. Similarly, the hypervisor may implement a network switch layer to allow guests
to access the external world. As a consequence, all I/O may need to be controlled by the
hypervisor. Both examples are complex in terms of implementation and lines of code. Also,
they may impose performance penalties on the hypervisor. VirtIO [128] surged as an effort
to standardize the I/O interfaces for Linux hypervisors consisting of a set of Linux modules.

61

Figure 3.4 – Example of inter-VM communication involving two VMs.

Nonetheless, simplified subsystems are essential for embedded hypervisors. For example,
the ability to map a peripheral directly to a VM redirecting its interrupts can save many efforts
and diminish the hypervisor attack surface.

The hypervisor implementation supports directly mapped devices, which requires
mapping non-continuous memory regions to a VM. Usually, I/O devices are mapped to spe-
cific physical addresses. For example, a VM may have mapped 32 KB of RAM allocated in
the physical memory from 0x1000_0000 to 0x1000_8000. If the same guest requires ac-
cess to a peripheral at the physical address 0x1F00_0800 the hypervisor must configure a
TLB-entry to match it. The static partitioning approach allows for defining all direct-mapped
devices in a configuration file, as stated in Section 3.5.

3.4 INTER-VM COMMUNICATION

The hypervisor defines a hypercall interface for communication among VMs. This
implementation adopts a message passing mechanism based on para-virtualization. The
hypervisor routes messages among VMs using the address, size, and ID destination, which
are hypercall parameters configured by the guest. Thereby, the hypervisor does not make
any assumptions about the message formatting. Suppose a multi-task guest OS needs to
demultiplex [146] incoming messages among different tasks. In that case, the hypervisor

62

may add a header to the message indicating the origin and destination task id. In this case,
the communicant guests must agree about the header format.

Each VCPU implements its incoming message queue as a limited circular buffer,
statically allocated for performance purposes. A message targeting a determined VCPU will
be copied to its queue, and the hypervisor will insert a virtual interrupt to the guest. The
next time that the guest is executed, it will handle the virtual interrupt and call a hypercall to
retrieve the message. Figure 3.4 describes hypervisor behavior while redirecting messages
between guests. The VM 2 invokes the HCALL_IPC_SEND_MSG hypercall (1), causing a
message copy from its buffer to the ring buffer of the destination VCPU. After, the hypervisor
injects a virtual interrupt (2) in the VCPU 1. In the next execution, VM 1 will handle the
interrupt executing the HCALL_IPC_RECV_MSG hypercall. Thus, the hypervisor will copy
the ring buffer’s message to the target buffer (3), completing the message’s sending.

3.5 STATIC PARTITIONING

Cloud hypervisors implement management interfaces to allow users to configure
all system elements. Cloud computing requires to instantiate or stop VMs without overall
system interruption. Migration or reconfiguration should not influence the execution of the
other guests. As discussed prior in this section, typical resource-constrained edge device
applications restrict the number of VMs, and usually, they must be executed during all de-
vice’s runtime. Beyond simplifying the memory subsystem, as seen in Section 3.2, static
partitioning benefits from these characteristics. Static partitioning consists of determining
the system resources allocated to each guest at design time. For example, memory space,
scheduling priorities, directly mapped devices, among other resources, are estimated by
the developers and defined programmatically before compilation. Despite this method being
less flexible than using an underlying GPOS or a hypervisor with a management interface, it
brings two advantages: a small attack surface and simplicity.

To make the definition of the system’s setup easier, there is a scheme involving a
configuration file and a tool to process it. Thereby, the partitioning is written in a structured
file parsed by the libconfig, a C/C++ library for processing configuration files. This library has
a compact and readable content format that is similar to JSON schemes. In the configuration
file, the user gives details about the system to be built. An example is given in Figure 3.5.
The figure’s left side shows a configuration file example with a section called system where
it is defined debug flags, serial speed, and the hypervisor scheduler’s quantum. A section
called virtual_machines allows for creating a list of VMs specifying their scheduling priority,
memory size, storage, mapped devices, and interrupts.

During the building time, the configuration file is read by a tool called gentool. It
helps the developers to configure the system from a higher abstraction level view. Gentool

63

Figure 3.5 – Configuration file versus the C header generated by the genconf tool.

knows the platform architecture details and creates the partitioning based on the number
of VMs and the required size for each one. It outputs a C header used in the rest of the
compilation process. The VM’s configuration is grouped by a data structure, called struct
vmconf_t, a fixed-size array that keeps the meta-data processed from the configuration file
(see the right side of Figure 3.5). Note that the gentool ’s output is substantially more complex
than the input file, especially memory partitioning. The tool considers the memory and
storage sizes to optimize the allocation scheme for a given VM’s set. The resulting allocation
is stored in a fixed size array of struct tlb_entry elements. This information is read by the
hypervisor during booting time and used to configure the processor’s TLB.

Furthermore, the gentool keeps details about hardware devices and interrupts.
The device_mapping property in the configuration file gives an array of device names to
be mapped to the guest. The tool creates a structure called struct device_mapping_t that
keeps the memory addresses and size of the memory-mapped devices allowed to the guest.
Similarly, the interrupt_redirect is an array that keeps interruptions that must be redirected
to the guest. Finally, gentool gives a convenient way to configure the system and promote
the hypervisor and the VM build.

3.6 REAL-TIME SUPPORT

Several aspects may impact real-time responsiveness, such as paging and swap-
ping schemes or scheduling policies. Techniques as on-demand paging [137] or swapping
bring execution unpredictability because when a required page is not present in memory,

64

the process or VM is blocked until the data is loaded. The loading time may vary depend-
ing on the system load and the kind of storage involved. RTOSs overcome these problems
by simplifying their implementation. For example, no memory management and a more
straightforward software stack with predictable scheduling algorithms.

The Hellfire hypervisor finds a trade-off between memory management’s advan-
tages, as isolation, and the drawbacks in responsiveness. Thereby, it implements only the
memory management features needed to provide separation. No additional schemes like
on-demand paging or swapping are provided. A predictable round-robin scheduling algo-
rithm with priority is implemented. Another feature of the hypervisor is the ability to support
directly mapped devices, bypassing the hypervisor to access certain devices, avoiding addi-
tional overhead, and improving responsiveness. This feature is associated with the interrupt
pass-through, where interrupts can be redirected to a VM without hypervisor intervention.

3.7 EVALUATION

This section presents the evaluation tests performed in the Hellfire Hypervisor. The
main goal is to evaluate if it is possible to use it in resource-constrained edge devices.
Thus, the next subsections present the hypervisor footprint, the virtualization performance
impact using a well-known benchmark, the inter-VM communication delay for a set of two
applications, and real-time results. The Microchip PIC32mz was adopted as the hardware
platform. It comprises an M5150 processor core (MIPS32 architecture) with 512KB of SRAM
and 2MB of flash. It is depicted in Figure 3.6. The M5150 core implements the MIPS
Virtualization Extension (MIPSVZ), making it a perfect testbed.

Figure 3.6 – Microchip PIC32mz.

65

3.7.1 FOOTPRINT ANALYSIS

The footprint aspects are essential for resource-constrained edge devices. The
tests measured the hypervisor footprint for configurations with one, two, three, and four VMs,
with the inter-VM communication, Ethernet, USB, and interrupt redirection drivers enabled.
The one VM system consists of a simple blink-led application. The two VMs implement the
ping/pong application and use the inter-VM communication mechanism to exchange mes-
sages. The three VMs system consists of a combination of the blink-led and the ping/pong
applications. To the four VMs system, a VM that performs the Coremark benchmark was
included (see Section 3.7.2 for benchmark results).

The source code was compiled using GCC 4.9.2 (Codescape GNU Tools 2016.05-
03 for MIPS MTI Bare Metal) with Binutils 2.24.90. Four optimization levels were used: O0
(no optimization); O2 (most of the supported optimizations that do not involve a space/speed
trade-off), O3 (all O2 optimizations more optimizations for speed that may increase the foot-
print), and Os (optimize for space usage). Additionally, the compiler flag -micromips was
used. MicroMIPS is a code compression instruction set architecture that offers 32-bit per-
formance with 16-bit code size for most instructions and is supported by the M5150, which
allows for significant code reduction. Table 3.1 shows the results. All numbers are given
in bytes, and only the hypervisor footprint is considered (VMs size is not included). The
column text+ro means the size of the instructions and the read-only segments (kept in flash
storage), while data+bss is the sum of the global initialized data and non-initialized data
(loaded to RAM during boot). As the optimization levels do not affect the data+bss size,
Table 3.1 shows only a column for all results.

Table 3.1 – Footprint results for the Hypervisor (bytes).
GCC Optimization Level

data+bss text+ro

#VMs all opt. O0 O2 O3 Os

1 2016 32632 21328 25496 20156

2 2028 34952 21548 25716 20344

3 2048 37620 21684 25852 20468

4 2068 40104 21788 25984 20584

It is seen that the compiler optimization level plays an important role. For exam-
ple, the one VM system has a total footprint of 34648 bytes (text+ro plus data+bss) for O0
optimization and 22172 bytes when optimized for Os, a reduction of 36%. In all optimiza-
tion levels, a small increase in text+ro and data+bss sections with additional VMs can be
noted. This happens because it is allocated a struct vmconf_t (see Section 3.5) in the read-
only section for each new VM. Additionally, a struct vcpu_t (a data structure that keeps the

66

execution status of a VCPU) is allocated in the data section for each VM. Finally, based
on footprint results, using optimization levels O2 or Os makes it possible to keep the total
footprint around 23KB, which is very optimistic for a hypervisor.

3.7.2 PERFORMANCE ANALYSIS

Coremark2 is a benchmark used to measure embedded processors’ performance.
It was designed to run on microprocessors from 8 to 64-bit. It implements algorithms like
list processing, matrix manipulation, state machine, and CRC (cyclic redundancy check). All
are everyday operations in embedded applications. The Coremark result is a score number
that can be used to compare performance among different processor families. The goal
is to determine the virtualization impact by comparing the native Coremark score with the
hypervisor under different system configurations. Five different setups were used: native,
one VM, two VMs, three VMs, and four VMs systems. For the native setup, the Coremark as
a standalone application was performed, i.e., without the hypervisor. The remaining setups
consist of a different number of parallel VMs running the Coremark application. Thereby,
the native result score was compared to the score of different system setups to find the
hypervisor overhead. In all setups, the optimization level used was O2, and the hypervisor
scheduler quantum was configured for 5ms, i.e., it performs context-switching every 5ms.

Figure 3.7 shows the results. The native execution resulted in a Coremark score of
589.93, while the one VM system was 588.32, giving a performance penalty of 0.27%. For
the remaining setups, the CPU time was equally shared among all VMs, i.e., in the four VM
systems, each VM had only 25% of the CPU time. Thus, the resulting score was divided
among the VMs. Observe that, for the two systems VM, Figure 3.7 shows the resulting
score for each VM and a column bar with the sum. In this case, VMs’ scores were 293.63
and 293.72, resulting in a total of 587.36, which gives an overhead of 0.43%. Using the
same technique, overheads of 0.68% and 0.76% were found for the three and four VMs
systems. These are very optimistic numbers that result from two main reasons: (i) the low
hypervisor code complexity and (ii) the MIPSVZ hardware features, especially the TLB and
the GPR shadows that keep the context-switching lightweight.

The MIPS 5150 implements performance counter registers [72] that can be pro-
grammed to count different kinds of hardware events, e.g., number of executed instructions
or invoked hypercalls. Thereby, the register counters were used to determine the impact of
the different setups over the cache. For this, the counters were programmed to issue the
number of data and instruction cache misses. Figure 3.8 depicts the cache impact when
adding more VMs to the system. As expected, the cache misses for data and instructions
increases exponentially with the addition of VMs. The M5150 processor core has only 16

2https://www.eembc.org/coremark/

67

Sy st em Con f ig u r a t ion
0

100

200

300

400

500

600 589.93 588.32 587.36

293.63 293.72

585.91

195.25 195.22 195.44

585.39

146.20 146.30 146.34 146.55

Nat ive

One VM

Two VMs

Three VMs

Four VMs

Figure 3.7 – Coremark’s score for an increasing number of VMs.

KB for instruction cache and 4 KB for data cache. The context-switching between VMs
changes the spatial memory location abruptly, forcing new cache lines to be loaded. Addi-
tional VMs mean different spatial locations being accessed, and the amount of cache has
not been enough. This problem may be minimized, increasing the scheduler quantum to
10ms, causing two times less context-switching.

3.7.3 INTER-VM COMMUNICATION DELAY

The inter-VM communication was evaluated regarding the latency of message ex-
changes between VMs. Thus, the test involves two VMs. The first one works as an echo
server that replies to all received messages. The second one sends messages of 256 bytes
repeatedly, calculating its round-trip time. It is called the ping-pong application. As a result,
an average round-trip time of 199.97 µs was obtained after 1000 messages. Thereby, the
inter-VM mechanism can be considered an efficient way to implement communication on the
virtualized platform.

68

Figure 3.8 – Cache impact for increasing number of VMs.

3.7.4 REAL-TIME ANALYSIS

For real-time applications, it is essential to understand the behavior of the system
regarding the response delay. The response time for interrupt handling was tested to mea-
sure a VM’s responsiveness in the Hellfire hypervisor. For this, a VM capable of receiving
interrupts from an I/O pin (external source) and generate outputs to another I/O pin was
implemented. Hence, a function generator to issue interrupts every ten milliseconds was
used. The tests measured the instants of the generated interrupt and the response in the
output pin for each interrupt. The time difference is the total delay to the system to react to
an external event. The responsiveness was tested in three situations:

1. The system idle, composed of 1 VM: the VM for the latency test;

2. The system under moderate load, composed of 2 VMs: the VM for latency test and the
blink-LED application;

3. The system under heavy load, composed of 4 VMs: the VM for latency test, the blink-
LED application, and the ping-pong application.

69

(a) Response delay for the system with a moderate
load (2 VMs).

(b) Response delay for the system with a heavy load
(4 VMs).

Figure 3.9 – Histograms for interrupt responsiveness for system under moderate and heavy
loads.

The ping-pong application generates a heavy load on the system since it changes
messages exhaustively. For each situation, 100000 interrupts were generated, obtaining
the response delay for each one. For the system idle test, the average response time was
8µs (microseconds). Since there is only one VM, the interrupts are directly sent to the VM
(interrupt pass-through), resulting in a fast response. In the moderate and heavy load tests,
interrupts may happen when the target VM is not in execution, requiring rescheduling. The
rescheduling may happen when the interrupt arrives, or it is postponed if the hypervisor
needs to attend to other VMs. Figure 3.9 presents the response delay histograms showing
the time distribution. For the system under moderate load (2 VMs), see Figure 3.9(a), the
average response time was 173.23µs with a minimal of 8µs and a maximum of 1008µs.
For the system under heavy load (4 VMs), see Figure 3.9(b), the average response time
was 1010.48µs with a minimum of 8µs and a maximum of 2008µs. A variation can be seen
depending on the system load, but it is possible to determine the worst-case response time
making the resulting system behavior predictable.

3.7.5 SMART CITY APPLICATION - AIR QUALITY MONITORING

The hellfire hypervisor was also evaluated in a scenario that highlights its capa-
bilities for edge computing deployment. The scenario, presented in Figure 3.10, depicts
a typical smart city application that monitors the air quality in urban areas. Air quality is
usually monitored by networks of fixed stations strategically placed in the city, where each
station can measure a wide range of pollutants (Figure 3.10A). Each station has a resource-
constrained edge device in this scenario, which was implemented in a MIPS32 processor
core running at 200 Mhz, with 2 MB of flash memory and a 512 KB SRAM. The device was

70

Figure 3.10 – Air quality monitoring scenario in urban areas. Additionally, smart cities appli-
cations that can benefit from the lightweight virtualization layer.

connected to some sensors simulated by software to monitor the environment: light, CO2

(carbon dioxide), CH2O (methanal), and temperature. The devices’ software components
were implemented and are shown in Figure 3.10B. The air quality monitoring application
was divided into three VMs: data acquisition, data reasoning, and network communication.
They execute into each edge device to monitor the air quality in different parts of the city.
The data acquisition VM receives raw data from sensors and sends them to the data rea-
soning VM through inter-VM communication. The data reasoning performs data filtering and
aggregation to make decisions. For example, it can generate alarms for pollution peaks or
aggregate and compact relevant data to reduce communication. Finally, the network com-
munication VM implements the required network stack to send data to a fog/cloud monitoring
device (Figure 3.10C).

