
ESCOLA POLITÉCNICA
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

MESTRADO EM CIÊNCIA DA COMPUTAÇÃO

EDUARDO HENRIQUE PAIS POOCH

PATHOLOGY LOCALIZATION ON CHEST
RADIOGRAPHS WITH LIMITED SUPERVISION VIA

SEMI-SUPERVISED MULTIPLE INSTANCE
LEARNING

Porto Alegre
2021



PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
SCHOOL OF TECHNOLOGY

COMPUTER SCIENCE GRADUATE PROGRAM

PATHOLOGY LOCALIZATION
ON CHEST RADIOGRAPHS

WITH LIMITED
SUPERVISION VIA
SEMI-SUPERVISED

MULTIPLE INSTANCE
LEARNING

EDUARDO HENRIQUE PAIS
POOCH

Master Thesis submitted to the Pontifical
Catholic University of Rio Grande do Sul
in partial fulfillment of the requirements for
the degree of Master in Computer Science.

Advisor: Prof. Rodrigo Coelho Barros

Porto Alegre
2021









EDUARDO HENRIQUE PAIS POOCH

PATHOLOGY LOCALIZATION ON CHEST
RADIOGRAPHS WITH LIMITED

SUPERVISION VIA SEMI-SUPERVISED
MULTIPLE INSTANCE LEARNING

This Master Thesis has been submitted in
partial fulfillment of the requirements for
the degree of Master in Computer Science,
of the Computer Science Graduate Program,
School of Technology of the Pontifical Catholic
University of Rio Grande do Sul

Sanctioned on March 25, 2021.

COMMITTEE MEMBERS:

Prof. Dr. Julien Cohen-Adad (DEE/PolyMtl)

Prof. Dr. Felipe Rech Meneguzzi (PPGCC/PUCRS)

Prof. Rodrigo Coelho Barros (PPGCC/PUCRS - Advisor)





ACKNOWLEDGMENTS

This research was conducted within a project supported by the Brazilian Informatics
Law (Law nº 8.248 of 1991) and was developed over Agreement 001/2015 between Pontifícia
Universidade Católica do Rio Grande do Sul and HP Brasil Indústria e Comércio de Equipa-
mentos Eletrônicos Ltda.

Research supported by HP Brasil Indústria e Comércio de Equipamentos Eletrônicos
Ltda. using financial incentives of IPI refund reggarding the Law (Law nº 8.248 of 1991)





LOCALIZAÇÃO DE PATOLOGIAS EM RADIOGRAFIAS DE

TÓRAX COM SUPERVISÃO LIMITADA VIA APRENDIZADO DE

MÚLTIPLAS INSTÂNCIAS SEMI-SUPERVISIONADO

RESUMO

Radiografias são exames primários para a avaliação das condições do tórax. Na prática
clínica, vem se popularizando a utilização de abordagens de aprendizado profundo para apoiar
radiologistas no processo de tomada de decisão visando aumentar a acurácia diagnóstica. Para
dar suporte adequado aos radiologistas, é insuficiente um modelo que simplesmente infere um
rótulo diagnóstico. Idealmente, o modelo deve fornecer mais informações para apoiar o resultado
da classificação, como a localização espacial do achado radiológico. Para treinar adequadamente
modelos de aprendizado profundo, geralmente é necessário utilizar muitos dados anotados. Há
uma grande quantidade de imagens de radiografias de tórax disponíveis publicamente, anotadas
de acordo com a presença de achados radiológicos, mas poucas contêm uma anotação com a
localização desses achados. O objetivo deste trabalho é utilizar a quantia limitada de dados
anotados e a vasta quantia de dados não anotados para melhorar o desempenho de métodos de
localização automática de patologias em radiografias de tórax. Identificamos o estado-da-arte
de métodos semi-supervisionados e avaliamos seu desempenho em um cenário de classificação.
Em seguida, estendemos o melhor método, Mean Teacher, para realizar a tarefa de localização
em um framework de aprendizado de múltiplas instâncias, introduzindo nosso método C-MIL.
Nesse paradigma, existem dois tipos de rótulos: um rótulo geral que é conhecido, e um rótulo
mais específico e desconhecido mas que é relacionado ao conhecido, no caso, a presença de
patologia e sua localização. Os resultados mostram melhorias na aplicação de regularização de
consistência em um cenário de localização por meio de aprendizado de múltiplas instâncias e
demonstram que os métodos de aprendizado semi-supervisionado são promissores para o avanço
do desempenho de métodos de localização automática de patologias em imagens médicas.



Palavras-Chave: aprendizado profundo, imagens médicas, aprendizado semi-supervisionado,
aprendizado de múltiplas instâncias.



PATHOLOGY LOCALIZATION ON CHEST RADIOGRAPHS

WITH LIMITED SUPERVISION VIA SEMI-SUPERVISED

MULTIPLE INSTANCE LEARNING

ABSTRACT

Radiographs are the primary examination for diagnosing chest conditions, and yet they
are frequently misread/misdiagnosed due to human-observer confusion. In clinical practice,
there is an increase of deep learning approaches to support radiologists on the decision-making
process to improve diagnostic accuracy. To properly support radiologists, it is insufficient for the
system to simply output a diagnosis label. Ideally, the model should provide more information
to support the classification result, such as the spatial localization of the finding. To properly
train deep learning models, we usually need lots of annotated data. There is a vast amount
of publicly-available chest radiographs labeled according to their radiological findings (labels
for classification), but very few contain a location annotation. Our goal is to extend the use
of unlabeled data to improve pathology localization in chest radiographs in a scenario with
limited labeled data. We identify state-of-the-art semi-supervised methods and evaluated their
performance on a classification scenario. Next, we extend the best method, Mean Teacher, to
perform localization within a multiple instance learning framework, introducing our method
C-MIL. Multiple instance learning is a paradigm with two types of labels: a general label
that is known, and a more specific and unknown label but related to the one known, in our
case, pathology presence and its localization. Our results show improvements of applying
consistency regularization over a multiple instance localization framework and demonstrate that
semi-supervised learning methods are promising to advance the state-of-the-art performance of
pathology localization methods.

Keywords: deep learning, medical imaging, semi-supervised learning, multiple instance learn-
ing.
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1. INTRODUCTION

Lung cancer is the first cause of cancer death in several countries [2], affecting both
developed and emerging nations. Global 5-year survival rates vary between 10% and 20% [2].
The lack of effective early-detection methods is one of the main reasons for its poor progno-
sis [20]. Lung cancer signs are mostly identified through imaging exams, which are examined
by the doctor specialist on medical imaging analysis, the radiologist.

Since the prognosis is better in earlier stages [41], missing to diagnose lung cancer in
imaging exams is a great concern among radiologists. In 90% of the times, the misdiagnosis
occurs on chest radiographs, mostly due to observer error [13]. There are stated cases [57] in
which the radiography presented early-stage cancer signs that were overlooked when the cancer
was still resectable. One way to overcome this issue is by automated medical image analysis
methods, which might improve diagnostic accuracy and early-detection rates of lung cancer,
leading to a better prognosis [41].

