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APRENDIZADO PROFUNDO GEOMÉTRICO PARA ANÁLISE DE
NEUROIMAGENS FUNCIONAIS

RESUMO

O estudo do conectoma cerebral humano, um conjunto complexo de relações en-
tre redes neurais cerebrais que associam estrutura cerebral e funcionalidade, têm recebido
crescente interesse na área de neuroimagem ao longo da última década. Técnicas de
aprendizado profundo constituem o estado da arte para tarefas de classificação de diferen-
tes disordens neurológicas a partir de neuroimagens, proporcionando análises em profun-
didade acerca de características inerentes da atividade e conectividade cerebrais sem a
necessidade prévia de seleção de features. No entanto, operações convolucionais de redes
profundas tradicionais são aplicadas a regiões fixas de elementos durante o aprendizado,
enquanto dados de conectoma cerebral são melhor representados na forma de grafos, com
elementos espacialmente dispersos. Neste trabalho, fazemos uso de técnicas de aprendi-
zado profundo geométrico para análise de dados de conectoma de imagens de ressonância
magnética funcional (fMRI), buscando a identificação e extração de representações de ca-
racterísticas de alto nível das dinâmicas de redes cerebrais envolvidas na cognição humana.
Nossas conclusões sugerem que as técnicas investigadas podem superar o estado da arte
relativo a modelos de classificação de dados de fMRI além de possibilitar uma metodologia
simples para análise de resultados.

Palavras-Chave: inteligência artificial, neuroimagem, fMRI, redes neurais profundas.





GEOMETRIC DEEP LEARNING FOR FUNCTIONAL NEUROIMAGING
ANALYSIS

ABSTRACT

The study of the human brain connectome, a complex set of cerebral network re-
lationships associating structure and functionality, has seen a growing interest in the field
of neuroimaging over the last decade. Deep learning techniques constitute the state-of-
the-art for neuroimaging classification tasks on different neurological disorders, providing
in-depth analysis into the inherent characteristics of brain activation and connectivity without
the need for prior feature selection. However, convolutional operations of traditional deep
networks affect fixed regions of elements during learning, whereas connectome data is best
represented in the form of graphs, with spatially dispersed elements. We make use of ge-
ometric deep learning (GDL) for the analysis of whole-brain functional magnetic resonance
imaging (fMRI) connectome data to identify and extract high-level feature representations
of the cerebral network dynamics involved in human cognition. Our findings suggest that
GDL techniques can outperform state-of-the-art models for classification of fMRI data while
providing a simple framework for result analysis.

Keywords: artificial intelligence, neuroimaging, fMRI, deep neural networks.
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1. INTRODUCTION

In its founding years, and well over the course of its development, the field of neu-
roscience maintained the viewpoint that brain structure and functionality could be reduced
to the workings of the neurons, cells acting as individual units. Modern neuroscience, how-
ever, recognizes that the analysis of single neurons is insufficient for providing a general
theory of the brain capable of explaining behavior, cognition and mental pathologies [Yuste,
2015]. With the advancement over the last decades of functional neuroimaging techniques,
consensus has shifted towards the assumption that connectivity between neuron clusters,
and not units, are the source of brain function. Functional neuroimaging comprises a set of
techniques that aim at investigating human brain functionality in vivo. Functional magnetic
resonance imaging (fMRI) is a noninvasive method that has established itself as the most
used neuroimaging modality for this investigative purpose, particularly concerning research
applications. Neural activity is indirectly quantified with fMRI techniques through the emis-
sion and sensing of magnetic fields [Huettel et al., 2004, ch. 1], in an attempt to identify
the mental processes associated with different brain regions. Distinct experiment protocols
are employed in fMRI scan sessions for evaluating a broad range of phenomena of inter-
est, from the default brain behavior during resting periods to brain activity resulting from the
presentation of stimuli to the subjects.

Recent MRI research, particularly with the advent of computational neuroscience,
indicates that individual brain regions may possess more than a single function, and that
brain functionality emerges from the interaction patterns of distributed cerebral neural net-
works [Bullmore and Sporns, 2009]1. The comprehensive mapping of these networks is
known as the human connectome. The analysis of the connectome and its constitution is
of major interest for both academic and clinical purposes, given recent findings relating con-
nectome structure to mental disorders [Sporns et al., 2005, Essen et al., 2013]. Obtaining
a more thorough understanding of the connectome, however, is still an ongoing endeavor.
The development of methods to aid in the analysis of multimodal fMRI experiments could be
of great value to for this field of research.

In this work, we employ geometric deep learning to generate a data-driven artifi-
cial neural network model to investigate the brain dynamics involved in the dyslexia disorder
and language related cognitive processes. We use the ACERTA dataset, provided by the
Brain Institute of Rio Grande do Sul, which contains functional fMRI scans of over 80 school-
aged subjects diagnosed with dyslexia, in addition to as many healthy controls. We model
fMRI scans data into graph structures that are used as input to Graph Convolutional Net-
work (GCN) models [Defferrard et al., 2016]. We identify and analyze the cerebral network
biomarkers relevant for performing different classification tasks, generating visualizations for

1This work concerns both biological and artificial neural networks. As such, unless obvious from context,
we will use the terms cerebral or brain when referring to biological networks in order to avoid misinterpretation.
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each task. To benchmark the performance of our models, we perform simple binary classifi-
cation tasks in the Human Connectome Project (HCP) dataset, consisting of high-resolution
fMRI scans for 1200 healthy young adults.

Our experiments show that GCNs can outperform baseline methods and produce
results on par with the state-of-the-art methods for fMRI classification tasks while operating
directly in connectome data and improving explainability. As such, our work demonstrates
promising new prospects for the application of deep learning in neuroscience. To the best
of our knowledge, this is the first work to apply spatial-temporal GCN models to task fMRI
data, and the second to apply GCNs in general for this purpose.

1.1 Contributions

The main contribution of our work is to assess the ability of GCNs to identify
biomarkers related to cognitive and neurodevelopmental traits in multimodal fMRI scans. We
investigate the performance of GCN models in discriminating between dyslexic and healthy
control subjects and between good and bad readers using multimodal connectome data,
while focusing on the extraction and analysis of the most relevant features used for classifi-
cation. Thus, we propose the following research question:

• Can geometric deep learning models improve classification performance and explain-
ability in the analysis of cognitive and neurodevelopmental traits in fMRI data?

In answering this research question, we generate data-driven GCN models that sur-
pass state-of-the-art techniques in data classification and provide a straightforward frame-
work for biomarker analysis in connectome data. Furthermore, we show that such tech-
niques are equally useful in the analysis of both large and small datasets. Our results show
that GCNs constitute a powerful tool in the investigation of the high-level connectivity pat-
terns of the human brain.

This dissertation provides five contributions:

(1) The application and comparison of GCN and baseline models in classification tasks
using resting-state and task fMRI connectome data.

(2) The first application of spatial-temporal GCNs to task fMRI data.

(3) Analysis and validation of the biomarkers identified by spatial-temporal GCN models
regarding their relation to dyslexia and neural development.

(4) A demonstration of the applicability of geometric deep learning in the study of multi-
modal brain connectomics in both small and large datasets.
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2. NEUROIMAGING BACKGROUND

In this chapter we provide a brief background on the field of neuroimaging and
the technique of Magnetic Resonance Imaging (MRI). Section 2.1 provides an introduction
to Magnetic Resonance Imaging (MRI). Section 2.2 describes Structural MRI scans and
the resulting data, while Section 2.3 provides further detail into functional MRI (fMRI), the
main type of data we aim to use for our research. Section 2.4 discusses the different noise
sources of MRI scans, and the preprocessing techniques applied to MR images. Section 2.5
briefly introduces the field of graph theory, and its applications in the study of human brain
connectivity.

2.1 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is a technique that uses strong magnetic fields,
sequences of magnetic field gradients and radiofrequency signals for generating images of
biological tissues [Lauterbur, 1973]. MRI consists of a non-invasive technique capable of
generating images with different contrasts, both in spatial and temporal settings, thus be-
ing appropriate for a wide variety of experiments. Over the last decades, MRI usage has
increased in prevalence both in clinical and research settings, being employed for investi-
gating cardiac [Nandalur et al., 2007, Hoffmann et al., 2003, Shimada et al., 2001], joint
[Küseler et al., 1998], spinal cord [Bondurant et al., 1990], bone [Zimmer et al., 1985], mus-
culoskeletal soft tissues [Siegel, 2001], and neurological [Gong and He, 2014] conditions,
the latter being the focus of this work.

MRI scanners work by emitting a series of varying electromagnetic fields and mag-
netic gradients, known as a pulse sequence, which are tuned to the frequency of the hydro-
gen atom [Huettel et al., 2004, Ch. 4]. The pulse sequences causes the hydrogen protons
to be spatially aligned to the external magnetic field. This alignment is then perturbed by
bursts of radiofrequency (RF) signals, which bring them to an excited state. As the nuclei
return to a relaxed state, they emit different MR signals that reflect intrinsic properties of the
tissues they compose. These signals are captured by an antenna that measures net mag-
netization changes in the tissue realized by these processes. The successive application
of perturbations and measurements on carefully selected planes along the patient’s body,
known as slices, makes possible the construction of a virtual 3D volume of the subject’s
tissues. Each slice is composed of a 2D matrix of MR signals stored in voxels, which are
the basic building blocks of the acquired image. Although represented in 2D, voxels are 3D,
reflecting the thickness of each acquired slice.
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Depending on the employed pulse sequence, different contrasts can be achieved.
Contrasts refer to image acquisitions that differentiate between varying proton densities,
gray and white matter, or fluid versus tissue [Huettel et al., 2004, Ch. 1]. Different contrasts
depend on a set of intrinsic and extrinsic parameters. Extrinsic parameters are set by the
technologist, and consist of slice thickness, resolution, echo time (TE) and repetition time
(TR). TR is the time between successive excitation pulses in the same slice, and TE the time
between emission of the RF pulse and detection of the echo signal. Intrinsic parameters
depend on individual tissue characteristics, and consist of spin-lattice relaxation time (T1),
spin-spin relaxation time (T2), and proton density. These atomic properties are manipulated
through the setting of TE and TR times, in order to control tissue magnetization. This allows
the conditioning of the MR signal for particular tissue types [Huettel et al., 2004, Ch. 5].
During a scan, multiple pulse sequences might be employed, constituting the scan’s MRI
protocol. In what follows, we elaborate on the commonly obtained images for brain MRI
scans.

2.2 Structural MRI

In neuroimaging, Structural or Anatomical MRI refers to images that provide highly
detailed spatial information on the tissues forming the brain volume. Their usage has been
prevalent for study and diagnosis of disorders such as Alzheimer’s disease, Parkinsonian de-
mentias, and Fronto-temporal lobe degeneration [Wattjes, 2011], since the extensive tissue
loss usually observed in these pathologies can be visualized in vivo using this technique.

The main types of image contrast for structural scans are T1-weighted, and T2-
weighted and Fluid Attenuated Inversion Recovery (FLAIR). T1-weighted images represent
tissues such as fat and fluids like the cerebrospinal fluid (CSF) as dark, whereas white and
gray matter can be distinguished as light and dark gray shades. T2-weighted contrast causes
CSF and other fluids to appear bright, while air appears dark. Gray matter appears as lighter
gray, and white matter as darker gray. FLAIR images focus on attenuating fluid signals,
causing them to appear dark, which is useful for the clinical diagnostic of a number of neural
disorders. Most MRI scan protocols include the acquisition of images with different types of
contrasts. Given their distinct characteristics of highlighting specific tissues in opposition to
others, the combination of contrast images allows for a broader analysis of a subject’s brain
structure. They are also essential for evaluating brain functionality, providing the underlying
structure for the observed neural activity.
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Figure 2.1: T1-weighted (a), T2-weighted (b) and FLAIR (c) MR images [Suoranta et al.,
2013].

2.3 Functional MRI

Functional MRI (fMRI) is an imaging technique that generates images of the brain’s
activity over a period of time. fMRI scans are based on biological mechanisms other than
the ones used for structural imaging. Neural signaling processes require energy expenditure
in the form of adenosine triphosphate (ATP) [Glover, 2011]. ATP is produced mainly by the
glycolytic oxigenation of glucose, a process which generates carbon dioxide as a byproduct.
When a brain region is activated, the increase in neural firings and other local processes in-
crease the region’s energy requirements, resulting in higher consumption of oxygen. As local
oxygen deposits are consumed, vasoactive substances are released, causing blood vessels
to dilate in order to restore Oxygen (O2) levels. The increased blood flow delivers even more
oxygen than needed to offset its consumption, raising its levels above baseline. The acti-
vation process can thus be described in terms of varying levels in oxygenated hemoglobin
(HbO2) and deoxygenated hemoglobin (Hb) concentrations. The outset of activation results
in a build-up in Hb and a decrease in HbO2 levels [Huettel et al., 2004, Ch. 7]. Within a
few seconds of the subsequent vasodilation, an increase in HbO2 and decrease in Hb levels
can be observed relative to resting condition. The variation in these concentration signals is
described by the Hemodynamic Response Function (HRF), as illustrated in Figure 2.2.

Functional MRI capitalizes on these metabolic processes by using a new method of
contrast, called Blood-Oxygen-Level-Dependent (BOLD) contrast. BOLD contrast generates
a signal that varies with changes in the magnetic field surrounding red blood cells. While
HbO2 is diamagnetic (repulsed by magnetic fields), Hb is paramagnetic (attracted to mag-
netic fields), since it contains 4 unpaired electrons. Thus, the magnitude of the BOLD signal
is modulated by the concentration of Hb molecules in a tissue [Thulborn et al., 1982]. The
expected BOLD response signal during activation can be defined based on the HRF. After
stimuli is presented, the BOLD signal shows a short initial dip relative to baseline, followed
by a peak that lasts for 4 to 7 seconds. Its level then falls below baseline for a few seconds,
before returning to baseline levels.
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Figure 2.2: Canonical Hemodynamic Response Function (a) and corresponding BOLD re-
sponse signal [Cinciute, 2019] (b). Stimuli presentation is represented as a grey bar from
zero to five seconds.