Table 3.2 – Footprint results for the hypervisor in an Air Quality Monitoring Application (KB).
Software Storage SRAM Footprint

Hypervisor 21 2 23
Data Acquisition VM 32 16 48
Data Reasoning VM 32 16 48
Network Comm. VM 128 64 192

The results for footprint are presented in Table 3.2. Sizes of 32 KB of flash and 16
KB of SRAM are required to communicate the data acquisition VM with sensors. The data
reasoning application had the same values since it does not implement complex software
stacks. Network communication was implemented using the picoTCP stack [8]. It required

71

128 KB for storage and 64 KB of SRAM to support TCP/IP and HTTP protocols. Thus,
resulting in a total footprint of 311 KB (storage and SRAM) for the hypervisor and the three
VMs execution.

Based on the results, the Hellfire hypervisor can be used in various Smart City
applications, such as smart home care, smart building, smart lighting, and smart parking, as
highlighted in Figure 3.10D. The use of resource-constrained edge devices in the described
scenarios means the reduction of cost and power consumption.

3.8 SUMMARY

This chapter presented Hellfire, a lightweight virtualization hypervisor designed to
deliver virtualization for small embedded devices. It is a type-1 hypervisor and supports
isolation, real-time, and inter-VM communications. It is custom-made during compilation
time, i.e., its data structure length is defined during the building process. The hardware
support is used to avoid complex software implementation. The results show that it can
be used in resource-constrained edge devices due to its small footprint, low virtualization
overhead and inter-VM communication delay, and real-time support while enforcing security
by separation. Thus, it was chosen to be used as the virtualization layer in the proposed
security architecture.

72

73

4. SECURITY FOR EDGE DEVICES

This chapter presents the proposed security architecture for resource-constrained
edge devices. It is described in Section 4.1. Also, Section 4.2 presents the evaluation, while
Section 4.3 presents the related work.

4.1 SECURITY ARCHITECTURE DEFINITION

The proposed security architecture comprises two main mechanisms: the Chain-
of-Trust Protection and the Virtualization Protection. They ensure the authenticity of the
executed code, the integrity of the runtime states, and the confidentiality of elements stored
in the persistent memory. The mechanisms are detailed in Sections 4.1.1 and 4.1.2.

4.1.1 CHAIN-OF-TRUST PROTECTION

A CoT is established after various secure boot stages, starting on the hardware
and going to the highest level of software. An edge device must be designed to boot up only
if the first piece of software to execute is cryptographically signed by a trusted entity (e.g.,
device vendor), and its signature matches with a root public key which is stored into the
device. Figure 4.1 illustrates the device verification processes. First, the developer compiles
the source code generating a device’s binary image or firmware (1). Second, the hash
digest of the binary image (a numeric code capable of identifying it uniquely) is calculated
(2). Third, the hash digest is encrypted by a private key (3) from a public key-pair. The
result is a signature that is placed in the device along with the firmware. Also, the developer
must write the corresponding public key to the device’s write-once memory. During startup,
the hardware or the bootstrap software will recalculate the hash digest from the firmware on
storage (4). The last step is to decrypt the signature using the public key (5) and compare
it to the firmware’s digest (6). Both must be the same since different digests indicate that
the firmware was changed and the boot process is stopped. It is assumed that the attacker
has no access to the developer’s private key since he can use it to generate a compatible
firmware.

Without the integrity of the initial boot program, any further integrity verification
becomes pointless. Thus, a tamper-evident hardware module must protect the initial boot
program. Specialized hardware can be used to store cryptographic keys and perform sig-
nature verification. The minimum requirements in terms of hardware are (see Figure 4.2-A):
a One-Time-Programmable (OTP) memory to store the root public key and a primary boot-

74

Figure 4.1 – Code signature generation and verification process.

loader (i.e., a piece of software that runs before any operating system) embedded in the
hardware or stored in a protected memory that is able to verify the signature of the next boot
stage. This scheme enables an RoT that should be used to ensure all running software’s
integrity and authenticity. By anchoring this RoT in the hardware, tampering becomes more
difficult. Once RoT has been established, the initial software component should make iden-
tity and integrity checks with the virtualization layer in the boot chain (see Figure 4.2-B). If
successful, then the same process will take place in the next boot stage of the CoT until the
software stack is fully protected [130].

Since a virtualized environment can be composed of VMs from different providers,
an additional secure boot verification level should be performed. Establishing a CoT be-
tween the virtualization layer and VMs is mandatory, allowing it to be securely anchored to
the hardware and trusted for all operations (see Figure 4.2-C). For example, a vendor can
mix third-party software (e.g., a robotic arm controller running in a virtualized application
with software developed in-house). Virtualization makes the integration of different software
environments easier since it is possible to keep them completely separated. The proposed
security architecture allows the software providers to sign their VMs independently, i.e., each
VM has a signature header (see Figure 4.2-D). The device vendor stores the provider’s pub-
lic key within the virtualization layer, allowing it to check the integrity/authenticity of each VM
individually.

While virtualization allows software stacks from different providers to be integrated,
individually signed VMs ensure code integrity, authenticity, and non-repudiation. Thus, the
proposed architecture guarantees that the program was not modified (integrity). The VM is
from the provider it claims to be from (authenticity). Moreover, if a VM causes a malfunction,
the responsible party cannot deny it (non-repudiation).

75

Figure 4.2 – Lightweight security architecture for resource-constrained edge devices.

4.1.2 VIRTUALIZATION PROTECTION

Once the CoT is established, the system is still vulnerable to runtime attacks,
and virtualization plays an essential role in keeping TEEs [174]. Additionally, the use of
hardware-assisted virtualization, i.e., specialized hardware to simplify the virtualization layer
implementation and improve the system’s performance, contributes to reducing the attack
surface.

Many different approaches are discussed about hardware-assistance for virtual-
ization layers [38] [113]. As a result, most modern embedded hypervisors use a hybrid
approach, applying full-virtualization of the CPU (no modifications required in the virtual-
ized software for basic functionalities), and para-virtualization (virtualized software must be
modified) is required for extended services, such as inter-VM communication. Different vir-
tualization layer subsystems improve device security, such as spatial isolation, temporal
separation, and secure inter-VM communication.

The most common way of providing spatial isolation among VMs is through an
MMU, a hardware block that provides virtual memory abstractions to the system (see Fig-
ure 4.2-E). Processors with hardware-assisted virtualization implement the second stage of
MMU translation controlled by the virtualization layer. Essentially, the VMs can handle the
hardware in the same way as in a non-virtualized system. However, they map virtual mem-
ory to intermediate physical memory. The virtualization layer is responsible for mapping
intermediate physical memory addresses to physical memory, avoiding conflicts and ensur-
ing separation between VMs. The second stage MMU translation drastically decreases the

76

virtualization layer’s exceptions, making it suitable for resource-constrained edge devices
and a small surface for attacks. Without proper separation, a running application can have
access to all processors’ address space, i.e., a malicious or malfunction code can touch any
memory location.

Temporal separation guarantees the correct distribution of processor time among
VMs according to their execution priorities (see Figure 4.2-E). Different authors have ad-
dressed the virtualization layer’s scheduler as a way to improve temporal separation and to
honor real-time constraints [33]. Additionally, system interrupts require attention since they
interfere directly with the VM’s execution. Hardware-assisted virtualization can help manage
interrupts, allowing them to be redirected to VMs without intervention from the virtualization
layer.

Virtualized IoT applications may require some level of interaction with each other
and with the virtualization layer itself. Also, some applications require secure channels for
sensitive information. Thus, an efficient and secure inter-VM communication mechanism
should be available in the virtualization layer (see Figure 4.2-F). It is implemented as para-
virtualized services, i.e., using a well-defined hypercall API (VM’s calls to the virtualization
layer) as presented in Figure 4.2-G. Thus, the virtualization layer works as a communication
arbiter, copying messages from the sender to the destination application. The virtualization
layer can check the size, the number of messages, and even deny forbidden communication.

Virtualization brings an advantage for keeping the integrity of TEEs: it allows the
virtualization layer to monitor the behavior of the VMs, detecting malfunction caused by
software errors or attacks. There are three ways of detecting a compromised VM:

• A VM tries to access memory outside the address space defined at design time.

• A VM invokes hypercalls which should not be called.

• A VM does not periodically reset a watchdog.

If the system detects one of these situations, the VM is restarted. Hence, two things can
happen:

• If the VM code was compromised after the deployment, its hash signature will not
match during the CoT phase, and it will not boot up.

• If an attacker was exploiting a vulnerability based on the malfunction, it will boot up
and run as expected. However, the virtualization layer can emit alerts about the reset
activities enabling developers to investigate the causes.

77

4.2 EVALUATION

The proposed architecture was evaluated on the same hardware as the hypervisor
in Section 3.7. It is a resource-constrained device targeting IoT and embedded markets that
supports hardware-assisted virtualization. The Hellfire hypervisor, described in Chapter 3,
was used as a virtualization layer to support the previous section’s mechanisms. The eval-
uation explores the architecture’s suitableness for resource-constrained edge devices and
security. It analyzes two metrics: footprint and performance. Performance results are based
on an average of 1000 measurement runs. Also, a discussion around how the proposed
architecture can achieve confidentiality, integrity, and availability was conduct.

4.2.1 FOOTPRINT AND PERFORMANCE ANALYSIS

The secure boot (first-stage bootloader) was implemented by storing it in the de-
vice’s boot sector, which cannot be cloned to other devices. The secure boot mechanism
implements digital signature using SHA256 for hash generation and two options for crypto-
graphic algorithms: Elliptic Curve Digital Signature Algorithm (ECDSA) and RSA. The virtu-
alization support was implemented using the Hellfire hypervisor on top of the secure boot,
which implements the same cryptographic algorithms. The Hellfire Hypervisor hosted VMs
entirely separated, which used the secure inter-VM communication mechanism to interact
with each other. There are some advantages of being able to divide an IoT application to
execute into smaller software components. First, each application is simpler and easier to
implement and debug. Second, the only exposed application is the one that implements
network communication thanks to the separation enforced by the hypervisor. Thus, poten-
tial attacks on this application will not expose sensitive data of other VMs or even allow the
attacker to modify their contents.

Table 4.1 – Footprint results (KB).
Security Mechanism Storage SRAM Footprint

Chain-of-Trust Protection 33 32 65
Virtualization Protection 26 32 58

Secure VM 32 16 48

Table 4.1 presents footprint results for each security mechanism. Storage presents
the flash memory required to store the code. SRAM presents the memory required to run
each mechanism. The footprint (Storage and SRAM), including Chain-of-Trust and virtual-
ization mechanisms, requires just 123 KB, which illustrates the architecture’s small footprint.
It is worth reiterating that the resulting footprint includes both cryptographic algorithms and

78

the support for all virtualization features. For comparison purposes, off-the-self hypervi-
sors, as Xen and KVM [38], require tens of megabytes. Xvisor [113], a hypervisor designed
for embedded systems, requires up to 18 MB of RAM. Some aspects help the hypervisor
to keep its small size: the paging subsystem is simplified (the number of VMs and their
physical memory map are defined at design time), there is no filesystem implementation
for devices with storage in a flash, there is no support for an interactive shell or a proper
filesystem, and all configuration is defined at design time. To improve the footprint analysis,
a secure bare metal VM was also evaluated. It is a simple monitoring application that re-
ceives data generated by the edge device. The VM requires 32KB for storage and 16 KB
of SRAM for execution, resulting in 48 KB. It includes the VM signature. The total footprint
required for the security mechanisms and the VM is 171 KB, which is a promising result for
resource-constrained edge devices.

Table 4.2 – Performance Results for VM hash generation and signature verification (ms).
Verification Total Time

VM Size (KB)
Hash Generation

SHA256 ECDSA RSA ECDSA RSA
32 11.15 57.10 39.40 68.25 50.55
64 23.20 57.30 39.40 80.50 62.60
128 46.25 57.70 39.40 103.95 85.65
256 92.65 57.50 39.40 150.15 132.05

Table 4.2 presents the architecture performance for SHA256 hash generation from
VMs stored in the flash memory and the ECDSA/RSA signature verification time of these
VMs. For instance, a VM with a size of 64 KB takes 23.20 ms for hash generation, 57.30 ms
for ECDSA verification, and 39.40 ms for RSA verification. Note that the hash generation
time increases as the VM size is bigger. On the other hand, time for signature verification is
independent of the VM’s size since it is based on the VM’s hash, which is generated by the
SHA256 algorithm and always has the same size. In these experiments, the key length was
3072 bits for RSA and 256 bits for ECDSA, which are equivalent in cryptography strength.
Based on the results, ECDSA was more suitable for resource-constrained edge devices
than RSA considering the key length. However, RSA presented reduced execution time,
which is also important in low-latency IoT applications. Hence, the best algorithm’s decision
depends on the requirements imposed by the application environment and the restrictions
of resources in the device.

4.2.2 SECURITY ANALYSIS

In this section, the security of the proposed architecture is evaluated, discussing
how it has achieved the three fundamental elements of CIA: confidentiality (preventing sen-

79

sitive device information from reaching the wrong people), integrity (avoiding improper de-
vice boot modification or destruction and ensuring its authenticity), and availability (ensuring
reliable access to the edge device).

In the proposed architecture, an application executes in a VM and takes advantage
of two security mechanisms: CoT and virtualization. The CoT protection checks the soft-
ware integrity at boot-time. Thus, the CoT’s main purpose is to deliver a verified software
stack to the runtime environment, helping to prevent booting and tampering attacks. The
virtualization layer is responsible for preventing possible runtime violations. It keeps the at-
tacker confined to the compromised VM, minimizing the severity of the attack and ensuring
other services’ availability. Also, the hypervisor can detect a VM’s misbehavior without com-
plicated intrusion techniques, for example, the call for a hypercall not predicted or message
exchanges not expected.

The hypervisor’s spatial separation, provided by the hardware MMU, improves con-
fidentiality. If an application attempts to access a memory region of any other application or
peripherals, it will be stopped by the hypervisor. Security by separation, i.e., VM isolation, im-
proves security over the following attacks (see Table 2.2) [123]: distributed denial-of-service,
hyperjacking, malware injection, hidden-channel, and privilege escalation. Additionally, the
small hypervisor footprint, resulting from its simplified subsystems, helps keep a small attack
surface. Recent research showed that two forms of attacks, named Meltdown and Spectre,
allow for breaking the memory isolation exposing sensitive data [94]. These attacks rely
on out-of-order execution on modern processors. The proposed architecture prevents such
attacks in two different ways:

• It avoids the use of affected processors since most of the embedded processors from
MIPS and ARM families are not vulnerable.

• The CoT circumvents the execution of non-authorized software, a premise to the at-
tacks.

4.3 RELATED WORK

This section presents an analysis of works that propose the use of trust mecha-
nisms and/or embedded virtualization to provide security for edge devices. They are ana-
lyzed based on the security requirements presented previously (see Section 2.3.2), which
are essential to provide a lightweight security architecture. Table 4.3 presents the works and
they are described next.

• TrustZone: TrustZone [119] is a hardware-based security architecture for an SoC cur-
rently used in many smartphones. The TEE protects trusted hardware and software

80

Table 4.3 – Security for Edge Devices.

Works Ref Year Isolation Trusted Boot Key Protection
Secure VMs

Communication
TrustZone [15] 2009 X X X

SeCRet [75] 2015 X X

TEE [37] 2015 X X X

Pahl et al. [112] 2016 X

TrustShadow [60] 2017 X X X

IIoTEED [117] 2017 X X

Morabito et al. [101] 2018 X

This work — 2021 X X X X

resources. Hardware-based mechanisms ensure that resources in the REE’s untrusted
OS, or normal world, cannot access secure world resources. Two main hardware fea-
tures do this. During the boot process, a chain of trust is formed by verifying the
trusted second-stage boot loader and trusted OS before execution. TrustZone uses
a signature scheme based on RSA. The well-known weakness of TrustZone specifi-
cation is the lack of authentication mechanisms in TrustZone’s architecture when the
REE needs to access secure resources.

• SeCRet: Jang et al. [75] propose SeCRet, a framework that builds secure communi-
cations between REE and TEE. SeCReT creates a session key to sign the messages
transferred during inter-domain communication. To prevent the key from being ex-
posed to an attacker who already compromised the REE kernel, SeCReT flushes the
key from memory every time the processor switches into kernel mode. They evaluated
SeCReT’s performance on Arndale board that offers a Cortex-A15 at 1.7 GHz dual-
core processor. Results show that enabling SeCReT creates a performance overhead
of 16.41 percent (from 1642.5 µs to 1912.1 µs) with an input payload of 256 B.