1.1 Radiographs

Radiography is a common exam to diagnose chest conditions since it is a low-cost,
fast, and widely available imaging modality [14]. A Computed Tomography is an improvement
over X-rays, providing more rich information to the radiologist, though exposing the patient
to about 350 times more ionizing radiation [38], besides being costly, and of lower availability,
especially considering third-world public health systems and low-income regions. Therefore,
extracting as much information as possible from the radiography is vital.

Abnormalities identified on radiographs are called radiological findings. The radiolo-
gist reports the identified radiological findings on a text-based radiological report. In a chest
radiograph, the radiological findings manifest as areas of high density, which appear on the
radiograph as lighter shades, or as areas of low density, which appear as darker shades. The re-
ported findings usually indicate a known pathology or condition. For instance, the appearance
of lung lesions, consolidations, or atelectases, might indicate lung cancer [12]. We exemplify
some chest radiological findings in Figure 1.1.

1.2 Automated Diagnosis

With the digitization of radiology, computer-aided diagnosis systems can be integrated
into the radiological practice workflow, providing support via automated diagnosis tools. The
development of automated diagnosis methods involves knowledge from software development,
digital image processing, and machine learning. These consist of the main areas that form
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Atelectasis Cardiomegaly Effusion Infiltration

Mass Nodule Pneumonia Pneumothorax

Figure 1.1: Chest radiographs annotated with 8 different radiological findings. Images and
annotations from the ChestX-ray14 dataset [63].

computer vision, an area of science that seeks to provide machines the ability to describe and
interpret digital images automatically.

Automated diagnosis tools might deal with classic computer vision problems, such
as image classification, object detection, and segmentation, which are usually solved by image
feature extraction and classification algorithms. Some of the methods used for medical image
classification are decision trees, linear classifiers, and artificial neural networks [1]. Convolu-
tional neural networks and other deep learning methods are becoming the method of choice for
most medical imaging applications in recent years [35], mostly due to its high performance in
image classification when a large amount of data is available for training, achieving radiologist-
level performance on some tasks such as pneumonia detection [49].

1.3 Research Problem

To train deep learning models in a supervised fashion, we need a significant amount
of training data. However, as it happens in most medical imaging scenarios [35], there is a lack
of available annotated data. Although public datasets provide over 700, 000 chest radiographs
labeled with radiological findings [63, 22, 24], only a small amount of those (880) are annotated
with the findings localization. Classification labels are becoming increasingly easier to obtain
since we can automatically extract them using natural language processing algorithms on ra-
diological reports. In contrast, the localization label needs to be manually annotated by an
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expert, which is an expensive and time-consuming task. Our problem thus consists of training
deep learning models to locate pathology patterns on radiographs using limited localization
supervision but abundant samples with classification labels (presence or absence of radiological
findings).

In this dissertation, we propose to extend a deep neural architecture for pathology
localization on chest radiographs trained with limited annotated data to better use the available
non-annotated samples through semi-supervised learning methods. Multiple instance learning
is a paradigm that learns from two types of labels: a general bag label that is known, and
a more specific and scarce instance label related to the bag label. Since we have a large
number of samples labeled regarding pathology presence, we can replicate a multiple instance
learning scenario in which the bag labels are pathology presence, and the instance labels are
pathology localization. The instance labels are mostly unknown, as the available public datasets
contain only 984 bounding box annotations. The bag labels, however, are widely available
(≈ 700, 000samples). We intend to adapt a state-of-the-art semi-supervised approach to a
multiple instance learning framework by assuming that each bag Xk comprises instance-labeled
samples Lk and bag-labeled samples Uk. Then, to predict instance-level labels, we can train
a model that learns both from instance-labeled samples and is leveraged by the remaining
unlabeled samples of each bag Xk.

1.3.1 Research Question and Hypothesis

Can state-of-the-art semi-supervised methods be adapted to a multiple instance learn-
ing scenario to perform pathology localization on chest radiographs? We hypothesize that the
proposed approach will improve the performance of chest radiograph pathology localization
methods since there is a limited amount of annotated data available for supervised training.
We also expect that the proposed approach will be extendable to similar problems, such as
localization of pathologies in other medical imaging modalities and general object detection.

1.3.2 Goals

Our general goal is to improve automated pathology localization on chest radiographs
using limited localization supervision by leveraging state-of-the-art semi-supervised learning
methods to perform multiple instance learning. Our three specific goals are:

1. To explore the available public datasets annotated for chest radiograph classification, and
how they relate to each other in terms of generalizability and representativeness. The
experiments and findings on this matter are described in Chapter 4.
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2. To identify the state-of-the-art approaches regarding pathology localization on chest ra-
diographs and semi-supervised learning. Following, to benchmark the identified semi-
supervised learning methods on a chest radiograph classification scenario. The experi-
ments and findings on this matter are described in Chapters 3 and 5.

3. Finally, to investigate how the top semi-supervised learning method can be adapted for
the task of localization and to a multiple instance learning scenario. Then, implement,
evaluate and report the results of the proposed approach. The experiments and findings
on this matter are described in Chapter 6.
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2. BACKGROUND

2.1 Machine Learning

Machine learning is a subfield of Artificial Intelligence focused in researching how
to develop computer programs that automatically improve based on experience [40]. Machine
learning algorithms are mathematical models that learn to represent a certain distribution based
on available data. A dataset is composed of instances; in supervised learning, each instance
has a set of attributes or features, which are the input of the model, and an associated label,
which is the output. To validate machine learning models, usually, we split the dataset into
train, validation, and test sets. We use the train set to fit the model so the approximated
function can map the feature distribution to the associated label; the validation set is used to
tune hyperparameters based on the model’s performance; and the test set is used as proxy to
unseen data, so we can check the model’s capability to generalize to new input data.

Concerning learning paradigms, we traditionally divide machine learning algorithms
into three categories: supervised, unsupervised and reinforcement learning. In supervised learn-
ing, each training sample has an associated known label, and the goal is to infer this label on
unknown inputs. In unsupervised learning, the training samples are unlabeled, and the rely
on the data distribution alone to infer the underlying structure of the data. Usually, a large
amount of training samples increase the model performance and generalization ability since
the learned function is a better approximation of the real distribution we aim to represent. In
scenarios where there is a lack of labeled data, which is the case in medical imaging, to achieve
better results we must exploit approaches that go beyond traditional supervised learning, such
as semi-supervised learning, and multiple instance learning [9]. Figure 2.1 illustrates the three
different learning paradigms.