There are two main categories, or paradigms, of fMRI scanning methods: task fMRI
and resting-state fMRI. Task fMRI studies use different experimental designs for presenting
stimuli to subjects during scans, who can be expected to react passively or to respond
with actions such as button pressing, for example. Stimuli may consist of sounds, words,
sentences, pictures, images and videos. Experimental designs are assembled to investigate
different research hypotheses. On cognitive neuroscience, usual tests seek to evaluate skills
such as memory, language processing, decision-making, or to assess emotional responses.
By identifying the BOLD response signal throughout the time series, it is possible to infer the
brain regions activated by each stimulus, mapping the underlying process of brain activation.

While identifying the BOLD signal in isolation within a region of the brain might
sound technically simple, the task of identifying cerebral processes underlying this activation
signals is not trivial. The brain never ceases its activity, creating the necessity for designs
that maximize contrast between stimuli. On blocked designs, stimuli for each condition are
assembled in blocks [Huettel et al., 2004, Ch. 11]. Stimuli presentation can alternate be-
tween blocks, with the usual inclusion of a rest period between two consecutive trials. Rest
periods allow for the acquisition of the brain’s baseline signal, which is used as contrast for
activation events. In event-related designs, different conditions are typically presented in
random order, and intervals between stimuli vary in duration.

Resting-state fMRI scans are images of the brain obtained over time where the
brain’s functionality is analyzed without the presentation of stimuli. The patient is instructed
to attempt not to focus on particular thoughts, allowing them to stray freely. Meanwhile, a
standard fixed image is shown on screen, consisting of a black background with a white
fixation cross on its center, as seen on Figure 2.3.

The analysis of brain connectivity measures during rest led to the discovery of the
Default Mode Network (DMN) [Raichle et al., 2001, Greicius et al., 2003], a large-scale con-
nectivity network between certain brain regions which is most active during passive rest and
mind-wandering. Later studies have found connectivity abnormalities on the DMN caused by
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Figure 2.3: Example of the fixation cross presented on screen during resting-state experi-
ments.

conditions such as Alzheimer’s [Greicius et al., 2004] and autism [Lynch et al., 2013, Heins-
feld et al., 2018], showing the importance of studying the DMN for improving our understand-
ing on these and many other mental disorders.

2.4 Image Preprocessing

Preprocessing is an essential step for the analysis of MRI images, given the vari-
ety and complexity of noise sources that can interfere in scans. These sources consist of
thermal and system noise, motion and other physiological noise, and task unrelated activa-
tions [Huettel et al., 2004, Ch. 9]. Preprocessing aims at increasing signal-to-noise ratio
(SNR) and also preparing data for statistical analysis.

Noise sources

Noise concerns the introduction of uninteresting variability on data. Given the com-
plexity of the systems involved in MRI acquisitions, noise sources are varied. Thermal noise
is caused by heating of electrons within the subject and within the scanner, possessing
a Gaussian distribution of magnitude over time, and no specific spatial location. System
noise can consist either of fluctuations in the generated gradient fields, or of transmitter’s
or receiver’s radiofrequency. The scanner drift is an important form of system noise, which
causes the MR signal to decrease linearly in magnitude over time due to drifts in the main
magnet’s static field.

Motion noise is a very common issue that can completely invalidate a scan session.
Although more serious noise is caused by voluntary actions such as head movement, nat-
ural body processes also generate motion noise, such as breathing and heartbeats. When
patient motion is not excessive or erratic, motion correction algorithms can be employed to
digitally adjust head position and maintain voxel signals in the same coordinates through the
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time series. Particularly for functional scans, other physiological processes can cause inter-
ference, such as blood flow and blood volume fluctuations, and oxygen metabolism [Huettel
et al., 2004, Chapter 9].

Preprocessing pipeline

Preprocessing steps are applied in order to minimize the above mentioned prob-
lems before statistical analysis can be performed [Huettel et al., 2004, Ch. 10]. There
is to date no definitive preprocessing pipeline, although the core steps are usually shared
across studies, even if applied by different algorithms, software, or in different order. The
first core step is applying slice time correction to the data. Most MRI protocols use inter-
leaved slice acquisitions, where the scan collects all the odd numbered slices before moving
to even slices. Since slices are acquired sequentially in time, brain regions spanning more
than one slice will be collected at different times. These temporal fluctuations are corrected
through the interpolation of voxel values. Skull-stripping is then applied, a technique that
removes undesired scan artifacts, such as the skull. Since structural and functional scans
are acquired independently, they must be spatially aligned to confer robustness to activation
interpretability. This step is known as coregistration, which is fundamental for associating
brain activations with its underlying structure, while also serving as a motion correction tech-
nique. Since human brains vary greatly in form, group analysis requires brain images to
be normalized to a common template, in a process called spatial normalization. A com-
monly used template is MNI-152, constructed using averaged brain MRI images from 152
healthy subjects. Following these steps are temporal and spatial digital filtering, also known
as smoothing. Filters are methods used to remove undesirable frequency components from
a signal [Huettel et al., 2004, Ch. 10]. Since most bodily processes, such as breathing
and heartbeats, occur in known frequency ranges, band-pass filters can be used to remove
them. Band-pass filters remove certain frequencies from a signal, while leaving the remain-
ing frequencies intact. Low-pass filters, which remove high-end frequencies, can be used
for reducing thermal and scanner noises, while also making the signal smoother.

When analyzing task fMRI data, interfering activations caused by the brain’s per-
ception of stimuli unrelated to the task at hand can occur. Responses to sounds emitted
from the scanner, visual stimulation or motor activities all influence BOLD signal contrasts
and are captured by the scanning procedures [Huettel et al., 2004, Chapter 8]. Brain stimuli
have a predictable effect on the BOLD signal, so that a matched-filter can be used to cor-
relate the signal of interest with observed data, considerably increasing SNR. One form of
representing the BOLD signal is the percent signal change (PSC) signal, where the BOLD
value for each element of the time-series is represented by its percent variation relative to
the signal baseline computed individually for each voxel. Representing BOLD signal through
PSC or other statistic metric is fundamental for posterior analysis, since it confers the raw
signal with a direct form of unitary comparison between time-points. This use of the indi-
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vidual baseline for each voxel is also essential, since BOLD values suffer attenuation the
deeper their source is located within the brain. However, PSC signals are highly susceptible
to noise sources, such as movement or thermal variability. Thermal variability and other
fluctuations from the MRI scanner tend to be random and independent from task stimuli, so
that effects can be minimized when analyzing a large sample of scans [Huettel et al., 2004,
Ch. 9]. Head movement can occur less randomly, and sometimes show correlations to task
experiments. As BOLD related signal changes are very small in magnitude in comparison
to movement [Huettel et al., 2004, Ch. 9], it is essential that subjects showing correlations
between head movement and task stimuli presentation be excluded from analysis. There
is evidence in the literature that PSC signals are reliable in scan-rescan examinations for
sensorimotor, cognitive and affective tasks [Schuyler et al., 2010].

The separation of activation signals from the time series is possible through a de-
convolution operation between the time series and the presented stimuli onset times. Re-
garding the analysis of event-related experimental designs, Beta Series Correlation (BSC)
analysis can be used model functional connectivity during the different stages of a cogni-
tive task [Rissman et al., 2004]. The method draws on the premise that brain regions in
interaction during a given stimulus will exhibit correlation in activity across other stimuli of
the same condition. The method uses separate covariates for each trial for constructing a
general linear model (GLM), modelling brain activity evoked during each task stimuli. This
results in the computation of parameter estimates known as beta values attributed to each
voxel, which quantify how related a voxel’s activity is to each stimulus presentation. Beta
values can be correlated for estimating a measure of functional connectivity.

2.5 Graph Theory

Graphs are mathematical structures that model pairwise relationships between el-
ements, and whose field of study is called graph theory. Introduced in 1736 by the famous
mathematician Euler [Euler, 1741], graph theory has since become prevalent in most diverse
areas of study given its ability to provide efficient data representations and analysis. Let a
graph G be a pair G = (N , E), where N are the nodes or vertices of G and E the edges, or
links, of G. The number of nodes of G is denoted N = |NG|, known as the order of G. The
number of edges E = |EG| is the size of G. Two nodes u and v are neighbors if there exists
an edge e = uv ∈ G. If two edges e1 = uv ∈ E and e2 = uw ∈ E share a common end, they
are adjacent to each other. A graph is called a multigraph if it allows loops e = uu ∈ E and
parallel or multiple edges e1 = uv , e2 = vu ∈ E . A directed graph is one where edges have
direction, that is, e = uv 6= vu ∈ E .

Graphs can be computationally represented through adjacency matrices (Figure
2.4), nxn integer matrices A with elements Aij valued 1 or 0 depending on whether nodes ni
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Figure 2.4: A graph G and its corresponding adjacency matrix A.

and nj are connected. An adjacency matrix can be weighted, wherein edges are assigned
non-binary values. A graph may contain a set of node attributes represented by a matrix
X ∈ RN×d , where xv ∈ Rd is the d-size feature vector of node v . Likewise, a set of edge
attributes can be represented by a matrix X e ∈ RE×de , where E is the number of edges and
de the size of the edge feature vectors. Thus, xe

v ,u ∈ Rd
e represents the feature vector for

edge e = vu. A number of metrics can be taken from the analysis of graph topologies:

• Node degree: the degree of a node is the number of edges connected to it. Nodes
with high degree are referred to as hubs, which are crucial to efficient communication
[Freeman, 1977].

• Path length: path length consists of the minimum number of edges connecting two
nodes. Shorter mean path lengths result in more efficient networks, providing faster
and more robust exchange of information.

• Clustering coefficient: clusters are groups of nodes connected among each other. The
clustering coefficient is computed as the proportion between the number of connec-
tions among a node’s neighbors and the maximum possible number. Complex net-
works have high clustering, which provides higher local efficiency.

• Motifs: motifs are smaller network building blocks which build up complexity in more
evolved networks [Sporns and Kötter, 2004].

• Robustness: the level to which the removal of nodes or connections affects the overall
graph topology [Bullmore and Sporns, 2012].

In graphs with random topologies, connections follow a Gaussian distribution [Co-
hen and Havlin, 2010, Ch. 4]. Its opposite, lattice topologies, consists of nodes whose
connections form a regular tiling, resulting in short path lengths and very low global infor-
mation passing efficiency. The modelling of real phenomena into graphs usually results in
complex networks, which tend to present high clustering coefficients, modularity, and hi-
erarchical structures[Cohen and Havlin, 2010, Ch. 3]. In particular, the study of complex
networks focuses on scale-free and small-world topologies.
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Figure 2.5: Comparison of different graph topologies in relation to a randomness coefficient.

Scale-free networks have power-law degree distributions, lacking a characteristic
scale[Cohen and Havlin, 2010, Sec. 4.2]. Power-law distributions are functions where one
variable varies as a power of another. Scale-free networks arise when the addition of new
nodes is made to high order existing nodes, concentrating a higher number of edges on a
few highly connected nodes. Small-world networks combine high local clustering and short
path lengths linking these clusters, comprising an intermediate topology between lattice and
random networks.

2.6 Human Brain Connectome

Throughout the last decades, much insight was gained on the relationship between
the human brain’s structure and functionality, with graph theory being one of the tools used
to represent such relations [Bullmore and Sporns, 2009]. Brain functionality stems from
the capacity of neurons to exchange information through electrochemical signals, known
as synapses. When observed from a macroscopic scale, synaptic communications have
been shown to constitute complex networking behavior spanning different brain regions.
The mapping of these networks is known as the human connectome. Neurons transmit
information through long nerve fibers called axons or tracts, which constitute the brain’s
white matter, and physically connect different brain regions. As such, initial attempts to
compute the connectome focused on these structural connection, analyzing patterns from
correlations in cortical thickness and volume of individual brains, which could signalize the
presence of neural pathways. These analyses resulted in the construction of brain network
graphs, wherein regions of interest (ROIs) were represented as nodes and their connections
as edges.

Clearer mapping was achieved with the advent of diffusion tensor imaging [Le Bi-
han et al., 2001], a technique that generates contrast MR images from the diffusion of wa-
ter molecules through the axons. The analysis of DTI images allowed the generation of
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Figure 2.6: Effects of different brain wirings on cost and efficiency of information processing
[Bullmore and Sporns, 2012].

structural connectomes taking into account the number of nerve tracts connecting different
regions. More recently, fMRI scans have been used for composing functional connectomes,
which carry information on the synchronicity of different brain regions via brain signal cross-
correlations [Varoquaux and Craddock, 2013].

Analyses of fMRI connectomes have found that, as with most real world systems,
the human brain has complex network characteristics, which present a middle ground con-
cerning efficiency to cost trade-offs, as seen in Figure 2.6. The brain has small-world prop-
erties, a topology that allows for both modular local processing and global distributed pro-
cessing [Achard et al., 2006], increasing efficiency in information exchange. Maintenance of
these properties is essential for cognition, as small-world networks have been found to be
disrupted by neurological disorders, such as schizophrenia [Bassett et al., 2008, Liu et al.,
2008]. However, a more complete understanding of the mechanisms responsible for the
emergence of brain functionality, and of the dynamic interactions between brain regions that
modulate different mental processes and disorders, still constitutes a challenge (see Chap-
ter 6). As such, the proposal of new tools and techniques that can provide reliable insights
into these matters is of great importance to the field.
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3. MACHINE LEARNING BACKGROUND

In this chapter, we provide a background on machine learning key concepts and
techniques. We introduce basic concepts in Section 3.2, following with an overview on
artificial neural networks in Section 3.3. We discuss performance evaluation methods in
Section 3.4, regularization in Section 3.5, and learning and optimization processes in Sec-
tion 3.6. We present an overview on deep learning in Section 3.7, and detail Graph convo-
lutional networks in Section 3.8.