• TEE: Dai et al. [37] present TEE. This architecture uses the Xen hypervisor to allow
multiple VMs on a commodity cloud-end platform to enjoy DRTM-like secure execution
environments. However, according to Sabt et al. [130], Dynamic Root of Trust for
Measurement (DRTM) is not suitable for low-overhead applications. They evaluated
TEE’s performance with an Intel Core Duo processor running at 1.8 GHz and 2 GB
RAM. Results show that the time to create the TEE Domain is 173 ms with one vCPU
and 64 MB memory, the TEE kernel is 1.30 MB, and the time consumed for encryption
is 436.9 ms (on average).

• Pahl et al.: The work presented in [112] analyzes how containers can provide a
lightweight edge-to-cloud PaaS (Platform-as-a-Service). Its architecture is based on
the Edge layer and uses containerization to provide security by separation. The au-
thors used a Raspberry Pi board in their evaluations (700 MHz processor and 512

81

MB of RAM). They concluded that their work needs further investigation regarding the
management of data, networks, and architecture.

• TrustShadow: Guan et al. [60] present TrustShadow, a system that takes advantage
of TrustZone technology to isolate secure applications from untrusted ones. It also im-
plements trust boot and secure key storage mechanisms. They evaluated TrustShadow
on a Freescale i.MX6q ARM development board that integrates an ARM Cortex-A9
processor, 1GB DRAM, and 256KB RAM for evaluation. The latency overhead upon
primitive operating system operations was 70 percent (on average).

• IIoTEED: Pinto et al. [117] propose a TrustZone-based architecture named IIoTTEED,
which implements the basic building blocks of a TEE to protect edge devices. Confi-
dentiality and availability are provided based on security by separation mechanisms,
and integrity is provided at boot time through the trust boot process. The authors used
a dual ARM Cortex-A9 running at 600 MHz for evaluation and concluded that IIoTEED
must complement other critical security strategies to guarantee tight industrial security
for devices.

• Morabito et al.: Authors in [101] presented the Edge Gateway-as-a-Service as an ef-
ficient and lightweight device able to pre-process IoT data using containers. The archi-
tecture consists of a single layer close to the edge device. They used security by sepa-
ration to protect the applications inside containers. They used two Raspberry Pi boards
in their evaluations (Quad-Core 900MHz/1GB of RAM and Quad-Core 1.2GHz/1GB of
RAM). They concluded that virtualization technologies as containers have an almost
negligible impact regarding performance in resource-constrained devices.

Analyzing the related works, most of them provide mechanisms for trust boot. Iso-
lation and key protection features are the second most targeted, while only one work covers
secure communication between TEEs. Although all the analyzed works provide security for
edge devices, they differ in their architecture and the devices protected with such mecha-
nisms. None of them presents significant results for resource-constrained edge devices.

4.4 SUMMARY

This chapter presented a lightweight security architecture for resource-constrained
edge devices using chain-of-trust and virtualization protection mechanisms. The Hellfire
hypervisor was used as virtualization layer. The chain-of-trust mechanism uses an RoT to
build a CoT from the hardware until the application. Afterward, a trustworthy virtualization
layer is booted up. The intrinsic virtualization characteristics, such as separation, ensure

82

protection during the VM’s runtime states. Cryptography algorithms can be used to pro-
vide integrity/authenticity to the system. Results for footprint and overall performance were
presented, showing that the architecture is feasible for resource-constrained edge devices.
Finally, the proposed security architecture was compared to related work where advantages
could be observed regarding its applicability to resource-constrained edge devices.

83

5. DEADLINE-AWARE TASK ASSIGNMENT AND SCHEDULING
MECHANISM

This chapter presents the proposed deadline-aware task assignment and schedul-
ing mechanism. Section 5.1 presents the problem formulation. The proposed mechanism
is described in Section 5.2. Also, Section 5.3 presents the evaluation, while Section 5.4
presents the related work.

5.1 PROBLEM FORMULATION

In the task assignment and scheduling problem there are n tasks N = {1, 2, ..., n}
to be assigned and scheduled to m devices M = E ∪ F ∪C in a edge-fog-cloud architecture,
where E = {1, 2, ..., e} is a set of edge devices, F = {1, 2, ..., f} is a set of fog devices, and
C = {1, 2, ..., c} is a set of cloud devices. The devices in E are responsible for generating
the tasks. Let mi be the device that generated task i . Each device j ∈ M has sj storage
capacity and λj cores. The set of cores of a device j ∈ M is denoted Cj = {1, 2, ...,λj}. Each
core k ∈ Cj has gjk computing capacity.

Each task i ∈ N has size γi ∈ N which denotes the amount of storage that task
i requires on a device in order to be processed, i.e., task i can be assigned to device j if
and only if device j has γi free storage available. A deadline di is associated with each task
i ∈ N that denotes the finishing date, i.e., task i must be processed until di to be useful. The
processing time of a task i ∈ N on core k is given by pik . This value can be calculated based
on the length of the task i and the processing power of core k . Thus, if we denote si as the
starting time of task i , we have that its completion time ci is equal to si + pik , such that k is
the assigned core. A task may be assigned to execute on the device that generated it, the
fog, or the cloud. Thus, network latency should be considered. There is no latency to send
a task to a core k ∈ Cj of device j ∈ E . Therefore, the latency to send a task from device
j ∈ E to another device j ′ ∈ (F ∪ C) is defined as θjj ′.

The maximal storage capacity smax
j of a device j ∈ M should not be violated. There-

fore, the sum of the tasks sizes assigned to all cores of device j should not be greater than
its storage capacity, i.e., for each j ∈ M we have that

∑Cj

k=1

∑Ak

i=1
γi ≤ smax

j . (5.1)

The problem consists of defining a set Ak ⊆ N which denotes the tasks assigned to
core k , and a set Sk that denotes the precedence relations (i , j) between the tasks assigned
to core k . Therefore, for any two arbitrary tasks i , j ∈ N where i directly precedes j on core

84

k we have that (i , j) ∈ Sk . Since the processing of two tasks assigned to the same core can
not overlap, we have that for each (i , j) ∈ Sk , then

ci ≤ sj . (5.2)

The objective is to minimize the total tardiness Tmax = max∀i∈1,...,n{0, ci − di}.

The following constraints are also considered. A task should be assigned to no
more than one core. Devices’ storage capacities should not be exceeded. A core must
process a task entirely before starting a new task. Table 5.1 summarizes the constants and
sets that define an instance of the task assignment and scheduling problem in an edge-fog-
cloud architecture.

Table 5.1 – Summary of problem data (constants and sets) that define an instance of the
problem.

Symbol Interpretation
n number of tasks
m number of devices

N = {1, 2, ..., n} set of tasks
M = E ∪ F ∪ C set of devices
E = {1, 2, ..., e} set of edge devices
F = {1, 2, ..., f} set of fog devices
C = {1, 2, ..., c} set of cloud devices

mi , i ∈ N device that generated task i
sj , j ∈ M storage capacity in device j
λj , j ∈ M number of cores in device j

Cj = {1, 2, ...,λj} set of cores in device j
gjk , j ∈ M, k ∈ Cj computing capacity of a core k in device j

γi , i ∈ N size of task i
di , i ∈ N deadline of task i

pik , i ∈ N, k ∈ Cj processing time of task i on core k
si , i ∈ N starting time of task i
ci , i ∈ N completion time of task i

θjj ′, j ∈ E , j ′ ∈ (F ∪ C) latency to send a task from device j to device j ′

smax
j , j ∈ M maximal storage capacity of a device j

Ak ⊆ N, k ∈ Cj set of tasks assigned to core k
Sk ⊆ N, k ∈ Cj set of precedence relation between the tasks assigned to core k

85

5.2 PROPOSED MECHANISM

The proposed algorithm is named DTAS-Edge (Deadline-aware Task Assignment
and Scheduling mechanism at the Edge). It executes on edge devices. Thus, they are
responsible for finding the best assignment and scheduling for each generated task.

An architectural overview of DTAS-Edge is depicted in Figure 5.1. It is composed
of a deadline checking mechanism and a waiting queue. The Deadline Checking is respon-
sible for finding the best assignment and scheduling for a task on a core. This component is
located only on the edge device. Thus, the deadline checking can be done practically simul-
taneously as the task generation, avoiding spending time sending the task to be checked
in a higher layer device. The result of the deadline checking indicates which core is most
suitable to process the task.

Figure 5.1 – DTAS-Edge in an Edge-Fog-Cloud architecture.

Each core of a device has a Waiting Queue for tasks sequencing (i.e., the order
in which tasks are processed), as shown in Figure 5.1. The algorithm schedules a task to
the queue of the device to which it was assigned. The waiting queue follows the FCFS (First
Come, First Served) concept, i.e., the first task that is queued is the first one that will be
processed. It is depicted in Figure 5.2. When the core becomes available, the first task in
the queue starts processing.

Figure 5.2 – The waiting queue of a core in an edge/fog/cloud device.

86

The algorithm that describes the proposed mechanism is presented in Algorithm
5.1. The algorithm’s definition is based on the fact that there is a mechanism that prevents
race conditions in the network.

Input: N, E , F , C, M, Cj

Output: Ak , Sk

1: for each i ∈ N do
2: Set k ← 0, and cbest

i an extremely large number
3: Set stmp

i ← 0, and ctmp
i ← 0

4: Let a1, a2, a3 where a1 = (mi), and a2 and a3 are permutations of F , C
5: for b ← 1 to 3 do
6: for each j ∈ ab do
7: for each k ′ ∈ Cj do
8: i ′ ← argmaxi ′′∈Ak′

{ci ′′}
9: stmp

i ← max{0, ci ′}
10: ctmp

i ← stmp
i + pik ′ + θmi j

11: if (ctmp
i ≤ di) ∧ (ctmp

i < cbest
i) ∧ ((

∑Cj
k ′′=1

∑Ak′′
i ′=1 γi ′) + γi ≤ smax

j) then
12: k ← k ′

13: cbest
i ← ctmp

i

14: end if
15: end for
16: end for
17: if k 6= 0 break and go to line 19
18: end for
19: if k 6= 0 then
20: Ak ← Ak ∪ i
21: si ← stmp

i

22: ci ← ctmp
i

23: Sk ← Sk ∪ (i ′, i)
24: end if
25: end for

Algorithm 5.1 – DTAS-Edge algorithm.

The algorithm checks the best assignment for each generated task (line 1). The
first check involves only the edge device that generated the task (to avoid spending time
during transmission over the network). The algorithm checks task i for each core k ′ of each
device j (lines 6 and 7). First, the processing time of the tasks assigned to core k ′ is obtained

87

(line 8), also called the waiting time of the core’s k ′ queue. The expected starting time of task
i in a core k ′ is obtained in line 9. This value can be 0, if the core’s queue is empty. Then,
the expected completion time of task i is calculated by adding the starting time, processing
time, and network latency to transfer the task i from mi to device j (line 10). Three conditions
are tested in line 11. First, if the expected completion time of task i on core k ′ is lower than
or equal to the task i deadline. Second, if the last found expected completion time is lower
than the best one found so far. Third, if the device j has enough capacity to receive task i .
If true for all conditions, then core k ′ represents the best assignment for task i . In that case,
task i is assigned to core k (line 20), receives the starting and completion time calculated
values (lines 21 and 22), and is added in the scheduling queue (i.e., waiting queue) of core
k , keeping the assignment order.

If no core is chosen, the same process repeats for fog and cloud layers. However,
the task is tested for all cores of each layer. This process happens in lines 4 and 5. Suppose
there are none available after testing all cores in the architecture. In that case, the algorithm
ends with a “resource unavailable” error, i.e., there is no core in the architecture that can
meet the task deadline and device capacity requirements, and the task is discarded. How-
ever, if there is a core with enough capacity and that meets the deadline requirement, the
task is assigned and scheduled to it (lines 20 and 23).

5.3 EVALUATION

In this section, a set of experiments was conducted to evaluate DTAS-Edge. The
tests were divided into three experiments:

• Experiment 1: The comparison of DTAS-Edge with two other approaches to verify
which is the best layer in an edge-fog-cloud architecture to perform the deadline check-
ing;

• Experiment 2: The comparison of DTAS-Edge with other literature algorithms.

• Experiment 3: The evaluation and comparison of DTAS-Edge simulating a real-world
application.

The simulator and settings used in all tests are presented in Section 5.3.1. Specific
settings and metrics evaluated in each experiment are detailed in the respective section.

88

Figure 5.3 – PureEdgeSim simulation view.

5.3.1 ENVIRONMENT SETUP

The proposed mechanism was evaluated using PureEdgeSim [92], a simulation
toolkit based on CloudSim Plus designed to simulate Cloud, Fog, and Edge Computing en-
vironments. The decision to use PureEdgeSim is mainly due to the possibility of extending
it with orchestration algorithms, allowing the creation of strategies to assign and schedule
tasks among cores of devices. Also, PureEdgeSim allows evaluating resource management
strategies’ performance in terms of network usage, latency, resource utilization, energy con-
sumption, among others. A view of PureEdgeSim during a simulation is presented in Figure
5.3.

There are other popular simulators in literature but with some limitations regard-
ing features presented in this work. The iFogSim, a CloudSim-based simulation framework
designed to simulate Fog Computing environments [61], provides a static topology and al-
lows extension only around the application’s placement strategies. Simulating large-scale
scenarios requires adding and linking devices one by one, which is inconvenient, involves
much effort, and time-consuming. EmuFog [91] is an emulation framework for Fog Comput-
ing environments. It lacks a generic interface and cannot deal with global metrics, such as
response delay. EdgeCloudSim [140] is another CloudSim-based simulator for Edge Com-

89

puting that addresses some iFogSim limitations. Moreover, it can not execute tasks locally
on edge devices, limiting its use to some Edge Computing scenarios.

The computer used during simulations was configured with Ubuntu 20.04 LTS (64-
bit), Quad-Core 2.3 GHz and 6GB of RAM. The chosen parameters simulate computation-
intensive and time-sensitive smart city applications, such as real-time data processing appli-
cations (heart rate monitoring, traffic lights, augmented reality, among others). They are hard
to handle due to the quick turnaround requirements of ultra-short time and large amounts
of computation necessary [44]. Such applications may require a response in less than a
second [134]. The simulation parameters used in all experiments are presented in Table
5.2.

Table 5.2 – Simulation Parameters.
Parameter Value

Simulation Time (min) 30
WAN bandwidth (Mbps) 1000

WLAN bandwidth (Mbps) 1000
WAN Latency (seconds) 0.2
Task Deadline (seconds) 1

Time during simulation (min) 00-05 → 05-10 → 10-20 → 20-25 → 25-30
Task request size (KB) 17-22 → 22-27 → 27-32 → 22-27 → 17-22
Task result size (KB) 12-17 → 17-22 → 22-27 → 17-22 → 12-17

Task length for processing (MI) 475-525 → 775-825 → 1175-1225→ 775-825 → 475-525

It is worth pointing out some specifics of the simulator. The bandwidth values for
WAN and WLAN are divided by the cores of each device. For example, considering a 1000
Mbps bandwidth, a fog device with eight cores will have 125 Mbps for each core. The WLAN
bandwidth is used between edge devices and fog devices, while the WAN bandwidth is used
between fog and cloud devices. A limitation of the simulator is that the network latency can
only be set for the WAN. Since the latency on the WLAN is generally low, a zero value was
assumed. Regarding the task deadline, a value of 1 second was set, which is the smallest
value accepted by the simulator. Nevertheless, it is a real value usually observed in low-
latency applications [64] [125] [13].

Regarding the tasks transmitted over the network, they have one size before be-
ing processed (task request size) and another size after being processed (task result size).
These sizes are given in KB and are considered for network usage calculations. The “task
length” attribute refers to the size of the task for processing. This value is given in MI (Mil-
lions of instructions). These three attributes were changed during runtime to simulate peak
moments in an application. Also, such values were chosen randomly with a uniform distri-
bution over a predefined interval. Therefore, the last four rows of Table 5.2 can be read as
“during minutes zero to five”:

• The task request size is a random value between 17 and 22;

90

• The task result size is a random value between 12 and 17;

• The task length is a random value between 475 and 525.

And so on for the remaining time intervals. Thus, the simulator was extended to simulate
peak times in applications.

Table 5.3 presents the number of tasks and devices used for experiments 1, 2, and
3.

Table 5.3 – Number of tasks and devices for Experiments 1, 2 and 3.

Parameter Experiments 1 and 2 Experiment 3

Task Generation Rate (device/min) 960 1800

Total tasks (all simulation) 1440000 1080000

Number of Edge devices 50 20

Number of Fog devices 5 4

Number of Cloud devices 1 1

The devices’ configurations used in all experiments are presented in Table 5.4. The
attribute “cores” represents the number of cores available for processing in a device. Each
core has a processing capacity, as shown in the second row of the table, given in MIPS
(Millions of instructions per second). RAM and storage capacities are also defined.