Supervised	learning

Modeltrain

Labeled	data

Unknown	
sample

Predicted
labels

Semi-supervised	learning

ModelLabeled	data

Unknown	
sample

Predicted
labels

Unlabeled	data

train

train

Multiple-instance	learning

Model

Predicted
instance
labels

Bag	labels

Associated
instance	labels

train

train

Predicted
bag
labels

Unknown	
sample

Figure 2.1: Chest pathology localization using three different learning paradigms: supervised,
semi-supervised, and multiple instance learning.
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2.1.1 Supervised Learning

In the supervised learning approach, the model learns based on known annotated
examples. As the system is presented with input and output variables in the training set, it
seeks to create a model that represents this data distribution. Then, this model is extrapolated
to infer the output variable of an unseen input sample. Formally, the training data comprises
samples {x1, x2 . . . , xn} , xi ∈ X along with their corresponding labels {y1, y2 . . . , yn} , yi ∈ Y .
We use the training set in order to model function f(x) : X → Y , where X is the s-dimensional
feature space and Y is the C-dimensional label space. Through function f(x) (sometimes
referred to as m(x)) we can predict the labels of previously unseen samples.

2.1.2 Semi-Supervised Learning

Semi-supervised learning is a learning paradigm intersecting supervised and unsuper-
vised learning. In this scenario, besides labeled samples L = {x1, x2 . . . , xn} we also have
unlabeled samples U = {u1, u2 . . . , un} that are also within the feature space X but whose out-
put labels within label space Y are unknown [67]. We can use U in the training set alongside
L in order to improve the modeling of the function m(x) : X → Y . Intuitively, the unlabeled
samples provide important clues on the data distribution based on sample similarity and they
help to add robustness to the model by exploring this distribution [48].

Semi-supervised learning methods are mainly based on three assumptions: smooth-
ness, low-density, and manifold [61]. The smoothness assumption states that if two samples
x1 and x2 are close in the feature space, their labels y1 and y2 are probably the same. The
low-density assumption states that the decision boundary of a classifier probably does not pass
through high-density areas of the feature space. Finally, the manifold assumption says that
samples located on the same low-dimensional feature space manifold probably have the same
labels.

2.1.3 Multiple Instance Learning

In a multiple instance learning scenario, the training set consists of bags of samples
{X1, X2 . . . , Xc} along with bag labels {Y1, Y2 . . . , Yc}. The samples from Xi {xi1, xi2 . . . , xin}
have associated labels {yi1, yi2 . . . , yin} that are somehow related to the bag label Yi [4]. For
instance, in a chest radiograph scenario we can assume that bag labels Yi indicate pathology
presence and sample labels yij indicate pathology location. Bag Xi contains all images positive
for a particular pathology. Considering there are 14 pathologies in the dataset (c = 14), there
are 14 different sets of bags Xi and 14 possible bag labels Yi. In our dataset [63], all samples
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have bag labels Yi, but only a few of them have a known label yij. Therefore, we can exploit
this scenario as a special case of semi-supervised learning.

2.2 Deep Learning

One important aspect of machine learning projects is defining how to represent previ-
ous experience as information within a dataset. Conventional machine learning methods usually
require a domain expert to define the features that must be extracted to represent the desired
target in an initial step of the project called feature engineering. With deep learning methods,
models learn not only the underlying function that maps data to desired output, but also the
data representation with multiple levels of abstraction [29]. Deep learning models have pro-
cessing layers that automatically extract features from raw data, advancing the state-of-the-art
in many data processing tasks such as image recognition [27], speech recognition [19], genomic
data analysis [32], and machine translation [62].

2.2.1 Artificial Neural Networks

Artificial neural networks are an example of biologically-inspired machine learning
method. McCulloch and Pitts [39] first introduced the model of an artificial neuron in 1943.
Current neural networks have multiple layers of artificial neurons and a large number of con-
nections between them, being able to model any computable function. In fully-connected
feedforward networks with L layers, each layer l(i) has a weight matrix Θ(i) which is multiplied
with an input vector a(i) resulting in z(i+1). Then, its activation values are computed through
an activation function g(z(i+1)) outputting a(i+1), which is used as input to the following layer
or as the model’s result y for the case case i+ 1 = L.

Activation functions allow the existence of non-linearities in the model, which ulti-
mately gives the neural networks expressiveness to approximate complex non-linear functions.
A common activation function is the logistic sigmoid (Equation 2.1). The sigmoid output values
are in the range [0, 1], saturating to 0 when the input becomes very negative and to 1 when
it becomes very positive. Its output value can represent a firing rate of a neuron or a class
probability.

σ(z) =
1

1 + e−z
(2.1)

Current deep learning architectures mostly implement the Rectified Linear Unit (ReLU)
activation function (Equation 2.2) or its variations, mostly because it does not involve compu-
tationally expensive operations and also accelerates the optimization convergence time [27].
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ReLU(z) = max(0, z) (2.2)

The learning process of artificial neural networks is done by optimizing the weights
to minimize a loss function computed over training data. The weights are randomly initialized
and iteratively updated in the negative gradient direction of the loss function with a pre-defined
step size called learning rate. For classification problems, a common loss function is the binary
cross-entropy loss (Equation 2.3). It is computed over all n samples, for samples with positive
ground-truth labels (yi = 1), it adds the log of the model output probability m(xi), and for
samples with negative labels (yi = 0), it adds log(1 − m(xi)), returning a high output for
predictions far from its true value, and a low output for predictions close to the ground-truth.

BCE(m(xi), yi) = − 1

n

n∑
i=0

yi log (m(xi)) + (1− yi) log (1−m(xi)) (2.3)

2.2.2 Convolutional Neural Networks

A digital image is represented through a matrix of bytes I. We call each element
of this matrix a pixel. In a grayscale image, the value in each pixel represents its gray-level
intensity. The most common representation approach is to assume that the lowest intensity
value represents the black color, and the highest one represents the white color. The image
resolution is the size of matrix I; let h be the number of rows and w the number of columns,
the image has a total of h× w pixels.

Convolutional neural networks are one of the most successful deep learning meth-
ods [29], achieving state-of-the-art results in several medical image analysis tasks [35]. Instead
of performing matrix multiplication between inputs and weights, convolutional neural networks
exploit spatially-local correlations by using a mathematical operation called convolution, which
leads to local connections between neurons of adjacent layers and shared weights [30]. Each
convolutional layer has matrices of weights, also called filters or kernels, that are convolved
with the inputs. Each resulting matrix is called a feature map. Convolutional layers’ filters are
optimized during the training process to learn the best features to represent the desired output.

2.2.3 Regularization

Overfitting is a common problem with machine learning algorithms. It happens when
models perform well on training data but do not generalize well to unseen inputs like the
validation or test sets. Regularization strategies are modifications made in a learning algorithm
in order to reduce its generalization error [17]. One regularization strategy is adding extra terms
in the objective (loss) function in order to apply constraints or penalties over the parameter
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values (magnitude). Weight decay regularization adds the sum of all weights to the loss function,
making the optimizer deal with the trade-off of fitting the training data and keeping the weights
with low values, resulting in a smoother (potentially less-complex) decision boundary.

Dataset augmentation is another popular regularization technique that has been proved
highly effective on computer vision tasks [17]. It consists of creating fake data points by apply-
ing a transformation φ(·) over training instances xi and training the model with φ(xi) and their
original label yi. When working with images, we can apply random image transformations like
translation, rotation, scaling, and horizontal flips, or apply small random noises (jittering) by
changing pixel values.

