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SELF-SUPERVISED IMITATION LEARNING FROM

OBSERVATION

RESUMO

Os seres humanos têm a capacidade de aprender através da observação. O equiva-
lente computacional deste aprendizado se chama clonagem de comportamento, uma técnica
de aprendizado por imitação na qual um agente estuda o comportamento de um especialista.
Abordagens recentes trabalham no uso de dados não rotulados com representações fidedignas
dos estados, decodificando as informações observadas em ações de maneira auto-supervisionada.
No entanto, ainda existem vários problemas a serem resolvidos, incluindo problemas de míni-
mos locais e dependência de vetores de estados. Nesta dissertação, apresentamos três novos
métodos de aprendizado por imitação: Augmented Behavioral Cloning from Observation, Imi-
tating Unknown Policies via Exploration, e Combined Reinforcement and Imitation Learning,
que têm por objetivo resolver os problemas de decaimento de aprendizado durante o processo
iterativo, de falta de políticas não-exploratórias, e de fraca eficiência de amostragem durante o
treinamento dos agentes. Os resultados de Augmented Behavioral Cloning from Observations
mostram que um mecanismo de amostragem pode criar ciclos de aprendizagem iterativos mais
apropriados. Já os experimentos com Imitating Unknown Policies via Exploration ressaltam
que um mecanismo de exploração pode alcançar resultados superiores do especialista e bater
o estado da arte. Por fim, a análise do framework de Combined Reinforcement and Imitation
Learning, mostra que adicionar um mecanismo de aprendizagem por reforço pode criar políticas
mais eficientes e chegar a resultados semelhantes ao segundo método, mas com muito menos
amostras. O segundo e o terceiro métodos oferecem diferentes trade-offs entre desempenho e
eficiência, dependendo da dificuldade de aquisição de amostras especializadas.

Palavras-Chave: Aprendizado por Imitação, Clonagem de Comportamento, Aprendizado
Auto-supervisionado.



SELF-SUPERVISED IMITATION LEARNING FROM

OBSERVATION

ABSTRACT

Humans have the ability to learn through observation. The computational equivalent
of learning by observation is behavioral cloning, an imitation learning technique that teaches an
agent how to behave through expert demonstrations. Recent approaches work towards making
use of unlabeled data with fully-observable snapshots of the states, decoding the observed
information into actions in a self-supervised fashion. However, there are several problems still
left to be addressed, including the many times the iterative learning scheme gets stuck into bad
local minima. In this work, we propose three different methods, Augmented Behavioral Cloning
from Observation, Imitating Unknown Policies via Exploration, and Combined Reinforcement
and Imitation Learning, which aim to solve the problems of the decaying learning process,
nonexplorative policies, and sample efficiency during the iterative process. The results from
Augmented Behavioral Cloning from Observations show that a sampling mechanism can create
more appropriate iterative learning cycles, while Imitating Unknown Policies via Exploration
results convey that an exploration strategy can achieve results even better than the expert,
reaching the state-of-the-art of the task. Lastly, the Combined Reinforcement and Imitation
Learning framework shows that adding a reinforcement learning method within the imitation
learning framework can create more efficient policies and reach similar results to the second
method with fewer samples. Both the second and the third methods offer distinct trade-offs
between performance and efficiency, depending on the difficulty of acquiring expert samples.

Keywords: Imitation Learning, Behavioral Cloning, Self-supervised learning.
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1. INTRODUCTION

Humans often learn new abilities by observing other humans performing certain ac-
tivities: we can mirror the behavior of others by observing sequences of events even though we
may not have direct access to the underlying actions and intentions that yielded them [45]. For
example, we can learn different tasks, such as cooking or drawing, just by watching videos. Our
capabilities go beyond merely imitating; we can transfer the knowledge from a demonstration
to a given task, despite differences in the environment, body, or objects that constitute the
demonstration.

Learning by imitation has been studied in the area of psychology and recently became
a prominent field in the area of artificial intelligence [31, 22, 11]. Imitation learning [44], also
referred to as learning from demonstration (LfD), consists of an artificial agent mimicking the
behavior of an expert by learning from demonstrations [47, 1]. In LfD, the agent trains to
acquire skills or behaviors by observing a teacher solving a problem, i.e., the agent learns a
mapping between observations and actions [22, 57]. While LfD is motivated by how humans
learn from demonstration, most existing work assumes that the agent has access to the actions
(i.e., action labels) performed, which humans do not. This assumption differs from how humans
learn since they efficiently decode the observed information into the underlying actions [45].
Using labeled actions to learn a policy often requires the data to be recorded explicitly for
imitation learning, limiting the usage of available unlabeled data. For example, consider an
expert playing an unknown video game. Although we may not know the action performed by
the expert in terms of pushed control buttons, we are still capable of mapping what we have
observed into a known video game and understand the executed action.

Recent approaches for overcoming those issues perform imitation from observation
(IfO). In IfO, one learns policies by using only the sequence of state observations, i.e., without
the need to access the demonstrator’s actions [30, 57, 2]. In this dissertation, we address the
problem of IfO by learning to imitate the behavior of an expert through the use of its state
information without any other prior information of the observed actions. We propose three
different Self-supervised Imitation Learning from Observation frameworks. The first method
augments the BCO [57] framework by employing a new sample method and a self-attention
mechanism to reduce problems with bad local minima from the original method. Our second
approach further improves the first method’s performance by adding a exploration mechanism.
Finally, we create a method that combines reinforcement and imitation learning for improving
the sample efficiency of our previous approaches.



18

1.1 Hypothesis and Research Questions

In this work we hypothesize that: (i) a different sampling mechanism can create poli-
cies that do not deteriorate during an iterative learning process; (ii) an exploration mechanism
can benefit a self-supervised imitation learning framework by creating more diverse samples; and
(iii) combining reinforcement and imitation learning approaches can yield more sample-efficient
models. To validate these hypotheses, we aim to answer the following research questions:

1. What are the advantages and disadvantages of a goal-aware sampling mechanism in Self-
Supervised Imitation Learning?

2. How effective an exploration mechanism is for avoiding local minima?

3. Can we build more sample-efficient approaches by hybridizing imitation learning and
reinforcement learning?

1.2 Document Organization

This document is organized as follows. Chapter 2 introduces the learning paradigms,
such as self-supervised and imitation learning, and the standard behavioral cloning approach.
Chapter 3 presents current methods for imitation and reinforcement learning. Chapter 4 in-
troduces the methodology we follow throughout this work. In Chapters 5, 6, and 7 we discuss
our proposed methods and present experimental analyses to evaluate performance. We end
this dissertation with our final thoughts, limitations of the proposed methods and future work
directions in Chapter 8.
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2. BACKGROUND

2.1 Machine Learning

Machine Learning (ML) is the scientific study of how machines can learn based upon
experience. Mitchell [33] defines a learning problem more broadly as follows:

Definition 2.1.1. A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T , as measured by
P, improves with E .

To perform a given task T , a system learns to approximate a function that represents
the unknown real data distribution from the dataset provided. A dataset comprises instances,
each consisting of a set of attributes and possibly an associated label. The dataset usually
is divided into three parts: training, validation, and test sets. The training set serves as the
learnable data for fitting the function one needs to approximate. The validation set is used to
measure P and allow for model selection and hyperparameter optimization. And finally, the
test set serves as a proxy for unseen data, allowing the estimation of the true generalization
error, and thus it is a set never used during the learning phase [55].

Traditionally, machine learning divides its learning algorithms into three categories:
supervised, unsupervised, and reinforcement learning. However, with recent advances in the
area, other paradigms have emerged, such as semi-supervised and self-supervised learning.

2.1.1 Supervised Learning

The supervised learning paradigm is based on models that learn from tuples that
consist of features x (e.g. pixels, features, embeddings, attributes), and labels y (e.g. classes,
targets) [15]. Roughly speaking, the learning algorithm learns to associate some input with some
output, given a set of examples. During the learning phase, a model approximates a function
f (x) : X → Y , where X is the set of inputs {x1, x2 ... , xn}, and Y the set of possible outcomes
in classification problems {y1, y2, ... , yn}. The approximated function is then extrapolated to
infer the output variable of unseen input samples.

2.1.2 Unsupervised Learning

Unsupervised learning algorithms make use of the data alone, without any kind of
supervision, in order to learn useful properties of the structure of the dataset at hand [15]. In
contrast to supervised learning, which usually makes use of human-labeled data, unsupervised
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allows for modeling of probability densities over inputs [19]. For deep learning applications,
we usually want to learn the entire probability distribution that generated a dataset, whether
explicitly or implicitly. Other cases of unsupervised learning algorithms perform different tasks,
like clustering, which consists of dividing the dataset into previously-unknown classes (clusters)
of similar examples.

2.1.3 Semi-Supervised Learning

The semi-supervised learning (SSL) paradigm is halfway between supervised and un-
supervised learning [15]. In addition to unlabeled data, the algorithm is provided with some
supervision information, but not necessarily for all examples. The most common case for SSL
is when not all targets associated with X are known. For those cases, the data set X = (xi)i∈[n]

can be divided into two parts: examples Xl := (x1, ... , xl) for which labels Yl := (y1, ... , yl) are
provided, and those Xu := (xl+1, ... , xl+u), whose labels are not known [40].

In SSL, there may be cases in which we have known constraints, such as “these ex-
amples belong (or do not belong) to the same label”. In this case, semi-supervised learning is
considered as unsupervised learning guided by supervision and provides must-link and cannot-
link constraints for data clustering. A must-link constraint indicates that both examples in
the pair should be placed in the same cluster, while a cannot-link restriction means that two
examples should belong to different groups. Typically, the constraints are “soft”, that is, a
cluster that violates them is undesirable but not prohibited.

Most approaches envision SSL as supervised learning with additional information on
the distribution of the examples, and thus more in line with the supervised learning original
goal: to predict a target value for a given example xi .

Engelen and Hoos [58] state that most SSL methods base themselves into three differ-
ent assumptions: (i) the smoothness assumption, which states that if two examples x1 and x2

are close in the feature space, their label counterpart is probably the same; (ii) the low-density
assumption, which states that the decision boundary of a classifier does not pass through high-
density areas of the feature space; and (iii) the manifold assumption, which states that samples
located on the same low-dimensional feature space have the same labels.

2.1.4 Self-supervised Learning

While semi-supervised learning is halfway between supervised and unsupervised learn-
ing, the self-supervised learning paradigm is much more similar to supervised learning. Com-
pared to supervised learning methods, self-supervised learning trains with data xi along with
a pseudo label Pi , where Pi is an automatically generated label for a pre-defined pretext task
without involving any human annotation [23]. As long as the pseudo labels P are automatically
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generated without involving human annotations, then the methods belong to the self-supervised
learning paradigm.

2.1.5 Reinforcement Learning

Reinforcement learning (RL) is an area of machine learning concerned with how intel-
ligent agents ought to take actions in an environment in order to maximize the notion of cumu-
lative reward [21]. RL differs from supervised approaches in not needing labeled input/output
pairs, and not needing sub-optimal actions to be explicitly corrected. Instead, the focus of this
approach is on finding a balance between exploration and exploitation [24]. The most common
environment is typically stated in the form of a Markov Decision Process (MDP). Formulating
the problem as an MDP assumes the agent directly observes the current environmental state.
When we compare the agent’s performance to that of an agent that acts optimally, the differ-
ence in performance gives rise to the notion of regret. Hence, if an agent is to act optimally,
the agent must reason about the long-term consequences of its actions, albeit the immediate
reward associated with this might be negative. Thus, reinforcement learning is well-suited to
problems that include a long-term, short-term reward trade-off.

We can divide RL into two main approaches: model-free and model-based algo-
rithms [54]. Model-free algorithms focus on estimating what the optimal policy is (the agent
behavior) to choose actions. Model-based approaches are interested in learning the model of
the environment, enabling the algorithm to plan a sequence of actions that will maximize the
total reward. Another significant differentiation is off-policy and on-policy reinforcement learn-
ing [54]. An off-policy is independent of the agent’s actions, and it learns the optimal policy
regardless of the agent’s motivation, e.g. a replay buffer in which all states are appended so
eventually the reward from the goal backward into the estimate Q for other states near the goal.
Furthermore, an on-policy method attempts to evaluate or improve the policy by its decision
process, e.g. by performing a policy gradient update after each episode.

2.2 Deep Learning

Conventional machine learning techniques are limited in processing natural data in
their raw form. Constructing a machine learning system requires careful engineering and do-
main expertise to design feature extractors capable of transform the raw data into consumable
representations or feature vectors for the learning subsystem. Representation learning is a
set of methods and techniques that allow processing raw data and to automatically discover
the most suitable representation for the underlying learning task. Deep learning methods fall
within the representation learning framework, with multiple levels of representation obtained
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by composing simple but non-linear modules that transform the raw data into a higher and
more abstract level [27].

Deep learning methods currently hold the state-of-the-art in many unstructured data
processing tasks such as image recognition [61], speech recognition [17], machine translation [9],
and question answering [63]. Furthermore, deep learning methods are also the weapon of
choice for generative applications such as image stylization [29], musical composition [42], text
generation [18], and image generation [52].