Table 5.4 – Devices’ configurations.
Parameter Edge Device Fog Device Cloud Device

Cores 4 8 32
Processing capacity (MIPS per core) 2400 8000 13000

RAM (GB) 1 8 16
Storage (GB) 0.512 1000 10000

The DTAS-Edge mechanism was evaluated against five other algorithms. They
were implemented in the simulator and evaluated under the same simulation parameters.
The algorithms are:

• DTAS-Fog: It is a variation of the mechanism proposed in this thesis. For comparison
purposes, it executes on fog devices. Thus, its assignment strategy prioritizes fog,
edge, and cloud devices, respectively. The factors used to decide the best assignment
are the same as in the DTAS-Edge mechanism.

• DTAS-Cloud: It is a variation of the mechanism proposed in this thesis. For compar-
ison purposes, it executes on cloud devices. Thus, its assignment strategy prioritizes
cloud, fog, and edge devices, respectively. The factors used to decide the best assign-
ment are the same as in the DTAS-Edge mechanism.

91

• Round-Robin (RR): It executes on edge devices. It iterates through the whole list of
devices and chooses one by one successively to the assignment. It does not consider
the waiting time of tasks and does not prioritize any device over the others.

• Prioritized Task Scheduling (PTS): It executes on edge devices. The assignment
is based on the core with fewer waiting tasks considering a pre-defined priority. The
order of priority is Fog, Edge, and Cloud, in which Fog is the highest priority.

• Increase Lifetime (IL) [92]: It executes on edge devices. The assignment decision is
to the core with more computing capacity and fewer waiting tasks considering all cores
in the architecture.

The experiments evaluate the following aspects:

• Task Deadline Violation: The percentage of tasks successfully executed but failed
due to the violation of their deadlines. A lower value is better.

• Resource Utilization: The percentage average CPU utilization of devices. A higher
value means a more efficient use of resources.

• Network Usage: The amount of data traffic over the network between edge, fog, and
cloud in GB. A lower value means less network usage.

5.3.2 EXPERIMENT 1 - DTAS-EDGE ANALYSIS

The first experiment compares DTAS-Edge with two similar algorithms: DTAS-Fog
and DTAS-Cloud. The factors used for deadline checking are the same for all algorithms
(core’s waiting queue, network latency, and task completion time). However, each one was
deployed on a different layer. Thus, the priority of task execution is of the device that is
checking the task for assignment. It would be unfair, for example, to send the task to the
cloud to check its deadline and bring it back to the edge for execution. Therefore, with this
setting, a task checked in the cloud has priority to be executed in the cloud. If there are
no resources available, it is checked for lower layers, according to the previous section’s
priorities. The same logic is applied to the DTAS-Fog mechanism.

The results represent the average for three runs and are shown in Figure 5.4 (see
Table A.1 for all results). The DTAS-Cloud and DTAS-Fog algorithms had 24.5% and 16.6%
of unprocessed tasks, respectively. It means that the algorithms could not find any available
core to process the tasks meeting their deadlines, and they were discarded. This happens
because the tasks’ deadlines are low, i.e., there is not enough time to send the tasks to
other layers and process them meeting the deadline. For the DTAS-Edge, all tasks were

92

processed. Regarding deadline violations, the DTAS-Cloud and DTAS-Fog algorithms had
0.3% and 1.4% of tasks that could not meet the deadline. On the other hand, the DTAS-Edge
mechanism did not have any deadline violations.

Figure 5.4 – Comparing DTAS-Edge, DTAS-Fog, and DTAS-Cloud.

The algorithm that showed the highest network usage was DTAS-Fog since when
it cannot allocate tasks to devices in its layer, it needs to send data to the edge or cloud,
which generates a lot of task traffic. The DTAS-Cloud algorithm also showed high network
usage. However, it was not higher than DTAS-Fog because the cloud has more resources
for task execution than the fog, so it could assign most of the tasks to its cores, avoiding
more transmissions on the network. The best performance for network usage was observed
in DTAS-Edge, which transmitted only 23 GB, approximately 60 GB less than the other two
algorithms’ average. As expected, DTAS-Edge keeps most of the processing at the edge
devices, making transmissions to other layers happen only when the deadline cannot be
reached at the edge.

Finally, the average CPU usage for each algorithm was evaluated. As expected,
DTAS-Cloud keeps most of the processing in the cloud (67.8%). On the other hand, no
tasks were processed on the edge devices. DTAS-Fog obtained an average CPU usage on
fog devices of 84%, as expected. The DTAS-Edge had its highest average CPU usage on
the edge devices with 76.3%. The fog layer had 47%, while the cloud had only 15.5%.

Analyzing the results, DTAS-Edge had no deadline violations, the lowest network
usage and the best resource utilization. Thus, the best place to perform deadline checking
is at edge devices.

5.3.3 EXPERIMENT 2 - COMPARISON WITH LITERATURE ALGORITHMS

The second experiment compares DTAS-Edge to three literature algorithms: Round
Robin (RR), Prioritized Task Scheduling (PTS), and Increase Lifetime (IL). The results rep-

93

resent the average for three runs and are shown in Figure 5.5 (see Table A.1 for all results).
The algorithms assigned all generated tasks, i.e., no task was discarded. Regarding dead-
line violations, a good performance was observed for all algorithms except RR. It happens
because RR does not consider a waiting queue of tasks to decide the assignment. Thus,
most of the tasks violate the deadline. Such violation happens mainly on edge devices,
where there are fewer resources to process tasks. Also, the number of edge devices in this
experiment is high (50 devices). Thus, most of the tasks are assigned to them. As the queue
becomes long, many tasks cannot be processed within the expected deadline. On the other
hand, IL and PTS algorithms consider each core’s waiting queue’s to make the assignment.
This strategy reflects positively in the results since the algorithms had only 0.3% and 0.2%,
respectively, of deadline violations.

Figure 5.5 – Comparison with literature algorithms.

The best performance was observed in DTAS-Edge, which had no deadline viola-
tions. This result is due to several factors considered when deciding the core in which the
task should be assigned, as described in Section 5.2. The edge-first approach also con-
tributes to this result. It allows most of the tasks to be processed in edge devices, avoiding
the time wasted during transmission over the network.

Regarding network usage, the DTAS-Edge had the lowest network traffic, only 23.1
GB. Again, the task assignment considering the edge-first approach is responsible for the
positive result, i.e., if a task can be processed meeting the deadline in the device that gener-
ated it, it does not need to be send to higher layers. Regarding RR, since it assigns tasks to
one core at a time, regardless of the core’s waiting queue, most of them are assigned to the
edge, reducing the number of tasks transmitted over the network. However, this does not
represent a reduction in deadline violation, as discussed earlier. On the other hand, despite
presenting more network usage, the IL and PTS algorithms had fewer deadline violations.
However, it is essential to mention that DTAS-Edge could process the same tasks meeting
all deadlines and avoiding almost 40 GB of tasks from being transmitted over the network
compared to IL and PTS performances.

94

The best performance regarding average resource utilization is noted in the RR,
which assigns most of the tasks to edge devices, contributing to the overall average re-
source utilization. On the other hand, the overload on edge devices causes many deadline
violations, as discussed earlier. The second-best resource utilization was observed in the
DTAS-Edge, which prioritizes tasks to edge devices. The average CPU usage of edge de-
vices was 76.3%, contributing to the overall average of 72.6%. The PTS algorithm showed
an average resource utilization of 47.9%. Its strategy prioritizes the assignment of tasks to
fog, edge, and cloud, respectively. Among the compared algorithms, it is the one that best
divides the tasks among the layers. However, lower utilization of edge devices makes the
overall average resource utilization not as high as in RR and DTAS-Edge algorithms. Finally,
as IL algorithm has a task assignment strategy that chooses cores by processing capacity
available, most of the tasks are assigned to fog and cloud devices. It reflects negatively on
the average resource utilization since the scenario is composed of several edge devices.
As they are under-utilized, they decrease the overall average resource utilization to 23.6%.
On the other hand, such strategy does not negatively impact the tasks’ deadlines since the
violation rate observed was low.

The graphs in Figure 5.6 allow an analysis of how each algorithm works regarding
resource utilization during a peak moment in an application. The beginning of peak moments
causes changes in the task assignment priority between layers. For the IL algorithm, all tasks
are assigned to fog and cloud layers at the beginning. When the peak moment reaches its
maximum point (minutes 10 to 20), the algorithm assigns tasks to the edge devices to handle
all the necessary processing. Simultaneously, note that task processing in the fog increases
while processing in the cloud decreases. When the peak moment is over, the assignment of
tasks to edge devices starts to decrease.

The PTS algorithm had a more homogeneous assignment of tasks among the ar-
chitecture layers. Again, an increase can be noted in resource utilization as the peak mo-
ment starts. However, during the whole simulation, including the peak moment, the assign-
ment of tasks among the layers remains in the same proportion, prioritizing fog, edge, and
cloud devices, respectively.

The RR algorithm, on the other hand, despite assigning tasks among all layers
since the beginning of the simulation, assigns most of them to edge devices. As its strategy
does not check the core’s queue to make the assignment, the edge devices are overloaded
with tasks, especially during the peak time. Although there is a small increase in the cloud
resource utilization during the peak time (minutes 10 to 20), it is not due to the assignment of
more tasks to the cloud, but to the increase of tasks’ length, which takes longer to process.
The same happens at fog. That is, the algorithm makes the assignment of tasks regardless
of the peak scenario. It reflects negatively on the deadline violation reduction, as discussed
earlier.

95

(a) INCREASE_LIFETIME (b) PTS

(c) ROUND_ROBIN (d) DTAS-EDGE

Figure 5.6 – Resources Utilization Graphs.

Finally, since DTAS-Edge is based on an edge-first approach, as long as there
are processing capacity and storage in the cores’ queues, the tasks are assigned to edge
devices. When peak time starts and the tasks’ length increases, other layers are considered
for task assignment — first the fog, and second the cloud. Thus, CPU usage slows down on
edge devices and increases on fog and cloud devices during the peak time. When it is over,
the edge devices receive most of the tasks for processing again.

The DTAS-Edge mechanism had the best results compared to other algorithms.
The strategy of using fog and cloud during peak times allowed no deadline violations during
the experiment. Simultaneously, network utilization remained the lowest, while resource
utilization was the second-best observed.

5.3.4 EXPERIMENT 3 - SMART SURVEILLANCE REAL WORLD APPLICATION

The third experiment compares the proposed mechanism with literature algorithms
regarding a real-world application. Compared to the previous experiments, the main change
is the increase of the task generation rate per minute per device from 960 to 1800, represent-
ing 30 tasks generated per second per device. This adaptation approximates the simulation

96

of a camera that generates 30 frames per second. The simulation had 20 edge devices, four
fog devices, and one cloud device to handle all the generated tasks.

Figure 5.7 – Results for a Smart Surveillance Application

The results represent the average for three runs and are shown in Figure 5.7 (see
Table A.1 for all results). They are proportionally similar to the results obtained in the two
previous experiments. Again, DTAS-Edge obtained the best performance for the three ana-
lyzed aspects: lower number of deadline violations, lower network usage, and better average
resource utilization. A more detailed discussion regarding the number of deadline violations
is needed since DTAS-Edge presented deadline violations for the first time. All the violations
happened for tasks assigned to the cloud. Since the task generation rate is high, the net-
work is more overloaded with tasks, and they take longer to be transmitted. This, along with
the low task deadline, contributed to this result. The result is still considered good since the
number of tasks processed meeting the deadline was 99.98%.

5.4 RELATED WORK

This section presents a literature review of works that present solutions for task
assignment and scheduling in the context of edge-fog-cloud computing. They were analyzed
according to the following criteria [163] [6]:

• Architecture: In centralized (C) scheduling, a single scheduler makes all the map-
pings [6]. The implementation is straightforward, but the problem with this architec-
ture is that when the scheduler fails, the whole system fails, too. In the distributed
(D) scheduling, the mapping of resources to tasks is made via distributed schedulers,
meaning that the workload is distributed between several schedulers [6]. Distributed
scheduling, compared with the centralized method, enjoys higher scalability. There-
fore, it fits the distributed computing environments such as edge computing.

97

• Assignment: A decision on task assignment may result in [86]: Edge (E): the tasks are
assigned locally, at edge devices; Fog (F): the tasks are assigned to be processed by
fog devices; and Cloud (C): the tasks are assigned to be processed by cloud devices.

• Scheduling: The order in which tasks are assigned for execution on a core or device.

The analyzed works are presented in Table 5.5 and described next:

Table 5.5 – Task assignment and scheduling in edge-fog-cloud.
Solutions Ref Year Architecture Assignment Scheduling
Wang et al. [164] 2016 D F MCFEDF
Fan et al. [49] 2017 C F,C FIFO

Choudhari et al. [34] 2018 D F,C Priority
Fang et al. [50] 2019 D F -

Sharma and Saini [133] 2019 D F,C EDF
Dedas [95] 2020 D F,C -

This work — 2021 D E,F,C FCFS

• Wang et al. [164]: Authors study the impact of both task assignment and scheduling
on the overall operational cost of multi-cloudlet based mobile edge clouds. They aim
to optimize per-task cost and ensure the quality of experience by enforcing hard dead-
lines for offloaded tasks through joint task assignment and scheduling in multi-cloudlet
environments. Upon the arrival of an offloaded task, they determine which cloudlet
this task will be assigned and how execution sequence the tasks assigned to the same
cloudlet will follow. Most Critical First with EDF (MCFEDF) algorithm is used to decide
such sequence. They developed a discrete-time multi-cloudlet simulator in Python to
evaluate their approach. They compare the proposed algorithm with a baseline ap-
proach where tasks are assigned to the closest cloudlets, and the scheduling of tasks
is done following an FCFS manner complemented with EDF for tasks that arrive simul-
taneously. Experiments showed that the admission rate is significantly improved (up to
30%) in the proposed approach. The proposed assignment and scheduling algorithm
can help reduce the average per-task cost (up to 20%).

• Fan et al. [49]: The authors presented a deadline-constrained task scheduling frame-
work for IoT systems with a joint fog and cloud computing architecture. The goal is to
maximize the total net profit received by service providers through task scheduling and
placement while meeting application deadline requirements and satisfying resource
capacity constraints in both fog and cloud networks. A scheduling algorithm based
on Ant Colony Optimization (ACO) is presented to maximize the total net profit for the
fog service provider. Numerical results show that the solution outperforms FCFS and
Min-min algorithms.

98

• Choudhari et al. [34]: Authors presented a task scheduling algorithm based on priori-
ties in the fog computing environment. The objective is to reduce the overall response
time and decrease the total cost. A task is analyzed regarding its deadline. If it cannot
be executed in the remaining time, it is rejected. Otherwise, it is placed in the appropri-
ate priority queue based on its priority level (high, medium, or low). The tasks are first
processed in the fog layer based on their priority levels. Only when all the fog devices
are saturated that tasks are propagated to the cloud layer. The scheduling algorithm
was simulated on the Cloud Analyst Simulator, which is built on top of CloudSim. The
results indicate that the overall response time is decreased, along with the cost.

• Fang et al. [50]: Authors propose a dynamic online policy for task scheduling problem
in fog computing. They aim to reduce the application delay and network usage by
making tasks executing in fog devices. In their approach, fog devices are responsible
for scheduling tasks among fog and cloud devices. The decision is based on the task’s
expected completion time. To evaluate the algorithm, the authors use the iFogSim
toolkit. They compared the approach with a static task scheduling strategy. The results
showed that the proposed approach performance could reduce 33.07% of latency and
66.22% of network usage compared with a static module.

• Sharma and Saini [133]: Authors proposed delay-aware scheduling and load balanc-
ing architecture within fog environments. They made use of the EDF task scheduling
algorithm for scheduling tasks in the fog. In case a fog device fails to get the resource
needed, the request is forwarded to the cloud tier. They validated their proposed work
over a real-time VSOT application using iFogSim. The performance was evaluated
based on response time, scheduling time, energy consumption rate, delay, and load
balancing rate.

• Dedas [95]: Authors propose Dedas, an online dispatching and scheduling algorithm
to maximize the number of tasks that meet the deadlines and minimize the average
completion time of the tasks by jointly scheduling of networking and computing re-
sources. In a fog or cloud device, Dedas inserts the new task in a position or replaces
an existing task if there is a deadline violation due to adding the new task to generate
a feasible schedule with the minimum average completion time. Based on the sched-
ule method, Dedas dispatches the new task to the fog device such that the number of
completed tasks is maximized and the average completion time is minimized. A task
is dispatched to the cloud only if fog resources can not satisfy its requirements. In this
work, the authors adopt a real-world data-trace from the Google cluster for large-scale
emulations. Testbed experiments demonstrate that the deadline miss ratio of Dedas is
stable for online tasks, which is reduced by up to 60% compared with state-of-the-art
methods. Moreover, Dedas performs well in minimizing the average task completion
time.