3.1 Machine Learning

Machine Learning (ML) is a branch of Artificial Intelligence (AI) that aims to develop
computer programs that automatically improve with experience [Mitchell, 1997, Preface]. It
consists of a set of algorithms used for learning mathematical models that describe observed
data patterns, being applied primarily to problems in which solutions are too complex to be
achieved with regular programming. Machine learning algorithms capitalize on the availabil-
ity of vast amounts of data, a resource which has been generated in exponential fashion
over the last decades due to the ever increasing prevalence of technology in human life
[Makridakis, 2017].

ML-based applications have increased in number in recent years, being used in
tasks such as image classification and generation [Krizhevsky et al., 2012, Goodfellow et al.,
2014], natural language processing [Vaswani et al., 2017], speech recognition [Graves et al.,
2013] and content recommendation [Zhang et al., 2019a]. Apart from the extensive com-
mercial interests of big tech companies and startups alike, ML has also been increasingly
employed in a variety of scientific research fields, including neuroscience [Richards et al.,
2019].

3.2 Basic Concepts

Machine Learning can be split into three major learning paradigms: supervised
learning, unsupervised learning and reinforcement learning. In this work, we will focus on the
former two We also discuss semi-supervised learning, a method in between the supervised
and unsupervised paradigms.

Supervised learning consists of algorithms that rely on datasets of I labeled exam-
ple pairs (~xI , yI), where ~xi ∈ X refers to the feature vector of the i-th element of the example
set X , and yi ∈ Y to its respective label from label set Y . The observation of these exam-
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ples allows for the learning models to predict the relationship between pairs (i.e. P(Y | X ),
that is, being able to infer the value of Y given X . Unsupervised learning algorithms are
applied to data with unlabeled examples in order to learn information about the data’s distri-
bution. Semi-supervised learning consists of using both labeled and unlabeled examples for
jointly optimizing predictions. Reinforcement learning is a technique based on a trial-and-
error learning method, where an agent interacts with an environment by taking actions and
observing rewards [Sutton and Barto, 2014, Ch. 1].

3.3 Artificial Neural Networks

Artificial Neural Networks (ANNs) [Tan et al., 2005, Sec. 5.4] machine learning
models created as an attempt to simulate the workings of biological neural systems. The
building block of ANNs is the artificial neuron, also known as the network nodes. The sim-
plest model, consisting of a single neuron, is called the perceptron. The perceptron, illus-
trated in Figure 3.1 consists of input nodes representing input example features, and a layer
of output nodes, representing the model output. Each input node has a weighted connection
to the output node, whose optimal value is learned during training. A perceptron computes
its predicted output ŷ for a given set of input features xj, where j = 1, ..., d represents the j-th
position of the feature vector, by performing their weighted sum with the addition of a bias
value b, as seen on Equation 3.1:

v (x) =
d∑

j=1

wjxj + b (3.1)

ŷ = o(x) = ϕ(v (x)) (3.2)

The wj variable refers to the weight values associated with each feature. A bias
value is applied globally to the output, being modeled as the weight coming from an extra
node. The ϕ function in Equation 3.2 is an activation function, which is predefined in order
to adjust the model behavior.

x1
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x3
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w2

w3

o
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∑ �

Figure 3.1: A perceptron network with 3 inputs.

Neural networks with only a single layer of neurons between input and output can
only approximate linear functions, in which case they always converge to an optimal solution



37

for linearly separable classification problems. However, in the case of non-linear problems,
such as the XOR gate classification, more complexity must be introduced to the model.
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Figure 3.2: A multilayer perceptron (MLP) network.

This can be achieved with Multilayer Perceptrons (MLPs), networks with one or
more intermediate hidden layers between input and output, each containing an arbitrary
number of hidden nodes as illustrated in Figure 3.2. MLPs are feed-forward, meaning out-
puts from one layer become the input to the following one. The network is called fully con-
nected (FC) if each neuron from layer i is connected to every neuron of layer i + 1.

Non-linear activation functions are an essential component of modern ANNs. These
functions introduce non-linear relationships between inputs and outputs, allowing the mod-
eling of more complex functions. Examples of such functions are the sigmoid, hyperbolic
tangent and the Rectified Linear Unit (RELU). In practice, these functions map inputs with
values ranging from {−∞, +∞} to the interval {0, 1} or {−1, 1}, where a non-linear decision
boundary is set up.
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Figure 3.3: Sigmoid, hyperbolic tangent and RELU activation functions.
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3.4 Performance Evaluation

Performance for regression tasks is usually measured with RMSE (root-mean-
square error), which is the square root of the average squared error between ŷi and yi , where
ŷi is the predicted label and yi is the true label for example ~xi . RMSE informs the magnitude
of the error presented by the model’s predictions. When considering classification tasks,
however, different measures must be employed in order to account for the decision process
made between discrete values, or classes, instead of continuous ones.

For a binary classification task, two types of errors can be identified: false posi-
tive (FP), or type I errors, where a negative class object is predicted as positive; and false
negatives (FN), type II errors, where a positive class object is predicted as negative [Tan
et al., 2005, Sec. 4.2]. Accuracy, the most commonly used measure, measures the percent-
age of examples correctly classified, that is, the number of correct predictions (True Posi-
tives (TP) + True Negatives (TN)) divided by the total number of examples. When training
models using datasets with unbalanced classes, where the incidence of one class domi-
nates the others, measures such as precision, recall, or F1-score are preferred over ac-
curacy. Precision, defined as p = TP/(TP + FP), serves as an indication of the model’s
exactness. The higher the precision, the lower the number of false positives accused.
Recall, defined as r = TP/(TP + FN) measures the number of correctly classified pos-
itive examples. High recall means few false negative predictions. F1-score represents
the harmonic mean between recall and precision [Tan et al., 2005, Section 5.7.1], so that
F1 = (2× Precision × Recall)/(Precision + Recall).

The Receiver Operating Characteristic (ROC) Curve is a graphical tool for visual-
izing the trade-off between true positive rate (TPR) and false negative rate (FNR). Models
with that perform well in discriminating between classes have curves closer to the upper left
corner of the diagram, while models classifying examples by chance generate a curve resid-
ing in the main diagonal [Tan et al., 2005, Section 5.7.2]. The Area Under the Curve (AUC)
score can be computed as metric of a models performance, as is a useful tool for comparing
different models. A perfect model has AUC = 1, while a model performing random guesses
has AUC = 0.5.

The task of classifying medical conditions is an example of the usefulness of these
measures. If a certain condition occurs at a rate of 1%, a model which predicts all examples
as false will accurately predict 99% of the examples, even if failing to classify all true positive
cases. In such a case, measuring recall would indicate that true positives are not being
correctly identified, and thus the poor performance of the model.
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3.5 Regularization

A successful model is capable not only of fitting a function to the training data, but
also of generalizing its predictions to data it has never seen. That is, both training error
and generalization errors must be low [Tan et al., 2005, Sec. 4.4]. If a model performs too
well on the training set while performing poorly in the test set, its generalization capacity is
affected. Such a situation is called overfitting. Overfitting happens when a model becomes
too complex, since any given dataset with n points can be perfectly approximated by a
polynomial of n-degree. Such a close adjustment to the training data leads to a reduction
in generalization power, affecting the classification or predictions over unseen data made by
the model.

a)	Underfitting b)	Good	fit c)	Overfitting

Figure 3.4: Underfitted (a) and overfitted (c) models contrasted to an ideal one (b). Above
each figure is the correspondent polynomial degrees and mean square errors.

On the other hand, excessively simple models lead to underfitting. In this case,
there is a lack in parameters, causing the model to be unable to learn enough information
about the observed data and consequently to fail in capturing the underlying distribution of
the data as to reliably perform predictions. Therefore, controlling model complexity is fun-
damental for achieving good performance. Regularization techniques consist of pruning the
model’s complexity in order to reduce overfitting. One often used approach is the addition of
a penalty coefficient to the cost function, so as to penalize parameters that reach too high val-
ues [Bishop, 2006, Section 1.1]. When concerning artificial neural networks, this approach
is known as weight decay. Regularization in ANNs is usually complemented with dropout,
a computationally inexpensive technique that consists of randomly ignoring non-output neu-
rons during training [Srivastava et al., 2014]. This process forces neurons to become less
specialized to specific features of the input, improving the network’s generalization power.
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3.6 Learning and Optimization

Supervised machine learning models are composed of parameters or weights w
that process an input ~xi in order to output a prediction for the input’s label. Thus, the goal
of training a machine learning model is to determine the weights w which minimize the
prediction error E observed for the set of training inputs X , that is:

w∗ = arg min
w

E(w|X ) (3.3)

The error E is a measure of a model’s predictive inaccuracy for a given input ~xi ∈ X .
Error magnitudes are computed by an error function or loss function.

For binary classification, although prediction targets are boolean, the target function
to be learned can be modeled as a probability that a given input instance belongs to a class.
The binary cross entropy (BCE) loss function can be used to process such probability, where
the error E(w) is defined as:

E(w) = − 1
N

N∑
i=1

yi log( ŷi ) + (1− yi) log(1− ŷi), (3.4)

where yi is the true label for example ~xi and ŷi is the predicted label. After computing the
error, an optimization algorithm is used to minimize it. Gradient descent (GD) is the iterative
optimization algorithm most commonly employed to that end. GD computes the gradient
vector pointing to the direction of greatest increase to the error. The negative of the gradient
leads to the direction of minimization of E(w), informing the model whether to increase or
decrease each weight [Alpaydin, 2010, Chapter 10, Section 6]. If E(w) is a differentiable
function, the gradient vector is composed of the partial derivatives of the error with regard to
each weight parameter:

∇wE =
[
∂E
∂w1

,
∂E
∂w2

, ...,
∂E
∂wd

,
]T

(3.5)

The minimization procedure begins with a random initialization of weights, which
are updated at each step in the opposite direction of the computed gradients:

∆wi = −α ∂E
∂wi

, (3.6)

wi = wi + ∆wi , (3.7)

where α is the learning rate, which determines the stepsize, or the magnitude of the move-
ment to be made in that direction. The algorithm terminates when the derivative is zero,
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meaning a critical or stationary point has been reached. A local minimum is a stationary
point where the function E(w) has a lower value than its neighboring points and thus can
not be decreased with infinitesimal steps [Goodfellow et al., 2016, Section 4.3]. Its opposite,
the local maximum, is a point where the E(w) is the highest among its neighbors, so it can
not be increased with infinitesimal steps. There are also saddle points, which are neither
minima nor maxima. Figure 3.5 illustrates each type.

Saddle pointMaximumMinimum

Figure 3.5: Visualization of different critical points.

The lowest possible value for E(w) is the global minimum, which could exist at a
single or multiple points. The task of finding global minima is difficult, since the function could
get trapped in local minima or saddle points. Thus, optimization usually settles for finding a
value that approximates a global minimum as much as possible. The correct setting of the
learning rate is essential to ensure that the optimizer can find a minimum. A larger value
means faster optimization, but the chances of missing a minimum increase, which might
make the algorithm unable to converge. Thus, the learning rate should be fine-tuned to
values low enough to guarantee precision, but high enough to provide adequate optimization
times. As it is a value defined before the training process, the learning rate is referred to as
a hyperparameter.

The GD computation for hidden nodes is, however, nontrivial. In order to assess
their partial derivatives for the error term, their output values must be known. Backpropa-
gation is an algorithm devised to address this issue for neural network optimization. The
algorithm works in two phases: the forward pass and the backward pass. In the first itera-
tion, weights are initialized randomly, and a forward pass propagates the input through the
hidden layers to generate an output ŷ. During the backward pass, the algorithm computes
the partial derivatives of the error, and updates the weights by applying equations 3.6 and
3.7. Through this procedure, weights from layer n + 1 are updated prior to those of layer n.

To compute the gradients of each neuron regarding its weights, the chain rule is
applied:

∂z
∂x

=
∂z
∂y

∂y
∂x

(3.8)
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The chain rule states that if a variable z depends on the variable y, which depends
on the variable x, then the relationship between z and x can be found by breaking down the
intermediary relationships. Thus, the effect of a specific weight whj w.r.t. to the error E is:

∂E
∂whj

=
∂E
∂yi

∂yi

∂xh

∂xh

∂whj
, (3.9)

where yi refers to an output neuron, and xh an input feature. An iteration of the backpropaga-
tion algorithm is called an epoch. The optimization for each epoch can be computed over all
the training data, in process known as batch gradient descent (BGD) [Wilson and Martinez,
2003]. When dealing with large datasets, however, taking all examples into consideration
might be computationally expensive. Stochastic gradient descent (SGD) is an alternative
method, which approximates the gradients using small sets of examples, known as a mini-
batch [Goodfellow et al., 2016, Sec. 5.9]. SGD allows training on very large datasets within
reasonable time. Since it evaluates a smaller number of examples, it captures more fluc-
tuations in the gradients, forming a zigzag pattern of descent towards the minimum. As an
approximation, SGD and is still prone to getting stuck at local minima or plateaus, and may
not converge or be slow at doing so.

w
2

w1

Figure 3.6: Optimization patterns formed by GD without momentum [Goodfellow et al.,
2016].