Artificial Neural Networks (ANNs) are the main component of the deep learning area,
being vaguely inspired by the biological neural network that constitutes animal brains [32]. An
ANN consists of a collection of connected units or nodes called artificial neurons, which loosely
model the neurons in a biological brain. Each connection, like the synapses in a biological brain,
can transmit a signal to other neurons, which receives, processes, and transmits it forward along
the network. The connection’s signal is a representation of the aggregated input processed by
some non-linear function. Neurons and connections typically have a corresponding weight that
increases or decreases the strength of the signal as learning proceeds.

The most traditional ANN architecture is the feed-forward neural network, known
as the multilayer perceptron (MLP). The goal of the MLP is to approximate some function
f (x ,φ) : X → Y — where φ are the randomly-initialized learnable parameters — given a cost
(loss) function J(φ) [15]. In Figure 2.1, we present an example of an MLP consisting of four
layers. The first layer is the input layer, which connects to the original raw data, and the final
layer is the output layer, which provides the network desired output. All remaining layers are
called hidden layers.

Figure 2.1: Example architecture of a feed-forward neural network [4].

Formally, the output of unit u in layer l is given by a functional transformation
calculated via a linear combination [5]:
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where b is the bias term for a given input x . Next, the unit’s activation is given by applying a
differentiable non-linear activation function on the output:

zu = h(ju), (2.2)

where h is any differentiable non-linear activation function such as sigmoid, hyperbolic tangent
(tanh), or rectified linear units. MLPs need these non-linear functions due to the fact that
multiple layers of linear units still produce only linear functions [33]. By combining the results
obtained in a layer and using them sequentially, we are capable of approximating complex non-
linear functions. The process of feeding inputs forward in an MLP is called forward propagation.
Considering that MLPs are non-convex optimization problems due to the added non-linearities,
the parameters φ cannot be analytically optimized, and a learning method based on an iterative
process is necessary. Often, the iterative optimization process is based on computing the
gradient of a loss function using backpropagation [15]. Backpropagation involves computing
the gradients of J(φ) through the layers of the network by applying the chain rule of partial
derivatives until the network parameters stop updating or reach a specific stopping criterion.

Given the objective of minimizing a loss function, the model needs to update its
parameters φ in the opposite direction of the gradient of the objective function ∇φJ(φ). Since
the gradient information indicates the direction towards where it should update its parameters,
an additional hyperparameter ϕ, called learning rate, is defined to control the magnitude of the
resulting gradient value:

φ = φ− ϕ · ∇φJ(φ). (2.3)

2.2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [28] are a specific kind of neural network
for processing data that has a known, grid-like topology [15]. Although CNNs have become
particularly famous for its image processing abilities [27], they are not specific for images.
Time-series data, which are often represented as 1D grid of samples at regular time intervals,
are also one of the possible uses for convolutional neural networks. Its name indicates that
the network employs a mathematical operation called convolution, which incorporates linear
transformations in the grid-view of the input. The convolutional weight matrix, also called
Kernel, slides over all the input generating a grid-like output, and the non-linear activation
function is then performed element-wise.
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CNNs can learn in a supervised fashion how to (i) extract features from its input via
local receptive fields of previous layers, forcing it to extract local features; (ii) map features that
come from neurons that are constrained to share the same set of synaptic weights, thus reducing
the number of free parameters when compared to fully-connected ANNs, and creating feature
maps that are shift-invariant; and (iii) subsample the convolutional outputs via pooling layers,
which reduces the output feature maps, reducing the sensitivity of the feature map output to
shifts and other forms of distortion.

2.3 Imitation Learning

The imitation learning paradigm refers to an agent’s acquisition of skills or behaviors
by observing a teacher performing a given task [22]. The goal of imitation learning is to learn
a policy πφ that maps states to actions, πφ : S → A, where S is the superset for states
in a teacher trajectory {s1, s2, ... sn}, si ∈ S, and A is the set of actions for the given states
{a1, a2, ... an}, ai ∈ A [26]. However, learning a direct function between state and action is often
not enough to achieve the desired behavior. The task performed by the learner may slightly vary
from the demonstrated due to changes in the environment, obstacles, or targets. Therefore,
imitation learning frequently involves another step that requires the learner to perform the
learned action and re-optimize the learned policy according to its performance over the task.
We formally define the problem of imitation learning following Schaal et al.’s definitions [48].

Definition 2.3.1. The process of imitation learning is one by which an agent uses instances
of performed actions to learn a policy that solves a given task.

Definition 2.3.2. Imitation learning defines an agent as an entity that autonomously interacts
within an environment towards achieving or optimizing a goal [39]. An agent can be a software
robot; it receives information from the environment by sensing or communication and acts upon
the environment using a set of actuators.

Definition 2.3.3. A policy is a function that maps states (a description of the agent, such as
pose, positions, and velocities of various parts of the skeleton, and its relevant surrounding) to
an action. It is what the agent uses to decide which action to execute when presented with a
situation.

Although imitation learning often uses demonstration as instances of how to complete
a given task, experiences such as the agent’s sub-optimal trajectories can be used as well. The
difference between the two types of training instances is that demonstrations provide the optimal
action to a given state, allowing a supervised learning approach. At the same time, experiences
show the performed action, which may not be optimal, but also provides the reward (or cost)
of performing that action given the current state. More formally, we define demonstrations and
experiences as follows:
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Definition 2.3.4. A demonstration consists of a pair of input and output (x , y), where x is a
vector of features describing the state at that particular instant and y is the action performed
by the demonstrator.

Definition 2.3.5. An experience is presented as a tuple (st , a, r , st+1) where st is the state, a
is the action taken at state st , r is the reward received for performing action a and st+1 is the
new state resulting from that action.

Imitation learning focuses on demonstrations due to the learner’s lack of necessity of
learning a cost function optimized by a teacher. It can minimize the difference between teacher
and student in a supervised fashion. The learnable policy piφ from a set of demonstration is
defined as π(st , t ,φ), where st is the feature vector, t is the time step, and φ is the set of policy
learnable parameters. Although t specifies an instance of input and output, it is also input to
the policy π as a separate parameter. A policy that uses parameter t is non-stationary, while
one that neglects it is stationary.

The advantage of stationary policies is the ability to learn tasks where the horizon is
vast or unknown [46], while non-stationary policies are more naturally suited to learn motor
trajectories. However, these policies are difficult to adapt to unseen scenarios and changes in
the parameters of the task [48]. Given the temporal characteristics of these policies, at one
point the trajectory can result in compounded errors as the agent continues to perform the
remainder actions.

2.3.1 Behavioral Cloning

Behavioral Cloning is often referred to as the approach that directly maps from the
state to the control input πφ : S → A, as seen in Section 2.3. More formally, from a set
of demonstrations D = {(st , at ), (st+1, at+1), ... , (st+n, at+n)} an agent learns policy πφ following
ât = π(st , t ,φ), where â is the predicted action, s is the state representation, t is the time step,
and φ is the set of policy learnable parameters.

Hence, behavioral cloning is a reduction from imitation learning into a classification
problem. It can be solvable by supervised and self-supervised approaches, where its output can
be a single-label target or a multi-label target. A significant drawback of this reduction is the
necessity of (S, A) pairs. In this work, we first focus on self-supervised learning techniques to
reduce the necessity of labeled pairs by automatically creating its labels and removing the need
for annotated datasets.

Traditionally, the behavioral cloning area divides itself into two categories: model-
free and model-based methods. Model-free behavioral cloning methods learn a policy that
reproduces the teacher’s behavior without approximating the system dynamics nor recovering
the reward function. Considering that model-free methods do not require learning the system’s
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dynamics, it often does not need iterative learning and is more straightforward when compared
to model-based methods. However, in trajectory learning, model-free methods do not ensure
that the resulting trajectory is feasible in a given system, thus being hard to apply model-
free techniques to underactuated systems in which the set of reachable states is limited [41].
Contrary to model-free, model-based methods learn a policy using information about the system
dynamics. By learning forward dynamics, it is possible to plan a feasible trajectory close to
the expert’s behavior even if a system is underactuated [48]. Nevertheless, learning a forward
model is a non-trivial and usually time-consuming problem.
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3. RELATED WORK

In this chapter, we describe the related work in Imitation Learning. In Section 3.1, we
first introduce Behavioral Cloning from Observation (BCO) [57], an iterative learning method
based on the Learning from Observation paradigm. In Section 3.2, we explain the Imitating
Latent Policies from Observation (ILPO) [10], an approach that infers latent policies directly
from state observations. In Section 3.3, we describe the Generative Adversarial Imitation
Learning (GAIL) [20], an adversarial learning strategy for Imitation Learning. In Section 3.4,
we detail the Deep Q-Network [49], a Reinforcement Learning approach we use as a baseline.
Finally, in Section 3.5 we present the Trust Region Policy Optimization [50], a model-free
Reinforcement Learning method also used as baseline in our experiments.

3.1 Behavioral Cloning from Observation

BCO [57] combines an inverse dynamics model (IDM) with a model responsible for
learning a stationary imitation policy, the Policy Model (PM). Torabi et al. propose two differ-
ent forms of learning to imitate with BCO: (i) a non-iterative method that achieves significant
results for environments with smaller state representations, albeit with limited learning capabil-
ities (BCO(0)); (ii) an iterative method called BCO(α) that surpasses previous state-of-the-art
learning algorithms.

3.1.1 Non-iterative

BCO allows the agent to learn its agent-specific IDM by looking at pairs of states from
a random policy πξ previously sampled, denoted as Ipre, and classifying the action responsible
for the state transition (Aπφ). The IDM uses the maximum-likelihood estimation (Equation 3.1)
to find the best parameters:

θ∗ = arg max
θ

|Ipre|∏
t=0

pθ(at | s
πφ
t , sπφt+1), (3.1)

where pθ is the probability distribution over actions given a pair of states representing
a transition.

Next, it transforms the expert sequence of states into pairs (st and st+1, denoted as
Γdemo), so it can be free from domain and temporal specific information, and forward them to
the IDM so that it can create pseudo-labels â for all expert pairs of states, denoted as Γdemo)
for the unlabeled expert data Sdemo. Finally, it uses Γdemo and Sdemo to learn the imitation
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policy in a behavioral cloning fashion by maximizing the maximum-likelihood estimation of an
action (Equation 3.2) given a single state:

φ∗ = arg max
φ

N∏
t=0

πφ(ât | st ). (3.2)

The non-iterative BCO heavily depends on the IDM capability of generalizing its
classification power during inference. When the model is not able to create a manifold that is
sparse enough to comprehend the transition of states, it can generate â labels that the policy
will not learn or underfit into a smaller subset of actions, making the agent underperform.
BCO(0) is also sensitive to the Ipre creation. When accompanied by the random samples
dataset that is not close to the expert data, the IDM might never close the gap between what
it perceives from Ipre to Sdemo. We believe that this weakness of the non-iterative method is
why its performance decays as the dimensions of the state representation grows. The possible
state representation branching factor for environments with higher dimensions makes it difficult
for Ipre to be representative enough for IDM and for the policy to properly learn the expert
trajectory.

3.1.2 Iterative

Torabi et al. [57] extend BCO by creating an iterative process called BCO(α), where α
represents a hyperparameter to control the number of post-demonstration iterations. Instead of
only depending on the Ipre, BCO(α) executes its policy in the environment to acquire new state-
action sequences as post-demonstrations (Ipos). These post-demonstrations are then employed
to update the IDM, and further on, the imitation policy itself. By using Ipos, IDM is capable of
receiving newly-observed state-action sequences, which can further boost BCO’s performance.
We present BCO(α) in the Algorithm 3.1.

Algorithm 3.1 Behavioral Cloning Observation α [57].
1: procedure BCO(Ipre)
2: Initialize the modelMθ as random approximator
3: Set πφ to be a random policy
4: Set I = |Ipre|
5: while policy improvement do
6: for time-step t=1 to I do
7: Generate samples (sa

t , sa
t+1) and at using πφ

8: Append samples Γa
πφ
← (sa

t , sa
t+1), Aπφ ← at

9: end for
10: ImproveMθ by modelLearning(Γa

πφ
, Aπφ )

11: Generate set of agent-specific state transitions Γa
demo from the demonstrated state trajectories Ddemo

12: UseMθ with Γa
demo to approximate Ãdemo

13: Improve πφ by behavioralCloning(Sdemo , Ãdemo)
14: Set I = α|Ipre|
15: end while
16: end procedure
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We believe that Torabi et al. [57] added this iterative process so it could solve the
aforementioned problems. However, by only employing Ipos to fine-tune the IDM, BCO(α) ends
up suffering from another problem. For cases in which the policy still does not present good
enough predictive performance, the generated set of post-demonstrations will contain mislead-
ing actions for specific pairs of states. Those erroneous actions tend to degrade the predictive
performance of the IDM, which leads to the degradation of the policy predictions in a negative-
feedback loop.

3.2 Imitating Latent Policies from Observation

ILPO [10] takes a different approach to learn how to mimic the action from an expert.
It combines two different models to predict the next state of an expert, together with the most
probable latent action for that transition. A latent action is defined as one or more actions
that cause a transition of states. This definition is imperative for ILPO since not all actions
are a latent action, e.g., if an agent performs the action of moving left and bumps into a wall,
this stationary transition may appear to be another type of action.

Edwards et al. [10] also consider that for all environments, there are a set of known
actions A and a set of latent actions Z, {z1...zA} ε Z. However, since not all stationary
transitions may be directly linked to the original action, ILPO empirically assumes that |Z| 6=
|A|. We present ILPO in Algorithm 3.2.