2.3 Object Detection

2.3.1 Localization as Regression

Considering a single-object scenario, localization can be seen as a merge of both classi-
fication and regression. Instead of outputting a class label y, a regression model can output four
values indicating the bounding-box coordinate that contains the desired object. We can imple-
ment this approach by making an output layer with four parameters and training the model
with the ground-truth bounding box using a standard regression loss (e.g., mean squared error).

A limitation of this approach is that it becomes impractical when we have a scenario
with multiple objects that can appear multiple times within a single image. Since the number
of objects vary, it is not possible to define a fixed output layer, making this approach only
convenient when the problem has a fixed number of objects.

2.3.2 Activation maps

To provide localization on a classification framework, we can explore visual explanation
methods such as Gradient-weighted Class Activation Mapping (Grad-CAM) [56]. Grad-CAM
generates heat maps using the gradients flowing from the final convolutional layer, which shows
how significant each part of the input image is for the classification result. With this approach,
we do not need the bounding box annotations, since we perform localization in a weakly-
supervised manner by using only the classification labels.

One can use the highest activation region for a certain class and design a bounding
box assuming it to be the object localization. We can implement it in a very straightforward
way with only classification labels, as Grad-CAM does not use localization labels. However, it
can be misleading since wrong classes can still produce high activation values on image regions,
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as shows [53], which states that these approaches mostly explain where the network is looking,
even if the class used to generate the activation map is not correct.

2.3.3 One-stage Approaches

Currently, computer vision research has two main lines of state-of-the-art approaches
on object detection: one-stage, and two-stage detectors. One-stage detectors compute object-
ness score, classification, and location regression in the same stage. Popular one-stage detectors
are SDD [34] and YOLO [50]. For instance, YOLO detects scene objects by dividing the image
into a grid and predicting for each cell a score of conditional class probability. Then, places a
set of anchor boxes, which have their sizes learned based on the training set annotations, in each
grid cell, and a final bounding box to maximize the object classification confidence suppressing
similar boxes.

2.3.4 Two-stage Approaches

Two-stage detectors are mainly based on the original R-CNN approach [16], like Fast
R-CNN [15], and Faster R-CNN [51]. These approaches first generate regions of interest (region
proposals), and then compute the class score probabilities for each proposal, adjusting the
bounding boxes using regression. Faster R-CNN [51] introduces a neural network to propose
the regions of interest to perform the first stage, reducing the inference time of the detector.
The region proposal network outputs image regions and preserves the top candidates based on
objectness scores. It makes the region proposal also differentiable, being trained end-to-end
with the object classifier and the bounding box regressor.

Usually, two-stage approaches perform better on object detection. However, one-
stage detectors are easier to train and have lower inference time, being more suited to real-time
applications. Usually, both approaches need to be trained with a large amount of annotated
data to perform well.

2.4 Evaluation

2.4.1 Metrics

The evaluation of localization approaches relies on the intersection between the predic-
tion m(xi) with the ground-truth yi to decide whether a prediction is correct. The intersection
over union (IoU) metric is shown in Equation 2.4. IoU is a ratio computed by dividing the
area of overlap |m(xi) ∩ yi| with the area of union |m(xi) ∪ yi| of the two bounding boxes. An
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IoU of 1.0 indicates that the predicted region is exactly the same as the ground-truth region.
The Intersection over the detected region (IoR), which may also be called Intersection over
the detected bounding box (IoBB), is defined in Equation 2.5. The IoR ratio is also a value
between 0 and 1, and it is computed by dividing the area of overlap |m(xi) ∩ yi| with the area
of the detected region or bounding box |m(xi)|. An IoR of 1.0 means that the predicted region
is completely inside the ground-truth region.

If a prediction’s IoU or IoR with the ground-truth is above a given threshold T (·),
the prediction is considered correct, and we can compute the model’s accuracy by dividing the
number of correct predictions with the total number of instances n, as shows Equation 2.6,
considering each instance has one object.

IoU(m(xi), yi) =
|m(xi) ∩ yi|
|m(xi) ∪ yi|

(2.4)

IoR(m(xi), yi) =
|m(xi) ∩ yi|
|m(xi)|

(2.5)

Accuracy =
1

n

n∑
i=1

1 (IoU (m (xi) , yi) > T (IoU)) (2.6)

Another evaluation measure proposed to be used in weakly-supervised scenarios [66]
is the point localization accuracy. This measure is computed for each class of the dataset, being
a ratio of the hits and misses of the proposed heatmap. A hit is counted if the highest scoring
pixel is inside of the bounding box, otherwise that prediction was a miss. The point localization
accuracy value for that class is then computed, as shown in Equation 2.7, by dividing the total
number of hits by the sum of hits and misses.

Point localization accuracy =
#Hits

#Hits+ #Misses
(2.7)

2.4.2 Cross-validation

When limited labeled data is available, which is the problem we are facing, a common
approach to validate model performance is to perform k-fold cross-validation. The general
procedure is to split the data into k different groups and then train and test the model k
times, each time with a different group as test set. Finally, we compute the k tests average
accuracy (or simply add the total amount of true positives, false positives, true negatives and
false negatives).
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3. RELATED WORK

Current methods that exceed average radiologist performance [5, 33, 49] are multi-label
classification approaches using convolutional neural networks trained with a large amount of
data to output diagnosis labels. Network architectures that have the best reported performance
on chest radiographs are ResNet-50 and DenseNet-121 [5]. Though performing radiologist-level
classification, their reported localization performance is still unsatisfactory [63]. Table 3.1
summarizes the top accuracies with different IoU thresholds from four different approaches of
pathology localization on the ChestX-ray14 dataset [63].

Table 3.1: Reported results of four approaches for radiological finding localization on the
ChestX-ray14 dataset [63]. Missing values (-) were not reported on the original papers.

T(IoU) Model Atelectasis Cardiomegaly Effusion Infiltration Mass Nodule Pneumonia Pneumothorax Mean

0.1

Wang et al. [63] 0.69 0.94 0.66 0.71 0.40 0.14 0.63 0.38 0.57
Li et al. [33] 0.71 0.98 0.87 0.92 0.71 0.40 0.60 0.63 0.73
Liu et al. [36] - - - - - - - - -

Rozenberg et al. [52] 0.78 1.00 0.84 0.95 0.71 0.44 0.92 0.73 0.80

0.3

Wang et al. [63] 0.24 0.46 0.30 0.28 0.15 0.04 0.17 0.13 0.22
Li et al. [33] 0.36 0.94 0.56 0.66 0.45 0.17 0.39 0.44 0.49
Liu et al. [36] 0.53 0.88 0.57 0.73 0.48 0.10 0.49 0.40 0.53

Rozenberg et al. [52] - - - - - - - - -

0.5

Wang et al. [63] 0.05 0.18 0.11 0.07 0.01 0.01 0.03 0.03 0.06
Li et al. [33] 0.14 0.84 0.22 0.30 0.22 0.07 0.17 0.19 0.27
Liu et al. [36] 0.32 0.78 0.40 0.61 0.33 0.05 0.37 0.23 0.39