Other methods can be employed to improve optimization, such as momentum and
learning rate adaptation. Momentum [Sutskever et al., 2013] applies a velocity factor to
the weight update formula 3.7, which aids gradients computed in the same direction as the
previous one, and hinders gradients in the opposite direction. Apart from making conver-
gence faster, it helps to prevent the function from getting stuck at local minima and plateaus.
Learning rate adaptation works by defining per-parameter learning rates, which are updated
as learning progresses. Adam (Adaptive Moment Estimation) [Kingma and Ba, 2014] is
an optimizer which combines per-parameter learning rates with momentum-like parameters,
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and has become the standard optimizer for deep learning algorithms, which are covered in
the following section 3.7.

In spite of its usefulness, back propagation suffers from a few issues, such as ex-
ploding and vanishing gradients [Pascanu et al., 2013]. Exploding gradients refer to the
exponential increase in the error derivative of some terms, resulting in large weight updates
which make the model unstable. Vanishing gradients is the opposite problem, where the
computed gradients slowly converge to 0 in value, causing updates to ignore weight values
from the initial layers. This problem is found in deeper models with many hidden layers,
where activation functions such as sigmoid can further contribute to the exponential gradient
decrease. Other functions, such as RELU, are more appropriate in these case. The deriva-
tive of the RELU function is always equal to 1 for positive values, helping to better sustain
the gradient throughout the model. This is one of the major reasons why RELU has become
the standard activation function for deep learning models.

3.7 Deep Learning

Machine learning algorithms face difficulties when dealing with data constituted of
many dimensions, a problem known as the curse of dimensionality. Thus, complex prob-
lems such as speech or object recognition have been historically difficult for traditional AI
algorithms. Deep Learning is a subfield of machine learning algorithms consisting of mod-
els with a large number of layers for learning high-level feature representations. As described
in section 3.3, MLP models can be comprised of numerous layers, and therefore considered
deep models. Nevertheless, such a model would suffer great limitations when applied to
high-dimensional data, computing O(N2) parameters for data of dimension N. For example,
consider the task of classifying images of size 150x150 pixels with an MLP consisting of
a single hidden layer with 100 neurons. In order to feed the network the image must be
flattened into a 1-D vector, which when multiplied by the neurons of the hidden layer would
result in more than 2 million parameters. As stated in section 3.4, too many parameters make
networks prone to overfitting, which can lead the model to be computationally expensive, as
well as poor in performance.

3.7.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are models that overcome the issues pre-
sented above [Lecun, 1989]. CNNs became popular in 2012 with AlexNet [Krizhevsky et al.,
2012], a network famous for beating that year’s ImageNet LSVRC contest with an incredible
margin towards other participants, consequently obtaining state-of-the-art status for image



44

classification tasks. CNNs are neural networks specialized in processing data with grid-like
structure and presenting translational invariance regarding this grid. Images (2D or 3D matri-
ces) and time-series (1D vectors) are examples of data with such characteristics [Goodfellow
et al., 2016, Ch. 9]. If a signal is defined as something that conveys information, the Con-
volution Theorem states [Hayes, 1998] that convolutions are linear mathematical operations
that combine two input signals into an output signal [Hayes, 1998]. The basic block of CNNs
is the convolutional layer.

Figure 3.7: Visualization of a convolution operation [Goodfellow et al., 2016].

A convolutional layer can be described as possessing three stages. In the convo-
lutional stage, inputs are convolved with filters, also known as kernels. Kernels are matrices
or vectors initialized with random parameters, which are optimized during training to provide
the extraction of relevant features. The output formed by these features is called a feature
map. By using a kernel much smaller than the input, we can achieve an extensive reduction
in the number of parameters, allowing for more efficient generalization. The kernel moves
through the input from left to right, top to bottom, and each of its elements is multiplied by
the input element occupying the same position. Thus, the same kernel parameters are ap-
plied to the whole input. Zero-padding can be added to the input edges to prevent loss of
information in those regions. Since kernels are applied to small local regions one at a time,
they introduce a locality relational bias to the model [Battaglia et al., 2018]. This is desirable
for tasks involving image data, which present high local covariance (elements in proximity
contain similar information).
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In the detector stage, a nonlinear activation function is applied point-wise to the
feature maps resulting of the first stage. The third stage is the pooling stage, where a pooling
function is applied. Pooling functions apply statistical operations to the output in order to
reduce its variability and parameter number. It also switches spatial resolution to feature
resolution, which encode higher-level information as data representations get deeper. The
output of the pooling stage, and thus of the convolutional layer is usually flattened and fed to
a fully-connected layer, responsible for the classification of the pooled features. The use of
the fully-connected layer enables each input element to interact with every possible output,
as well as allowing end-to-end learning.

3.7.2 Siamese Networks

Siamese networks are models specialized in computing similarity metrics for differ-
ent data modalities [Bromley et al., 1993]. These networks consist of two twin sub-networks
with shared weights, as illustrated in Figure 3.8. Each sub-network is fed a different input,
and their outputs are concatenated and compared. Because of the shared weights, similar
inputs are guaranteed to have similar outputs. During training, the label values for each
class are not used, as the model only checks if labels are the same or not. As such, these
networks learn what feature-embeddings differentiate distinct classes, instead of trying to
classify new examples.

In order to train such a model, a constrastive loss function [Hadsell et al., 2006] can
be employed, computing error as:

E = Es + Ed = (1− Y )
1
2

(DW )2 + (Y )
1
2
{max (0, m − DW )}2, (3.10)

where DW is the Euclidian distance between outputs, and m is a margin value greater than
0. The value of Y is equal to 0 if the inputs belong to the same class, and 1 if otherwise. As
such, the first partial term, Es acts by minimizing DW between similar examples. The second
partial term, Ed acts by maximizing DW between dissimilar examples. This is achieved
through the max function and the margin m, which acts by turning distance values predicted
as small by the network into larger values, which can be optimized. When DW ≥ m, the
resulting gradient will be 0, meaning the distinct examples have received a high enough
value of dissimilarity.

Siamese Convolutional Networks (SCNs) have been successfully applied in tasks
such as face recognition [Chopra et al., 2005] and one-shot image classification [Koch,
2015], where an SCN was able to differentiate between 40 different classes after training
with a single example per class. The ability to achieve state-of-the-art results with few train-
ing examples allows many applications to benefit from the use of SCNs, even though their
training is slower and more irregular than that of CNNs. In comparison with softmax-based
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Figure 3.8: Siamese network architecture.

classification models, siamese networks show better or competitive performance in small
datasets, or when the number of classes is very large [Horiguchi et al., 2020].

3.8 Graph Convolutional Networks

The convolution operations of CNNs are applied to grid structures, lacking the abil-
ity to distinguish non-euclidean geometrical relations, such as graphs. In order to deal with
graphs, CNNs require preprocessing steps that transform graph data to simpler representa-
tions, which means valuable information contained in the graph structure may be lost.

Graph Convolutional Networks (GCNs) are networks that aim to generalize grid
convolutional layers for graph structured data, as illustrated in Figure 3.9. There are two
main branches of graph convolutions: spatial graph convolutions and spectral graph con-
volutions [Wu et al., 2020]. Spatial approaches apply convolutions based on each node’s
spatial configuration, employing different forms of message passing mechanisms to propa-
gate node values to their neighbors along their edges. Spectral approaches draw on spectral
graph theory to represent graph information in terms of eigenvectors and eigenvalues re-
lated to its corresponding adjacency matrix and Laplacian matrix [Bruna et al., 2013]. The
eigendecomposition of a matrix, that is, its decomposition into a set of eigenvectors and
eigenvalues, allows for analysis of certain matricial properties that are not immediately ap-
parent [Goodfellow et al., 2016, Sec. 2.7]. The Laplacian matrix is a symmetric, positive
semi-definite matrix (all values are non-negative), and its eigenvalues are closely related to
the graph’s topology. Kernels are based on a K -th order polynomial function of the eigenval-
ues, and convolutions are applied to the K -th level neighborhood of each node.
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(a) Grid convolution (b) Graph convolution

Figure 3.9: Comparison between convolution operations on a grid (a) and on a graph (b).

3.8.1 Spectral Graph Convolutions

In order to learn the filters on the spectral graph domain, the graph topological infor-
mation is decomposed into a Fourier basis, in a process closely related to the decomposition
of audio or video signals into its basic frequency components. Instead of the usual decom-
position of signals into sine functions, spectral filters are decomposed in relation to their set
of eigenvectors. This allows the definition of a graph Fourier Transform, which transforms
the graph to the spectral domain where convolutions can be applied.

Let a graph be defined as G = (N , E), where N is the set of nodes and E the set of
edges, which can be represented by the adjacency matrix A encoding the connections be-
tween nodes. The elements of A can be either binary, representing presence or absence of
connections, or continuous, representing connection weights. The Laplacian of G is defined
as L = D − A ∈ RN×N , where N is the total number of nodes and D ∈ RN×N is a diagonal
degree matrix with entries Dii =

∑
j Ai ,j . The normalized Laplacian is L = In − D−1/2AD−1/2,

where In is an identity matrix, and contains a complete set of orthonormal eigenvectors
U = {u}n−1

l=0 ∈ RN , and its corresponding set of eigenvalues Λ = {λ}n−1
l=0 ∈ RN . The Lapla-

cian is described in the Fourier basis of U so that L = UΛU>, allowing for the graph Fourier
Transform of a signal x ∈ RN to be defined as x̂ = U>x ∈ RN . This definition is first used in
the ChebNet model [Defferrard et al., 2016], which has become the standard spectral GCN
approach, and has been employed to a great extent in fMRI studies (see Chapter 6. Cheb-
Net generalizes the filtering operation on Euclidean spaces to the spectral domain, where
the filtering of a signal x by a kernel gθ is defined as:

y = gθ(L)x = gθ(UΛUT )x = Ugθ(Λ)U>x , (3.11)

where gθ(Λ) can be understood as a function of the eigenvalues of L, and θ ∈ RN is a vector
of Fourier coefficients. Kernels can be localized in space through the use of polynomial
kernels of the form:
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gθ(Λ) =
K−1∑
k=0

θkΛ
k , (3.12)

where θ ∈ RK is a vector of polynomial coefficients of order K . In this formulation, the value
at node j of kernel gθ centered at node i is:

(gθ(L))i ,j =
∑

k

θk (Lk )i ,j (3.13)

If dG(i , j) is the shortest path distance between two nodes, dG(i , j) > K =⇒ (Lk )i ,j =
0. Thus, a kernel composed of K -th order polynomials is K -localized on its neighborhood,
and its learning complexity is O(K ). Nevertheless, the complexity of applying such a kernel
to a signal is still O(n2). To circumvent the high complexity issue, the use of Chebyshev
polynomials has been proposed, allowing for the recursive computation of the parameters
of kernel gθ [Hammond et al., 2009]. A Chebyshev polynomial Tk (x) of order k can be com-
puted by the recurrence Tk = 2xTk−1(x) − Tk−2(x), with T0 = 1 and T1 = x . The convolution
operation then becomes:

y = gθ ∗ x =
K−1∑
k=0

θkTk (L̃)x , (3.14)

where Tk (L̃) ∈ RN×N is the k -th order Chebyshev polynomial computed at the scaled Lapla-
cian L̃ = 2Lλmax − In, which consists of eingenvalues in the [−1, 1] range. By defining
x̄k = Tk (L̃)x ∈ RN , the recurrence can be computed as x̄k = 2L̃x̄k−1 − x̄k−2. Thus, the fil-
tering operation is reduced to cost O(K |E|). The resulting feature map for the sample s of a
mini-batch of S examples is defined as:

ys,j =
Fin∑
i=1

gθi ,j (L)xs,i ∈ Rn, (3.15)

where xs,i are the input features, and Fin refers to vectors Fin×Fout of Chebyshev coefficients,
which are the learnable parameters. Training is done with backpropagation, computing two
gradients:

∂E
∂θi ,j

=
S∑

s=1

[x̄s,i ,0, ..., x̄s,i ,K−1]T
∂E
∂ys,j

and
∂E
∂xs,i

=
Fout∑
j=1

gθi ,j (L)
∂E
∂ys,j

, (3.16)

where E is the error computed for mini-batch S. The resulting set of operations consist of K
sparse matrix-vector multiplications and one dense matrix-vector multiplication. To prevent
overfitting and further reduce computational complexity, a first-order approximation of these
operations is introduced in [Kipf and Welling, 2016] using limited kernel size of K = 1 and
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maximum eingenvalues approximated to λmax ≈ 2. These changes allow equation 3.14 to
be rewritten as:

y = gθ′ ∗ x = θ′0 x + θ′1 (L− IN) x = θ′0 x + θ′1 D−
1
2 AD−

1
2 x , (3.17)

with θ′0 and θ′1 as free parameters. Computations can be further simplified by assuming a
single parameter θ = θ′0 = −θ′1, resulting in a convolution operation for a signal X ∈ RN×C for
a graph of N nodes N and C input channels defined as:

y = D̃−
1
2 Ã D̃−

1
2 X Θ, (3.18)

where D̃ is the diagonal degree matrix for the adjacency matrix with added self loops Ã =
A + IN . The resulting filtering operation has complexity O(|ε|FC) for F output feature maps
[Kipf and Welling, 2016]. The computation of equation 3.18 can be performed through the
product of matrices Ã and X , which could be interpreted as bridging spectral and spatial
graph convolutions.

3.8.2 Spatial-Temporal Graph Convolutions

Spatial-Temporal Graph Convolutional Networks (ST-GCNs) are models that an-
alyze a graph’s spatial node relationships along with temporal information. The addition
of time information in the convolution operations allows for more accurate processing of
graphs with dynamic behavior, a very useful characteristic for a variety of domains such as
traffic forecasting [Yu et al., 2018, Li et al., 2018] and body motion detection [Yan et al.,
2018], where the time component cannot be efficiently represented by statistical methods.
A spatial-temporal graph can be described as a graph where each node is connected to
itself across T time points. Let a stationary spatial graph G be defined as G = (N , E). A
spatial-temporal graph GST can be defined as GST = (N , E , T ), where T is the set of tempo-
ral elements associated with each node. Thus, the node set N = {nit |i = 1, ..., N; t = 1, ..., T}
includes both N nodes composing the graph in space and each of their corresponding T
neighbors in time, so that node nit represents the i-th node on time-point t .