Algorithm 3.2 Imitating Latent Policies from Observation [10].
1: procedure ILPO(s∗0 , s∗1 , . . . , s∗N)
2: Step 1: Learning latent policies
3: for k ← 0 ...#Epochs do
4: for i ← 0 ... N − 1 do . (Omitting batching for clarity)
5: Train latent dynamics parameters θ ← θ −∇θ minz ‖Gθ(Epθ(s∗i ), z)− s∗i+1‖

2
2

6: Train latent policy parameters ω ← ω −∇ω‖
∑

z πω(z|s∗i )Gθ(Epθ(s∗i ), z)− s∗i+1)‖2
2

7: end for
8: end for

9: Step 2: Action remapping
10: Observe state s0
11: for t ← 0 ...#Interactions do
12: Choose latent action zt ← arg maxzπω(z|Eaψ(st ))
13: Take ε-greedy action at ← arg maxaπψ(a|zt , Eaψ(st ))
14: Observe state st+1
15: Infer closest latent action zt = arg minz‖Epθ(st+1)− Epθ(Gθ(Epθ(st ), z))‖2

16: Train action remapping parameters ψ ← ψ +∇ψ log πψ (at |zt ,Eaψ (st ))∑
a πψ (a|zt ,Eaψ (st ))

17: end for
18: end procedure

3.2.1 Latent Forward Dynamics

ILPO’s first model is responsible for learning the Latent Forward Dynamics. It is a
generative model Gθ

(
Ep (st ) , z

)
that tries to create st+1 given a prior st and a latent action z,
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where Ep is an embedding that is trained concurrently. The Latent Forward Dynamics model
predicts the difference between states ∆t = st+1 − st , rather than the absolute next state, and
computes st+1 = st + ∆t .

However, when learning to predict the forward dynamics, the generator might predict
the mean overall transitions over the desired one. Considering ILPO does not have action
information, as a way to condition its states generation the Latent Forward Dynamics model
trains to make a prediction based on each of the latent actions z ∈ Z , f (st+1|st , z), rather than
f (st+1|st , a). To train the generator, Edwards et al. [10] compute the loss as:

Lmin = min
z

∥∥∆t −Gθ

(
Ep (st ) , z

)∥∥2 . (3.3)

ILPO’s policy learns by computing the expectation of the generated prediction under
the probability that given a state st , a latent transition z will be observed in the expert data,
e.g., the expected next state, as:

ŝt+1 = Eπω [st+1|st ]

=
∑

z

πω (z|st ) Gθ

(
Ep (st ) , z

)
. (3.4)

The policy objective is to minimize the loss in Equation 3.5. For this problem, the
predictions are fixed in order to make predictions that yield the most likely next state and it
does not affect the generator output.

Lexp =
∥∥st+1 − ŝt+1

∥∥2 (3.5)

The network is trained by summing both losses presented in Equation 3.3 and 3.5.
ILPO avoids the need of creating an inverse dynamics model by introducing the latent forward
dynamics component. However, by conditioning the generative model with a latent action z, it
introduces the necessity of domain expertise. Without prior knowledge of |Z|, ILPO needs to be
executed multiple times with different vector sizes. Even though the latent forward dynamics
is executed offline, it becomes costly for environments with higher |A|.

3.2.2 Action Remapping

ILPO’s second model is responsible for learning how to map the actions it previously
discovered into the real action space. For such, ILPO collects tuples of {st , at , st+1} with a
random policy or with an iterative process of the remapped policy πψ.

While collecting experiences in the agent’s environment, ILPO first identifies the latent
action that corresponds to the environmental state transition, and then uses the environmental
action taken as a label to train πψ (at |zt , Ea (st )). For environments with low-dimensional states,
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the authors use the L2 distance between the generator and the real next state, presented in
Equation 3.6, while for those of higher dimensions, e.g. visual domains, it uses the L2 distance
between the encodings Ep, presented in Equation 3.7.

zt = arg min
∥∥st+1 −Gθ

(
Ep (st ) , z

)∥∥
2 (3.6)

zt = arg min
z

∥∥Ep (st+1)− Ep
(
Gθ

(
Ep (st ) , z

))∥∥
2 (3.7)

By obtaining the latent action zt most closely corresponding to the environmental
action at , the network learns by using the cross-entropy loss in a classification manner.

3.3 Generative Adversarial Imitation Learning

GAIL [20] takes an adversarial [16] approach to learn how to imitate the actions of
an expert. It consists of two different models, a generator and a discriminator. Both models
use the same architecture of neural networks, two hidden layers of 100 units each with tanh
nonlinearities in between. The generator model is responsible for creating a policy, πφ, that
is as close to the unknown expert policy πε as possible. The discriminator DR, on the other
hand, needs to learn how to discriminate πφ states from πε ones. In other words, GAIL uses an
Inverse Reinforcement Learning approach, which tries to explain the expert behavior but does
not directly tell the learner how to act.

The loss function for GAIL tries to minimize the distance of the experiences of πφ
from πε by trying to maximize DR capability of distinguishing both policies experiences E.
Furthermore, the authors force the generator to change since the discriminator will try to find
a way to differentiate expert and πφ regularly. The experiences from both πφ and πε consist of
an agent’s trajectory without the actions since the expert’s actions are unknown, and different
environments might have the same trajectories with different actions. GAIL’s loss function can
be summarized in Equation 3.8:

max
πφ

min
DR
−Eπφ[logDR(s)]− Eπε[log(1−DR(s))]. (3.8)

Both models training happens in an iterative supervised manner by collecting Eπφ
and the original Eπε . Next, when DR and the generator converge, the best policy is found by
optimizing − logDR(s) and uses Trust Region Policy Optimization (TRPO) [50] as a way to
minimize the policy update due to noise in policy gradients.

GAIL is ultimately quite efficient in terms of expert data. However, it is not par-
ticularly efficient in terms of environment interactions during training, being comparable to
the number of interactions needed for TRPO to train the expert policies from a reinforcement
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signal. Ho and Ermon [20] claim that GAIL results might be further improved by previously ini-
tializing a policy in a behavioral cloning approach. However, since GAIL’s policy is model-free,
for systems that do not maintain a consistent feature representation, the trajectory computed
by the model might be distant from the teacher’s path. In such approaches, a deviation in a tra-
jectory often causes a degrading feedback loop that will not achieve an ideal performance [26].
We present GAIL’s pseudocode in Algorithm 3.3.

Algorithm 3.3 Generative adversarial imitation learning [20].
1: procedure GAIL(Γε ∼ πε, πφ, DR)
2: for i = 0, 1, 2, ... do
3: Sample trajectories Γi ∼ πφi
4: Update the discriminator parameters from wi to wi+1 with the gradient

ÊΓi [∇w log(Dw (s, a))] + ÊΓε [∇w log(1− Dw (s, a))] (3.9)

5: Take a policy step from φi to φi+1, using the TRPO rule with cost function
log(Dwi+1 (s, a)). Specifically, take a KL-constrained natural gradient step with

ÊΓi

[
∇φ logπφ(a|s)Q(s, a)

]
− λ∇φH(πφ),

where Q(s̄, ā) = ÊΓi [log(Dwi+1 (s, a)) | s0 = s̄, a0 = ā]
(3.10)

6: end for
7: end procedure

3.4 Deep Q-Network

Deep Q-Network [49] (DQN) uses a deep convolutional network with hierarchical layers
to approximate the optimal Q-function showed in Equation 3.11, where the value of state s,
given an action a is defined by the expected sum of all rewards from the current state with the
discount factor γ, following policy π.

Q∗(s, a) =max
π

E [ rt + γrt+1+

γ2rt+2 + ...|st = s, at = a, π ]
(3.11)

DQN implements an experience replay mechanism that stores a set of observations
from the agent to update the Q-function with random samples. This process solves the corre-
lation issue between sequences of observations and smoothing changes in the data distribution.
In order to compute the target values to update the Q-function, another network is used and
updated iteratively, reducing the correlation between the action-value and target value. Equa-
tion 3.12 presents the loss function used by DQN to update the Q-Learning network, where θi

are the parameters of the network, (s, a, r , s′) is a mini-batch of random experience replay, γ is
the discount factor of the agent’s horizon, and θ−i are the target network parameters.
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L = E

[(
r + γmax

a′
Q
(
s′, a′

)
−Q(s, a)

)2
]

(3.12)

For each episode, the algorithm has a probability of ε to select a random action or use
the action-value function. The chosen action is sent to the emulator, which returns a reward
and the next state. The method then stores the state-images returned by the environment using
pre-processing methods, the reward in D, and then sampling random mini-batch of transitions
to update the Q-Learning network with gradient descent. Finally, the target network updates
after a constant number of timesteps.

3.5 Trust Region Policy Optimization

Trust Region Policy Optimization (TRPO) [50] is a model-free method that optimizes
a policy by gradient descent in restricted but safe step sizes. For every policy improvement
interaction, the gradient computation is limited by a trust region that guarantee monotonic
improvement, using the Minorize-Maximization algorithm to compute the optimal point inside
the region.

Equation 3.13 shows how the policy is updated, where at and st are the action and
state in time step i , π is the current policy and πold is the old policy. Each improvement is
applied if the Kullback-Leibler divergence (a measure of how different two distributions are) of
the old policy and the new one is smaller or equal than δ, which represents a trust-region of
step size.

maximize
θ

Êt

[
πθ(at |st )
πθold (at |st )

Ât

]
subject to Êt

[
KL[πθold (·|s)||πθ(·|s)]

]
≤ δ

(3.13)

The simple policy gradient methods have challenges with how it updates the policy
gradient, i.e., step sizes too large can generate a significant error, making the policy take wrong
actions. Therefore, to use policy gradient methods to compare with IL but without losing the
essential idea of the method, we choose TRPO since the only significant difference is in the
policy update.
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4. METHODOLOGY

Expert observations can be easier to come by than labeled experiences. We believe
that by creating a method that minimizes the need for labeled data while maintaining an
offline training phase is essential for using Imitation Learning models in realistic scenarios.
To address such an issue, Torabi et al. [57] created BCO [57], a method capable of creating
an inverse dynamics model, which is capable of understanding the transition from states and
classifying the most likely responsible action. Nevertheless, learning dynamics models online
can require a large amount of data, especially in high-dimensional problems. BCO also requires
that all possible actions be mapped a priori, something that can fall short in more complex
environments. Edwards et al. [10] created ILPO as a way to address the BCO problems: a
method that does not need to know action labels to make an initial hypothesis of the policy.
By learning a latent policy, ILPO creates a process that can be done offline and then uses a
limited number of interactions with the environment to learn an action-remapping network that
associates the true actions with the latent policy identified ones. However, ILPO falls short
since the number of latent actions still needs to be defined a priori, and a second model still
needs to be trained from scratch.

After identifying those gaps in the related work, we first propose the creation of an
imitation learning method that introduces a new sampling mechanism into BCO’s framework as
a way to solve the vanishing action problem. In a second moment, we propose the inclusion of a
stochastic mechanism into the BCO’s framework as a way to avoid bad local minima created by
the maximum-likelihood sample. We hypothesize that, even though the stochastic mechanism
will initially deviate the agent from the expert trajectory, later it will help the method by
performing a depth search into the possible states.

Finally, we face the problem of efficiency regarding the number of required expert
samples. Sample Efficiency is an essential aspect in Reinforcement and Imitation Learning
algorithms. It represents the amount of experience the agent needs to achieve a specific perfor-
mance when deliberating in an environment trying to solve a specific task. In other words, it
means how much knowledge the agent can learn from each interaction of the learning process.
As the environment gets more complex in real-world applications, more an agent needs to learn.
However, paired with an inefficient algorithm, one might find oneself training an algorithm for
an extensive period or stuck in exploring states that drive the agent to local minima rewards.

Consider the example of training an agent to fly a plane. Piloting an aircraft is an
incredibly complex task involving the airship control and other agents’ knowledge to fly safely
to a destination. Usually, an agent will first train in a simulator in order not to cause any
possible accidents. However, when training an agent in a simulated environment, one should
consider that the domain shift from simulation to reality might require additional training with
a real aircraft. Moreover, suppose an inefficient learning algorithm is chosen for performing the
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task. In that case, the cost of teaching such an algorithm, e.g., GPU time and energy, might
be higher than its benefits, hindering the algorithm’s usage.

Another critical point might be the branching factor of possible states and the time
required to generate sufficient samples for each state. When considering a task, one needs to
evaluate how many possible states there are in an environment and how long it takes to get into
a particular state. Returning to the same example as before, the end state will take each flight’s
traveling time. It is possible to engineer the environment to only create the desired states a fixed
number of times, so the expert (or the agent) can perform the actions to recreate the landing.
Nevertheless, as the branching factor grows, the more challenging it gets to engineer such an
approach. Thus, it is vital for an algorithm to obtain the maximum amount of knowledge from
each sample or require fewer samples.

For addressing the sample-efficiency issue in IL, we propose the creation of a new
method that combines reinforcement and imitation learning. We hypothesize that this new
method will reduce the number of samples needed for a policy to learn. By combining both
learning methods, we believe that the new method might achieve similar results with fewer
expert samples and create a more viable framework regarding the onerous task of recording
experts for various domains.