Rozenberg et al. [52] - - - - - - - - -

0.7

Wang et al. [63] 0.01 0.03 0.02 0.00 0.00 0.00 0.01 0.02 0.01
Li et al. [33] 0.04 0.52 0.07 0.09 0.11 0.01 0.05 0.05 0.12
Liu et al. [36] 0.18 0.70 0.28 0.41 0.27 0.04 0.25 0.10 0.29

Rozenberg et al. [52] - - - - - - - - -

Wang et al. [63] introduce the ChestX-ray14 dataset and propose a method to predict
bounding boxes based on activation heat maps of a convolutional neural network trained for
classification. The top activation values on the heatmap are considered to be the pathology
location. The use of only activation heat maps for localization is not reliable and might be
misleading [53]. The predictions are compared with manually-labeled samples with different
threshold values for considering a correct prediction. With a threshold T (IoU) = 0.1, it achieves
a mean accuracy of 0.57, the lowest one being 0.14 for nodule location and the highest one 0.94

for cardiomegaly. Using a threshold T (IoU) = 0.7, the mean accuracy decreases to 0.01.

Li et al. [33] improve the work in [63] by exploiting bounding-box supervision. To
locate the pathologies, they handle images as groups of patches, treating each patch as a classi-
fication target. To train a model with limited annotated data, they propose a multiple instance
learning framework that assumes during training that if an image is labeled positive for a
pathology, then there is at least one positive patch on the image. They achieve a mean accu-
racy of 0.73 with T (IoU) = 0.1, ranging from 0.40 for nodule location to 0.98 for cardiomegaly
location. When testing with T (IoU) = 0.7 the mean accuracy falls down to 0.12.
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Liu et al. [36] propose a novel approach called Contrast-Induced Attention Network
(CIA-Net), which is trained on a multiple instance learning framework to perform pathology
localization. The images are geometrically aligned via a learnable alignment module to maintain
radiographs’ structural consistency, and an attention branch generates attention for every class
based on paired positive and negative images for that finding. Their reported results overcome
[33] in most findings and mean accuracy, achieving a mean of 0.29 using T (IoU) = 0.7 with 80%

of the annotated images and 50% of the unannotated images, showing an evident improvement
over previous studies at a higher T (IoU).

Rozenberg et al. [52] perform localization with limited annotation with two contribu-
tions. A novel loss function to combine labeled and weakly labeled data, and the incorporation
of conditional random field layers and anti-aliasing filters on the network architecture to ac-
count for patch dependency and shift-invariance. The reported results outperform [33] with
T (IoU) = 0.1, achieving a mean accuracy of 0.80, but the authors do not report accuracies on
other IoU thresholds, so it is not fully comparable to Li et al. [33] and Liu et al. [36] approaches.

Table 3.2 summarizes the related work and contextualize our proposed approach
among the previous studies. We propose to extend previous work by introducing a new
paradigm to the multiple instance localization scenario. By introducing semi-supervised learn-
ing we can make more use of the classification labeled samples and extend the model to learn
from unlabeled samples from other sources. In the next chapters, we will discuss our work and
present our experimental analyses for validating our research hypothesis.

Table 3.2: Summary of the contributions of the related work and a comparison to our proposal.

Method Paradigm Contribution

Wang et al. [63] Weakly-supervised learning Introduces the ChestX-ray14 dataset and proposes a
baseline solution on localization by using activation
heatmaps of a model trained only on classification
labels.

Li et al. [33] Multiple instance learning Introduces a multiple instance architecture for the
localization problem that uses both classification and
localization labels during training.

Liu et al. [36] Multiple instance learning Extends the architecture proposed by [33] adding
pathology attention maps and an alignment module
to standardize the positioning of input samples.

Rozenberg et al. [52] Multiple instance learning Extends the architecture proposed [33] adding anti-
aliasing filters and conditional random field layers
and proposes a different loss function.

C-MIL (our approach) Semi-supervised
multiple instance learning

Extends the architecture proposed by [33] introduc-
ing semi-supervised learning mechanisms that make
use of unlabeled data during training.
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4. DOMAIN SHIFT ANALYSIS

In this chapter, we analyze the available chest radiograph classification datasets in
order to evaluate which of the datasets are the most representative of the others and to assess
the generalization ability of a deep learning model outside its domain of training in a med-
ical imaging scenario. The experiments of this chapter resulted in the work “Can we trust
deep learning based diagnosis? The impact of domain shift in chest radiograph classification”
published in MICCAI’s International Workshop on Thoracic Image Analysis [45].

4.1 Context

Considering chest radiographs, deep learning approaches are usually developed within
a multi-label classification scenario, predicting radiological findings to assist physicians with
the diagnosis process. Recent work in the field achieved near radiologist-level accuracy at
identifying radiological findings using convolutional neural networks [49].

One assumption underlying deep learning models is that training and test data are
independent and identically distributed (i.i.d). This assumption often does not hold when data
come from different settings. This is a common case for medical imaging, a scenario in which
image acquisition protocols and machines may vary among diagnostic centers, being defined
by the quality of the machine, its parameters, and the acquisition protocol. Another aspect
of medical imaging is the epidemiological variation among different populations, which may
change the label distribution in different datasets. This difference in data distribution from the
same task is called domain shift. The domain from where training data is sampled is the source
domain, with distribution p(Xs), and the one where the model is applied to is the target domain,
with distribution p(Xt). When p(Xs) ∼ p(Xt), it means that the model will most likely handle
test data the same way as it did in training. As p(Xs) diverges from p(Xt), trained models
tend to yield poor results, failing to effectively handle the input data [60]. Figure 4.1 shows a
sample image labeled for “Consolidation” in four different chest radiograph datasets.

ChestX-ray14 CheXpert MIMIC-CXR PadChest

Figure 4.1: Example of a chest radiograph (positive for consolidation) randomly sampled from
each of the four analyzed datasets: ChestX-ray14, CheXpert, MIMIC-CXR, and PadChest.
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In the analysis of this chapter, we evaluate how well models trained on a hospital-scale
database generalize to unseen data from other hospitals or diagnostic centers by analyzing the
degree of domain shift among four large datasets of chest radiographs. We train a state-of-the-
art convolutional neural network for multi-label classification on each of the four datasets and
evaluate each model’s performance in predicting labels on the other three datasets.

4.2 Chest Radiographs Datasets

Four large datasets of chest radiographs are available to this date. ChestX-ray14 [63]
from the National Institute of Health contains 112, 120 frontal-view chest radiographs from
32, 717 different patients labeled with 14 radiological findings and with 984 manually annotated
bounding boxes on 880 different images for 8 of the 14 findings. CheXpert [22] from the Stanford
Hospital contains 224, 316 frontal and lateral chest radiographs of 65, 240 patients. MIMIC-
CXR [24] from Massachusetts Institute of Technology presents 371, 920 chest X-rays associated
with 227, 943 imaging studies from 65, 079 patients. Both CheXpert and MIMIC-CXR are
labeled with the same 14 observations. PadChest [8] contains 160, 000 images obtained from
67, 000 patients of San Juan Hospital in Spain. The radiographs are labeled with 174 different
findings. Most labels from all four datasets are automatically extracted using natural language
processing algorithms on the radiological reports.