ST-GCNs approaches can follow architectures based on Recurrent Neural Net-
works (RNNs) or CNN models [Wu et al., 2020]. RNN-based approaches combine different
types of recurrent units, such as LTSMs [Seo et al., 2016] or diffusion layers [Li et al., 2018] to
process time information along with graph convolution layers. CNN-based approaches apply
1D convolutions to learn temporal information after graph convolution layers have computed
spatial information. The CGCN model [Yu et al., 2018] uses 1D convolutional layers along
with ChebNet [Defferrard et al., 2016]. In the ST-GCN model [Yan et al., 2018], the authors
use the simplified spectral graph convolution of equation 3.18 along with a Partition Graph
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Convolution (PGC) layer to sample each node’s neighbors into groups with different labels
based on relevant criteria, and a 1D convolutional layer that computes the temporal data.
Besides the already mentioned spatial kernel K , which modulates the spatial reach of the
convolution operations, a temporal kernel Γ is introduced whose size represents the win-
dow size that samples nodes in the time domain. The ST-GCN model introduces changes
in the convolution operation defined in 3.18 with the addition of an edge importance matrix
M ∈ RN×N , a learnable matrix of parameters, to each convolution layer:

y = D̃−
1
2 (Ã◦M) D̃−

1
2 X Θ (3.19)

The M matrix is initialized as an all-ones matrix, in order not to interfere with the
correlation weights of A. The matrix resulting from the training phase is composed of non-
negative edge values weighted according to the relevance of each edge for the given task.
The addition of the edge importance matrix provides a simple method for result interpreta-
tion, since the resulting weights of each element constitute a direct measure of the relevance
of each edge in the learning process.

3.8.3 Graph classification tasks

Approaches to classification tasks on graph data can be divided into two cate-
gories: node-focused and graph-focused [Manessi et al., 2020]. Node-focused approaches
consist of a graph G with fixed structure, composed of a set of labeled and unlabeled nodes.
The goal is to learn from the graph’s features and topology in order to classify the unla-
beled nodes, in a semi-supervised learning approach. Examples of this approach are the
classification of documents in citation networks [Kipf and Welling, 2016], the classification
of atoms in molecular structures [Scarselli et al., 2009], or the classification of subjects in
a population [Parisot et al., 2018a]. On the other hand, graph-focused classification con-
cerns the task of predicting the class of individual graphs, based on their sets of nodes,
edges and features, usually in supervised fashion. This approach has been applied for im-
age classification on the MNIST [Defferrard et al., 2016] and ImageNet [Henaff et al., 2015]
datasets, where graphs have a fixed 2D grid structure. The selection between node-focused
and graph-focused approaches depends on the data’s structure, as well as the goals for the
given task.

Although both node-focused and graph-focused methods have been applied to
fMRI analysis (see Chapter 6), our work performs graph-focused tasks, since our goal is to
analyse the intrinsic properties of cerebral network connectivity. Graph-focused approaches,
where brain ROIs are represented as nodes and their connectivity as edges, allow GCN
models to learn directly from cerebral dynamics, identifying the most relevant ROIs and con-
nections for each classification task.
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4. GEOMETRIC DEEP LEARNING FOR NEUROIMAGING ANALYSIS

In this chapter, we detail our approach to applying geometric deep learning for
neuroimaging classification. We introduce the two used datasets, following with a description
of the classification tasks we have performed. Key to our approaches is how we structure
fMRI data as graphs and how we model the neural network architectures to learn from such
graphs. The human connectome comprises a series of complex cerebral networks that
associate brain structure and functionality. Recent research points to the fact that variability
in cerebral connectivity among subjects may be explained by differences in cognitive and
behavioral networking patterns [Barch et al., 2013].

Most deep learning applications to neuroimaging data focus on large open access
datasets (see Chapter 6), which are essential both for their size, due to the large data re-
quirements of deep learning, and for their open-source nature, facilitating reproducibility and
performance benchmarking of different model architectures and analysis techniques. How-
ever, the reality of neuroimaging research is that projects usually evaluate a reduced number
of subjects, being more susceptible to the effects of artifacts and selection bias [Neuhaus
and Popescu, 2018]. This is especially true for task fMRI experiments, which are more
complex and expensive to develop and acquire.

The use of novel tools such as GCNs for the investigation of brain connectivity dur-
ing fMRI experiments, from both task and resting-state scans, could provide neural network
models with more integral representations of such cerebral dynamics. We achieve this by
constructing fMRI graph structures that encode spatial information of functional connectivity
across brain ROIs, as well as temporal BOLD time-series data for each ROI. This procedure,
detailed in Section 4.3, takes advantage of the fact that GCN architectures are capable of
learning directly from such complex data representations.

In Section 4.4, we introduce two GCN models: ChebNet [Defferrard et al., 2016],
and ST-GCN [Yan et al., 2018]. ChebNet is a model which defines spectral graph convo-
lutions in the for of Chebyshev polynomial expansions, making spectral convolutions less
costly to compute while retaining their performance. This model constitutes one of the fun-
damental works on GCNs [Yan et al., 2018], and as such has been widely used particularly
among fMRI studies [Ktena et al., 2017, Arslan et al., 2018, Parisot et al., 2018a]. ST-GCN
is a GCN architecture that computes both spatial and temporal information encoded into a
single graph structure. The integration of temporal information is a key feature for fMRI data
analysis, given the strictly temporal character of the functional information represented in the
BOLD signal. An ST-GCN model has been recently applied for the first time to resting-state
fMRI data on the HCP dataset [Gadgil et al., 2020]. We reproduce this initial study and apply
ST-GCNs to a private task fMRI dataset, comparing its results to ChebNet. We assess the
ability of GCN models to achieve state-of-the-art performance in small datasets, capitalizing
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on graph representations to perform data augmentation techniques that do not synthetically
alter or interfere with the data in any form (see Section 4.3).

State-of-the-art models for fMRI classification consist of CNN architectures using
both 2D and 3D convolutions, the latter being more computationally and data expensive [Hu
et al., 2019]. Previous studies with GCNs on fMRI data achieved state-of-the-art results
with relatively simple models [Ktena et al., 2017, Parisot et al., 2018a]. We compare our
models to baseline CNN architectures on performance, preprocessing requirements, and
result analysis, showing that GNCs provide reasonable advantages over their Euclidean
counterparts.

We investigate the assumption that brain networks identified by a GCN as relevant
for a classification task may encode higher-level connectivity representations, comprising
valuable data for connectome analysis between conditions or tasks. Classification metrics
such as accuracy are indicators of whether the networks the classification model highlights
as important are indeed significant for analysis from a neuroscientific perspective. However,
our main objective is the analysis of the underlying brain organizations that differentiate
between classes, which is explored in Chapter 5.

4.1 Datasets and Preprocessing

In this section, we describe the datasets we used for this research regarding the
scanning equipment, acquisition parameters, experiment paradigms, and the preprocessing
procedures scanned data was subjected to.

4.1.1 ACERTA Dataset

Our work is performed in collaboration with the Brain Institute of Rio Grande do Sul
(BraIns) and the Research Group in Multimodal Neuroimaging, which is associated with the
institute. The ACERTA dataset — which stands for “evaluation of children at risk of learning
disorder” — is part of a BraIns research project which evaluated over 700 children in order to
investigate the neural basis of learning disorders [Buchweitz et al., 2019]. Of these children,
100 were diagnosed with dyslexia, of which more than 80 were scanned. These scans
were complemented by a similar number of healthy control subjects scans. Dyslexia is a
neurobiological disorder that causes learning difficulties in children, estimated to affect 5 to
10 percent of global population [Buchweitz et al., 2019]. Dyslexic children have problems
identifying speech sounds and relating them to letters, syllables and words. These issues
translate to reading problems, causing the children to read slowly and with low accuracy. To
investigate the disorder, dyslexic and healthy control subjects were scanned for structural
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and functional MR images. Functional scans consisted of both resting state and task related
scans. All healthy controls were rescanned after 1.5 years following the same protocols.

The task experiment was conducted using a mixed event-related reading paradigm
validated for Brazilian children. The test stimuli, also called trials, consist of 60 words that
appear on-screen for seven seconds each. Words are split into three categories: regular,
irregular and pseudowords. In Portuguese, a regular word is a word which is pronounced
using the standard phonetic mapping of syllables in a given language. Irregular words show
variations between written form and pronunciation, that is, the sound of some syllables must
be memorized from experience. Pseudowords are combinations of letters that resemble an
actual word, but contain no real meaning. Subjects are presented 20 words of each category,
along with a question as to whether that word exists or not. Participants select "Yes" or "No"
answers by pressing response buttons placed on both hands, with "Yes" on the left hand and
"No" on the right, to match on-screen positions of those words. The answers provided by
each subject are stored, and a score value is computed. This score allows control subjects
to be classified as good, regular, or bad readers.

The presentation of each stimulus is offset by randomly placed intervals ranging
from one to three seconds in duration. After every 10 words, a seven-second rest period en-
sues, with the on-screen presentation of a centered crosshair (Figure 2.3). Two 30-second
baseline rest periods were also inserted in each scan. To ensure equilibrium in T1 magne-
tization, a six-second dummy scan was presented at the beginning of each 30-word set. An
additional 10-second rest period was presented at the end of each scan session. Data was
collected on a GE HDxT 3.0 T MRI scanner with an 8-channel head coil. The task and the
resting-state EPI sequences used the following parameters: TR = 2000 ms, TE = 30 ms, 29
interleaved slices, slice thickness = 3.5 mm; slice gap = 0.1 mm; matrix size = 64 x 64, FOV
= 220 x 220 mm, voxel size = 3.44 x 3.44 x 3.60 mm.

All preprocessing steps were carried out using the AFNI (Analysis of Functional
NeuroImage) software [Cox, 1996]. Scans were slice-time and motion corrected, and coreg-
istered with their individual structural T1 scans. Structural images were segmented into gray
matter, and cerobrospinal fluid (CSF) and spatially normalized to MNI152 template space.
Functional scans are also normalized to MNI152 template and then smoothed using a Gaus-
sian filter. Time points presenting motion of more than 0.3 mm were removed. Nuisance
regression was performed using the average time-sequence signal of the white matter and
cerebrospinal fluid. All scans are parcellated into ROIs according to the Shen268 atlas [Shen
et al., 2013], resulting in 268 distinct ROIs. For task-fMRI, we use Percent Signal Change
(PSC) data as input. PSC time-series 2.4 is composed of the percent variation in BOLD
signal for each time-point across the whole task scan duration. The mean PSC time-series
across the voxels pertaining to each ROI is computed so that each ROI contains a single
time-series. After prepocessing procedures, each time-series consists of 640 time-points for
each ROI, corresponding to TR = 1.0s.
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The acquisition of fMRI scans of children have a number of disadvantages when
compared to the scanning of adults, the most salient of which is excessive movement. Sub-
jects presenting high average movement rates are removed from our experiments. The
resulting dataset consists of 71 examples, 34 DIS and 37 HC. For the reading performance
task, we use data obtained for each subject in two distinct scan sessions, acquired 1.5 years
apart. This results in a dataset with 54 examples, out of which 20 correspond to good read-
ers and 34 to bad readers.

4.1.2 Human Connectome Project

The Human Connectome Project (HCP) is a consortium led by Washington Univer-
sity, University of Minnesota and Oxford University whose objective is to gather and make
freely available MRI data from 1200 healthy young adult subjects (ages 22-35) [Essen et al.,
2013]. The field of fMRI research has been recently facing a reproducibility crisis, causing
the use of open access datasets to be extensively promoted in order to facilitate replication
and consequently reliability [Nickerson, 2018]. The objective of the HCP is to serve as such a
database, providing high resolution images on varied MR modalities, such as structural MRI,
resting-state fMRI, task fMRI and diffusion MRI. All 1200 subjects were scanned on these
four modalities with a 3T Siemens scanner, while 200 of these subjects were also scanned
using a 7T scanner. Due to limitations in data storage and processing capabilities, we use
resting-state fMRI data from 140 subjects published in releases Q1 and Q2, which allows
us to reproduce previous studies related to our work [Finn et al., 2015]. We also reproduce
results obtained in a larger sample of all 1200 subjects used by Gadgil et al., although the
preprocessing steps applied to their data is not clearly documented [Gadgil et al., 2020]. The
resting-state fMRI data acquisition procedures for HCP consisted of two sessions performed
in different days, where each session is divided in two scans, where either left-to-right (LR)
or right-to-left (RL) phase-encodings are used. The HCP minimal preprocessing pipeline
was used [Glasser et al., 2013], which includes motion correction, coregistration and noise
removal. The pipeline does not include slice timing correction, since acquisition is made with
Fast TR (TR=720ms).