99

In [163] authors propose a taxonomy of task offloading in edge-cloud environments
to investigate and classify related research articles. In [6] authors present a survey on the
task scheduling algorithms proposed by different researchers for the cloud-fog environment,
their advantages and disadvantages, and various tools and issues regarding the scheduling
methods, and their restrictions were discussed. The results indicated that about 58% of the
scheduling algorithms use static scheduling. The other 42% use dynamic scheduling, and
the delay metric is the most important parameter considered in most studies with a share of
nearly 17%.

The work developed by Wang et al. [162] propose a heuristic task scheduling
method to address the problem of optimizing deadline violations for executing tasks in het-
erogeneous computational environments. It does not fit among the related works as it does
not consider an edge-fog-cloud architecture, but its contribution is relevant. The algorithm
iteratively schedules a task to the first core. The accumulated slack time of all scheduled
tasks is minimum until the core cannot finish any task and executes tasks with the earliest
deadline first in each core to execute as many tasks as possible in a core. Experiment re-
sults based on a real-world trace show that the method has up to 100% less task violations
and has the best performance in resource efficiency optimization in overall, compared with
eight classical and state-of-the-art heuristic methods.

The literature also presents several works that address the task assignment and
scheduling problem in an edge-fog-cloud context, but without mentioning deadline violations
[74] [114] [171] [169] [172] [144] [64] [14] [125] [78]. This work differs from existing works
by distributing the proposed mechanism in edge devices and assigning tasks to the three
layers of an edge-fog-cloud architecture, prioritizing edge, fog, and cloud. Also, the proposed
mechanism considers challenges imposed by peak moments of low-latency applications to
decide the best assignment and scheduling for a task, which contributes to finishing as many
tasks as possible meeting their deadlines and is not addressed in the analyzed works.

5.5 SUMMARY

This chapter presented a deadline-aware mechanism to assign and schedule tasks
in an edge-fog-cloud architecture. The mechanism has the edge as a priority to assign the
tasks. If there are no cores available, they are assigned to the fog or cloud layers. Each
edge device is responsible for checking and assigning its generated tasks. The mechanism
was evaluated against five other approaches. The proposed mechanism was better than
DTAS-Fog and DTAS-Cloud regarding the best place to do the deadline checking. Also, the
comparison results with IL, PTS, and RR algorithms showed that DTAS-Edge reduces dead-
line violations when considering peak moments of low-latency IoT applications. Finally, the
proposed mechanism was compared to related works, where advantages could be observed

100

regarding the assignment strategy and the consideration of peak moments in low-latency IoT
applications.

101

6. FINAL CONSIDERATIONS

This chapter presents the final considerations related to this work. First, the con-
tributions and publications related to the developed work are presented. Finally, the conclu-
sions and future work.

6.1 CONTRIBUTIONS

Among the contributions presented in this work, it is possible to identify the main
contributions in the following items:

• The review of the background technologies used for providing security for resource-
constrained edge devices (Chapter 2). Published in [156] [153] [11] [104].

• The definition of a taxonomy for the security provision for edge devices encompassing
attacks and security key requirements (Chapter 2). Published in [156] [104].

• The review of the state-of-the-art in both security for edge devices and lightweight
embedded virtualization. (Chapters 3 and 4). Published in [156] [151].

• The definition of a lightweight security architecture for resource-constrained edge de-
vices (Chapters 4). Published in [156].

• The use of a lightweight hypervisor to enable edge computing and security in resource-
constrained edge devices (Chapter 3 and 4). Published in [155].

• The execution of tests to validate the security architecture (Chapter 4). Published in
[156].

• The review of the state-of-the-art of task assignment and scheduling in an edge-fog-
cloud architecture. (Chapters 2 5).

• The definition of a deadline-aware mechanism to assign and schedule tasks in an
edge-fog-cloud architecture considering peak times of low-latency IoT applications
(Chapter 5).

• The execution of tests to validate the DTAS-Edge mechanism including the simulation
of a real-world application (Chapter 5).

• This work was awarded with an Australia–Americas PhD Research Internship Program
scholarship to be developed partially in Australia. It was developed in collaboration
with the Deakin University. This collaboration has strengthened the relation between

102

PUCRS and Deakin University, Geelong. This work contributed to the Growth and
Innovation Project delivered by the Australian Academy of Science.

• The publication of 12 (twelve) scientific papers during the Ph.D. as shown in Section
6.2. The publications are 4 (four) international journals, 3 (three) book chapters, and 5
(five) international conferences.

6.2 PUBLICATIONS

During the advancement of this research work and achieving the set of previously
stated research questions and objectives, results were presented in papers published or
submitted to be published. Table 6.1 presents the papers chronologically (from the newest
to the oldest).

Table 6.1 – Papers published during the PhD degree.

Ref. Work Title Venue and Publisher Year
Impact
Factor

[155]
A Lightweight Virtualization Model to Enable

Edge Computing in Deeply Embedded Systems
Journal of Software:

Practice and Experience
2021 1.78

[43]
Context information sharing for the

Internet of Things: A survey
Elsevier Computer Networks 2020 3.11

[104]
Privacy and security of

Internet of Things devices
Real-Time Data Analytics for

Large Scale Sensor Data (Academic Press)
2020 —

[154]
Evaluating the DTLS Protocol

from CoAP in Fog-to-Fog Communications
IEEE International Conference on &

Service-Oriented System Engineering (SOSE)
2019 —

[156]
Lightweight Security Architecture Based

on Embedded Virtualization and
Trust Mechanisms for IoT Edge Devices

IEEE Communications Magazine 2019 11.05

[42]
Providing Context-Aware Security for

Environments Through Context Sharing Feature

IEEE International Conference On Trust,
Security And Privacy In Computing And

Communications (TrustCom)

2018 —

[41]
Context Interoperability for IoT through an
Edge-centric Context Sharing Architecture

IEEE Symposium on Computers
and Communications (ISCC)

2018 —

[40]
A Sensing-as-a-Service Context-Aware

System for Internet of Things Environments
IEEE Consumer Communications &

Networking Conference (CCNC)
2017 —

[152]
Evaluating the Use of TLS and DTLS
Protocols in IoT Middleware Systems

Applied to E-health

Consumer Communications &
Networking Conference (CCNC)

2017 —

[151]
The Role of Lightweight Approaches

Towards the Standardization of a Security
Architecture for IoT Middleware Systems

IEEE Communications Magazine 2016 11.05

[153]
Security Challenges in 5G-Based

IoT Middleware Systems

Internet of Things (IoT) in 5G
Mobile Technologies (Springer

International Publishing)

2016 —

[11]
Middleware Technology for IoT Systems:
Challenges and Perspectives Toward 5G

Internet of Things (IoT) in 5G
Mobile Technologies (Springer

International Publishing)

2016 —

103

The paper in [11] introduces definitions and implementation of middleware systems
to IoT applications, showing how it manages devices and provides interoperability. The
papers in [151] [152] [153] [156] [154] [104] [155] explain how security can be reached in the
IoT. The paper in [40] explains details of the context-aware feature of IoT systems and how
it can be used in a system/architecture. The studies [41] and in [43] relate to the context
sharing provision. The study [42] relates to the context-aware security provision.

6.3 REVISITING THE HYPOTHESES AND RESEARCH QUESTIONS

This thesis investigated two hypotheses: (i) the integration of embedded virtual-
ization and trust mechanisms can provide a lightweight security architecture to improve the
security of resource-constrained edge devices, nonetheless, keeping a small memory foot-
print; and (ii) a deadline-aware task assignment and scheduling mechanism can reduce the
number of deadline violations in low-latency IoT applications during peak times.

For the first hypothesis, the definition of a lightweight security architecture pre-
sented in Chapter 4 shown that the use of a lightweight hypervisor (described in Chapter 3)
and trust mechanisms can improve the security of resource-constrained edge devices from
attacks presented in Section 2.3.1. The evaluation presented in Sections 3.7 and 4.2 shown
that the Hellfire hypervisor can provide security for resource-constrained edge devices while
keeping a small footprint.

For the second hypothesis, the definition of a deadline-aware task assignment and
scheduling mechanism is presented in Chapter 5. The evaluation presented in Section 5.3
shown that the proposed mechanism can reduce the number of deadline violations consid-
ering peak times in low-latency applications compared to existing algorithms.

In the Chapter 2, the Research Question “What are the most common security
threats that could compromise edge devices, and what requirements should be considered
to improve their security?” was answered by the definition of the taxonomy of “security for
edge devices” which presents challenges to overcome, relevant attacks, how they can violate
software, and the key security requirements to provide a lightweight security architecture.

In the Chapters 3 and 4, the Research Question “How to define a lightweight
security architecture with a high-security level but keeping a small footprint with tens of
kilobytes?” was answered by defining a security architecture that integrates a lightweight
virtualization layer and trust mechanisms. The hellfire hypervisor is used to keep a small
footprint, enabling such architecture in resource-constrained edge devices.

In the Chapter 5, the Research Question “Where should a task be assigned to
have a better chance of being processed meeting its deadline?” was answered by defining
the DTAS-Edge mechanism, which considers factors such as cores’ waiting queues, task

104

completion time, and network latency. Also, it evaluates all assignment possibilities from the
edge to the cloud, which leads us to the best assignment between available cores, prioritizing
edge, fog, and cloud.

In the Chapter 5, the Research Question “Which architecture layer should the
assignment and scheduling mechanism be deployed to reduce the number of deadline vio-
lations?” was answered by the definition of the DTAS-Edge mechanism and the results ob-
served in the evaluation. A task should be checked for assignment right after it is generated,
so no time is wasted during transmission over the network before checking the assignment
possibilities, i.e., the best place for DTAS-Edge mechanism is in edge devices.

6.4 CONCLUSION

The large amount of data generated by edge devices in IoT applications brings
two main challenges. First, edge devices are increasingly targeted by attackers, who try to
compromise an entire network of devices or gain access to data. Second, edge devices
cannot handle all data generated when facing peak times in low-latency IoT applications.
This thesis proposed solutions to both challenges.

Regarding security, this work defined a lightweight security architecture for resource-
constrained edge devices. It was validated using the hellfire hypervisor, a virtualization layer
capable of providing security by separation and keeping a small footprint. Furthermore,
trust mechanisms such as trust boot have been incorporated into the device boot and the
hypervisor, creating a CoT and allowing secure applications to execute on virtual machines.

Compared to related work, the security architecture has the smallest footprint and
meets all the security requirements presented in Section 2.3.2. Although there are similar
approaches in the literature that combine virtualization and trust mechanisms, none of them
presented such a small footprint, making the proposed architecture feasible in the most
resource-constrained edge devices.

Regarding scheduling, this work defined a deadline-aware task assignment and
scheduling mechanism named DTAS-Edge. It assigns tasks right after their generation,
allowing the best assignment among cores and prioritizing edge, fog, and cloud, respectively.
Such a mechanism can reduce the violation of deadlines that usually happen during peak
times of low-latency IoT applications.

Compared with other algorithms, the proposed mechanism proved efficient in re-
ducing the number of deadline violations for several configurations. Regarding related work,
the proposed mechanism stands out for having its scheduling mechanism placed on edge
devices in an edge-first approach. According to the results obtained, it is the best way to
reduce deadline violations during peak times in low-latency applications.

105

Based on the conducted study, it is possible to conclude that processing most of
the data on edge devices is a trend and can bring benefits such as decreased deadline
violations. However, we must consider the need for a secure device since attackers increas-
ingly target them. It is essential to care about each device’s characteristics to allow for a
consolidation of processing centered on the edge.

6.5 FUTURE WORK

As future work, there are the following possibilities:

• The area of security is more and more in focus within edge computing. The use of
Machine Learning also appears as a trend in the Computer Science area. It could
be used as a more precise technique to identify attacks on edge devices. The big
challenge is how to incorporate machine learning algorithms in the context of resource-
constrained devices. There are already some works in the area, but they need further
investigation to achieve significant results.

• Another major challenge in security considering resource-constrained devices is how
to secure the communication between such devices. Lightweight Blockchains may be
a way to integrate these devices securely and reliably. However, although works are
exploring these solutions, it is a field that needs more research.

• Regarding data processing in edge devices, there are several low-latency applications
where the order of the generated data should be taken into account by the scheduler.
An improvement of DTAS-Edge to fit these applications’ requirement is a future work
that needs further investigation.

106

107

REFERENCES

[1] Abdul-Ghani, H. A.; Konstantas, D.; Mahyoub, M. “A Comprehensive IoT Attacks
Survey based on a Building-blocked Reference Model”, International Journal of
Advanced Computer Science and Applications, vol. 9–3, Mar 2018, pp. 1–19.

[2] Aguiar, A.; Hessel, F. “Virtual hellfire hypervisor: Extending hellfire framework for
embedded virtualization support”. In: International Symposium on Quality Electronic
Design, 2011, pp. 1–8.

[3] Ahmed, E.; Ahmed, A.; Yaqoob, I.; Shuja, J.; Gani, A.; Imran, M.; Shoaib, M. “Bringing
Computation Closer toward the User Network: Is Edge Computing the Solution?”,
IEEE Communications Magazine, vol. 55–11, Nov 2017, pp. 138–144.

[4] Ai, Y.; Peng, M.; Zhang, K. “Edge computing technologies for Internet of Things: a
primer”, Digital Communications and Networks, vol. 4–2, Apr 2018, pp. 77–86.

[5] Alam, M.; Rufino, J.; Ferreira, J.; Ahmed, S. H.; Shah, N.; Chen, Y. “Orchestration
of Microservices for IoT Using Docker and Edge Computing”, IEEE Communications
Magazine, vol. 56–9, Sep 2018, pp. 118–123.

[6] Alizadeh, M. R.; Khajehvand, V.; Rahmani, A. M.; Akbari, E. “Task scheduling
approaches in fog computing: A systematic review”, International Journal of
Communication Systems, vol. 33–16, Aug 2020, pp. 1–36.

[7] Alrawais, A.; Alhothaily, A.; Hu, C.; Cheng, X. “Fog Computing for the Internet of
Things: Security and Privacy Issues”, IEEE Internet Computing, vol. 21–2, Mar 2017,
pp. 34–42.

[8] Altran. “picoTCP”. Source: http://picotcp.altran.be/, Dec 2020.

[9] Alves, M. P.; Delicato, F. C.; Santos, I. L.; Pires, P. F. “LW-CoEdge: a lightweight
virtualization model and collaboration process for edge computing”, World Wide Web,
vol. 23–2, Nov 2020, pp. 1127–1175.

[10] Alwarafy, A.; Al-Thelaya, K. A.; Abdallah, M.; Schneider, J.; Hamdi, M. “A Survey on
Security and Privacy Issues in Edge-Computing-Assisted Internet of Things”, IEEE
Internet of Things Journal, vol. 8–6, Mar 2021, pp. 4004–4022.

[11] Amaral, L. A.; Matos, E.; Tiburski, R. T.; Hessel, F.; Lunardi, W. T.; Marczak, S.
“Middleware Technology for IoT Systems: Challenges and Perspectives Toward 5G”.
Springer International Publishing, 2016, chap. 15, pp. 333–367.

http://picotcp.altran.be/

108

[12] Ameen, M. A.; Liu, J.; Kwak, K. “Security and privacy issues in wireless sensor
networks for healthcare applications”, Journal of Medical Systems, vol. 36–1, Mar
2012, pp. 93–101.

[13] Ananthanarayanan, G.; Bahl, P.; Bodík, P.; Chintalapudi, K.; Philipose, M.;
Ravindranath, L.; Sinha, S. “Real-Time Video Analytics: The Killer App for Edge
Computing”, Computer, vol. 50–10, Oct 2017, pp. 58–67.

[14] Apat, H. K.; s. Compt, B.; Bhaisare, K.; Maiti, P. “An Optimal Task Scheduling
Towards Minimized Cost and Response Time in Fog Computing Infrastructure”. In:
International Conference on Information Technology, 2019, pp. 160–165.

[15] ARM Security Technology. “Building a Secure System using TrustZone Technology”,
Technical Report, ARM, 2009, 108p.

[16] Atzori, L.; Iera, A.; Morabito, G. “The Internet of Things: A survey”, Computer
Networks, vol. 54–15, Oct 2010, pp. 2787–2805.