We show the pixel intensity distribution of each dataset in Figure 4.2. We see a spike
at low intensities (especially 0) for most centers. However, the distribution for higher intensities
is somewhat different for every center, which may imply in a decrease of the models’ predictive
performance, except for CheXpert and MIMIC-CXR, which show similar distributions. Fig-
ure 4.3 shows the average radiograph of each dataset (computed using 10, 000 random samples),
in which we can see small differences in pixel intensity and that a common artifact appears
on the top left corner of PadChest radiographs. Another difference that might cause domain
shift is that PadChest labels are extracted from reports in Spanish, while the other three are
extracted from reports in English.

4.3 Experiment design

We employ a multi-label classification approach reproducing CheXNet [49], which
achieved state-of-the-art results in classification of multiple pathologies using a DenseNet121
convolutional neural network architecture [21]. The model is pre-trained on the ImageNet
dataset, and the images are resized to 224 × 224 pixels and normalized using ImageNet mean
and standard deviation. We train four models, one for each dataset, and subsequently evaluate
our model at the other three. Each model is trained with the training set and evaluated on
its own test set and the other three test sets. The four datasets have the same train, test, and
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Figure 4.2: Dataset pixel intensity probability density function (PDF) of the four datasets.

validation sets across the experiments. For the ChestX-ray14 dataset, we use the original split,
but since CheXpert and MIMIC-CXR test sets are not publicly available and PadChest does not
have an original split, we randomly re-split their data, keeping ChestX-ray14 split ratio (70%
train, 20% test, and 10% validation) and no patient overlap between the sets. Table 4.1 shows
the frequency of the labels in each training and test split. As both CheXpert and MIMIC-CXR
have labels for uncertainty, we assumed these labels as negatives (U-Zeros approach in [22]).

ChestX-ray14 CheXpert MIMIC-CXR PadChest Mixed

I II

III IV

Figure 4.3: Average image of each of the four datasets. Last image contains 1/4 of each average
image to better visualize the pixel intensity differences (I - ChestX-ray14, II - CheXpert, III -
MIMIC-CXR, IV - PadChest).

One limitation we encountered is that the datasets have distinct sets of labels between
each other. We fix this by training each model with all labels available, but reporting the results
only on the common labels for all four (Atelectasis, Cardiomegaly, Consolidation, Edema,
Lesion, Pneumonia, Pneumothorax, and No Finding). We create a “Lesion” label on ChestX-
ray14 by joining the samples annotated as “Nodule” or “Mass”. For PadChest, we joined labels
that can fit into the 8 common findings, (i.e. “Atelectasis Basal”, “Total Atelectasis”, “Lobar
Atelectasis”, and “Round Atelectasis” were merged into “Atelectasis”). Another limitation is
that ChestX-ray14 has only frontal X-rays. Therefore, we only use the frontal samples from the
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Table 4.1: Positive label frequency (in number of radiographs) in the training and test split for
each dataset.

Atelectasis Cardiomegaly Consolidation Edema Lesion Pneumonia Pneumothorax No Finding

Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

ChestX-ray14 7,996 2,420 1,950 582 3,263 957 1,690 413 7,758 2,280 978 242 3,705 1,089 42,405 11,928
CheXpert 20,630 6,132 15,885 5,044 9,063 2,713 34,066 10,501 4,976 1,411 3,274 935 12,583 3,476 12,010 3,293

MIMIC-CXR 34,653 10,071 34,097 9,879 8,097 2,430 20,499 5,954 5,025 1,341 12,736 3,711 8,243 2,231 58,135 16,670
PadChest 1,841 574 3283 953 664 210 127 44 878 261 678 194 163 33 25,268 7,200

other three datasets, which means 191, 229 samples on CheXpert, 249, 995 on MIMIC-CXR,
and 111, 176 on PadChest.

To evaluate domain shift, we use a standard performance metric in multi-label clas-
sification, the Area Under the Receiver Operating Characteristic curve (AUC), to report both
individual radiological findings results and their average for an overall view of model perfor-
mance. Both the true positive rate and the false positive rate are considered for computing the
AUC. Higher AUC values indicate better performance.

4.4 Experiment results

We train the same neural network architecture with the same hyperparameters on
each of the four datasets individually. When training and testing on ChestX-ray14, we achieve
results similar to the ones reported by CheXnet [49], which exceeded radiologists’ performance
in detecting pneumonia. After training, we evaluate each of our models with images from the
remaining three datasets.

Table 4.2: Test AUC for the 8 radiological findings common to the four datasets. Best results
for each test set are in bold.

Test set Training set Atelectasis Cardiomegaly Consolidation Edema Lesion Pneumonia Pneumothorax No Finding Mean

ChestX-ray14

ChestX-ray14 0.8205 0.9104 0.8026 0.8935 0.7819 0.7567 0.8746 0.7842 0.8343
CheXpert 0.7850 0.8646 0.7771 0.8584 0.7291 0.7287 0.8464 0.7569 0.7933

MIMIC-CXR 0.8024 0.8322 0.7898 0.8609 0.7457 0.7656 0.8429 0.7652 0.8006
PadChest 0.7371 0.8124 0.7031 0.8213 0.6301 0.6487 0.7417 0.7384 0.7291

CheXpert

ChestX-ray14 0.6433 0.7596 0.6431 0.7145 0.6821 0.5967 0.7356 0.7717 0.6821
CheXpert 0.6930 0.8687 0.7323 0.8344 0.7882 0.7619 0.8709 0.8842 0.8042
MIMIC-CXR 0.6576 0.8197 0.7002 0.7946 0.7465 0.7219 0.8046 0.8564 0.7627
PadChest 0.6127 0.7397 0.6352 0.6934 0.6978 0.6510 0.6209 0.7600 0.6764

MIMIC-CXR

ChestX-ray14 0.7616 0.7230 0.7567 0.8146 0.6880 0.6630 0.7773 0.8106 0.7406
CheXpert 0.7587 0.7650 0.7936 0.8685 0.7527 0.6913 0.8142 0.8452 0.7861

MIMIC-CXR 0.8177 0.8126 0.8229 0.8922 0.7788 0.7461 0.8845 0.8718 0.8283
PadChest 0.7218 0.6899 0.7200 0.7828 0.6577 0.6454 0.6995 0.7976 0.7143

PadChest

ChestX-ray14 0.7938 0.8822 0.8300 0.8893 0.7010 0.7366 0.7176 0.8028 0.7929
CheXpert 0.7566 0.8656 0.8511 0.9390 0.6833 0.7269 0.8731 0.8335 0.8161