In addition to the HCP minimal processing pipeline [Glasser et al., 2013], we per-
form further preprocessing steps following the work of [Finn et al., 2015]. These steps
consist on the removal of linear components from 12 motion parameters and linear trend,
regression of mean time-series of white matter and CSF signals, and band-pass filtering with
lower cut-off frequency of 0.01 Hz and higher cut-off frequency of 0.1 Hz. These steps were
applied using the AFNI software. Scans are parcellated into 268 distinct ROIs according to
the Shen268 atlas [Shen et al., 2013]. This parcellation differs from the parcellation used by
Gadgil et al. where 22 macro regions are used.
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4.2 Cognitive disorder and Neurodevelopment Classification

We test our approach on different classification tasks using fMRI data, namely three
binary classification and one multi-class subject recognition or fingerprinting task. On the
ACERTA dataset, we perform classification between dyslexic (DIS) and healthy control sub-
jects (HC), as well as a reading performance classification task between groups of good
and bad readers. The goal of these tasks is to identify biomarkers related to dyslexia and
learning difficulties among children. Good and bad groups are defined through the scores
achieved by each subject during the “word existence” task, which serve as a measure of
their text interpretation abilities. Subjects are classified as good, regular or bad readers
according to pre-defined score thresholds. We exclude dyslexic subjects from the reading
classification task in order to remove likely confounding factors in the evaluation of cognitive
development. To benchmark our models performance in the private ACERTA dataset, we
perform a sex classification task in the HCP dataset, comparing our findings to the literature.

The subject fingerprinting task is a multi-class classification problem where the
goal is to identify brain scans taken from the same subject in different scan sessions as
belonging to that subject [Finn et al., 2015]. Previous studies have found that resting-state
connectivity is highly individualized, allowing the establishment of links between the cerebral
connectome and individual-level characteristics[Jalbrzikowski et al., 2020]. The HCP dataset
provides an opportunity for investigating whether deep learning can be used to improve
fingerprinting performance, since the dataset has been used successfully on this task by
other methods. However, previous studies report poor results when performing fingerprinting
with task fMRI data in comparison to resting-state data, especially when using whole-brain
scans as input [Kaufmann et al., 2017, Finn et al., 2015]. The ACERTA dataset, with its scan
acquisitions made 1.5 years apart for HC children, presents an opportunity to invetisgate
fingerprinting biomarkers related to learning processes on school-aged children. Our goal
is to first reproduce the results reported by previous studies on the HCP resting-state data
before applying our model to the task fMRI data on ACERTA.

4.3 Graph Modeling

We propose a graph-focused approach, where graphs represent the whole brain
volume of a single subject with nodes and edge attributes composed of neuroimaging data.
We investigate graphs built using task and resting-state fMRI data as node features and
edge attributes. Although graphs can be multimodal, using both fMRI modalities, we build
graphs of either task data or resting-state data. We work with two distinct graph convolu-
tional networks, the ChebNet spectral GCN model and a spatial-temporal GCN (ST-GCN)
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model. For the ChebNet model, a graph is defined as G = (N , E), where the set of nodes N
corresponds to the set of 268 regions of interest (ROIs) in the shen-268 atlas, and the set
of edges E represents their connections. The nodes contain a set of attributes represented
by a matrix X ∈ Rn,S, where n is the number of nodes and S the size of the window feature
vectors extracted from the original task PSC time-series. The set of edges also contains at-
tributes represented by matrix X e ∈ Rm, where m is the number of edges. Thus, attribute xe

u,v

consists of the Pearson’s correlation coefficient computed between nodes u and v that con-
stitute edge e. A weighted adjacency matrix is derived from the average connectivity matrix
computed across subjects selected for training. Connectivity matrices are computed using
the Nilearn1, an open-source Python package for neuroimaging analysis providing statistical
and machine learning tools [Abraham et al., 2014].

For the spatial-temporal GCN (ST-GCN) model, graphs are defined as G = (N , E , T ),
where T is the set of temporal edges. The temporal connections attach each node to itself
in the next time-point. In this notation, the attributes of each node can be represented by
a node feature matrix X ∈ Rn,T , where T is the number of time-points for a given example
graph. We perform simple window slicing data augmentation on each scan, a subsampling
method where windows of size S are extracted from the original time-series of size S0, gen-
erating S0/S examples per subject. The value for S is a hyperparameter defined empirically
for each individual classification task and deep learning model combination. We allow no
overlay across windows. Due to the window slicing data augmentation, we can define num-
ber of time-points T = S, which is the window size hyperparameter.

Brain ROIs

Nodes

Features

Edges

fMRI time-series

Spatial Graph Spatial-Temporal Graph

Figure 4.1: Graph modeling procedure.

Figure 4.1 illustrates the spatial and spatial-temporal graph modeling procedures.
The spatial graph is used in the ChebNet GCN model, and the spatial-temporal graph is used
in the ST-GCN model. Instead of attributing edges to all node pairs, which for a 268-node
graph would result in over 70 thousand edges, we attribute edges to pairs of regions that

1https://nilearn.github.io/
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show a correlation value above a defined adjacency threshold value, which effectively serves
as an hyperparameter, resulting in sparse graph representations. This hyperparemeter,
henceforth referred to as adjacency threshold, acts as a direct mechanism to reduce model
complexity. Threshold values are defined for positive and negative correlations, since both
are relevant from a neurological perspective. The values for the upheld connections are
encoded into the weighted adjacency matrix W .

Although we report only the results for graphs constructed using PSC data, we
also experimented with Beta values on early stages of our work, and with multi-modal graphs
using combinations of resting-state and task fMRI to compose node and edge attributes. Our
early results showed that classifier performance for graphs using Beta values was poorer
in comparison to PSC graphs. This is probably attributed to the fact that the Beta series
generated by the ACERTA preprocessing pipeline outputs a single Beta value for each voxel
per stimulus presentation. For the ACERTA scan paradigm, this results in a set of 60 values
per voxel, which in contrast to the 640 time-points for the PSC time-series greatly limits
our possibilities of data augmentation and thus the total number of examples. Additionally,
Beta values are a statistic metric derived from the time-series that constitute an indirect
measure of the time component, hindering the performance of the spatial-temporal model
which benefits from larger examples in the time domain. The multi-modal graphs presented
no increase in performance, and we believe the result interpretation for such models would
be unclear based on the combination of connectivity and activation data.

4.4 Architectures

Based on recent fMRI research using GCNs [Ktena et al., 2017, Parisot et al.,
2018a], we use the spectral graph convolution layer with Chebyshev polynomials proposed
by [Defferrard et al., 2016] and the ST-GCN model [Gadgil et al., 2020] on the dyslexia and
reading performance classification tasks.

4.4.1 ChebNet

For the ChebNet model, illustrated in Figure 4.2, we use a shallow architecture
with only two spectral graph convolution (GC) layers, since shallow GCN models have been
shown to consistently outperform deeper models, with best results achieved between 2-3
layers [Magner et al., 2019]. The input to the network are feature matrices X ∈ RN×S, where
S is the size of the windows extracted from the PSC time-series at each of N ROIs. We use
windows of size 7 for the PSC time-series, which are mapped to each of the stimuli and rest
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Figure 4.2: ChebNet model.

Layer Dimension
GC (1,16)
ReLU
GC (16,1)
ReLU
Fully-connected (268,100)
Fully-connected (100,1)

Table 4.1: ChebNet architecture.

periods presented during the fMRI scan. Windows are positioned 3 seconds after stimulus
presentation, due to the expected delay in BOLD signal response.

The model is trained using kernel size K = 3 and Chebyshev convolutions of shape
(Fin, Fout ), where Fin is the number of input channels, which corresponds to the window size S
in the first layer, and Fout = 16 is the number of output channels. A batch normalization layer
and RELU activation follow the first layer. The output of these operations is a graph in the
same format as the input graph and containing a single value updated from the convolution
operations. The resulting graph is flattened and connected to a fully-connected (FC) network
for classification. The output is activated with a sigmoid activation function and used to
compute the binary cross entropy loss.

4.4.2 ST-GCN

The ST-GCN model, illustrated in Figure 4.3, is built with 4 spatial-temporal (ST-GC)
layers. Similarly to ChebNet, the network inputs are 1-channel feature matrices X ∈ RN×T ,
where T is the size of the windows extracted from the PSC time-series at each of N ROIs. To
capitalize on the temporal aspect of the model, we use larger windows of 300 time-points per
dataset example. We use the edge-importance ST-GCN model [Gadgil et al., 2020], which
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Figure 4.3: ST-GCN model.

Layer Dimension
ST-GC (1,64)
BatchNorm + ReLU
ST-GC (64,64)
BatchNorm + ReLU
ST-GC (64,64)
BatchNorm + ReLU
ST-GC (64,64)
BatchNorm + ReLU
Global Avg Pooling (268,300)
Fully-connected (64,1)

Table 4.2: ST-GCN architecture.

applies the simplified chebyshev convolution of equation 3.18 on the spatial information,
along with 2D convolutions on the time-series of each node.

The model architecture is described in Table 4.2. Spatial convolutions of 64 layers
are applied with spatial kernels of size K = 1. Following each spatial GC layer, temporal
2D convolutions are applied with temporal kernel size (Γ, 1) where Γ = 11. Each spatial and
temporal layer is followed by 2D batch normalization and RELU activation. We apply global
average pooling and use a fully-connected (FC) network followed by sigmoid activation func-
tion for classification.

4.4.3 Siamese ST-GCN

For the subject fingerprinting task, we generate a siamese ST-GCN model com-
posed of a pair of 4 to 7-layer ST-GCNs. Our choice for the use of a siamese model is moti-
vated by the success achieved by studies employing siamese architectures for face recogni-
tion tasks [Chopra et al., 2005]. Siamese models learn by discriminating pairs of examples
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Figure 4.4: Siamese ST-GCN model.

as to whether they belong or not to the same class. As such, the goal of a siamese model
is to learn low-dimensional data embeddings capable of representing the most relevant fea-
tures for distinguishing between subjects across the entire dataset. Since the objective of the
fingerprinting task is to identify subjects across two fMRI sessions acquired with a spacing
of 1.5 years, we force the network to classify pairs of scans from different sessions during
training, in an attempt to guide the network to learn the features most related to the neuro-
logical changes expected for children in school age. Although the fingerprinting of subjects
is a multi-class classification task, our model performs binary classification between pairs,
which can later be fitted to the multi-class prediction by a voting procedure.

The architecture for each branch of the siamese pair is the same previously de-
fined for the single ST-GCN model in Table 4.2. The model inputs are an anchor example
and a corresponding pair, each passing through a branch of the network. The pairs are
either examples of the same subject (positive) or not (negative). We test alternatives of loss
function: contrastive loss (see Section 3.7.2) and an adapted NT-Xent [Chen et al., 2020].
For contrastive loss, The L2 norm between the resulting anchor and pair vectors is used
to compute the loss, for which we opt for a margin value C = 0.5. The NT-Xent loss is
computed taking a mini-batch of NB examples as input, and computing the cosine similar-
ity sim(u, v ) = u>v/ ‖u‖ ‖v‖ between pairs of examples (u, v ). The loss or error Ei ,j for a
positive pair (i , j) is defined as:
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Ei ,j = − log
exp(sim(xi , xj)/τ )∑NB

k=1 Υ(k ,i)exp(sim(xi , xk )/τ )
, (4.1)

where Υ(k ,i) is a function that evaluates to 1 if k and i form a negative pair and 0 otherwise,
and τ is a temperature parameter which scales the range of the outputs. We use τ = 1.0.
We introduce the Υ function in NT-Xent in since our mini-batches contains a randomized
proportion of positive and negative examples, so that each pair must be checked individually.
Details on the pair formation procedures are presented in Section 5.5.

4.4.4 Baseline CNN

We use a 2D Convolutional Neural Network (CNN) as baseline to both GCN mod-
els. Although 3D CNNs have shown better performance than 2D models for fMRI classifi-
cation [Hu et al., 2019], 3D models are more expensive to train and easier to overfit due to
their larger number of parameters, a concern for small datasets like ACERTA. We select a
VGG-based architecture as it constitutes a powerful model for image recognition tasks [Si-
monyan and Zisserman, 2015]. VGG architectures are composed of groups of CNN layers
followed by RELU activation, and max pooling layers separating each CNN group. We also
include batch normalization layers following each convolution. The final max pooling layer is
followed by fully-connected layers used for classification.

Layer Dimension
Conv 2D (61,64)
BatchNorm + ReLU
Conv 2D (64,64)
BatchNorm + ReLU
Max Pooling (4)
Conv 2D (64,32)
BatchNorm + ReLU
Conv 2D (32,32)
BatchNorm + ReLU
Max Pooling (8)
Fully-connected (64,1)

Table 4.3: VGG architecture.

We use VGG models with two sizes in different tasks, with 4 or 7 CNN layers in
order to control overfitting. Since VGG 2D convolutional layers can not be applied to the
multidimensional data used in the GCN models, we use the F-statistics extracted from the
fMRI time-series as input. F-statistics are a measure of signal change relative to baseline
level in a fMRI scan attributed to each voxel, which can be represented as a 3D image.
In order to apply 2D convolutions to such images, we generate multi-channel examples
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where the z-axis is represented as channels, so that inputs have shape (X , Y , C). We use
64-channel outputs in the first group CNNs, and 32-channel outputs for the second group
CNNs.
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5. EXPERIMENTS AND RESULTS

In this chapter, we describe the experiments we conducted on fMRI data for the AC-
ERTA and Human Connectome Project datasets, detail training and evaluation procedures
and discuss our results and their implications. We detail the hyperparameters used for each
model on each classification task, which are selected via grid search, with the exception
of the adjacency threshold. The searched hyperparameters are chosen based on litera-
ture recommendations. We carried out all experiments in a quad-core Intel Core i7-8565
CPU @ 1.80GHz, 8 GB of RAM, and 2GB NVIDIA GeForce MX110 graphics card running
Ubuntu Linux 18.04. We implement our models in the Pytorch framework using the Pytorch
Geometric library’s graph convolutional layer implementations [Fey and Lenssen, 2019].