4.1 Environments

For all experiments that will be performed in this dissertation, we make use of four en-
vironments from OpenAI Gym [6]: CartPole-v1, MountainCar-v1, Acrobot-v1, and Gym-Maze.
Each environment is described below and illustrated in Figure 4.1.

i) CartPole-v1 is an environment where an agent pulls a car sideways intending to sustain
a pole vertically upward as long as possible. The environment has a discrete action space
composed of left or right, while the state space has 4 dimensions: cart position, cart velocity,
pole angle, and pole velocity at tip. Barto et al. [3] define solving CartPole as getting an average
reward of 195 over 100 consecutive trials. This environment is considered the easiest to solve
with a vector-based approach. We choose CartPole-v1 since it is a base environment for all
Imitation Learning approaches.

ii) MountainCar-v0 environment consists of a car in a one-dimensional track, positioned
between two “mountains”. The state-space has two dimensions, the respective car coordinates
(x , y), and the action space consists of 3 possible strengths to move the car (-1, 0, or 1). To
achieve the goal in this environment, the car has to acquire the required momentum and reach a
flag placed on the second mountain top. Moore [38] defines solving MountainCar as getting an
average reward of −110 over 100 consecutive trials. We consider this environment as the second
most simple. Its difficulty lies in learning the “no action” movement and not overusing it since it
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will heavily impact the final reward. We choose this environment for its continuous-movement
nature and also for being a baseline for all Imitation Learning approaches.

iii) Acrobot-v1 is an environment that includes two joints and two links, where the joint
between the two links is actuated. Initially, the links are hanging downwards, and the goal is
to swing the end of the lower link up to a given height. The state space contains 6 dimensions:
{cos θ1, sin θ1, cos θ2, sin θ2, θ1, θ2}, and the action space consists of the 3 possible forces. Sut-
ton [53] first described Acrobot in 1996 and later Geramifard et al. [14] improved it, which is
the version we use. Acrobot-v1 is an unsolved environment, i.e., it does not have a specified
reward threshold at which it is considered solved. We consider Acrobot-v1 the most complex
of all environments with a discrete action space and vector-based state. This environment is
also a baseline for all Imitation Learning approaches.

iv) Gym-Maze is a 2D maze environment where an agent (the blue dot in Figure 4.1) must
find the shortest path from the start (the blue square in the top left corner) to the goal (the red
square in the bottom right corner) [7]. Each maze can have a different set of walls configuration,
and three different sizes, 3× 3, 5× 5, and 10× 10. An agent is allowed to walk towards any
wall. The agent has a discrete action space composed of N, S, W, and E, and the state space
consisting of rendered images of the maze. We consider Gym-Maze the simplest image-base
state and a good baseline for Imitation Learning of multiple possible solutions with different
paths. We choose Gym-Maze as our baseline when considering a state represented only by
images.

(iv) Gym-Maze(i) CartPole-v1 (ii) MountainCar-v0 (iii) Acrobot-v1

Figure 4.1: Example of frames for the four environments.

4.2 Evaluation Criteria

To measure the quality of our results, we will use two different quantitative measures.
The first one is the Average Episodic Reward (AER), a standard measure used to identify how
well the generated policy performs in a specific environment. It consists of the average value
of 100 runs for each episode in a given environment (e.g. running 100 different mazes in the
Gym-Maze environment and calculating the average performance, or running 100 consecutive
episodes for the CartPole problem and calculating the average reward). We present AER in
Equation 4.1, where Fi is the total number of steps, and E is the total number of environments.
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AER =

∑E
i=1
∑Fi

j=1 πφ(eij)
E (4.1)

The AER value is an ideal measure to understand how well the expert did a task and
consequently understand how difficult it is to imitate the expert behavior. However, by only
looking at AER, we might be led to believe that our policy is doing an excellent job when, in
reality, the environment might be too simple to solve. We will also use Performance (P) as a
second measure to understand how well our agent is performing when compared to an expert
πε and a random policy πξ. P is the average reward for each episode scaled from 0 to 1, where
zero is the random policy reward, and 1 is the expert’s. We present P in Equation 4.2. A
model can achieve scores lower than zero if it performs worst than πξ and higher than 1 if it
performs better than πε.

P =

∑E
i=1

πφ(ei )−πξ(ei )
πε(ei )−πξ(ei )

E (4.2)

However, both metrics do not carry imitation meaning in their calculation. When
analyzing both Equations 4.1 and 4.2, it becomes clear that we measure the agent’s mimick-
ing capability via the environment reward. By only measuring an agent’s final reward and
not its trajectory, both measures give importance to the objective instead of the path taken,
depreciating model-free approaches.

Furthermore, we want to understand how an iterative method stands in terms of
efficiency compared to other reinforcement learning methods. However, some environments do
not have a specific goal to be considered solved, i.e. Acrobot, while others may have too-simple
goals, i.e., Cartpole’s 195 mean reward. To address this issue, we define dynamic thresholds
based on the algorithm’s results for efficiency comparison. We believe that by creating a
dynamic goal that each algorithm has to reach, it enables a fair comparison between each of the
compared methods, considering that IL algorithms are limited by their expert’s performance,
and RL approaches can be inefficient in earlier iterations.

The following reasoning defines each threshold. We assume that each run follows
an unknown function, since each run outcomes different rewards. However, each unknown
function tends to reach similar values due to similar results of different agents trained by the
same method. Thus, we cluster all runs for each approach on each environment and estimate
each kernel’s density following:

ρK (y ) =
N∑

i=1

K (y − xi ; h) , (4.3)



38

where K represents a positive function controlled by a bandwidth parameter h. We fit each
kernel in a Gaussian distribution considering the rewards for each environment to be continuous
and that the reward values behave as a normal distribution.

Finally, we compare how many timesteps each algorithm needs to reach each thresh-
old, giving us a sense of how efficient each algorithm is when compared to one another. We
understand that setting a dynamic goal for each algorithm creates scenarios where none per-
form adequately, and considering that as the reward gets to the maximum value the difficulty
grows, which makes the difference in efficiency more visible. However, we believe that by using
the expert’s reward to compare the overall results of each algorithm, we have a better sense of
the performance of each algorithm.
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5. AUGMENTED BEHAVIORAL CLONING FROM

OBSERVATION

Inspired by BCO and in light of the gaps we discovered when trying to reproduce
their work (see Section 3.1), we created an improved version of Torabi et al. [57] algorithm.
We call our approach Augmented Behavioral Cloning from Observation (ABCO), where we
further improve BCO’s framework by adding: (i) an improved sampling method that regulates
the observations that will feed the inverse dynamics model; and (ii) a self-attention mechanism
module within both models. ABCO tackles the problem of Ipos not being a good representation
of the state transitions. We believe our approach can help us understand how an iterative
method can benefit by dynamically building its dataset of experience to fine-tune itself further.

ABCO is capable of outperforming all state-of-the-art approaches based on behavior
cloning, either over low-dimensional state spaces or over raw images. The ABCO pseudocode
is presented in Algorithm 5.1. ABCO was first published in the International Joint Conference
on Neural Networks (IJCNN 2020) [37], and its results are presented in Section 5.4.

Algorithm 5.1 Augmented Behavioral Cloning from Observation.
1: Initialize the modelMθ as a random approximator
2: Initialize the policy πφ with random weights
3: Generate Ipre using policy πφ
4: Generate state transitions T e from demonstrations D
5: Set Is = Ipre

6: for i ← 0 to α do
7: ImproveMθ by trainIDM(Is)
8: UseMθ with T e to predict actions Â
9: Improve πφ by behavioralCloning(T e, Â)
10: for e← 1 to |E | do
11: Use πφ to solve environment e
12: Append samples Ipos ← (st , ât , st+1)
13: if πφ at goal g then
14: Append ve ← 1
15: else
16: Append ve ← 0
17: end if
18: end for
19: Set Is = sampling(Ipre, Ipos, P(g | E), ve)
20: end for

5.1 Inverse Dynamics Model and Policy Model

Compared to the original BCO, we augment IDM and PM by adding a self-attention
(SA) module [60, 62], further detailed in Section 5.3. For the inverse dynamics model, we
believe it would compensate for the significant variation of samples from Ipre to Ipos in the
iterative process. The self-attention module forces the IDM to identify what is essential to
learn from each state. When using SA with images, it can identify which part of the image
representation of the state is essential for predicting the correct action.
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Unlike in the IDM, we use self-attention in the Policy Model to reduce the state
changes during each iteration, since the self-attention module focuses on small details and
differentiate better all classes given by the IDM. The SA module also allows the policy to look
non-locally at states, helping the model to learn faster for higher dimensional states (e.g., Maze
and Acrobot) with a more gradual success rate in between iterations.

5.2 Sampling method

For every iteration, our sampling strategy creates new training data Is containing a
set of post-demonstrations Ipos

spl and a set of pre-demonstrations Ipre
spl . In order to obtain the

sample from post-demonstrations (Ipos
spl ), we first select the distribution of actions given a run E

in an environment and the current policy P(A | E ; Ipos). We consider only successful runs from
Ipos, i.e., only state-action sequences in which the agent was able to achieve the environmental
goal. Note that this goal might be a specific state (i.e., such that the last transition in Ipos is
in a set of specified states), or avoiding an undesirable state for a fixed number of transitions.
We infer these goal states from the type of expert demonstration we receive. We represent it as
ve in Equation 5.1, where ve is set to 1 if the agent achieves the environmental goal and zero
otherwise, and E is the set of runs in an environment.

P(A|E ; Ipos) =
∑|E |

e=1 ve × P(A|e)
|E |

(5.1)

The intuition of using the post-demonstration only for successful runs is that if a policy
is unable to achieve the environmental goal, then the post-demonstration alone does not close
the gap between what the model previously learned with Ipre and what the expert performs
in the environment. Using only successful runs also gives us a more accurate distribution of
the expert since we are only using those distributions that achieved the goal instead of the
random distribution that consisted of a balanced dataset. By not adding unsuccessful runs to
the training dataset, we solve the problem in which BCO(α) degrades the performance in both
models. With the distribution of actions from winning executions, we select the sample Ipos

spl

from those runs, according to the win probability P(g | E), i.e., the probability of achieving a
goal in an environment, as shown in Equation 5.2.

Ipos
spl = (P(g | E)× P(A | E , Ipos)) ∼ Ipos (5.2)

The sample from pre-demonstrations has an equivalent size of the post-demonstrations.
Thus, to create a sample from pre-demonstrations Ipre

spl , we use the loss probability with a dis-
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tribution of actions in pre-demonstrations, denoted by P(A | Ipre), as demonstrated in Equa-
tion 5.3.

Ipre
spl = ((1− P(g | E))× P(A | Ipre)) ∼ Ipre (5.3)

Complementing the training dataset with random demonstrations offers two main
advantages. First, it helps the model avoid overfitting from the policy demonstrations. Second,
in the early iterations when the policy generates only a few successful runs, and the distribution
might not be closer to the expert, the training data guarantees exploration by the IDM.

Using a win-loss probability, we induce the training data to be closer to the expert
demonstration than to the random data, which boosts the model capability of imitating the
expert. In this setting, the more an agent can achieve its goal, the less we want Is consisting
of Ipre and more of Ipos. It is important to emphasize that our method is only goal-aware
since we consider tuples from successful runs in the sample from post-demonstration, and does
not use reward information for learning or optimizing. We do not use rewards because not all
environments have a predefined function for it. On the other hand, most agents have a goal
that is relatively easy to identify by inspecting the last transition visually, e.g., the mountaincar
reaching the flag pole, arriving at the final square at a maze, acrobot reaching the horizontal
line, and cartpole surviving up to 195 steps, as described in Section 4.1.

5.3 Self-attention Module

Self-Attention [60] is a module that learns global dependencies within the internal
representation of a neural network by computing non-local responses as a weighted sum of the
features at all positions. It allows the network to focus on specific features that are relevant to
the task at each step and learns to correlate global features [12].

ABCO uses the SA module based on the Self-Attention Generative Adversarial Net-
work (SAGAN) [62] since models with it outperforms prior works. In SAGAN the self-attention
module computes the key f (x), the query g(x), and the value h(x) given a feature map x , with
convolutional filters as f (x) = Wf x , g(x) = Wgx , and h(x) = Whx . We compute the attention
map by performing two different steps. First, we apply Equation 5.4 with the current key f
and query g.

sij = f (xi)T g(xj) (5.4)

Second, we calculate the softmax function βj ,i over the attention module to the i th

location when synthesizing the j th region. With the attention map β and the values h(x) we
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compute the self-attention feature maps a = (a1, a2, ..., aN) ∈ RC×N , where N is the number of
feature locations and C is the number of channels, as illustrated in Equation 5.5.

aj = υ

(
N∑

i=1

βj ,ih(xi)

)
, υ(xi) = Wυxi (5.5)

In this equation, Wf , Wg and Wh ∈ RĈ×C , and Wv ∈ RC×Ĉ , where Ĉ is C/k to reduce
the number of feature maps. Furthermore, we have the self-attention feature map n, which we
weigh by µ, a learnable variable initialized as zero.

The SA module in our method minimizes the impact of the constant changes created
by the iterations by weighting all features. The model is capable of overlooking the potential
local noise an agent might create and focus on features that are more relevant for the action
prediction. It also provides smoother weight updates as a consequence of the weighting of all
features. We believe that during early iterations, SA modules will learn with the random policy
dataset how to weight each state, and this will later translate into more accurate labeling when
Is becomes more of Ipos than Ipre.