[17] Axual. “Top things to know about real-time data processing”. Source: https://axual.
com/top-things-to-know-about-real-time-data-processing/, Dec 2020.

[18] Banafa, A. “Eight Trends of the Internet of Things in 2018”. Source: https://iot.ieee.org/
newsletter/january-2018/eight-trends-of-the-internet-of-things-in-2018, Jan 2018.

[19] Barham, P.; Dragovic, B.; Fraser, K.; Hand, S.; Harris, T.; Ho, A.; Neugebauer, R.;
Pratt, I.; Warfield, A. “Xen and the Art of Virtualization”. In: Symposium on Operating
Systems Principles, 2003, pp. 164–177.

[20] Barik, R. K.; Dubey, A. C.; Tripathi, A.; Pratik, T.; Sasane, S.; Lenka, R. K.; Dubey,
H.; Mankodiya, K.; Kumar, V. “Mist Data: Leveraging Mist Computing for Secure and
Scalable Architecture for Smart and Connected Health”, Procedia Computer Science,
vol. 125–1, Feb 2018, pp. 647–653.

[21] Basavaraj, D.; Tayeb, S. “Limitations and Challenges of Fog and Edge-Based
Computing”. In: International Internet of Things, Electronics and Mechatronics
Conference, 2021, pp. 1–6.

[22] Bertino, E.; Islam, N. “Botnets and Internet of Things Security”, Computer, vol. 50–2,
Feb 2017, pp. 76–79.

[23] Bhatia, M.; Sood, S. K. “Exploring temporal analytics in fog-cloud architecture for
smart office healthcare”, Mobile Networks and Applications, vol. 24–4, Jan 2019, pp.
1392–1410.

[24] Biswas, A. R.; Giaffreda, R. “IoT and cloud convergence: Opportunities and
challenges”. In: World Forum on Internet of Things, 2014, pp. 375–376.

https://axual.com/top-things-to-know-about-real-time-data-processing/
https://axual.com/top-things-to-know-about-real-time-data-processing/
https://iot.ieee.org/newsletter/january-2018/eight-trends-of-the-internet-of-things-in-2018
https://iot.ieee.org/newsletter/january-2018/eight-trends-of-the-internet-of-things-in-2018

109

[25] Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. “Fog Computing and Its Role in the Internet
of Things”. In: Workshop on Mobile Cloud Computing, 2012, pp. 13–16.

[26] Bruneo, D.; Distefano, S.; Longo, F.; Merlino, G.; Puliafito, A.; D’Amico, V.; Sapienza,
M.; Torrisi, G. “Stack4Things as a fog computing platform for Smart City applications”.
In: International Conference on Computer Communications, 2016, pp. 848–853.

[27] Buerki, R.; Rueegsegger, A.-K. “Muen - An x86/64 Separation Kernel for High
Assurance”, Technical Report, University of Applied Sciences Rapperswil, 2013, 99p.

[28] Byers, C. C. “Architectural Imperatives for Fog Computing: Use Cases, Requirements,
and Architectural Techniques for Fog-Enabled IoT Networks”, IEEE Communications
Magazine, vol. 55–8, Aug 2017, pp. 14–20.

[29] Cao, H.; Wachowicz, M. “An edge-fog-cloud architecture of streaming analytics for
internet of things applications”, Sensors, vol. 19–16, Aug 2019, pp. 1–32.

[30] Carvalho, G.; Cabral, B.; Pereira, V.; Bernardino, J. “Edge computing: current trends,
research challenges and future directions”, Computing, vol. 103–5, Jan 2021, pp. 993–
1023.

[31] Chen, M.; Hao, Y.; Hu, L.; Hossain, M. S.; Ghoneim, A. “Edge-CoCaCo: Toward Joint
Optimization of Computation, Caching, and Communication on Edge Cloud”, IEEE
Wireless Communications, vol. 25–3, Jul 2018, pp. 21–27.

[32] Chen, X.; Wang, L.; Wang, C.; Jin, R. “Predictive offloading in mobile-fog-cloud
enabled cyber-manufacturing systems”. In: Industrial Cyber-Physical Systems, 2018,
pp. 167–172.

[33] Cheng, K.; Bai, Y.; Wang, R.; Ma, Y. “Optimizing Soft Real-Time Scheduling
Performance for Virtual Machines with SRT-Xen”. In: International Symposium Cluster,
Cloud and Grid Computing, 2015, pp. 169–178.

[34] Choudhari, T.; Moh, M.; Moh, T.-S. “Prioritized Task Scheduling in Fog Computing”.
In: Southeast Conference, 2018, pp. 1–8.

[35] Choy, S.; Wong, B.; Simon, G.; Rosenberg, C. “A hybrid edge-cloud architecture for
reducing on-demand gaming latency”, Multimedia Systems, vol. 20–5, Apr 2014, pp.
503–519.

[36] Coppolino, L.; D’Antonio, S.; Mazzeo, G.; Romano, L. “A comprehensive survey of
hardware-assisted security: From the edge to the cloud”, Internet of Things, vol. 6–6,
Jun 2019, pp. 1–17.

110

[37] Dai, W.; Jin, H.; Zou, D.; Xu, S.; Zheng, W.; Shi, L.; Yang, L. T. “TEE: A virtual DRTM
based execution environment for secure cloud-end computing”, Future Generation
Computer Systems, vol. 49–8, Aug 2015, pp. 47–57.

[38] Dall, C.; Nieh, J. “KVM/ARM: The Design and Implementation of the Linux ARM
Hypervisor”. In: International Conference on Architectural Support for Programming
Languages and Operating Systems, 2014, pp. 333–348.

[39] De Donno, M.; Dragoni, N.; Giaretta, A.; Mazzara, M. “AntibIoTic: Protecting IoT
Devices Against DDoS Attacks”. In: International Conference in Software Engineering
for Defence Applications, 2018, pp. 59–72.

[40] de Matos, E.; Amaral, L. A.; Tiburski, R. T.; Schenfeld, M.; Hessel, F.; de Azevedo, D.
“A Sensing-as-a-Service Context-Aware System for Internet of Things Environments”.
In: Annual Consumer Communications & Networking Conference, 2017, pp. 725–
728.

[41] de Matos, E.; Tiburski, R. T.; Amaral, L. A.; Hessel, F. “Context Interoperability
for IoT Through an Edge-Centric Context Sharing Architecture”. In: Symposium on
Computers and Communications, 2018, pp. 667–670.

[42] de Matos, E.; Tiburski, R. T.; Amaral, L. A.; Hessel, F. “Providing Context-Aware
Security for IoT Environments Through Context Sharing Feature”. In: International
Conference on Trust, Security and Privacy in Computing and Communications, 2018,
pp. 1711–1715.

[43] de Matos, E.; Tiburski, R. T.; Moratelli, C. R.; Filho, S. J.; Amaral, L. A.;
Ramachandran, G.; Krishnamachari, B.; Hessel, F. “Context information sharing for
the Internet of Things: A survey”, Computer Networks, vol. 166–1, Jan 2020, pp. 1–
19.

[44] Deng, X.; Li, J.; Liu, E.; Zhang, H. “Task allocation algorithm and optimization model
on edge collaboration”, Journal of Systems Architecture, vol. 110–11, Nov 2020, pp.
1–14.

[45] Deogirikar, J.; Vidhate, A. “Security attacks in IoT: A survey”. In: International
Conference on IoT in Social, Mobile, Analytics and Cloud, 2017, pp. 32–37.

[46] Dogo, E. M.; Salami, A. F.; Aigbavboa, C. O.; Nkonyana, T. “Taking Cloud Computing
to the Extreme Edge: A Review of Mist Computing for Smart Cities and Industry 4.0
in Africa”. Springer International Publishing, 2019, chap. 7, pp. 107–132.

[47] Dolui, K.; Datta, S. K. “Comparison of edge computing implementations: Fog
computing, cloudlet and mobile edge computing”. In: Global Internet of Things
Summit, 2017, pp. 1–6.

111

[48] Dutta, J.; Roy, S. “IoT-fog-cloud based architecture for smart city: Prototype of a
smart building”. In: International Conference on Cloud Computing, Data Science
Engineering - Confluence, 2017, pp. 237–242.

[49] Fan, J.; Wei, X.; Wang, T.; Lan, T.; Subramaniam, S. “Deadline-Aware Task Scheduling
in a Tiered IoT Infrastructure”. In: Global Communications Conference, 2017, pp. 1–7.

[50] Fang, J.; Li, K.; Ma, A. “Latency aware online tasks scheduling policy for edge
computing system”, Journal of Physics: Conference Series, vol. 1325–10, Oct 2019,
pp. 1–8.

[51] Feng, J.; Yang, L. T.; Zhang, R. “Practical Privacy-Preserving High-Order Bi-Lanczos
in Integrated Edge-Fog-Cloud Architecture for Cyber-Physical-Social Systems”, ACM
Transactions on Internet Technology, vol. 19–2, Apr 2019.

[52] Forbes. “The Top 8 IoT Trends For 2018”. Source: https://www.forbes.com/sites/
danielnewman/2017/12/19/the-top-8-iot-trends-for-2018, Jan 2018.

[53] Gama, E. S.; Immich, R.; Bittencourt, L. F. “Towards a Multi-Tier Fog/Cloud
Architecture for Video Streaming”. In: International Conference on Utility and Cloud
Computing Companion, 2018, pp. 13–14.

[54] Ganz, F.; Puschmann, D.; Barnaghi, P.; Carrez, F. “A Practical Evaluation of
Information Processing and Abstraction Techniques for the Internet of Things”, IEEE
Internet of Things Journal, vol. 2–4, Aug 2015, pp. 340–354.

[55] Garcia Lopez, P.; Montresor, A.; Epema, D.; Datta, A.; Higashino, T.; Iamnitchi, A.;
Barcellos, M.; Felber, P.; Riviere, E. “Edge-centric Computing: Vision and Challenges”,
ACM SIGCOMM Computer Communication Review, vol. 45–5, Sep 2015, pp. 37–42.

[56] Garey, M. R.; Johnson, D. S.; Sethi, R. “The complexity of flowshop and jobshop
scheduling”, Mathematics of Operations Research, vol. 1–2, May 1976, pp. 117–129.

[57] Gartner. “Edge computing promises near real-time insights and facilitates
localized actions”. Source: https://www.gartner.com/smarterwithgartner/
what-edge-computing-means-for-infrastructure-and-operations-leaders, Jan 2021.

[58] Graham, R. L.; Lawler, E. L.; Lenstra, J. K.; Kan, A. H. G. R. “Optimization and
approximation in deterministic sequencing and scheduling: a survey”. In: Discrete
Optimization II, Elsevier, 1979, pp. 287–326.

[59] Greenstein, B. “IoT Trends in 2018: AI, Blockchain, and the Edge”. Source: https://iot.
ieee.org/newsletter/january-2018/iot-trends-in-2018-ai-blockchain-and-the-edge, Jan
2018.

https://www.forbes.com/sites/danielnewman/2017/12/19/the-top-8-iot-trends-for-2018
https://www.forbes.com/sites/danielnewman/2017/12/19/the-top-8-iot-trends-for-2018
https://www.gartner.com/smarterwithgartner/what-edge-computing-means-for-infrastructure-and-operations-leaders
https://www.gartner.com/smarterwithgartner/what-edge-computing-means-for-infrastructure-and-operations-leaders
https://iot.ieee.org/newsletter/january-2018/iot-trends-in-2018-ai-blockchain-and-the-edge
https://iot.ieee.org/newsletter/january-2018/iot-trends-in-2018-ai-blockchain-and-the-edge

112

[60] Guan, L.; Liu, P.; Xing, X.; Ge, X.; Zhang, S.; Yu, M.; Jaeger, T. “TrustShadow:
Secure Execution of Unmodified Applications with ARM TrustZone”. In: International
Conference on Mobile Systems, Applications, and Services, 2017, pp. 488–501.

[61] Gupta, H.; Vahid Dastjerdi, A.; Ghosh, S. K.; Buyya, R. “iFogSim: A toolkit for modeling
and simulation of resource management techniques in the Internet of Things, Edge
and Fog computing environments”, Software: Practice and Experience, vol. 47–9, Jun
2017, pp. 1275–1296.

[62] Gusev, M.; Dustdar, S. “Going Back to the Roots—The Evolution of Edge Computing,
An IoT Perspective”, IEEE Internet Computing, vol. 22–2, Mar 2018, pp. 5–15.

[63] Guthaus, M. R.; Ringenberg, J. S.; Ernst, D.; Austin, T. M.; Mudge, T.; Brown,
R. B. “MiBench: A free, commercially representative embedded benchmark suite”.
In: International Workshop on Workload Characterization, 2001, pp. 3–14.

[64] Han, Z.; Tan, H.; Li, X.; Jiang, S. H. .; Li, Y.; Lau, F. C. M. “OnDisc: Online
Latency-Sensitive Job Dispatching and Scheduling in Heterogeneous Edge-Clouds”,
IEEE/ACM Transactions on Networking, vol. 27–6, Nov 2019, pp. 2472–2485.

[65] Hassija, V.; Chamola, V.; Saxena, V.; Jain, D.; Goyal, P.; Sikdar, B. “A Survey on
IoT Security: Application Areas, Security Threats, and Solution Architectures”, IEEE
Access, vol. 7–6, Jun 2019, pp. 82721–82743.

[66] Heer, T.; Garcia-Morchon, O.; Hummen, R.; Keoh, S. L.; Kumar, S. S.; Wehrle,
K. “Security Challenges in the IP-based Internet of Things”, Wireless Personal
Communications, vol. 61–3, Sep 2011, pp. 527–542.

[67] Hernandez, L.; Cao, H.; Wachowicz, M. “Implementing an edge-fog-cloud architecture
for stream data management”. In: Fog World Congress, 2017, pp. 1–6.

[68] Hu, P.; Dhelim, S.; Ning, H.; Qiu, T. “Survey on fog computing: architecture, key
technologies, applications and open issues”, Journal of Network and Computer
Applications, vol. 98–11, Nov 2017, pp. 27–42.

[69] Hu, W.; Tan, T.; Wang, L.; Maybank, S. “A survey on visual surveillance of object
motion and behaviors”, Transactions on Systems, Man, and Cybernetics, Part C:
Applications and Reviews, vol. 34–3, Aug 2004, pp. 334–352.

[70] Hurbungs, V.; Bassoo, V.; Fowdur, T. “Fog and edge computing: concepts, tools and
focus areas”, International Journal of Information Technology, vol. 13–2, Jan 2021, pp.
511–522.

[71] Huynh, V.; Radenkovic, M. “Interdependent Multi-layer Spatial Temporal-based
Caching in Heterogeneous Mobile Edge and Fog Networks”. In: International

113

Conference on Pervasive and Embedded Computing and Communication Systems,
2019, pp. 34–45.

[72] Imagination Technologies Ltd. “Virtualization Module of the MIPS32 Architecture”,
Technical Report, Imagination Technologies Ltd, 2013, 175p.

[73] Iorga, M.; Feldman, L.; Barton, R.; Martin, M. J.; Goren, N. S.; Mahmoudi, C. “Fog
computing conceptual model”, Technical Report, National Institute of Standards and
Technology, 2018, 14p.

[74] Jamil, B.; Shojafar, M.; Ahmed, I.; Ullah, A.; Munir, K.; Ijaz, H. “A job scheduling
algorithm for delay and performance optimization in fog computing”, Concurrency and
Computation: Practice and Experience, vol. 32–7, Nov 2020, pp. 1–13.

[75] Jang, J.; Kong, S.; Kim, M.; Kim, D.; Kang, B. B. “SeCReT: Secure Channel between
Rich Execution Environment and Trusted Execution Environment”. In: Network and
Distributed System Security Symposium, 2015, pp. 1–15.

[76] Jiang, C.; Cheng, X.; Gao, H.; Zhou, X.; Wan, J. “Toward Computation Offloading in
Edge Computing: A Survey”, IEEE Access, vol. 7–8, Aug 2019, pp. 131543–131558.

[77] Jing, Q.; Vasilakos, A.; Wan, J.; Lu, J.; Qiu, D. “Security of the Internet of Things:
perspectives and challenges”, Wireless Networks, vol. 20–8, Jun 2014, pp. 2481–
2501.

[78] Kai, C.; Zhou, H.; Yi, Y.; Huang, W. “Collaborative Cloud-Edge-End Task Offloading
in Mobile-Edge Computing Networks with Limited Communication Capability”, IEEE
Transactions on Cognitive Communications and Networking, vol. 1–1, Aug 2020, pp.
1–11.