5.1 Dyslexia Classification

We perform the dyslexia classification task using ST-GCN, ChebNet, and VGG
models. The task consists of binary classification between groups of dyslexic and healthy
control subjects. We split the dataset into training and test sets using holdout with 70% of
examples in the training set. For the GCN models, the connectivity matrices for each subject
are averaged across all training set subjects and used as the graph edge attributes, so that
each graph in the dataset has the same topology. The graph topology used for examples of
the training set is also used for the examples of the test set. Training is performed using the
hyperparameters of Table 5.1, which also presents the total number of examples for each
model after data augmentation is applied to the models that support it, ST-GCN and Cheb-
Net. We use binary cross entropy loss, Adaptive Moment Estimation (ADAM) as optimizer
and plateau learning rate scheduling.

Hyperparemeter ST-GCN ChebNet VGG
Learning rate 1×10−3 1×10−4 1×10−4

Weight decay 1×10−3 5×10−3 5×10−2

Dropout 5×10−1 5×10−1 5×10−1

Adj threshold 5×10−1 5×10−1 -
Window size 300 7 -
Nº of examples 142 4260 71

Table 5.1: Training hyperparameters for dyslexia classification.

Figure 5.1 shows the results achieved for the three models for a total of 10 exe-
cutions of 100 epochs each. The ST-GCN shows the best performance in discriminating
between classes, achieving a mean accuracy of 82% and mean AUC score of 0.80. Cheb-
Net presented mean accuracy of 71% and mean AUC score of 0.72, while VGG presented
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Figure 5.1: Dyslexia classification results for each model.

mean accuracy of 70% and mean AUC of 0.68. Both GCN approaches have the advan-
tage of having more available data due to the time-series data augmentation. ChebNet has
the most examples available for training, resulting in a smoother ROC curve. The ST-GCN
model performed best when working with examples with windows of size S = 300, resulting
in twice as much examples as the VGG model, but 30 times less examples than ChebNet.
Its improved performance can thus be mostly attributed to its capacity of processing tem-
poral data within the temporal convolutional layers, given it benefits from larger time-series
instead of larger number of examples.

5.1.1 Effects of adjacency thresholding

The results for ST-GCN and ChebNet models presented in Figure 5.1 correspond
to experiments using adjacency threshold of 0.5. We select this value after empirical testing.
Figure 5.2 shows classification accuracy for the ST-GCN using distinct adjacency threshold
values. The higher the threshold, the fewer the number of selected edges, and the higher
the correlation represented by each selected edge.

Higher threshold values, that is, input graphs using only the most correlated edges
across the whole brain, yield better performance. The total number of selected edges is
approximately 70 thousand edges when no threshold is used, 5 thousand for threshold of
0.5 and 700 for threshold of 0.7. This values vary slightly per execution, since the mean
connectivity is computed from the examples in the training set. We present our results for
dyslexia classification and the remaining experiments using the adjacency threshold of 0.5
instead of 0.7, given that the higher number of available edges provide more flexibility in
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Figure 5.2: Effect of different adjacency thresholds on accuracy.

the learning process, allowing the investigation of more edges across the brain volume and
enriching result interpretability.

5.2 Reading Performance Classification

We repeat the procedures used in the dyslexia classification for the task of read-
ing performance classification. This task consists of binary classification between groups of
Good and Bad readers. We train ST-GCN, ChebNet and VGG models in the dataset con-
sisting of only healthy-control subjects, using holdout to select 70% of examples for training
and the remaining 30% for testing. Training is performed with the hyperparameters detailed
in Table 5.2, binary cross entropy loss, and optimized using Adaptive Moment Estimation
(ADAM) as optimizer and plateau learning rate scheduling.

Hyperparemeter ST-GCN ChebNet VGG
Learning rate 1×10−3 5×10−5 1×10−4

Weight decay 1×10−2 1×10−2 5×10−2

Dropout 5×10−1 5×10−1 5×10−1

Adj threshold 5×10−1 5×10−1 -
Window size 300 7 -
Nº of examples 108 3240 54

Table 5.2: Training hyperparameters for reading performance classification.

Figure 5.3 shows the results obtained after 10 executions of each model. The ST-
GCN model provides the best results, with a mean accuracy of 70% and mean AUC score
of 0.67. ChebNet presents a mean accuracy of 63% and mean AUC score of 0.59. We note
that although accuracy for the VGG model was on par with the other models, with mean value
of 64%, its AUC score is close to a random classifier. This discrepancy may be explained
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Figure 5.3: Reading performance classification results for each model.

by the smaller number of available examples for this model, since no data augmentation is
applied. The small number of samples means slight model biases in the prediction of either
class could inflate accuracy numbers, since a single example can have a noticeable impact
in results.

Results are beneath those obtained for the dyslexia classification task, which could
be expected since sample size is slightly smaller and the dataset for this task consists of
healthy controls only, forming a more homogeneous distribution across the groups to be
classified. However, the performance achieved by the ST-GCN indicates that the model was
able to identify distinctions between the data distributions of both groups, even if its ROC
curve shows that predictions are not optimal.

5.3 ACERTA Biomarker Analysis

To investigate the most relevant features for the classifications task, we analyze
the edge importance matrices M ∈ RN×N extracted from the ST-GCN models. The edge
importance matrices are matrices of parameters which are optimized during training. During
optimization, weights are attributed to each edge composing the input graph’s adjacency
matrix according to their relevance for classification. As such, edge importance weights are
not a direct representation of the brain functionality of the analyzed subjects, but a represen-
tation of the edges and, by extension, the brain ROIs identified as relevant by the classifier.
The analysis of this representation allows for an indirect indication of the cerebral networks
involved in the conditions of interest, in this case dyslexia and reading ability. Edge impor-
tance weights are non-negative values attributed to edges representing both positive and
negative correlations. During the learning process, the edges deemed as least relevant are
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attributed an equal low value baseline weight. We analyze all edges weighted above this
baseline.

(a) Left side brain. (b) Right side brain.

Figure 5.4: Sagittal view of edge distribution for the dyslexia classification. Darker areas
represent higher number of connections. Images generated using the BioImage Suite web
application1.

A representation of the edge distribution across brain regions is shown in Fig-
ure 5.4. Darker shades of orange represent regions with nodes of higher degree (higher
number of connections). The nodes of highest degree and (D=98) thus the most relevant in
distinguishing dyslexic and controls are found in the left limbic (L-limbic) lobe, in the dorsal
posterior cingulate cortex (PCC), Broadmann area (BA=31), and premotor and supplemen-
tary motor cortex (BA=6). The L-limbic and R-limbic also show high degress in the right PCC
(D=91), ventricular posterior and anterior cingulate cortices (D=74/BA=24,D=67/BA=23),
and the dorsal anterior cingular cortex (ACC) (D=64/BA=32). The R-subcortical lobe shows
high connectivity in the Thalamus (D=92), and the L-parietal lobe in the angular gyrus
(D=89/BA=39) and the visual motor cortex (D=70/BA=7). The R-prefrontal and L-prefrontal
lobes are highlighted in the dorsolateral prefrontal cortex (dlPFC) (D=78,81/BA=9) and frontal
eye field (D=81/BA=9). The R-occipital lobe presents high connectivity in the primary (D=62/
BA=17) and secondary (D=68/BA=18) visual cortices.

Most of the regions detected by our method are listed in the literature as playing a
role in dyslexia and general language processes. The PCC has been linked to dyslexia in
previous studies [Stoitsis et al., 2008, Buchweitz et al., 2019] in its relation to pre-attentive
processes. The thalamus has been associated with high-level cognitive functions such as
attention and working-memory, with studies pointing to its importance in mnemonic attention
[de Bourbon-Teles et al., 2014] and language-related abilities [Radanovic et al., 2003]. The
dorsal ACC has shown more signal activation in healthy controls relative to dyslexics [Buch-
weitz et al., 2019], while the angular gyrus has exhibited deactivation in dyslexic men [Pugh
et al., 2000].

The edge distribution for the reading performance classification comprehends most
of the same nodes described for the dyslexia classification, although with different attribu-
tion of degrees. As seen in Figure 5.5, there is a high number of connections located in R-

1Available at: https://bioimagesuiteweb.github.io/webapp (last accessed: March 2020)
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(a) Left side brain. (b) Right side brain.

Figure 5.5: Sagittal view of edge distribution for the reading performance classification.
Darker areas represent higher number of connections.

thalamus (D=123) and L-thalamus (D=104). The L-dorsal PCC (D=125/BA=31) and R-dorsal
PCC (D=108/BA=31) show similarly high degrees. We observe high connectivity in the pre-
frontal lobe, such as the R-frontal eye fields (D=113/BA=8) and the L-dlPFC (D=101/BA=9).
The secondary visual cortices on the L-occipital lobe (D=99/BA=18) and R-occipital lobe
(D=98/BA=18), and the L-insula (D=94/BA=13) are also noticed. Among these, the insula
appears only in the reading performance task. Its functionality has been linked to salience
processing [Uddin, 2014], decision making [Ibrahim et al., 2019] and speech [Uddin et al.,
2017].

5.4 Sex Classification

We perform a subject classification task on resting-state images from two releases
of the HCP dataset, Q1 and Q2, resulting in 140 subjects. The task consists of binary clas-
sification of subjects between male and female groups. We maintain the hyperparameter
values used for ST-GCN in the ACERTA tasks, so that window size used for data augmen-
tation is S = 300 and the adjacency threshold of 0.5 for the GCN models. Since we analyze
resting-state for this task, and the number of samples is larger, we increase the window-size
for ChebNet to S = 100. The augmentation procedure generates a total of 560 examples for
the ST-GCN, and 1680 for ChebNet. Given the larger size of this dataset in comparison to
ACERTA, we increase the number of layers for ST-GCN from 4 to 8, and for ChebNet from 2
to 7.

Since we use resting-state data for this task, we are unable to exactly reproduce the
CNN approach used for the ACERTA dataset, which uses F-statistic data as input. Different
approaches are described in the literature for the application of CNNs to resting-state data,
such as computing mean and standard deviation over sliding windows across 4D fMRI data
to generate 2-channel 3D examples used as input for 3D CNNs [Li et al., 2018], or transform-
ing 4D images into three multi-channel 2D images used as input to a 2D CNN ensemble [Hu
et al., 2019]. In order to use the same baseline CNN model as in the ACERTA task, we



69

ST-GCN ChebNet VGG
0.600

0.625

0.650

0.675

0.700

0.725

0.750

0.775

(a) Accuracy.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ST-GCN (AUC = 0.67)
ChebNet (AUC = 0.62)
VGG (AUC = 0.60)

(b) ROC curves and AUC scores.

Figure 5.6: Sex classification task results.

generate multi-channel 2D images from the mean time-series of each scan. We use holdout
with 70% of examples in the training set to split the dataset for the learning phase. We train
the model using binary cross entropy loss and Adaptive Moment Estimation (ADAM).

The obtained results are shown in Figure 5.6. Best results are reached by the
ST-GCN model with mean accuracy of 72.5% and mean AUC of 0.67. ChebNet achieves
mean accuracy of 67% and mean AUC score of 0.60, and VGG presents mean accuracy of
68% and mean AUC of 0.62. The results obtained by the ST-GCN model are consistent with
the state-of-the-art for this task when using the same number of subjects [Hu et al., 2019].
However, we are unable to reproduce the results reported for ST-GCN on the Gadgil et al.
dataset, consisting of 1200 subjects. We achieve mean accuracy of 76%, which is below the
reported accuracy of 83.6% and the state-of-the-art for a similar number of subject samples.

Hyperparemeter ST-GCN ChebNet VGG
Learning rate 1×10−3 1×10−3 1×10−4

Weight decay 1×10−3 1×10−2 1×10−2

Dropout 5×10−1 5×10−1 5×10−1

Adj threshold 5×10−1 5×10−1 -
Window size 300 100 -
Nº of examples 560 1680 140

Table 5.3: Training hyperparameters for sex classification.
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5.5 Subject Fingerprinting

We perform the fingerprinting task on both the ACERTA and HCP datasets, with
only healthy controls used for ACERTA. For this task, we use a Siamese Network that re-
ceives a pair of examples and attempts do predict whether they belong to the same subject.
To this purpose, the dataset is split so that for each subject both visit 1 (V1) and visit 2 (V2),
which correspond to fMRI scan acquisitions made 1.5 years apart, are kept in the same set
(training or test). We form pairs of input data by attributing an unique id value for each sub-
ject and randomly selecting a pair of subjects for each example in the training and validation
sets. The original examples of each split are called anchors, and their corresponding ex-
ample pairs. Labels with value 1 are attributed to positive examples, where anchor and pair
have the same id (same class), and labels with value 0 to negative examples, where anchor
and pair have different ids. For each anchor example, we randomly select one positive and
one negative example pair from the dataset. We employ a learning rate scheduler that up-
dates on training loss plateaus with patience of 10 epochs. We split subjects in training and
test sets using holdout with 70% of examples in the training set. For training and validation,
we perform binary classification in order to better assess the model’s predictive power before
performing actual fingerprinting across all subjects in the dataset (see Section 4.4.3).

Our results for this task are unsatisfactory, with accuracy remaining within the
chance range for both the contrastive loss and NT-Xent loss models. Figure 5.8 shows
the training and validation losses computed across 5 executions for 100 epochs for the HCP
dataset. Neither of the loss functions employed are able to correctly inform the model in
the learning process, and we see no improvement in accuracy across epochs for both HCP
and ACERTA datasets, with models showing signs of underfitting. We increase the number

Training/Validation
set

Anchor

Positive

Negative

Random
Selection

Random
Selection

(a) Pair formation and computing of Contras-
tive Loss.

Training/Validation
Mini-batch

Anchor

Positive

Negative

Negative

...

(b) Computing NT-Xent for each mini-batch exam-
ple.