5.4 Experimental Analysis

In this section, we discuss the experiments we have performed in order to evaluate
ABCO. We perform ablation studies to verify the impact of both ABCO sampling strategy and
SA modules. Finally, we compare ABCO with a supervised baseline (Behavioral Cloning, BC),
with BCO [57], and with ILPO [10].

5.4.1 ABCO Sampling Impact

In this ablation study, we use only the sampling module to train ABCO(α), i.e.,
we disable the self-attention modules. We also make use of the sampling method without
the reduction of samples from Ipos. We hypothesize that sampling from the original random
policy dataset helps solving the vanishing actions, as well as closing the gap from the first
iteration I and the expert. The vanishing of actions from the IDM predictions occurs due to
the weak policy inference creating an Ipos that does not contain all actions, generating sparse
representations that underfit the inverse dynamics model. During the early iterations under
these conditions, IDM stops predicting the classes that are the minority in the expert dataset.
This misclassification causes the policy to loop between actions, preventing the model from
achieving its goal. We compare the distribution of all predictions from the IDM of BCO(α)
and ABCO in Figure 5.1, where it shows that our sampling method can better predict all classes
due to the artificial growth of our dataset caused by sampling from Ipre.
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Figure 5.1: IDM predictions of the expert examples through time.

Furthermore, to observe whether the policy can create samples that are closer from the
expert than from the random dataset, we calculate the L2 distances from the average of all maze
images from each action during each iteration and normalize them between zero (expert) and 1
(Ipre samples). The results in Figure 5.2 represent how our model learns a policy that creates
better I for the majority classes (i.e., S, and E), and also to the minority classes (i.e., N and
W). We assume this difference in approximation of the expert dataset to be due to the minority
classes consisting mostly of Ipre since most mazes do not require those actions. By sampling
from the random dataset, we force the IDM to balance its labeling and create iterations that
are further distant. Still, as the Policy progresses and solves more runs, it approximates and
becomes closer to the expert. Since they are closer to the expert, the new samples allow the
IDM to fine-tune itself and predict expert labels more precisely.

Figure 5.2: L2 distance for the average of each action per iteration normalized by the expert
and random samples in the 5× 5 mazes.

We also believe that not all interactions following a sub-optimal policy are relevant
to IDM’s learning. If our hypothesis that a sub-optimal policy might create samples that harm
the IDM ability to label the expert samples correctly holds, then the values for AER and P
would be lower than those of the sampling method from Section 5.2. In our experiment, we
use a Resnet without attention modules and we create Is with all Ipos and the same ratio
used in the original sampling method for all Ipre. Using this approach, we observe that when
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employing all interactions from the policy to create the new dataset, the model achieves lower
AER and P as expected, as shown in Table 5.1.

Table 5.1: Ablation study considering the 2 main components of ABCO: attention and sampling.
Data from the 5× 5 maze environment.

Model P AER

BCO [57] −0.112 −0.941
Attention −0.415 −0.940
Partial Sampling 0.717 0.716
Whole Sampling 0.628 0.676
ABCO (Attention + Partial Sampling) 0.960 0.932
ABCO (Attention + Whole Sampling) 0.759 0.755

We conclude that the new sampling method alone can boost the learning experience
by allowing the IDM to receive a more balanced dataset. Still, when accompanied by the self-
attention modules, it further improves the generalization from the model by learning to weigh
each sample accordingly and further boosting ABCO’s performance.

5.4.2 Self-Attention

In this second ablation study, we trained ABCO using only the self-attention module.
We observe in that case that the accuracy of our models was higher than the original method.
This behavior can be explained in Figure 5.3, where we used the Grad-CAM [51] technique to
visualize the self-attention gradient activations given an image in a trained policy. By observing
the gradient activations, we infer that the self-attention modules help the model focusing at
the agent, while still being able to pay attention to walls nearby. Furthermore, activation
areas are wider when the agent is walking through open passages than between corridors. This
behavior resembles human vision and is exemplified in the first and third frames, where the
agent is between two walls, while in the other frames the agent has a broader view. However,
high accuracy does not represent an excellent performance, since without the sampling method,
some actions might not occur in further iterations. With high accuracy and samples that do

Figure 5.3: Heatmap visualization of the gradient filters activating for the maze environment.
The first row shows the input image, while the second row shows the gradient activation in the
first self-attention module.
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not represent the action from the expert as they should, IDM stops predicting the minority
action, creating a sub-set from all possible actions, and the policy learns the new subset of real
actions. This behavior results in the policy not performing the less frequent actions that are
needed to solve different environments during the inference phase (e.g., N and W on mazes, or
not performing actions during acrobot), as we discussed in Section 5.2.

We observe that even when weighing the features, IDM is still capable of predicting
the most common path. When feeding the Policy with ten different solutions for each maze,
the agent mimics the most common path, as shown in Figure 5.4. Nevertheless, when the
first iterations still samples all classes, the model takes more transition samples to reach the
results from Table 5.1. Although self-attention alone achieves results similar to BCO(α), when
combined with the sampling method it provides a significant impact on the final results.

(10/10) (10/10) (10/10) (10/10)

(1/10) (1/10) (1/10) (1/10)

(10/10) (10/10) (10/10)

(9/10) (9/10)

Maze	5x5

Figure 5.4: Expert demonstrations executing a 5x5 configuration of Gym-Maze. Below the
state-image we represent the number of experts that visited that state. The blue line represents
the path chosen by ABCO.

5.4.3 Quantitative Results

Table 5.2 shows that our method is on par or surpasses the state-of-the-art approaches
in all the environments. The overall results confirm that the attention module and our sampling
strategy can improve the imitation process. All approaches achieved the maximum score for
CartPole in both AER and P, showing that this problem is easy to learn. Although our model
achieved the best P and AER scores in the Acrobot environment, the state-of-the-art algorithms
presented similar results with P ≈ 1.00 and AER = −85.300. ABCO achieving better results
for AER means that it can solve the problem using fewer frames. However, both models present
similar imitation capabilities since all models achieved P ≈ 1.00. It is important to note that
even though ABCO does not use labeled data, it was capable of achieving better results than
the supervised approach (BC), which uses labels for actions. For MountainCar, we observe a
large difference in terms of P, with our model achieving P = 1.289 and presenting a difference
of ≈ 0.34 to BCO, which is the second-highest result.

Although in all the Maze environments we achieved the highest scores for P, we
can observe that as the complexity of the environment increases, our performance decreases.
Nevertheless, we can see in the results that ABCO is less affected than BCO as the complexity
increases, since P for our results in Mazes 3 × 3, 5 × 5 and 10 × 10 are 1.159, 0.960 and
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Table 5.2: Performance (P) and Average Episode Reward (AER) for a supervised model (BC),
BCO, ILPO, and our approach ABCO using OpenAI Gym environments.

Model Metric CartPole Acrobot MountainCar Maze 3× 3 Maze 5× 5 Maze 10× 10

BC P 1.000 1.071 1.560 −1.207 −0.921 −0.470
AER 500.000 −83.590 −117.720 0.180 −0.507 −1.000

BCO P 1.000 0.980 0.948 0.883 −0.112 −0.416
AER 500.000 −117.600 −150.00 0.927 0.104 −0.941

ILPO P 1.000 1.067 0.626 −1.711 −0.398 0.257
AER 500.000 −85.300 −167.00 −0.026 −0.059 −0.020

ABCO(α) P 1.000 1.086 1.289 1.159 0.960 0.860
AER 500.000 −77.900 −132.30 0.908 0.932 0.784

0.860 respectively, while BCO obtained 0.883, −0.112 and −0.416. In terms of AER, ABCO
was only outperformed by BCO in Maze 3 × 3 by ≈ 0.02, where Torabi et al. [57] achieved
AER = 0.927. Comparing the results of ABCO with ILPO, we observe that ILPO increases P as
the maze increases in size, but it is still much lower than ABCO for the 10×10 maze. We believe
that this discrepancy happens for two reasons. First, ABCO contains an attention module that
increases its capability to focus on essential features through non-visited state spaces. Second,
ILPO does not consider a full image of the scenario since it uses crop mechanisms and internal
manipulations with the state images. Using a partial observation from the environment means
that the approach cannot receive essential features from the images (e.g. the initial state, the
goal state, the agent, etc). On the other hand, as the maze increases, ILPO receives more local
information through the crops, increasing its P.

5.5 Sample Efficiency of Reinforcement and Imitation Learning Algorithms

In this section, we explore the sample efficiency from ABCO and other reinforcement
learning baselines. The goal we want to achieve with these experiments is to understand how
ABCO compares to other baseline methods (in particular, with RL) regarding the necessity of
expert samples. When designing the ABCO experiments, we stumbled upon a critic hyperpa-
rameter: the correct size of the samples needed from an expert. If we use fewer samples, the
policy model may never learn how to act within an environment, and such behavior can be
directly correlated to the branching factor of the environment or the lack of robustness of the
model. Consequently, if we need to create a larger number of samples, perhaps we will need
to create an expert agent capable of generating such an amount of samples. That, however,
makes IL unfeasible, since we would be teaching it to behave like another automatic approach
(like an RL method).
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5.5.1 Experimental Design

Reinforcement Learning has several algorithms with different techniques to solve the
reward maximization problem. Running all algorithms presented in the literature for compar-
ison would be time-consuming and redundant since several algorithms use equivalent mecha-
nisms to solve the problem. Therefore, we use the algorithms described in Sections 3.4 and 3.5
to compare with ABCO in terms of sample efficiency. We believe that such algorithms represent
a vast horizon of techniques used in Model-free Reinforcement Learning.

More speficially, we employ DQN [35] and TRPO [50] as baselines for the three discrete
action-space environments. All algorithms are executed 10 times for 1, 000 epochs in each
selected environment, training 5, 000 timesteps per epoch. For each epoch, we store the training
timesteps, the mean of the obtained rewards, and the standard deviation from the 10 runs.

Recall that ABCO [37] learns from the expert and random policy behaviors from a
set of observations. Therefore, to achieve a fair comparison between the learning paradigms,
we divide the 5, 000 samples into two groups, resulting in 2, 500 timesteps from each to train
the model.

5.5.2 Quantitative Results

We first analyze how fast each algorithm can achieve a predetermined threshold, as
explained in Section 5.5.1. All thresholds are shown in Figure 5.5. We further analyze each
approach by comparing each algorithm’s final reward in order to understand whether time was
a real constraint.

CartPole: This environment is considered the simplest domain among all used in this disserta-
tion. The thresholds for this environment are 275, 481, and 492, defined by DQN, TRPO, and
ABCO, respectively. When comparing each algorithm in Table 5.3, we can see that DQN, de-
spite having the smallest threshold, achieves both ABCO’s and TRPO’s thresholds much faster
on average. Those numbers indicate that DQN is an algorithm with a much higher exploration
rate than TRPO and ABCO, since the latter does not have any exploration mechanism. How-

Table 5.3: Timesteps results for ABCO, DQN and TRPO algorithms in the CartPole environ-
ment using the threshold of the densest point. All results in the table are on e5 scale.

Threshold 275 (DQN) 481 (TRPO) 492 (ABCO)

ABCO 1.07± 0.28 1.66± 0.32 2.74± 2.69
DQN 0.52± 0.40 1, 02± 0.31 1.05± 0.33
TRPO 0.27± 0.32 1.21± 1.68 1.39± 1.65
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Figure 5.5: Visualization of the mean reward distribution over 10 runs during the training of
each learning algorithm.

ever, when comparing with TRPO in its threshold, we see that DQN needs 52, 000 samples to
reach a mean reward of 275, while TRPO only needs 27, 500. We conclude that DQN, despite
being efficient in the number of samples required to reach above-average rewards, is inefficient
in maintaining high results. TRPO results are not distant from DQN when comparing both
in terms of sample efficiency. Nevertheless, its threshold shows that it maintains higher values
than DQN since the densest point for the learning function was 481. Finally, ABCO when
compared to both algorithms is the most inefficient learning method. We believe that those
numbers are because of ABCO’s double model structure. Considering that ABCO’s IDM is
highly responsible for giving the approximated labels to its policy, we expect to see a higher
number of samples needed to achieve the same result than DQN and TRPO. However, ABCO’s
threshold shows that its results sustained better rewards than the other algorithms.

Acrobot: The thresholds for this environment are −79, −78, and −72 for TRPO, ABCO,
and DQN, presented in Table 5.4. ABCO’s performance in these experiments is similar to
Cartpole’s results regarding its inefficiency in learning policies that yield good average rewards.
In the Acrobot environment, ABCO needs more samples than previously due to the complexity
of the domain, thus creating the need for additional analysis on the matter of policy efficiency
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without the IDM learning involved, or with a larger amount of samples during training. Nev-
ertheless, when comparing the thresholds of all algorithms, we can see that ABCO is closer
to DQN, meaning that after learning the proper expert function, the algorithm is capable of
maintaining its performance for a long time. DQN’s results show that the exploration mech-
anism is beneficial for this environment. However, we believe that although the exploration
might select a suboptimal action, the Acrobot environment is more forgiving with single non-
ideal actions than Cartpole. DQN reaches each threshold faster with a lower deviation than its
counterparts. For this environment, TRPO’s results are further away from DQN, showing that
for more complex domains, it is not as efficient as DQN.