MIMIC-CXR 0.7942 0.8270 0.8963 0.9310 0.6761 0.8060 0.8308 0.8217 0.8229
PadChest 0.7641 0.9075 0.8607 0.9107 0.6975 0.7990 0.8276 0.8710 0.8298

We summarize the results in Table 4.2. We can see that the best average result for
each test set appears when the training set is from the same dataset. This shows that clinicians
should expect a decrease in the reported performance of machine learning models when applying
them in real-world scenarios. The decrease may vary according to the dataset distribution in
which the model was trained on. For instance, running a model trained on MIMIC-CXR over
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CheXpert’s test set reduces the mean AUC in 0.04, while the model trained on ChestX-ray14
reduces it by 0.12. On MIMIC-CXR’s test set, a model trained on CheXpert shows almost
the same decrease in mean AUC (0.04), reducing the AUC in all of the findings. The model
trained on ChestX-ray14 has the highest average AUC when testing on its own test set, but
when testing in other datasets, it shows a significant performance drop, lowering CheXpert’s
mean AUC in 0.12, MIMIC-CXR’s in 0.08 and PadChest in 0.04. Both the models trained
on CheXpert and MIMIC-CXR mostly preserve the ChestX-ray14 baseline mean AUC, while
the model trained on PadChest drops the average performance in 0.10. PadChest presented
some variations on the best AUC for each disease, probably due to the smaller number of
training instances. The models trained on CheXpert and MIMIC-CXR got very close results
to PadChest’s baseline.

Figure 4.4 shows the performance on the test set of the four trained models, repre-
sented as lines to better visualize AUC variations. The CheXpert (4.4b) and MIMIC-CXR
(4.4c) models show smaller variations on the AUCs of the findings compared to their own test
sets, presenting close lines, while PadChest (4.4d) and ChestX-ray14 (4.4a) shows the line of
their own test set mostly on top and a drop in performance on the other test sets.

(a) Trained on ChestX-ray14 (b) Trained on CheXpert

(c) Trained on MIMIC-CXR (d) Trained on PadChest

Figure 4.4: Performance of a model trained on ChestX-ray14 (a), CheXpert (b), MIMIC-CXR
(c), and PadChest (d) on each of the four test sets.

Clear evidence of the impact of domain shift over model performance may be measured
by how frequently the best AUC for each radiological finding comes from the same dataset.
In the ChestX-ray14 test set, the best AUC appears 7 out of 8 times when training with the
same set. The same phenomenon happens on both CheXpert (8 out of 8) and MIMIC-CXR (8
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out of 8). Furthermore, in all four test sets, the best average AUC comes from their respective
training set. One possible cause of domain shift is the label extraction method. CheXpert and
MIMIC-CXR used the same labeler, while ChestX-ray14 has its own.

ChestX-ray14 labeler has raised some questions concerning its reliability. A visual
inspection study [43] states that its labels do not accurately reflect the content of the images.
Estimated label accuracies are 10 − 30% lower than the values originally reported. It also
might be that ChestX-ray14 and PadChest do not have representative training sets since models
trained on CheXpert and MIMIC-CXR perform well on ChestX-ray14 and PadChest test sets,
but the models trained on ChestX-ray14 and PadChest do not perform well on CheXpert and
MIMIC-CXR’s test sets.

4.5 Discussion

Our experiments showed that a model with reported radiologist-level performance [49]
had a significant drop in performance outside its source dataset, pointing the existence of do-
main shift in chest X-rays datasets. Despite recent efforts for the creation of large radiograph
datasets in the hope of training generalizable models, it seems that the data acquisition method-
ology of some of the available datasets does not capture the required heterogeneity for this
purpose.

Among the analyzed datasets, CheXpert and MIMIC-CXR seem to be the most rep-
resentative of the other datasets, as the models trained on them show a smaller performance
drop when comparing to the baseline. Therefore, these two datasets should be preferred by
researchers when developing models for chest radiograph analysis. The least representative
dataset seems to be ChestX-ray14, whose model did not perform as well outside its own test
set, while the models trained on the other datasets performed well when testing on ChestX-
ray14. Models trained on PadChest also show a significant performance drop in other test sets,
but it might be because of the smaller amount of available data for each finding.
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5. SEMI-SUPERVISED PATHOLOGY CLASSIFICATION

In this chapter, we describe the experiment analysis that we have designed to compare
different semi-supervised classification methods in a chest radiograph classification scenario.
The experiments of this chapter resulted in the work “Semi-supervised classification of chest
radiographs” published in MICCAI’s International Workshop on Medical Image Learning with
Less Labels and Imperfect Data [46].

5.1 Motivation

Public datasets of chest radiographs provide over 100, 000 chest radiographs labeled
with the most common findings [63].These datasets have automatically-extracted labels ob-
tained via natural language processing algorithms on radiological reports and have been used
to build radiologist-level models [49]. However, in most medical imaging scenarios, there is a
lack of annotated data available [35], since, for most tasks, the samples need to be manually
annotated by an expert, which is an expensive and time-consuming task, like annotating chest
radiographs for pathology localization.

Recently, research in semi-supervised learning for image classification had some con-
siderable progress [48]. Methods based on consistency regularization strategies such as Mean
Teacher [59], Unsupervised Data Augmentation [64], MixMatch [7], and FixMatch [58] achieve
results comparable to supervised training but with only a fraction of the training samples. For
instance, training a model on the SVHN dataset [42] in a supervised fashion using all train-
ing data (73, 257 labeled samples) results in an error rate of 2.59%, whereas training the same
model with the MixMatch approach and only 250 labeled samples achieves an error of 3.78% [7].
However, the best-performing method can vary when comparing them in different datasets and
tasks.

Table 5.1: Error rate on CIFAR-10 from four different semi-supervised learning methods and
a supervised baseline under different amounts of labeled data during training. Values reported
on the original papers. CIFAR-10 consists of 50000 training samples and 10000 test samples.

Method / Labels 40 250 500 1000 2000 4000

Supervised-only [59] - - - 46.43 33.94 20.66
Mean Teacher [59] - 47.32 42.01 17.32 12.17 10.36

UDA [64] - 8.76 6.68 5.87 5.51 5.29
MixMatch [7] - 11.08 9.65 7.75 7.03 6.24
FixMatch [58] 11.39 5.07 - - - 4.31

These methods were developed considering natural images and popular computer vi-
sion benchmark datasets like CIFAR-10[26], therefore, they were not thoroughly validated and
compared in a medical imaging scenario. Table 5.1 shows the results of some state-of-the-art
methods on the CIFAR-10 dataset. Our goal in this experimental analysis is to compare state-
of-the-art semi-supervised classification methods in a medical imaging classification scenario.
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We adapt the semi-supervised classification methods to a multi-label scenario and compare
them to a strong supervised baseline in chest radiograph classification, the CheXNet architec-
ture [49].