[79] Kimovski, D.; Matha, R.; Hammer, J.; Mehran, N.; Hellwagner, H.; Prodan, R. “Cloud,
Fog or Edge: Where to Compute?”, IEEE Internet Computing, vol. 1–1, Jan 2021, pp.
1–8.

[80] Klein, G.; Andronick, J.; Elphinstone, K.; Murray, T.; Sewell, T.; Kolanski, R.; Heiser,
G. “Comprehensive Formal Verification of an OS Microkernel”, ACM Transactions on
Computer Systems, vol. 32–1, Feb 2014, pp. 1–70.

[81] Klein, G.; Elphinstone, K.; Heiser, G.; Andronick, J.; Cock, D.; Derrin, P.; Elkaduwe,
D.; Engelhardt, K.; Kolanski, R.; Norrish, M.; Sewell, T.; Tuch, H.; Winwood, S. “SeL4:
Formal Verification of an OS Kernel”. In: Symposium on Operating Systems Principles,
2009, pp. 207–220.

[82] Kolias, C.; Kambourakis, G.; Stavrou, A.; Voas, J. “DDoS in the IoT: Mirai and other
botnets”, Computer, vol. 50–7, Jul 2017, pp. 80–84.

114

[83] Leung, J. Y. “Handbook of scheduling: algorithms, models, and performance analysis”.
CRC Press, 2004, 1216p.

[84] Lunardi, W. T.; Birgin, E. G.; Laborie, P.; Ronconi, D. P.; Voos, H. “Mixed Integer
linear programming and constraint programming models for the online printing shop
scheduling problem”, Computers & Operations Research, vol. 123–11, Nov 2020, pp.
1–20.

[85] Lunardi, W. T.; Birgin, E. G.; Ronconi, D. P.; Voos, H. “Metaheuristics for the online
printing shop scheduling problem”, European Journal of Operational Research, vol. 1–
1, Sep 2020, pp. 419–441.

[86] Mach, P.; Becvar, Z. “Mobile Edge Computing: A Survey on Architecture and
Computation Offloading”, IEEE Communications Surveys Tutorials, vol. 19–3, Mar
2017, pp. 1628–1656.

[87] Maene, P.; Götzfried, J.; de Clercq, R.; Müller, T.; Freiling, F.; Verbauwhede,
I. “Hardware-Based Trusted Computing Architectures for Isolation and Attestation”,
IEEE Transactions on Computers, vol. 67–3, Mar 2018, pp. 361–374.

[88] Margolis, J.; Oh, T. T.; Jadhav, S.; Jeong, J. P.; Kim, Y. H.; Kim, J. N. “Analysis
and Impact of IoT Malware”. In: International Conference on Information Technology
Education, 2017, pp. 187–187.

[89] Marques, W. d. S.; Souza, P. S. S. d.; Rossi, F. D.; Rodrigues, G. d. C.; Calheiros,
R. N.; Conterato, M. d. S.; Ferreto, T. C. “Evaluating container-based virtualization
overhead on the general-purpose IoT platform”. In: Symposium on Computers and
Communications, 2018, pp. 8–13.

[90] Martins, J.; Tavares, A.; Solieri, M.; Bertogna, M.; Pinto, S. “Bao: A Lightweight Static
Partitioning Hypervisor for Modern Multi-Core Embedded Systems”. In: Workshop on
Next Generation Real-Time Embedded Systems, 2020, pp. 1–14.

[91] Mayer, R.; Graser, L.; Gupta, H.; Saurez, E.; Ramachandran, U. “EmuFog: Extensible
and scalable emulation of large-scale fog computing infrastructures”. In: Fog World
Congress, 2017, pp. 1–6.

[92] Mechalikh, C.; Taktak, H.; Moussa, F. “PureEdgeSim: A Simulation Toolkit for
Performance Evaluation of Cloud, Fog, and Pure Edge Computing Environments”.
In: International Conference on High Performance Computing Simulation, 2019, pp.
700–707.

[93] Mell, Peter and Grance, Timothy. “The NIST definition of cloud computing”, Technical
Report, National Institute of Standards and Technology, 2011, 7p.

115

[94] Meltdown Attack. “Meltdown and spectre”. Source: https://meltdownattack.com, Oct
2018.

[95] Meng, J.; Tan, H.; Li, X.; Han, Z.; Li, B. “Online Deadline-Aware Task Dispatching
and Scheduling in Edge Computing”, IEEE Transactions on Parallel and Distributed
Systems, vol. 31–6, Dec 2020, pp. 1270–1286.

[96] Mirzamohammadi, S.; Sani, A. A. “The Case for a Virtualization-Based Trusted
Execution Environment in Mobile Devices”. In: Asia-Pacific Workshop on Systems,
2018, pp. 1–8.

[97] Mohan, N.; Kangasharju, J. “Edge-Fog cloud: A distributed cloud for Internet of Things
computations”. In: Cloudification of the Internet of Things, 2016, pp. 1–6.

[98] Morabito, R. “Virtualization on Internet of Things Edge Devices With Container
Technologies: A Performance Evaluation”, IEEE Access, vol. 5–1, May 2017, pp.
8835–8850.

[99] Morabito, R.; Beijar, N. “Enabling Data Processing at the Network Edge through
Lightweight Virtualization Technologies”. In: International Conference on Sensing,
Communication and Networking, 2016, pp. 1–6.

[100] Morabito, R.; Cozzolino, V.; Ding, A. Y.; Beijar, N.; Ott, J. “Consolidate IoT Edge
Computing with Lightweight Virtualization”, IEEE Network, vol. 32–1, Jan 2018, pp.
102–111.

[101] Morabito, R.; Petrolo, R.; Loscrì, V.; Mitton, N. “LEGIoT: A Lightweight Edge Gateway
for the Internet of Things”, Future Generation Computer Systems, vol. 81–4, Apr 2018,
pp. 1–15.

[102] Moratelli, C.; Johann, S.; Neves, M.; Hessel, F. “Embedded Virtualization for the
Design of Secure IoT Applications”. In: International Symposium on Rapid System
Prototyping, 2016, pp. 2–6.

[103] Moratelli, C. R. “A lightweight virtualization layer with hardware-assistance for
embedded systems”, PhD Thesis, Computer Science Graduate Program, PUCRS,
2016, 155p.

[104] Moratelli, C. R.; Tiburski, R. T.; de Matos, E.; Portal, G.; Johann, S. F.; Hessel, F.
“Privacy and security of Internet of Things devices”. In: Real-Time Data Analytics for
Large Scale Sensor Data, Academic Press, 2020, pp. 183–214.

[105] Mosenia, A.; Jha, N. K. “A Comprehensive Study of Security of Internet-of-Things”,
IEEE Transactions on Emerging Topics in Computing, vol. 5–4, Oct 2017, pp. 586–
602.

https://meltdownattack.com

116

[106] Munir, A.; Kansakar, P.; Khan, S. U. “IFCIoT: Integrated Fog Cloud IoT: A novel
architectural paradigm for the future Internet of Things”, IEEE Consumer Electronics
Magazine, vol. 6–3, Jul 2017, pp. 74–82.

[107] Naha, R. K.; Garg, S.; Georgakopoulos, D.; Jayaraman, P. P.; Gao, L.; Xiang, Y.;
Ranjan, R. “Fog Computing: Survey of Trends, Architectures, Requirements, and
Research Directions”, IEEE Access, vol. 6–8, Aug 2018, pp. 47980–48009.

[108] Nuijten, W. P. M.; Aarts, E. H. L. “A computational study of constraint satisfaction for
multiple capacitated job shop scheduling”, European Journal of Operational Research,
vol. 90–2, Apr 1996, pp. 269–284.

[109] Olatunji, I. E.; Cheng, C.-H. “Video Analytics for Visual Surveillance and Applications:
An Overview and Survey”. Springer International Publishing, 2019, chap. 15, pp. 475–
515.

[110] Omoniwa, B.; Hussain, R.; Javed, M. A.; Bouk, S. H.; Malik, S. A. “Fog/Edge
Computing-Based IoT (FECIoT): Architecture, Applications, and Research Issues”,
IEEE Internet of Things Journal, vol. 6–3, Jun 2019, pp. 4118–4149.

[111] OpenFog Consortium. “OpenFog Reference Architecture for Fog Computing”,
Technical Report, OpenFog Consortium, 2017, 162p.

[112] Pahl, C.; Helmer, S.; Miori, L.; Sanin, J.; Lee, B. “A Container-Based Edge Cloud PaaS
Architecture Based on Raspberry Pi Clusters”. In: International Conference on Future
Internet of Things and Cloud Workshops, 2016, pp. 117–124.

[113] Patel, A.; Daftedar, M.; Shalan, M.; El-Kharashi, M. W. “Embedded Hypervisor Xvisor:
A Comparative Analysis”. In: International Conference on Parallel, Distributed and
Network-Based Processing, 2015, pp. 682–691.

[114] Patman, J.; Lovett, P.; Banning, A.; Barnert, A.; Chemodanov, D.; Calvam, P.
“Data-Driven Edge Computing Resource Scheduling for Protest Crowds Incident
Management”. In: International Symposium on Network Computing and Applications,
2018, pp. 1–8.

[115] Pék, G.; Buttyán, L.; Bencsáth, B. “A Survey of Security Issues in Hardware
Virtualization”, ACM Computing Surveys, vol. 45–3, Jun 2013, pp. 1–34.

[116] Pinedo, M. “Scheduling”. Springer, 2012, 673p.

[117] Pinto, S.; Gomes, T.; Pereira, J.; Cabral, J.; Tavares, A. “IIoTEED: An Enhanced,
Trusted Execution Environment for Industrial IoT Edge Devices”, IEEE Internet
Computing, vol. 21–1, Jan 2017, pp. 40–47.

117

[118] Pinto, S.; Oliveira, D.; Pereira, J.; Cardoso, N.; Ekpanyapong, M.; Cabral, J.;
Tavares, A. “Towards a lightweight embedded virtualization architecture exploiting
ARM TrustZone”. In: International Conference on Emerging Technology and Factory
Automation, 2014, pp. 1–4.

[119] Pinto, S.; Santos, N. “Demystifying Arm TrustZone: A Comprehensive Survey”, ACM
Computing Surveys, vol. 51–6, Feb 2019, pp. 1–36.

[120] Pokrovskaia, N.; Khansuvarova, T.; Khansuvarov, R. “Network decentralized
regulation with the fog-edge computing and blockchain for business development”. In:
European Conference on Management, Leadership & Governance, 2018, pp. 205–
212.

[121] Portilla, J.; Mujica, G.; Lee, J.; Riesgo, T. “The Extreme Edge at the Bottom of the
Internet of Things: A Review”, IEEE Sensors Journal, vol. 19–9, May 2019, pp. 3179–
3190.

[122] Preden, J. S.; Tammemae, K.; Jantsch, A.; Leier, M.; Riid, A.; Calis, E. “The Benefits
of Self-Awareness and Attention in Fog and Mist Computing”, Computer, vol. 48–7,
Jul 2015, pp. 37–45.

[123] Rakotondravony, N.; Taubmann, B.; Mandarawi, W.; Weishäupl, E.; Xu, P.; Kolosnjaji,
B.; Protsenko, M.; De Meer, H.; Reiser, H. P. “Classifying malware attacks in IaaS
cloud environments”, Journal of Cloud Computing, vol. 6–1, Dec 2017, pp. 1–12.

[124] Razzaque, M. A.; Milojevic-Jevric, M.; Palade, A.; Clarke, S. “Middleware for Internet
of Things: A Survey”, IEEE Internet of Things Journal, vol. 3–1, Feb 2016, pp. 70–95.

[125] Ren, J.; Yu, G.; He, Y.; Li, G. Y. “Collaborative Cloud and Edge Computing for Latency
Minimization”, IEEE Transactions on Vehicular Technology, vol. 68–5, Mar 2019, pp.
5031–5044.

[126] Roman, R.; Lopez, J.; Mambo, M. “Mobile edge computing, Fog et al.: A survey and
analysis of security threats and challenges”, Future Generation Computer Systems,
vol. 78–2, Jan 2018, pp. 680–698.

[127] RTInsights. “In 2018, Get Ready for the Convergence of IoT,
AI, Fog, and Blockchain”. Source: https://www.rtinsights.com/
in-2018-get-ready-for-the-convergence-of-iot-ai-fog-and-blockchain, Jan 2018.

[128] Russell, R. “Virtio: Towards a De-facto Standard for Virtual I/O Devices”, ACM
SIGOPS Operating Systems Review, vol. 42–5, Jul 2008, pp. 95–103.

[129] Sabella, D.; Vaillant, A.; Kuure, P.; Rauschenbach, U.; Giust, F. “Mobile-Edge
Computing Architecture: The role of MEC in the Internet of Things”, IEEE Consumer
Electronics Magazine, vol. 5–4, Oct 2016, pp. 84–91.

https://www.rtinsights.com/in-2018-get-ready-for-the-convergence-of-iot-ai-fog-and-blockchain
https://www.rtinsights.com/in-2018-get-ready-for-the-convergence-of-iot-ai-fog-and-blockchain

118

[130] Sabt, M.; Achemlal, M.; Bouabdallah, A. “Trusted Execution Environment: What It is,
and What It is Not”. In: International Conference on Trust, Security and Privacy in
Computing and Communications, 2015, pp. 57–64.

[131] Sandström, K.; Vulgarakis, A.; Lindgren, M.; Nolte, T. “Virtualization technologies
in embedded real-time systems”. In: International Conference on Emerging
Technologies Factory Automation, 2013, pp. 1–8.

[132] Sarddar, D.; Bose, R. “A mobile cloud computing architecture with easy resource
sharing”, International Journal of Current Engineering and Technology, vol. 4–3, Jun
2014, pp. 1249–1254.

[133] Sharma, S.; Saini, H. “A novel four-tier architecture for delay aware scheduling and
load balancing in fog environment”, Sustainable Computing: Informatics and Systems,
vol. 24–12, Dec 2019, pp. 1–12.

[134] Shen, H.; Bai, G.; Hu, Y.; Wang, T. “P2TA: Privacy-preserving task allocation for edge
computing enhanced mobile crowdsensing”, Journal of Systems Architecture, vol. 97–
1, Aug 2019, pp. 130–141.

[135] Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. “Edge Computing: Vision and Challenges”,
IEEE Internet of Things Journal, vol. 3–5, Oct 2016, pp. 637–646.

[136] Siboni, S.; Sachidananda, V.; Meidan, Y.; Bohadana, M.; Mathov, Y.; Bhairav,
S.; Shabtai, A.; Elovici, Y. “Security testbed for internet-of-things devices”, IEEE
Transactions on Reliability, vol. 68–1, Mar 2019, pp. 23–44.

[137] Silberschatz, A.; Galvin, P. B.; Gagne, G. “Operating System Concepts”. Wiley
Publishing, 2012, 992p.

[138] Smith, J.; Nair, R. “Virtual Machines: Versatile Platforms for Systems and Processes”.
Morgan Kaufmann Publishers, 2005, 656p.

[139] Soltesz, S.; Pötzl, H.; Fiuczynski, M. E.; Bavier, A.; Peterson, L. “Container-
Based Operating System Virtualization: A Scalable, High-Performance Alternative to
Hypervisors”. In: European Conference on Computer Systems, 2007, pp. 275–287.

[140] Sonmez, C.; Ozgovde, A.; Ersoy, C. “EdgeCloudSim: An environment for performance
evaluation of Edge Computing systems”. In: International Conference on Fog and
Mobile Edge Computing, 2017, pp. 39–44.

[141] Souza, A.; Cacho, N.; Noor, A.; Jayaraman, P. P.; Romanovsky, A.; Ranjan, R.
“Osmotic Monitoring of Microservices between the Edge and Cloud”. In: International
Conference on High Performance Computing and Communications, 2018, pp. 758–
765.

119

[142] Sun, X.; Ansari, N. “EdgeIoT: Mobile Edge Computing for the Internet of Things”, IEEE
Communications Magazine, vol. 54–12, Dec 2016, pp. 22–29.

[143] Taherizadeh, S.; Stankovski, V.; Grobelnik, M. “A Capillary Computing Architecture for
Dynamic Internet of Things: Orchestration of Microservices from Edge Devices to Fog
and Cloud Providers”, Sensors, vol. 18–9, Sep 2018, pp. 1–23.

[144] Tan, H.; Han, Z.; Li, X.; Lau, F. C. M. “Online job dispatching and scheduling in edge-
clouds”. In: International Conference on Computer Communications, 2017, pp. 1–9.

[145] Taneja, M.; Davy, A. “Resource aware placement of IoT application modules in Fog-
Cloud Computing Paradigm”. In: Symposium on Integrated Network and Service
Management, 2017, pp. 1222–1228.