Table 5.4: Timesteps results for ABCO, DQN and TRPO algorithms in the Acrobot environ-
ment using the threshold of the densest point. All results in the table are on e5 scale.

Threshold -79 (TRPO) -78 (ABCO) -72 (DQN)

ABCO 5.62± 5.62 8.17± 5.61 24.3± 12.6
DQN 0.30± 0.30 1.41± 0.53 2.82± 0.97
TRPO 1.41± 1.41 4.38± 1.41 7.01± 1.96

Mountaincar: Even though Mountaincar-v0 has a simple goal of driving a car to the top of
a mountain, the action do nothing and the necessity of building momentum to achieve its goal
make this environment difficult for on-policy models such as TRPO. However, this environment
becomes easier to solve for algorithms that possess off-policy mechanisms, e.g., replay buffers
such as DQN. The thresholds are, thus, as we expected. TRPO produces the lowest possible
value, −200, −185 for DQN, and −146 for ABCO. When analyzing its densest point, we can
expect DQN to underperform when compared to ABCO. Nevertheless, when looking into the
maximum reward achieved by each approach, DQN achieves −99 against ABCO’s −110.33.
These results show that although DQN has a more difficult time reaching consistently higher
rewards, it reaches them more efficiently. When analyzing TRPO’s runs separately, we observe
that the algorithm has difficulty reaching the goal, with its maximum reward being −190.
Hence, for an environment such as MountainCar, which heavily penalizes highly-exploratory
algorithms, TRPO cannot appropriately optimize its loss.

Table 5.5: Timesteps results for ABCO, DQN and TRPO algorithms in the Mountaincar
environment using the threshold of the densest point. All results in the table are on e5 scale.

Threshold -200 (TRPO) -185 (DQN) -146 (ABCO)

ABCO 0.05± 0.0 6.070± 2.466 6.900± 2.515
DQN 0.05± 0.0 0.740± 2.154 1.190± 0.852
TRPO 0.05± 0.0 Did not reach Did not reach
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Overall: When analyzing the thresholds for each algorithm, depicted in Figure 5.5, we con-
clude that the IL algorithm was capable of staying on par with the RL algorithms in terms of
performance. However, it proves to be sample-inefficient in each environment we test it. ABCO
defines two different neural networks, IDM and PM, which need to learn the domain-specific
actions and the unknown expert function. This learning method creates a scenario that is hard
to be more efficient than the RL algorithms in this work. Furthermore, for harder environments,
ABCO seems to require more samples, or maybe the network topology should be increased,
since its results for the Acrobot environment are drastically lower than the others, while in
the MountainCar environment the timesteps needed are 8.2 times higher than DQN’s. This
conclusion is possible to see in Figure 5.6, where ABCO takes longer to start increasing its
reward than the RL algorithms.
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Figure 5.6: Visualization of the average reward through time over 10 runs for all environments.
The dotted lines are the thresholds defined in Section 4.2.

DQN is more efficient in environments with some degree of flexibility to errors. At
the same time, even though TRPO is closer to DQN in the CartPole experiments, it is not as
efficient in the Acrobot and MountainCar environments, where algorithms with less exploration
are rewarded. With those results in mind, we question whether training ABCO’s IDM with the
random samples until no further improvement is achieved could improve its sample efficiency.
We perform these experiments next, and we call such an approach ABCO*.
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5.5.3 Pre-trained ABCO

In the previous experiments, we hinder ABCO’s performance by training both models
from scratch with smaller T pre sizes. In this section, we experiment with ABCO policy only,
by giving it a head start with a pre-trained IDM. The assumption is that since the first model
learns from a set of random samples, it would be easier to gather T pre experiences than expert’s,
and it is more efficient to train offline until there is no further improvement than online like
the RL algorithms do. For the IDM training, we use 10, 000 random samples gathered before
each training round, and we optimize this model using Adam [25]. Afterwards, we make use of
the pre-trained model in ABCO as described in Section 5. We hypothesize that since ABCO’s
learning phase is offline (the online phase is simply a way to gather new samples for its first
model), the training time would be shorter and more efficient. The expert samples continue
the same in terms of size as in all prior experiments. We use the same thresholds for a better
comparison of the difference between the pre-trained model (ABCO*), the online trained model
(ABCO), and the best algorithm for that domain.

We observe that ABCO* is, in fact, more efficient than its prior model and the RL algo-
rithm DQN. Table 5.6 shows that it maintains a lower standard deviation in all three Cartpole’s
thresholds and a significantly smaller sample size for reaching each objective. Granting that
this domain is considered the simplest of the four domains, the Acrobot experiment presents a
similar result. For the first two thresholds, ABCO* needs more than four times fewer samples
to reach each objective. However, as the threshold gets closer from the expert’s reward, −70
for the Acrobot domain, it is harder for it to reach it. ABCO* needs 3.28 times more samples
than DQN to reach the −72 mark, showing that it is efficient to learn in a first stage, but
inefficient at reaching higher rewards.

Table 5.6: Amount of timesteps needed to reach the goal in Cartpole, Acrobot and MountainCar
environments. All results in the table are on e5 scale.

Cartpole Acrobot MountainCar

Threshold 275 (DQN) 492 (ABCO) -78 (ABCO) -72 (DQN) -185 (DQN) -145 (ABCO)

ABCO 1.07 2.74 8.17 24.300 6.070 6.900

ABCO* 0.108 0.190 0.323 9.26 1.805 1.935

DQN 0.520 1.05 1.41 2.82 0.740 1.190

With those results in mind, we hypothesize that combining both RL and IL approaches
could be beneficial in terms of performance and sample efficiency. The offline training, together
with the simplicity of generating random samples from a domain, could be useful when combined
with the exploration and external resources that RL usually provides. We believe that by
mixing both approaches we could achieve far better results in terms of samples needed and
final achieved reward. This is further evaluated in Chapter 7.
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5.6 Discussion

ABCO overall results show that the sampling strategy for the policy is detrimental
for the iterative process created by Torabi et al. [57]. For cases where a policy performs
predominantly one action, appending all samples from πφ into Is creates the issue of vanishing
actions, as shown in Section 5.4.1. This problem can be from an underfitted IDM, that labels
all state transitions as the same action, or an underfitted policy, performing the same action.
When we append these samples to an already existing balanced dataset, the new samples
can unbalance the distribution and force the IDM to overpredict one action over the others,
creating a vicious cycle, where each epoch degrades the performance of the policy. However,
when using a perfectly balance dataset, the IDM will predict all actions as being equally likely,
which is not the case for a vast number of environments, e.g., MountainCar’s do nothing action.
Thus, having a sampling mechanism that diminishes the probability of unlikely actions with
no supervision while not vanishing them is of great importance.

ABCO’s sampling mechanism combined with the iterative process creates a constant
shift into Is leading to more drastic weight updates for the IDM. Furthermore, since IDM
constantly changes the label from the expert samples, the policy model can receive the same
state twice, between epochs, with different labels. This behavior can cause some overfitting for
the policy model. The approach of using self-attention modules drastically reduced this behavior
in our method by letting the model weigh the representations of the states and maintain a more
stable classification process.

Finally, we experimented with the efficiency of ABCO when compared to standard
reinforcement learning baselines. ABCO does not need to have access to an environment during
its learning process, although without the iterative process its results do not reach values closer
to the expert, as shown by Torabi et al. [57] work. Thus a trade-off could be used to understand
when using an imitation learning method is preferable. We found out with our experiments
that mechanisms that allow a model to experiment in the environment, as well as pretraining
the IDM, have a beneficial impact on the efficiency of the IL method.

Nonetheless, the exploration mechanism can damage results, e.g., DQN and TRPO
in Section 5.5.2. We hypothesize that using an exploration mechanism that can diminish its
occurrence with time, such as the case for DQN, would be ideal for an IL method. ABCO
iterative process creates a perfect framework for an exploration mechanism given that it only
uses expert samples into IDM, not creating cases where a poor policy could degrade its per-
formance. Furthermore, merging reinforcement and imitation learning methods may result in
better efficiency, allowing for fewer expert samples. As mentioned in Section 5.5.2, to achieve
such a combination we believe an off-policy method should be used to reduce the complexity of
the model. Having a policy that heavily depends on its current experience, without any replay
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buffers, could create cases where the model does not achieve any improvement in the earlier
epochs, where ABCO lacks in efficiency the most.
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6. IMITATING UNKNOWN POLICIES VIA EXPLORATION

Imitating Unknown Policies via Exploration (IUPE) follows the BCO [57] framework,
further augmenting it with two strategies for avoiding local minima, sampling and exploration,
and with self-attention modules (see Section 5.3) for improving the learning of global features
and, hence, generalization.

IUPE tackles the problem of ABCO and BCO models using maximum-likelihood
estimation in the beginning of training, when they are not sure of the state transition function
and domain, respectively. IUPE helps us understanding how an exploration mechanism can
impact the imitation learning paradigm and how the distances from Ipre and Ipos behave in an
iterative process.

IUPE is capable of outperforming ABCO, and consequently, all state-of-the-art ap-
proaches based on behavior cloning. It was published in the British Machine Vision Conference
(BMVC 2020) [13].

6.1 Sampling Method

IUPE uses a sampling strategy very similar to ABCO. It samples from the post-
demonstration by only using runs that achieved the environmental goal, presented in Equa-
tion 5.1. However, after sampling the successful runs, IUPE uses all runs from Ipos instead of
resampling according to the win-probability.

Afterwards, it samples from the pre-demonstrations Ipre
spl with the inverse probability

of the post-demonstrations, i.e., the loss probability distribution given by 1−P(A|E ; Ipos). In
a nutshell, the samples (observations) that comprise the novel post-demonstration dataset are
sampled proportionally to P(A|E ; Ipos) for winning executions, and the dataset is filled with
the pre-demonstrations proportional to the number of losses. Algorithm 6.1 details IUPE and
its sampling strategy.

IUPE, like ABCO, is only goal-aware and does not use any reward information for
learning or optimizing the models. We do not want to use rewards since not all environments
provide intuitive reward functions for solving the problem.

6.2 Exploration

The original behavioral cloning framework uses the maximum a posteriori (MAP)
estimation, i.e., it predicts the action with the most significant probability given by the model
for a pair of states, both in its original version and its α-iteration version. By using MAP
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Algorithm 6.1 Imitating Unknown Policies via Exploration.
1: Initialize modelMθ as a random approximator
2: Initialize policy πφ with random weights
3: Generate Ipre using policy πφ
4: Generate state transitions T e from demonstrations D
5: Set Is = Ipre

6: Let α be the number of improvement cycles
7: for i ← 0 to α do
8: ImproveMθ by trainIDM(Is)
9: UseMθ with T e to predict actions Â
10: Improve πφ by behavioralCloning(T e, Â)
11: for e← 1 to |E | do
12: Use πφ to solve environment e
13: Append samples Ipos ← (st , ât , st+1)
14: if πφ at goal g then
15: Append ve ← 1
16: else
17: Append ve ← 0
18: end if
19: end for
20: Set Is = sampling(Ipre, Ipos, P(g|E), ve)
21: end for

predictions, we identified several cases in which the model is still relatively unsure about the
correct action, especially in earlier iterations, leading to undesired local minima.

We borrow a simple solution from the area of language modeling to avoid such a
problem, which is to sample the actions from the softmax distribution of both models (IDM
during the expert labeling and PM during the execution of the environment). By not using the
MAP estimation, we create a stochastic policy capable of further exploration in early iterations
considering the model uncertainty. We show that by creating those samples we allow the IDM
to converge in fewer iterations, since the sampling method guarantees a more sparse dataset
consisting of Ipre and Ipos, and the stochastic policy guarantees more exploration of the search
space for properly achieving the environment goal.

Furthermore, in dynamic environments, the stochastic policy contributes to reaching
the goal when deterministic behavior would not. This difference is vital to avoiding local minima
during iterations. If the model was not capable of sampling a sub-optimal action during its
training phase, the agent actions would resume for the most common action in the expert
samples. By sampling the most frequent action, the policy is susceptible to looping between
states, e.g., choosing left and right interchangeably.

6.3 Experimental Analysis

In this section, we present the experimental analysis to validate the performance of
IUPE. We review how the exploration method can help the imitation learning algorithm and
how we can apply such a mechanism with a self-decaying exploration rate using the network’s
certainty on a classification.
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6.3.1 Exploration Impact

Stochastic learning algorithms usually decay their exploration rate throughout iter-
ations, since they assume that the agent progressively learns the optimal solution through
time [36]. If the decaying rate is too low, the agent might stick with the first solution it finds,
and if it is too high, it might spend too much time exploring sub-optimal states. By using
the softmax distribution of actions, we create an exploration mechanism that naturally decays
progressively as the neural network learns to separate the feature space (and hence no need
for a decay hyperparameter to be tuned). The self-decaying exploration rate can be seen in
Figure 6.1.
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Figure 6.1: Percentage of choices in which the self-decaying exploration rate does not select the
MAP estimation. At the beginning of training, when the certainty of the PM is lower, IUPE
benefits from greater exploration, which naturally decays as training proceeds.

To understand whether IUPE benefits from this exploration mechanism, we can check
the results in Table 6.1, which show the impact of exploration over the baseline (BCO), and
also together with the remaining features (attention and sampling). By using this mechanism
alone, we solve the problem of looping in-between actions, and even though the PM may reach
the goal through non-ideal paths, it allows the generation of samples that are closer to the
expert than of those created randomly.