Figure 5.7: Pair formation and loss computation procedures for each function. Each mini-
batch example in (b) is a pair formed as shown in (a).
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Figure 5.8: Loss curves for the HCP dataset fingerprinting.

of layers and channels for the graph convolutional layers, but these changes are unable to
improve model performance. We believe these results can be partly attributed to the fixed
graph topology required for our models to operate, where the edge attributes are the ROI
connectivity values averaged across the subjects in the training set. Although our model
finds no pattern to identify individuals, the literature show that simple correlation between
resting-state connectivity matrices and a voting procedure for predictions can achieve an ac-
curacy of up to 99%. Our models seem unable to learn these individual connectivity patterns
from the raw time-series alone, without the individual connectivity data.
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6. RELATED WORK

We have conducted a systematic literature review on state-of-the-art applications
of GCNs on neuroimaging data, following the framework proposed in [Kitchenham and Char-
ters, 2007]. In this chapter, we present an overview of our review. The goal of the review
is to assess the performance of GCNs when compared to the state-of-the-art, the various
approaches to graph modeling, and the most used graph convolution implementations. We
pinpoint the most relevant reviewed studies concerning these aspects and relate them to
the present work. Our search was conducted using the search strings detailed in Table 6.1,
returning a total of 146 studies. A large number used either GNNs without the inclusion of
convolutions, or CNNs. In addition, many results were related to MRIs on organs other than
the brain or didn’t make use of medical imaging data. Another set of studies were published
by the same research group and described identical approaches. Papers presenting such
characteristics were excluded from our review, which assessed 26 relevant studies.

String ’P’ AND ’Q’ AND ’R’ NOT ’S’

P

’Graph Convolutional Networks’ OR
’Graph Neural Networks’ OR
’GCN’ OR
’GCNN’ OR
’Geometric Deep Learning’

Q

’fMRI’ OR
’MRI’ OR
’DTI’ OR
’DWI’

R
’Brain’ OR
’Neuroimage’ OR
’Neuroimaging’

S ’EEG’ AND ’MEG’

Table 6.1: Detailed search strings used on the systematic review.

A major trend among the reviewed papers is the use of spectral-based GCNs,
with only a single paper employing spatial-based models [Kawahara et al., 2017]. The
spectral-based studies used either the ChebNet model [Defferrard et al., 2016] or its first-
order approximation, usually referred to as GCN [Kipf and Welling, 2016]. The choice
for spectral-based convolutions might be attributed to its straightforward implementation,
whereas spatial-based methods offer a greater variety of options for implementing message
passing mechanisms [Wu et al., 2020]. We follow these early works in our choice for a
spectral-based approach due to its dissemination in fMRI studies, robust implementation
and good performance on classification tasks.
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Graph Type Edges Nodes Citation

Connectivity

s-MRI s-MRI [Liu et al., 2020]

rs-fMRI rs-fMRI
[Ktena et al., 2017], [Arslan et al., 2018],
[Kim and Ye, 2020], [Zhang and Huang, 2019]
[Gadgil et al., 2020]

t-fMRI t-fMRI [Qu et al., 2021]

DWI DWI [Lee et al., 2019], [Hong et al., 2019],
[Kawahara et al., 2017]

DWI rs-fMRI [Yao et al., 2021], [Li et al., 2020]
s-MRI DWI [Zhang et al., 2019c], [Liu et al., 2017]

s-MRI rs-fMRI [Ktena et al., 2017], [Ma et al., 2018],
[Zhang et al., 2019b]

Population Phenotypic rs-fMRI

[Parisot et al., 2018b], [Kazi et al., 2019],
[Anirudh and Thiagarajan, 2017],
[Valenchon and Coates, 2019],
[Huang and Chung, 2020], [Jun et al., 2020]

Morphological s-MRI [Liu et al., 2019]

Table 6.2: Summary of graph modeling approaches identified in the literature. Abbreviations
refer to structural MRI (s-MRI), Diffusion Weighted Imaging (DWI), resting-state fMRI(rs-
fMRI) and task fMRI (t-fMRI).

Most studies investigate GCN applications to large open-source datasets, which
are commonly used to benchmark state-of-the-art methods. The ABIDE1 dataset, which
investigates autism spectrum disorder, is used in 6 studies. ADNI2, a dataset containing
scans from subjects afflicted by Alzheimer’s disease, is used in 5 studies, and TADPOLE3,
a subset of the ADNI dataset, is used in 2 studies. The UK Biobank4 (healthy adults) and
PPMI5 (Parkinson’s disease) datasets are used in 2 studies each. Three studies report the
use of the HCP dataset. One study uses data from the PNC6 dataset, which is composed of
fMRI scans of children. Use of private datasets are reported in 5 studies, with subject sample
sizes ranging from 42 to 167 subjects. The present work differs from the target studies in our
review in that we apply the same techniques to both private and open-source datasets. We
choose HCP as our open-source dataset for its large number of high-resolution multi-modal
images and its previous use for the fingerprinting task [Finn et al., 2015], allowing for direct
comparison to our methods.

Classification tasks using GCNs are divided into node-focused and graph-focused
(see Section 3.8.3). Table 6.2 summarizes the graph modelling approaches identified by our
literature review. Connectivity graphs refer to graphs that represent the human connectome,

1http://preprocessed-connectomes-project.org/abide/ (last accessed: March 2020)
2http://adni.loni.usc.edu (last accessed: March 2020)
3https://tadpole.grand-challenge.org/ (last accessed: March 2020)
4https://www.ukbiobank.ac.uk/ (last accessed: March 2020)
5https://www.ppmi-info.org/ (last accessed: March 2020)
6https://www.med.upenn.edu/bbl/philadelphianeurodevelopmentalcohort.html (last accessed: March 2020)
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with nodes representing brain ROIs and edges encoding their connectivity. The classification
of connectivity graphs constitute graph-focused tasks, where the goal is to predict the label
for whole graphs. Population graphs are assembled with subjects represented as nodes,
and edges connecting subjects according to their common characteristics. Most studies
use phenotypic variables (sex, age, genome) for that end, while one study reports use of
brain ROI morphology features such as such as grey matter volume, cortical thickness and
surface area. The classification of population graphs constitute node-focused tasks and
are usually performed in semi-supervised manner, with the goal of predicting the label of
individual nodes.

Both approaches are capable of achieving state-of-the-art performance for predic-
tion tasks, as reported by studies on the same dataset [Ktena et al., 2017, Parisot et al.,
2018b]. We opt for a graph-focused connectivity approach given our objective of generating
models that learn directly from cerebral network dynamics. Works comparing graphs con-
structed using different data modalities, such as resting-state fMRI only and graphs combin-
ing structural MRI as edge attributes and resting-state fMRI as node attributes [Ktena et al.,
2017] report no significant differences in predictive performance between both configura-
tions. As mentioned in Section 4.3, although we test different graph configurations, we focus
our efforts on graphs with a single modality due to their clearer interpretability and simplicity
of implementation.

The use of Spatio-Temporal GCNs for fMRI is first proposed for a graph-focused sex
classification task on the HCP and NCANDA 7 datasets [Gadgil et al., 2020]. The authors
use an architecture based on the original ST-GCN work [Yan et al., 2018] with a minor
alteration on the edge importance mechanism. Instead of computing edge importance for
each convolutional layers, a single edge importance matrix is attached to the adjacency
matrix and its weights are updated during the training phase. This model outperforms the
state-of-the-art with an accuracy of 83.6%. The visualizations generated from the edge
importance matrix highlight cerebral networks pertaining mostly to the visual cortex. The
ability to include temporal information in the graph convolution operation is a key feature
in the analysis of BOLD time-series. We reproduce the author’s approach on the HCP
dataset and apply an ST-GCN model to the ACERTA dataset, motivated by the reported
model performance and the result visualization potential it entails.

Siamese GCN models have been used for metric learning of binary classes on
the ABIDE dataset, achieving state-of-the-art performance for classification between autis-
tic subjects and healthy controls [Ktena et al., 2017] . The model uses binary positive and
negative pair labels during training, and the authors propose a constrained variance loss
function. This loss function operates similarly to contrastive loss (see Section 3.7.2, but in-
stead of acting on the Euclidean distances, it aims to maximize the mean similarity between
same-class examples and minimize it for examples of different classes, while constraining

7http://ncanda.org/data-analysis-core.php
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the variance for each class within a given threshold. The good results achieved by this ap-
proach on fMRI data combined by the successful uses of siamese models to face recognition
tasks [Chopra et al., 2005] serve as motivation for the application of a siamese model to the
subject fingerprinting task (see Section 4.2).

Subject fingerprinting is performed with remarkable results on the HCP dataset
using data from two resting-state sessions and four task sessions acquired in two following
days [Finn et al., 2015]. The authors compare subject’s connectivity matrices following the
assumption that matrices from the same subject will show increased Pearson’s correlation
values. Connectivity matrices are computed using both whole-brain and selected networks
data, and generating one matrix for each scan session, resulting in six examples per subject.
Each example is compared to every other example in the dataset, and the example pair
achieving highest Pearson’s correlation value is selected as the model’s prediction. The
reported accuracy for whole-brain data ranges from 92.9%-94.4% for resting state data and
from 54%-87.3% for combinations of task and resting-state data. When using only selected
networks for identification, accuracy ranged from 98%-99% on resting-state data and from
80%-90% for combinations of task and resting-state data.

Another relevant study performs fingerprinting between scan sessions separated
1.5 years apart [Jalbrzikowski et al., 2020]. The authors use SVM and Elastic net regression
classifiers to achieve accuracy of 89%-98% for both resting-state and task fMRI data. How-
ever, a feature selection method is applied that reproduces the approach of Finn et al. and
includes only the 5% most relevant edges as input to the classifiers. These results indicate
that novel fingerprinting approaches requiring less feature selection could provide relevant
insights and comparisons to the findings already reported in the literature.
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7. CONCLUSION

In this work, we applied GCN models on graph classification tasks using whole-
brain resting-state and task fMRI data from two datasets. Our results show that ST-GCN, a
spatial-temporal GCN model, consistently outperforms our baseline methods for binary clas-
sification, achieving state-of-the-art performance on the open-source HCP dataset. We em-
ploy ST-GCN in the investigation of reading disorders and cognition on the ACERTA dataset,
and provide analysis on the biomarkers identified by the network as relevant to each classi-
fication tasks through the edge importance mechanism.

The obtained results show that GCN models capable of processing temporal in-
formation have improved performance over strictly spatial models regarding the analysis of
BOLD signal data, to which the temporal component is key. We also show that time-series
window slicing data augmentation can aid models to compensate for low data availability,
improving classification performance. This improvement is shown by the comparisons made
to baseline CNN models that allow no augmentation, particularly in the reading performance
task, where the number of subjects is lowest. We validate our findings in the related liter-
ature, demonstrating that the proposed method constitutes a straightforward and effective
option for fMRI analysis, including with regard to datasets of reduced size. However, we
are not successful in our approach for subject fingerprinting, which performs worse than
previous methods.

Our contributions are: (1) The application and comparison of GCN and baseline
models in classification tasks using resting-state and task fMRI connectome data. (2) The
first application of spatial-temporal GCNs to task fMRI data. (3) Analysis and validation of the
biomarkers identified by the ST-GCN models regarding their relation to dyslexia and neural
development. (4) A demonstration of the applicability of geometric deep learning in the study
of multimodal brain connectomics in both small and large datasets.

Limitations

One practical limitation to the use of deep learning approaches in general by the
larger neuroimaging community is their relative complexity of implementation and posterior
analysis. Our approach only slightly alleviates the foremost concern regarding current state-
of-the-art models, although analysis is made remarkably simple through the edge impor-
tance mechanism. An important limitation to our approach is the use of the same adjacency
matrix for all examples, computed from the mean connectivity matrix across the subjects
in the training set. We believe using the ROI connectivity for each individual subject would
be essential for the fingerprinting task, where correlation between functional connectomes
alone has been shown to produce remarkable results for resting-state data [Finn et al., 2015].
GCN models that deal with dynamic graph structures could be investigated for that end.
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Regarding result reliability, although we remove ACERTA subjects presenting cor-
relations between task stimuli and movement from our analysis, we did not test whether
subjects could be classified based on their frame-to-frame motion rates, so that we can not
exclude the possibility that such artifacts affect our results. It should also be noted that al-
though we use data augmentation to synthetically increase our sample size and improve
classification performance, the augmentation does not change underlying data distributions,
so that our results are still susceptible to possible selection biases that can affect small
datasets [Neuhaus and Popescu, 2018].

Future Work

Our graphs are constructed using fMRI data for both node and edge attributes. Al-
though previous studies report no difference in classification performance when using graphs
constructed using structural or diffusion MRI as edge attributes [Parisot et al., 2018a], such
graph models could provide relevant insights from a neuroscientific perspective that lie out-
side the reach of the present work. To the best of our knowledge, no work in the literature has
applied GCNs to multi-modal graphs using task fMRI data. The use of behavioral or socioe-
conomic data could also be explored through regression tasks or graph modeling methods
allowing their inclusion. The original ST-GCN model employed a node partition mechanism
detailed in Section 3.8.2 that was not used in this work. We believe this mechanism could
be used to assimilate additional information, including non-neuroimaging data such as the
aforementioned behavioral and socioeconomic data, but also hypothesis-driven information
such as the presence of a node in a previously identified network.

As such, future work could investigate: (1) network architectures capable of pro-
cessing graphs with dynamic topologies [Pareja et al., 2019, Xu et al., 2020, Sankar et al.,
2019]; (2) graph construction using structural or diffusion MRI as edge attributes; (3) use
node partition strategies, as described in the original ST-GCN publication [Yan et al., 2018];
(4) inclusion of behavioral data.

Our findings point to ST-GCN architectures as powerful alternatives to 2D and 3D
CNNs for fMRI data analysis, providing state-of-the-art performance and explainable results.
We believe further studies employing this and similar methods can contribute with relevant
insights on the investigation of the varied aspects of brain structure and functionality emerg-
ing from the human connectome.
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