[146] Tanenbaum, A. S.; Wetherall, D. J. “Computer Networks”. Pearson Prentice Hall, 2011,
933p.

[147] Tang, B.; Chen, Z.; Hefferman, G.; Wei, T.; He, H.; Yang, Q. “A Hierarchical Distributed
Fog Computing Architecture for Big Data Analysis in Smart Cities”. In: ASE BigData
& SocialInformatics, 2015, pp. 1–6.

[148] Tanganelli, G.; Vallati, C.; Mingozzi, E. “Edge-Centric Distributed Discovery and
Access in the Internet of Things”, IEEE Internet of Things Journal, vol. 5–1, Feb 2018,
pp. 425–438.

[149] Tank, D.; Aggarwal, A.; Chaubey, N. “Virtualization vulnerabilities, security issues,
and solutions: a critical study and comparison”, International Journal of Information
Technology, vol. 1–2, Feb 2019, pp. 1–16.

[150] The seL4 Foundation. “The seL4 Microkernel An Introduction”. Source: https://cdn.
hackaday.io/files/1713937332878112/seL4-whitepaper.pdf, Oct 2020.

[151] Tiburski, R. T.; Amaral, L. A.; de Matos, E.; de Azevedo, D. F. G.; Hessel, F. “The Role
of Lightweight Approaches Towards the Standardization of a Security Architecture for
IoT Middleware Systems”, IEEE Communications Magazine, vol. 54–12, Dec 2016,
pp. 56–62.

[152] Tiburski, R. T.; Amaral, L. A.; de Matos, E.; Hessel, F.; de Azevedo, D. “Evaluating the
Use of TLS and DTLS Protocols in IoT Middleware Systems Applied to E-health”. In:
Annual Consumer Communications & Networking Conference, 2017, pp. 480–485.

[153] Tiburski, R. T.; Amaral, L. A.; Hessel, F. “Security Challenges in 5G-Based IoT
Middleware Systems”. Springer International Publishing, 2016, chap. 17, pp. 399–
418.

https://cdn.hackaday.io/files/1713937332878112/seL4-whitepaper.pdf
https://cdn.hackaday.io/files/1713937332878112/seL4-whitepaper.pdf

120

[154] Tiburski, R. T.; de Matos, E.; Hessel, F. “Evaluating the DTLS Protocol from CoAP
in Fog-to-Fog Communications”. In: International Conference on Service-Oriented
System Engineering, 2019, pp. 90–905.

[155] Tiburski, R. T.; Moratelli, C. R.; Johann, S. F.; de Matos, E.; Hessel, F. “A
lightweight virtualization model to enable edge computing in deeply embedded
systems”, Software: Practice and Experience, vol. 1–1, Mar 2021, pp. 1–18.

[156] Tiburski, R. T.; Moratelli, C. R.; Johann, S. F.; Neves, M. V.; de Matos, E.; Amaral, L. A.;
Hessel, F. “Lightweight Security Architecture Based on Embedded Virtualization and
Trust Mechanisms for IoT Edge Devices”, IEEE Communications Magazine, vol. 57–2,
Feb 2019, pp. 67–73.

[157] Tien, C.; Tsai, T.; Chen, I.; Kuo, S. “UFO - Hidden Backdoor Discovery and Security
Verification in IoT Device Firmware”. In: International Symposium on Software
Reliability Engineering Workshops, 2018, pp. 18–23.

[158] Tong, L.; Li, Y.; Gao, W. “A hierarchical edge cloud architecture for mobile computing”.
In: International Conference on Computer Communications, 2016, pp. 1–9.

[159] Vasconcelos, F. F.; Sarmento, R. M.; Rebouças Filho, P. P.; de Albuquerque, V.
H. C. “Artificial intelligence techniques empowered edge-cloud architecture for brain
CT image analysis”, Engineering Applications of Artificial Intelligence, vol. 91–5, May
2020, pp. 1–13.

[160] Vilalta, R.; Lopez, V.; Giorgetti, A.; Peng, S.; Orsini, V.; Velasco, L.; Serral-Gracia, R.;
Morris, D.; De Fina, S.; Cugini, F.; Castoldi, P.; Mayoral, A.; Casellas, R.; Martinez,
R.; Verikoukis, C.; Munoz, R. “TelcoFog: A Unified Flexible Fog and Cloud Computing
Architecture for 5G Networks”, IEEE Communications Magazine, vol. 55–8, Aug 2017,
pp. 36–43.

[161] Wang, A.; Liang, R.; Liu, X.; Zhang, Y.; Chen, K.; Li, J. “An Inside Look at
IoT Malware”. In: International Conference on Industrial IoT Technologies and
Applications, 2017, pp. 176–186.

[162] Wang, B.; Song, Y.; Wang, C.; Huang, W.; Qin, X. “A Study on Heuristic Task
Scheduling Optimizing Task Deadline Violations in Heterogeneous Computational
Environments”, IEEE Access, vol. 8–11, Nov 2020, pp. 205635–205645.

[163] Wang, B.; Wang, C.; Huang, W.; Song, Y.; Qin, X. “A Survey and Taxonomy on
Task Offloading for Edge-Cloud Computing”, IEEE Access, vol. 8–10, Oct 2020, pp.
186080–186101.

121

[164] Wang, L.; Jiao, L.; Kliazovich, D.; Bouvry, P. “Reconciling task assignment and
scheduling in mobile edge clouds”. In: International Conference on Network Protocols,
2016, pp. 1–6.

[165] Wang, R.; Yan, J.; Wu, D.; Wang, H.; Yang, Q. “Knowledge-Centric Edge Computing
Based on Virtualized D2D Communication Systems”, IEEE Communications
Magazine, vol. 56–5, May 2018, pp. 32–38.

[166] Wired. “Hackers Remotely Kill a Jeep on the Highway—With Me in It”. Source:
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway, Nov 2020.

[167] Wired. “The Jeep Hackers Are Back to Prove Car Hacking Can
Get Much Worse”. Source: https://www.wired.com/2016/08/
jeep-hackers-return-high-speed-steering-acceleration-hacks, Nov 2020.

[168] wolfSSL. “Embedded SSL/TLS Library”. Source: https://www.wolfssl.com/, Nov 2020.

[169] Wu, Q.; Zhang, H.; Du, P.; Li, Y.; Guo, J.; He, C. “Enabling adaptive deep
neural networks for video surveillance in distributed edge clouds”. In: International
Conference on Parallel and Distributed Systems, 2019, pp. 525–528.

[170] Xiao, Y.; Jia, Y.; Liu, C.; Cheng, X.; Yu, J.; Lv, W. “Edge Computing Security: State of
the Art and Challenges”, Proceedings of the IEEE, vol. 107–8, Aug 2019, pp. 1608–
1631.

[171] Yang, M.; Ma, H.; Wei, S.; Zeng, Y.; Chen, Y.; Hu, Y. “A Multi-Objective Task
Scheduling Method for Fog Computing in Cyber-Physical-Social Services”, IEEE
Access, vol. 8–3, Mar 2020, pp. 65085–65095.

[172] Yi, S.; Hao, Z.; Zhang, Q.; Zhang, Q.; Shi, W.; Li, Q. “LAVEA: Latency-Aware Video
Analytics on Edge Computing Platform”. In: International Conference on Distributed
Computing Systems, 2017, pp. 2573–2574.

[173] Zhang, J.; Chen, B.; Zhao, Y.; Cheng, X.; Hu, F. “Data Security and Privacy-Preserving
in Edge Computing Paradigm: Survey and Open Issues”, IEEE Access, vol. 6–3, Mar
2018, pp. 18209–18237.

[174] Zhang, P.; Zhou, M.; Fortino, G. “Security and trust issues in Fog computing: A
survey”, Future Generation Computer Systems, vol. 88–11, Nov 2018, pp. 16–27.

[175] Zhang, W.; Chen, J.; Zhang, Y.; Raychaudhuri, D. “Towards Efficient Edge Cloud
Augmentation for Virtual Reality MMOGs”. In: Symposium on Edge Computing, 2017,
pp. 1–14.

https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway
https://www.wired.com/2016/08/jeep-hackers-return-high-speed-steering-acceleration-hacks
https://www.wired.com/2016/08/jeep-hackers-return-high-speed-steering-acceleration-hacks
https://www.wolfssl.com/

122

[176] Zimba, A.; Wang, Z.; Mulenga, M. “Cryptojacking injection: A paradigm shift
to cryptocurrency-based web-centric internet attacks”, Journal of Organizational
Computing and Electronic Commerce, vol. 29–1, Feb 2019, pp. 40–59.

123

APPENDIX A – RESULTS FOR TASK ASSIGNMENT AND SCHEDULING EXPERIMENTS

Table A.1 – Results for Experiments 1, 2 and 3.

Orchestration

algorithm

Edge

devices

count

Generated

tasks

Tasks

successfully

executed

Task not

executed

(No resources

available)

Tasks

failed

(deadline)

Total

tasks

executed

(Cloud)

Tasks

successfully

executed

(Cloud)

Total

tasks

executed

(Fog)

Tasks

successfully

executed

(Fog)

Total

tasks

executed

(Edge)

Tasks

successfully

executed

(Edge)

Total

network

traffic

(GB)

Average

CPU

Usage

(%)

CPU

usage

(Cloud)

(%)

CPU

usage

(Fog)

(%)

CPU

usage

(Edge)

(%)

DTAS-EDGE 50 1440000 1440000 0 0 160830 160830 291220 291220 987950 987950 24,2 72,5 15,6 47,1 76,1

DTAS-EDGE 50 1440000 1440000 0 0 161020 161020 291140 291140 987840 987840 24,2 72,4 15,6 47,1 76,1

DTAS-EDGE 50 1440000 1440000 0 0 157440 157440 290410 290410 992150 992150 20,9 72,8 15,2 47,0 76,5

DTAS-FOG 50 1440000 1180520 239120 20360 297170 285900 695760 686670 327510 327510 96,5 29,5 26,3 84,0 24,2

DTAS-FOG 50 1440000 1181200 238380 20420 295750 284410 694470 685390 330590 330590 96,5 29,7 26,3 84,0 24,4

DTAS-FOG 50 1440000 1179970 239520 20510 295150 283890 694440 685190 330650 330650 96,4 29,7 26,2 84,0 24,4

DTAS-CLOUD 50 1440000 1074900 360920 4180 1098910 1098910 160630 156450 0 0 82,5 3,6 67,2 26,7 0,0

DTAS-CLOUD 50 1440000 1086030 349000 4970 1094880 1094880 170620 165650 0 0 82,8 3,6 67,7 27,1 0,0

DTAS-CLOUD 50 1440000 1088590 347020 4390 1115660 1115660 150830 146440 0 0 82,5 3,5 68,5 25,4 0,0

INCREASE_LIFETIME 50 1440000 1436070 0 3930 717980 716060 560270 560170 161750 159840 64,7 23,8 47,0 70,5 18,6

INCREASE_LIFETIME 50 1440000 1435980 0 4020 718590 716470 559780 559740 161630 159770 64,7 23,4 47,3 70,5 18,2

INCREASE_LIFETIME 50 1440000 1435850 0 4150 717450 715200 559790 559770 162760 160880 59,9 23,5 47,1 70,4 18,4

PTS 50 1440000 1437120 0 2880 516740 516530 387260 387160 536000 533430 64,2 47,9 34,5 51,8 47,7

PTS 50 1440000 1437170 0 2830 516730 516560 387270 387140 536000 533470 64,2 47,9 34,5 51,8 47,7

PTS 50 1440000 1437230 0 2770 516790 516680 387210 387040 536000 533510 59,5 47,8 34,5 51,7 47,7

ROUND_ROBIN 50 1440000 660580 0 779420 169600 169600 212000 212000 1058400 278980 47,7 78,2 10,3 25,7 84,8

ROUND_ROBIN 50 1440000 690030 0 749970 169600 169600 212000 212000 1058400 308430 47,9 76,8 10,3 25,7 83,2

ROUND_ROBIN 50 1440000 705320 0 734680 169600 169600 212000 212000 1058400 323720 46,7 76,1 10,3 25,7 82,5

DTAS-EDGE 20 1080000 1079530 0 210 207290 207080 429050 429050 443660 443660 27,8 80,0 18,5 70,1 85,1

DTAS-EDGE 20 1080000 1079540 0 260 206860 206600 429050 429050 444090 444090 27,8 80,1 18,5 70,1 85,2

DTAS-EDGE 20 1080000 1079500 0 200 206960 206760 429290 429290 443750 443750 27,8 80,1 18,5 70,1 85,2

INCREASE_LIFETIME 20 1080000 1077900 0 2100 632650 630770 414030 414030 33320 33100 45,0 20,6 42,5 66,2 10,4

INCREASE_LIFETIME 20 1080000 1078220 0 1780 646500 644830 407550 407550 25950 25840 45,0 18,7 43,5 65,3 8,1

INCREASE_LIFETIME 20 1080000 1077830 0 2170 634980 632970 414460 414460 30560 30400 45,0 19,9 42,7 66,4 9,5

PTS 20 1080000 1079490 0 510 536000 535990 321600 321570 222400 221930 44,5 49,6 35,8 53,6 49,5

PTS 20 1080000 1079520 0 480 536000 536000 321600 321590 222400 221930 44,5 49,6 35,8 53,7 49,5

PTS 20 1080000 1079670 0 330 536000 536000 321600 321590 222400 222080 44,5 49,6 35,8 53,6 49,5

ROUND_ROBIN 20 1080000 589790 0 490210 240000 240000 240000 240000 600000 109790 35,6 76,1 11,0 27,4 89,0

ROUND_ROBIN 20 1080000 582450 0 497550 240000 240000 240000 240000 600000 102450 35,7 77,1 11,0 27,4 90,4

ROUND_ROBIN 20 1080000 590810 0 489190 240000 240000 240000 240000 600000 110810 35,7 76,1 11,0 27,4 89,0

124

	INTRODUCTION
	MOTIVATION
	HYPOTHESES AND RESEARCH QUESTIONS
	OBJECTIVES
	CONTRIBUTION
	THESIS OUTLINE

	THEORETICAL BACKGROUND
	EDGE COMPUTING: INTEGRATING IOT AND THE CLOUD
	ARCHITECTURE MODELS
	TYPES OF EDGE DEVICES

	VIRTUALIZATION
	VIRTUALIZATION FOR EDGE DEVICES
	LITERATURE REVIEW FOR EMBEDDED VIRTUALIZATION

	SECURITY FOR EDGE DEVICES
	CHALLENGES AND VULNERABILITIES
	KEY SECURITY REQUIREMENTS

	TASK ASSIGNMENT AND SCHEDULING
	SCHEDULING NOTATION
	TASK ASSIGNMENT AND SCHEDULING PROBLEM IN AN EDGE-FOG-CLOUD ARCHITECTURE

	SUMMARY

	THE HELLFIRE HYPERVISOR
	PRIVILEGE-LEVELS AND CONTEXT-SWITCHING
	MEMORY VIRTUALIZATION
	I/O VIRTUALIZATION
	INTER-VM COMMUNICATION
	STATIC PARTITIONING
	REAL-TIME SUPPORT
	EVALUATION
	FOOTPRINT ANALYSIS
	PERFORMANCE ANALYSIS
	INTER-VM COMMUNICATION DELAY
	REAL-TIME ANALYSIS
	SMART CITY APPLICATION - AIR QUALITY MONITORING

	SUMMARY

	SECURITY FOR EDGE DEVICES
	SECURITY ARCHITECTURE DEFINITION
	CHAIN-OF-TRUST PROTECTION
	VIRTUALIZATION PROTECTION

	EVALUATION
	FOOTPRINT AND PERFORMANCE ANALYSIS
	SECURITY ANALYSIS

	RELATED WORK
	SUMMARY

	DEADLINE-AWARE TASK ASSIGNMENT AND SCHEDULING MECHANISM
	PROBLEM FORMULATION
	PROPOSED MECHANISM
	EVALUATION
	ENVIRONMENT SETUP
	EXPERIMENT 1 - DTAS-EDGE ANALYSIS
	EXPERIMENT 2 - COMPARISON WITH LITERATURE ALGORITHMS
	EXPERIMENT 3 - SMART SURVEILLANCE REAL WORLD APPLICATION

	RELATED WORK
	SUMMARY

	FINAL CONSIDERATIONS
	CONTRIBUTIONS
	PUBLICATIONS
	REVISITING THE HYPOTHESES AND RESEARCH QUESTIONS
	CONCLUSION
	FUTURE WORK

	References
	Appendix A – RESULTS FOR TASK ASSIGNMENT AND SCHEDULING EXPERIMENTS