The exploration mechanism, when paired with the sampling method, achieves results
similar to IUPE (full method with the three strategies). This outcome is due to the increased
stochasticity that helps in breaking action loops. While using exploration with SA results in a
model with higher per-action accuracy, we perceive a decrease in both P and AER. We believe
that this happens due to the action vanishing problem caused by the absence of the sampling
method. When all mechanisms are combined, we can see that the SA modules do not impact
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Table 6.1: Ablation study considering IUPE’s 3 main components: attention, sampling, and
exploration in the 10× 10 maze environment.

Model P AER

BCO −0.416 −0.941
Attention −0.415 −0.940
Sampling 0.534 0.348
Exploration 0.734 0.605
Attention + Sampling 0.367 0.088
Attention + Exploration −0.407 −0.921
Sampling + Exploration 0.943 0.901
Attention + Sampling + Exploration (IUPE) 1.000 0.981

the model negatively anymore, but the opposite — they slightly increase both P and AER.
With the exploration mechanism supporting the model and preventing it from getting stuck
in-between states, IUPE can fine-tune itself earlier due to the non-optimal actions being closer
to the expert. By adding the sampling mechanism, responsible for balancing Is, IUPE achieves
the best results of this analysis.

6.3.2 Quantitative Results

As shown in Table 6.2, both methods outperform the state-of-the-art approaches for
all environments but CartPole, where it provides the same results as the baselines. Results
in CartPole are expected since it contains only four dimensions to represent the state, and
the actions are easily separated. In Acrobot, IUPE, ABCO, and ILPO achieve similar P
(P ≈ 1.00), showing that both approaches have similar imitation abilities. However, IUPE
achieves AER = −78.100 while ILPO obtains −85.300, which means that IUPE can solve
the environment with an advantage of ≈ 10 frames in advance than ILPO. For MountainCar,
IUPE achieves P = 1.314, which is the best result when compared with the baselines in
this environment, a difference of ≈ 0.37 from the best second result (BCO). AER values for
MountainCar are also much better for IUPE: −130.70, which is 19.3 better than BCO. For
the Maze environments, IUPE reaches top P values for all types of Mazes that were tested. In
terms of AER, IUPE was only matched by BCO in Maze 3 × 3, where both models achieve
AER = 0.927. In the same environment, we can see that IUPE is virtually not affected
as the complexity of the Maze increases, whereas the other approaches become incapable of
learning those environments. ABCO can learn better policies due to the new sampling method,
while IUPE learns from its exploration mechanism. IUPE stochasticity gives the model the
ability to better explore the environment, avoiding local minima and reaching the goal at the
end. Compared with the Expert, IUPE can achieve similar or better metric values for most
environments.
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Table 6.2: Performance and Average Episodic Reward for our approaches and related work
using the OpenAI Gym environments.

Models Metrics CartPole Acrobot MountainCar Maze 3× 3 Maze 5× 5 Maze 10× 10

Expert P 1.000 1.000 1.000 1.000 1.000 1.000
AER 442.628 −110.109 −147.265 0.963 0.970 0.981

Random P 0.000 0.000 0.000 0.000 0.000 0.000
AER 18.700 −482.600 −200.000 0.557 0.166 −0.415

BC P 1.135 1.071 1.560 −1.207 −0.921 −0.470
AER 500.000 −83.590 −117.720 0.180 −0.507 −1.000

BCO P 1.135 0.980 0.948 0.883 −0.112 −0.416
AER 500.000 −117.600 −150.000 0.927 0.104 −0.941

ILPO P 1.135 1.067 0.626 −1.711 −0.398 0.257
AER 500.000 −85.300 −167.000 −0.026 −0.059 −0.020

ABCO P 1.135 1.074 1.289 1.159 0.960 0.860
AER 500.000 −82.500 −132.300 0.908 0.932 0.784

IUPE P 1.135 1.086 1.314 1.361 1.000 1.000
AER 500.000 −78.100 −130.700 0.927 0.971 0.981

6.4 Discussion

IUPE achieves state-of-the-art results with its exploration mechanism in low-dimensional
or image data. It improves ABCO’s results substantially, and the ablations show that the ex-
ploration mechanism does indeed play a significant role in its improvement. When using only
the exploration mechanism, IUPE achieves the best result over all other mechanisms. The
exploration combined with the sampling, originally from the ABCO framework, achieves re-
sults near to the desired performance (P = 1). Nevertheless, when combining all mechanisms,
IUPE surpasses the expert performance reaching similar overall results than BC, a supervised
approach. We believe that even though the self-attention mechanism does not benefit IUPE
as much as it does to ABCO, it has an essential role since the dataset shift from the iterative
process can produce changes in the action for state transitions causing heavy updates in the
policy weights.

A possible adaptation for IUPE is in its exploration mechanism, which is only appli-
cable to discrete domains. Even though there exists reinforcement and/or imitation learning
approaches focused on one specific domain, an adaptation of the exploration mechanism can be
done to accommodate continuous environments. An exploration mechanism, such as SAFE [8],
which does not use the reward as a form to explore the possible actions, could work well within
this framework. We believe, however, that after adapting the exploration mechanism for con-
tinuous action spaces, the decaying behavior of the exploration values should be maintained.
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7. COMBINED REINFORCEMENT AND IMITATION

LEARNING

Considering that ML models usually depend on a vast numbers of samples, and expert
examples are not easy to create or record due to time and effort constraints, a method that
aims to reduce this necessity upon boosting the models’ efficiency would be ideal. Combined
Reinforcement and Imitation Learning (CRIL) follows the IUPE framework, further augmenting
it with an additional strategy. We aim to solve the sample efficiency issue detected in ABCO
and IUPE by introducing a reinforcement learning mechanism during the training loop.

CRIL uses all the mechanisms created in the IUPE method. Moreover, during the
sampling portion of the training loop, it incorporates the usage of a reinforcement learning
method. We believe that such modification can create policy updates that can adjust the
current policy’s trajectory, improving its efficiency and reducing training time.

7.1 Learning from its Own Experiences

Upon using BCO’s training loop, the policy generates new examples to approximate
Ipos samples from the expert to learn a function that can determine which action occurs between
two states. IUPE further augments this process by weighing the Ipos population using the
policy’s performance. As the policy reaches more often the goal in the 100 episodes enjoyed
between each training loop, the more Ipos comprises policy samples instead of the random
samples from Ipre. This mechanism helps the model reducing the necessity of creating a vast
number of random samples. However, it does not alleviate the necessity of using a vast amount
of expert samples for the policy training.

When using toy environments, the creation of a vast number of expert samples is
effortless. One can train, or create, an algorithm to simulate how an expert would act in such
an environment. Nevertheless, as the environment becomes more complex, the amount of work
to create precise expert samples grows. A possible solution for this problem would be to use
transfer learning mechanisms when training an agent. It first learns how to act in a simpler
environment and afterwards it transfers its knowledge into a more complex scenario. However,
upon transferring an agent from one environment to another, one might face several problems,
i.e., state differences or action remapping. Therefore, improving the model’s efficiency and
eliminating the necessity of a vast number of samples is the ideal solution.

RL methods model agents as a MDP, which consists of an agent learning how to nav-
igate in state spaces generally disregarding time as a factor [54]. Such definition is vital for
combining RL methods with IUPE, since all agents modeled by IUPE are stationary, as de-
scribed in Section 2.3. Furthermore, BCO training loop suffers from a significant flaw regarding
efficiency. Upon creating the necessity of a policy enjoying an environment e number of times
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during each loop, it creates a time constraint for the training. During such time, the policy
performs each action ignoring how much it did learn, which can eventually generate optimal
results, considering there is no real correlation between validation accuracy and environment
performance. However, in environments with long lives, i.e., mountaincar, where an agent must
perform 500 steps before ending an episode, the first couple of iterations might consume the
vast majority of the training time due to poor modeled policies. Hence, we propose to use an
RL mechanism at this moment to boost the current IUPE performance.

We alter Algorithm 6.1 to not only append the state transitions (st , ât , st+1) into Ipos,
but also into a replay buffer, which we use to learn with a reinforcement learning algorithm,
depending on the environment selected, generating our new method CRIL (Combined Rein-
forcement and Imitation Learning). A complete visualization of the pipeline in CRIL is shown
in Figure 7.1. We believe that any reinforcement learning algorithm can be used and provide
a beneficial impact on the training of the policy model. The loss function, however, can create
some shortcomings. Upon using an algorithm such as DQN, presented in Section 3.4, we might
need to update the loss function to maintain the definition of an IL algorithm that does not
use a reward function as a way of learning how to act in an environment.

IDM IDM Policy

Policy

Env.

I

II III IV V VI

Figure 7.1: Combined Reinforcement and Imitation Learning framework: (i) set Ipre, created
by using πφ, as Is; (ii) use Is to learn the inverse dynamics of the environment; (iii) label
the approximated expert action, Â, responsible for the state transitions in the expert samples,
T e, with IDM; (iv) use T e and Â to train the policy, πφ in an IL manner; (v) use πφ in the
environment to create new state transition samples and uses the RL approach to further learn
from its experience; and (vi) use the IUPE sampling mechanism, from Section 6.1, to create a
new dataset for IDM. CRIL is an iterative process that cycles from step (ii) to step (vi) until
no further improvement is noticed.

A possible solution for such a problem might be to use a loss function such as GAIL’s,
where the distance between expert states and policy states is used to create a better discrim-
inator in an inverse reinforcement learning fashion. Furthermore, upon analyzing the results
from Section 5.5, we hypothesize that using off-policy methods with some degree of exploration
would be more impactful for the framework’s efficiency.
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Nevertheless, our primary goal with the new method is to understand how both of
these learning methods interact when intertwined. Consequently, on the results displayed in
Section 7.3, we use the original loss function and reward from the environments, which we
understand as potential limitations of this study.

7.2 Experimental Analysis

To validate the performance of CRIL, we use the early version of the DQN [35] al-
gorithm combined with the IUPE framework. We believe that more advanced RL approaches
would yield better results but could misrepresent how each learning method can impact the iter-
ative learning process. Moreover, the main goal of these experiments is to understand whether
IL can benefit from RL methods considering the results presented in Section 5.5. We do not
alter any IUPE configurations during these experiments, using Adam [25] optimizer and the
same hyperparameters from Section 6.

Upon combining DQN with IUPE, we create the necessity to tune a few new hyperpa-
rameters: replay buffer size, probability of exploration (ε), and discount factor (γ); for details
of each one of these mechanisms, we direct the reader to Section 3.4. Standard value for γ is
0.99, while ε is usually divided into three different values: start, final, and decay — 1.0, 0.01,
500, respectively. For replay buffer sizes, the literature [35, 59, 49] argues that the larger, the
better. When searching for the original implementation of DQN, we found that the consensus
was 5, 000. During the experiments, we maintain the γ value according to the original work.
Nevertheless, considering that we use DQN during an iterative process and the policy learns
how to act in an environment outside the RL algorithm, we opt to alter the standard values
from ε to adapt this algorithm to IUPE’s iterative process. If we did not change the ε start
value, the policy would randomly explore the environment each time, even when P = 1. For
the ε values, we use the P values, i.e., as the policy becomes closer to the expert, the less the
RL algorithm will explore with random actions. When experimenting with the replay buffer
size, we came across a problem we believe to be due to the iterative process from IUPE. When
using the standard value, we observe that on environments with a smaller number of steps per
run, e.g., Mountaincar (its expert only performs 100 steps on average), bigger replay buffers
accumulate all steps and deteriorate the policy. For that reason, we alter the replay buffer size
to be the same as 10× the average steps per expert episode.

Considering the results found in Section 5.5 and the efficiency values from RL, we
conducted experiments with the same amount of samples from the IUPE experiments in Sec-
tion 6.3.2, and by feeding the policy only 1 expert episode. For comparison, all IUPE ex-
periments had 10, 000 expert samples, which could represent 1, 000 episodes, while for the
experiments with only 1 run, the policy received 500, 99, 103, samples for the CartPole,
Mountaincar, and Acrobot, respectively.
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Finally, together with the results from IUPE and CRIL, we also present how the DQN
performs alone in each environment.

7.3 Results

7.3.1 Standard DQN Values

As shown in Table 7.1, when using the standard values for DQN into the CRIL
framework, as the environment grows in difficulty, the algorithm performance deteriorates.
Considering that the CartPole environment is less punitive regarding exploration, as mentioned
in Section 5.5, we expected that without much tuning, the algorithm would achieve a perfect
reward, 500.00. However, since Acrobot and MountainCar require an agent to build momentum
to reach its final destination, the standard values achieve lower results. Nevertheless, the original
setup of the algorithm achieves P = 0.811 on the Acrobot environment, which we did not expect
in advance. We hypothesize that the erratic actions, resulting from the highly exploratory
nature of these hyperparameters, created states that the policy otherwise did not see with the
expert samples, resulting in a more robust policy. Even though the Acrobot result surpasses
our expectations, when comparing with the results from Table 7.3, one can see that this form of
the CRIL framework achieves inferior rewards. The MountainCar environment, which heavily
penalizes exploratory actions due to opposite movements reducing the car velocity, shows that
the standard values do not benefit CRIL.

Table 7.1: Performance and Average Episodic Reward for CRIL using γ = 0.99, start ε = 1.0,
final ε = 0.01, ε decay = 500, and replay buffer size = 5, 000.

Models Metrics CartPole Acrobot MountainCar

CRIL* P 1.00 0.811 0.00
AER 500.00 -174.90 -200.00

7.3.2 Sample Efficiency

Next, we test how CRIL compares to IUPE in terms of sample efficiency. We run each
algorithm with all samples and with only one expert sample. For each environment, we select
the first run of each expert. This selection results in superior samples for the experiments with
one episode, which can result in more difficult performance to achieve. Table 7.2 shows that
IUPE achieves better results when using more samples, while CRIL performs better with only
one expert sample. We believe that CRIL fails to reach up IUPE results due to the nature
of DQN updating the policy weights based on its own experiences, while IUPE updates are
based on a classification problem. During our tests, we clip the gradients from DQN between
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−1 and 1 to understand whether less erratic updates can create a smoother update sequence.
However, no improvement was found. When using all samples, CRIL achieves rewards closer
to IUPE than IUPE from CRIL during the experiments with only one expert sample. The
average difference in performance for the experiments with fewer samples is 1.112, while for
the experiments with all samples is 0.059. The same can be seen in the AER metric, where
the average difference for the fewer samples is 438.607, while for all the samples is 5.367.

Table 7.2: Performance and Average Episodic Reward for CRIL and IUPE using 10, 000
samples and one expert episode for all three environments.

Models Metrics CartPole Acrobot MountainCar
All episodes One episode All episodes One episode All episodes One episode

Expert P 1.000 1.000 1.000 1.000 1.000 1.000
AER 442.628 500.00 -110.109 -103.000 -147.265 -100.00

Random P 0.000 0.000 0.000 0.000 0.000 0.000
AER 18.700 18.700 -482.600 -482.600 -200 -200

IUPE P 1.135 0.278 1.086 0.839 1.314 0.180
AER 500.000 152.500 −78.100 -164.000 −130.700 -182.000

CRIL P 1.135 1.135 1.079 1.026 1.157 0.791
AER 500.000 500.000 -80.700 −93.260 -139.000 −120.900

7.3.3 Quantitative Results

In Table 7.3, we compare both original methods and the CRIL framework. For the
sake of comparing both IL methods, we use the IUPE results with only one expert episode.
However, DQN does not depend on the number of expert samples since it is an RL algorithm.
For these DQN experiments, we use 100, 000 timesteps, which is the same number if we
considered each expert sample as a step during the classification problem, and the number of
steps performed by DQN during the sampling mechanism. In this scenario, CRIL achieves
the best result in each environment. We perceive that DQN outperforms IUPE as expected,
considering IUPE’s original problem with efficiency and the nature of deep learning problems
with dataset sizes. Nevertheless, CRIL still achieves results far superior to DQN. The average
performance difference between both algorithms is 0.325, while the AER difference is 133.387.
We believe these results show that the RL has a beneficial impact on CRIL’s overall results.
Notwithstanding, when comparing DQN to IUPE with all samples, in Table 7.2, we see that
given the necessary amount of samples, IUPE can outperform the RL approach.

7.4 Discussion

CRIL achieves results that are similar to ABCO and near IUPE’s. It uses the IL
framework (IUPE) to improve its learning curve with the expert samples and the RL approach
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Table 7.3: Performance and Average Episodic Reward for DQN, IUPE, and CRIL for all three
environments using only one expert episode.

Models Metrics CartPole Acrobot MountainCar

Expert P 1.00 0.00 0.811
AER 500.00 -100.00 -103.90

Random P 0.000 0.000 0.000
AER 18.700 -482.600 -200.000

DQN P 0.771 0.976 0.651
AER 390.000 -111.980 -134.900

IUPE P 0.278 0.839 0.180
AER 152.500 -164.000 -182.000

CRIL P 1.00 1.026 0.791
AER 500.00 −93.260 −120.900

(DQN) to correct its trajectory between different epochs. CRIL maintains the exploration
mechanism from IUPE while adopting the replay buffer and discount factor from DQN. The
replay buffer allows CRIL to update its weight based on an off-policy approach, which creates
long-term memories. Thus, if the policy fails to reach the goal in an epoch, the replay buffer
helps the RL approach optimize its weights based on past episodes, avoiding local minima,
as seen in Section 5.5.2. The exploration mechanism ensures that the model, while uncertain
(with lower confidence), can act in sub-optimal actions to create samples that tend, with time,
to approximate the policy and expert trajectories, as seen in Section 6.3.

CRIL offers a good trade-off between efficiency and predictive performance. It accom-
plishes these results using a substantially smaller sample pool, 20 to 100 times smaller than
IUPE, while achieving AER and P closer to the state-of-the-art. Furthermore, CRIL combines
the first iteration of the DQN algorithm, as explained in Section 7.2. We believe that combin-
ing more advanced approaches can yield better results, though the complexity of adapting the
different mechanisms of each algorithm can be challenging.

As future work, we want to investigate such a combination using different RL algo-
rithms to verify how different RL approaches can benefit self-supervised IL methods. Nev-
ertheless, it is important to remember that RL approaches that focus its loss function with a
reward term force the IL method to have access to a reward function, which defeats the purpose
of IL. We believe the next step for this research is to explore inverse reinforcement learning
approaches, considering their ability to optimize a policy without any knowledge of a reward
function, or adapting the loss function from RL approaches to support the IL scenario.
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8. CONCLUSIONS

In this work, we proposed three different algorithms based on the BCO [57] framework.
We first created a method called ABCO, which augments the original BCO framework by
introducing: (i) an improved sampling method; and (ii) a self-attention mechanism. The
first mechanism weigh how much of the policy samples is used in a new iteration, while the
second help minimizing the weights updates that regularly change due to the dataset shift.
By introducing these two new mechanisms, we solved the negative feedback loop problem
encountered during our experiments. However, ABCO was prone to get deadlock between
states, similarly to BCO, i.e., moving back and forward in a maze.

We then analyzed the efficiency of the ABCO method to understand how it compares
to RL methods. The experiments in Section 5.5 show that, without prior knowledge, the ABCO
framework is inefficient with fewer expert samples. However, when combining the method with
a pre-trained IDM model, ABCO achieved better results in fewer samples.

To address the deadlock issue, we created a second method that further improved
ABCO by remodeling its sampling and adding an exploration mechanism, namely IUPE. This
exploration mechanism uses the softmax likelihood to select the desired action. As the model
improves its predicting capabilities, it is more likely to select the MAP prediction, as shown
during the discussion in Section 6.3.1. IUPE achieves state-of-the-art results, as displayed
in Section 6.3.2. Nevertheless, the necessity of a vast number of expert samples to learn a
function that can perform as well as the expert is a major concern. This is particularly true
when considering that the goal of imitation learning applications is creating agents capable of
acting in real-life scenarios. The complexity of certain environments may require the recording
of hours and hours of an expert performing the desired activity.

To reduce the necessity of a large number of expert data, we created a novel framework
called CRIL. It is a method that combines RL and IL to update the policy inside the original
BCO framework from the first two proposed approaches. It updates the policy weights using
its experiences during the Ipos creation. CRIL achieves similar results to ABCO and IUPE,
with fewer expert samples, as shown in Section 7.3. For the RL component, we simply used a
traditional version of the DQN method to understand how IUPE interacts when updating the
policy weights outside the original training loop. Nevertheless, we hypothesize that one can use
more advanced RL methods to achieve even better results.

Even though each method described here presented similar results, with IUPE having
the state-of-the-art predictive performance, we believe that each algorithm can be used in
distinct situations. In environments with less room for exploration, or that are more punitive,
as seen in Section 5.5, ABCO can achieve good results with fewer iterations since it uses the
MAP prediction to create new samples for Ipos. For environments with more freedom for
algorithms that allow for exploration, IUPE can achieve results superior to the expert. Finally,
when expert samples are hard to acquire, CRIL can achieve results resembling the expert.
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Furthermore, CRIL achieves performances that are not far from the results achieved by the
other two IL algorithms.

8.1 Limitations

Each method in this work has its own limitations, even though individually they
were created to solve a problem from the original framework. While ABCO and IUPE share
the efficiency limitation, ABCO also lacks the capability of exploring possible states to avoid
deadlock actions. The efficiency from CRIL, on the other hand, takes a toll on the overall
performance of the algorithm. The exploration from IUPE could be used as a hyperparameter to
deactivate its mechanism for environments with less room for exploration. Furthermore, better
RL algorithms can be employed in this framework to achieve better results while maintaining
the efficiency from CRIL.

Other limitations we faced during this work were the computational time regarding
each experiment. Some experiments took weeks to finish due to the iterative nature of the
framework worked on. For each iteration, the agent has to play e amount of times, which
leads to more prolonged experiments. As an environment becomes more complex, the more an
agent takes to learn an appropriate function. This deficiency results in an agent that does not
perform well and only enjoys an environment until the max number of timesteps. During some
experiments, the policy enjoyment can use an early stop mechanism due to the ABCO and
IUPE nature of discarding episodes that do not achieve the environmental goal. Nevertheless,
CRIL uses each experience to learn how to act, nullifying this possibility.

Another limitation faced during this work was the availability of source code from IL
methods, or of well-documented environments. Although they are usually released as papers of
important conferences, most of them lack community support, or sometimes even the creator’s
support. Some environments are created inside OpenAI Gym framework [6], which facilitates
when learning how to adapt an agent to learn into a new domain. However, some environments
do not follow any framework and lack the documentation necessary to understand the essential
components. Moreover, OpenAI Gym environments are RL environments with RL metrics,
which (i) create the necessity of implementing IL metrics; and (ii) are mostly vector-state
focused. The first problem creates the necessity of implementing newer code and testing whether
the code will work on each new environment, while the latter creates problems when adapting
vector to image-state.

Finally, we believe that the current metrics for imitation learning are limited regarding
the measurement of how well an agent performed. Performance, as well as Average Episodic
Reward, uses the final reward of an agent instead of its mimicking capabilities. These metrics
allow for the possibility of an agent learning a path different from the expert and achieving the
same result. A perfect example of that would be the following. Assume that a maze has two
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possible paths of the same size, and the agent and the expert each take one of the paths. The
final reward would be the same, though the agent did not learn to imitate the expert. Assuming
that the goal of IL is to create an agent as good as the expert, this would not be a problem.
However, if a domain fails to account for a relevant action, i.e., picking some item inside the
maze, the metric would not reflect that. Ergo, both metrics are actually overly reliant on the
reward function designed for each environment.

We believe that a new metric that considers the distance from teacher and learner
would be better suited to understand how their behavior differ. The cost involving in calculating
such a distance depending on the state representation could result in much slower training times,
which is something to be considered when thinking of such a metric.

8.2 Future Work

As future work, we believe that adapting IUPE to continuous environments is a nat-
ural next step. Considering that the exploring mechanism used in IUPE makes use of the
softmax distribution of a model’s prediction, it creates the necessity of using another explo-
ration mechanism for continuous action spaces. The literature for RL exploration mechanism is
vast [56, 43, 34, 8], and an existing method could be combined into the already existing IUPE
framework. However, we believe an adaptation would be necessary since the IUPE framework
acts in a self-supervised regression approach. Considering that BCO [57] achieves results far
better than GAIL, we hypothesize that this adaption could achieve state-of-the-art performance
on continuous action spaces.

Another possible future work would be to explore the different reinforcement learning
mechanisms and how they impact the iterative nature of the CRIL framework. We assume
that upon using newer algorithms, one might achieve better results. However, it could face
higher complexity regarding the multiple optimization functions. This complexity can create
more intricate optimization problems with a higher number of hyperparameters to control,
and maybe a different approach for combining reinforcement and imitation learning might be
necessary. A different venue to research would be to use inverse reinforcement learning to
achieve the same results. We note that GAIL already uses an inverse reinforcement learning
approach to approximate its policy from the expert, and this might indicate that combining
this approach with IL can yield good results.

Finally, we believe that even though an IL metric was not the focus of this work, there
might be the necessity of creating a new way to measure the effectiveness of IL algorithms. We
consider that the sole goal of IL methods should not be to achieve expert rewards. IL agents
should also perform trajectories as close as possible to the expert samples.
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8.3 Published Work

• Gavenski, Nathan ; Monteiro, Juarez; Granada, Roger; Meneguzzi, Felipe; and Barros,
Rodrigo C. Imitating Unknown Policies via Exploration. In Proceedings of the 31st British
Machine Vision Conference (BMVC), Manchester, UK, 2020. (Qualis A1)

• Monteiro, Juarez; Gavenski, Nathan; Granada, Roger; Meneguzzi, Felipe; and Barros,
Rodrigo C. Augmented Behavioral Cloning from Observation. In Proceedings of the 33rd
International Joint Conference on Neural Networks (IJCNN), Glasgow, Scotland, 2020. (Qualis
A2)

8.3.1 On Going Work

• Gavenski, Nathan; Monteiro, Juarez; Granada, Roger; Meneguzzi, Felipe; and Barros,
Rodrigo C. Sample Efficiency of Reinforcement and Imitation Learning Algorithms.

• Gavenski, Nathan; Monteiro, Juarez; Granada, Roger; Meneguzzi, Felipe; and Barros,
Rodrigo C. Combining Reinforcement and Imitation Learning
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