5.2 Semi-Supervised Learning Methods

The methods we investigate implement both perturbation-based and entropy mini-
mization techniques. Perturbation-based approaches rest on the smoothness assumption, which
implies that small perturbations on the input should not alter the model’s prediction. This
behavior does not depend on knowing the ground-truth label. Therefore, we can apply noise to
input data points, and use the distance between the output of clean and noisy input samples
on the loss function, adjusting the model based on unlabeled data [61]. These methods take
advantage of artificial neural networks because of their straightforward incorporation of addi-
tional terms on the objective optimization function. Entropy minimization approaches rest on
the low-density assumption and encourage the model to make confident predictions even on
unlabeled data in order to keep the decision boundary far from high-density areas.

5.2.1 Mean Teacher

The Mean Teacher approach [59] is based on a previous state-of-the-art semi-supervised
learning method called Temporal Ensembling [28], which first proposed using an exponential
moving average to combine prediction scores from models on different epochs and different
regularization conditions to predict unknown labels. Mean Teacher [59] consists of using two
models with the same architecture, which are called student and teacher. The student and
the teacher receive the same inputs with different augmentation policies. Then, a consistency
loss is computed based on the distance between both models predictions. Finally, the student
weights ΘS are updated via loss optimization, and the teacher weights ΘT are updated via an
exponential moving average of the student weights after each training step e. A hyperparam-
eter ρ controls the exponential moving average to update the teacher’s weights, as shown in
Equation 5.1.

ΘT
e = ρΘT

e−1 + (1− ρ)ΘS
e (5.1)

The loss function Lcomb used to update the student’s weights is defined in Equation 5.2.
The combined loss is the sum of the task loss Ltask with the consistency loss Lcons. The task
loss (Equation 5.3) is a regular binary cross-entropy loss between the ground-truth labels y and
the labels predicted by the student model ms(x), which is only computed on labeled instances.
The consistency loss (Equation 5.4) is a mean-squared error of the predictions from the student



43

and the teacher on unlabeled data u when submitted to two augmentation policies φs e φt. A
hyperparameter λcon defines the weight of the consistency loss on the combined loss.

Lcomb = Ltask + λconLcons (5.2)

Ltask = BCE(ms(x), y) (5.3)

Lcons = ||ms(φs(u))−mt(φt(u))||2 (5.4)

5.2.2 Unsupervised Data Augmentation

Xie et al. [64] argue that the quality of the input noise plays a crucial role in perturbation-
based semi-supervised learning methods. They propose Unsupervised Data Augmentation
(UDA), which uses advanced data augmentation techniques to input noise on the training
data. For image classification tasks, the authors propose using RandAugment [11] as the data
augmentation technique. RandAugment presents an improvement over AutoAugment [10], a
search method to test multiple image processing procedures to find a good augmentation policy
using reinforcement learning. AutoAugment was first proposed by the authors and was fur-
ther replaced by RandAugment, a simpler technique that does not require to be learned ahead
with labeled data. RandAugment randomly selects transformations for each sample from a
collection of transformations. A global magnitude parameter controls the distortions. This
hyperparameter is optimized via grid search on a validation set.

UDA uses only one model m(·), which is updated by a combined loss just like the one
defined in Equation 5.2, except that the consistency loss Lcons is a KL divergence (Equation 5.6)
between augmented (φ(u)) and non-augmented (u) unlabeled data, and that the task loss Ltask

(Equation 5.5) is computed on the same model m.

Ltask = BCE(m(x), y) (5.5)

Lcons = log
m(φ(u))

m(u)
(5.6)

Since there is usually a limited amount of labeled data, for preventing overfitting
the labeled data and underfitting the unlabeled data, the authors propose a technique called
training signal annealing (TSA). It consists of defining a confidence threshold for the model’s
predictions to use the training signals of the labeled sample, gradually increasing the threshold
ηt from 1/n to 1 (n being the number of classes) according to a schedule. This technique
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prevents over-training on easy samples and focuses the initial stage of the training on complex
samples.

5.2.3 MixMatch

MixMatch [7] is an algorithm that combines techniques from different semi-supervised
learning regularization approaches. It starts by sampling and augmenting labeled and unlabeled
samples. Each unlabeled sample is augmented Q times, and the model computes predictions
for each augmented sample. These predictions are averaged and sharpened (Equation 5.9)
to become pseudo-labels ŷ. Then, the augmented labeled and unlabeled data form a batch
with their respective labels and pseudo-labels. This batch is shuffled and regularized using the
MixUp regularizer [65], which interpolates data points to create a smoother data distribution,
and the model training set becomes the interpolated points x̃ and their labels ỹ and ˜̂y.

The loss function is a combination of the losses on labeled and unlabeled data con-
trolled by a hyperparameter λcon like the previous approaches (Equation 5.2). The loss for
labeled data (Equation 5.7) is a binary cross-entropy as the one in UDA, except that it uses
the data points x̃ and labels ỹ generated by MixUp. The loss for unlabeled data (Equation 5.8)
is a mean-squared error between generated pseudo-labels ˜̂y and the predictions on mixed-up
unlabeled inputs ũ.

Ltask = BCE(m(x̃), ỹ) (5.7)

Lcons = ||m(ũ)− ˜̂y||2 (5.8)

The sharpen function is based on the entropy minimization concept and is a softmax
function adjusted by a temperature hyperparameter τ , which reduces the softness of the result
in order to keep predictions more close to a one-hot distribution.

sharpen(p, τ) =
p

1
τ∑c

i=1 p
1
τ
i

(5.9)

MixUp regularization computes a new input x̃ and a new target ỹ by interpolating
two data points. This interpolation is detailed in Equation 5.10 using two points x1 and x2 and
their labels y1 and y2. The γ value is randomly sampled from a β(α, α) distribution. As we
increase the value of α, the interpolated points become farther from the real points and closer
to the center of the two points.

x̃ = γx1 + (1− γ)x2

ỹ = γy1 + (1− γ)y2
(5.10)
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5.2.4 FixMatch

FixMatch [58] is a simple yet effective approach that combines consistency regular-
ization with pseudo-labeling. It leverages strong and weak augmentation policies. At first, an
input sample ui is weakly augmented with a policy φ and fed to a model m(·). Its output
becomes a pseudo-label for ui using ŷi = arg max(m(φ(ui))). Then, the input ui is strongly
augmented with a policy Φ, and the model is trained with a regular cross-entropy loss using
the previously generated pseudo-label ŷi.

FixMatch optimizes a combined loss of labeled and unlabeled data controlled by a
hyperparameter λcon like the one defined in Equation 5.2 used in previous methods. The task
loss Ltask (Equation 5.11) is a binary cross-entropy between weakly augmented inputs φ(xi)

and their ground-truth labels yi. The consistency loss Lcons (Equation 5.12) is also a binary
cross-entropy, but between the strongly-augmented Φ(u) and the pseudo-labels ŷ that have a
confidence score max(m(φ(xi))) higher than a threshold T .

Ltask = BCE(m(φ(x)), y) (5.11)

Lcons = 1(max(m(φ(u)) > T )BCE(m(Φ(u), ŷ) (5.12)

The weak augmentations are random flips and image translations. The strong aug-
mentations are two approaches based on AutoAugment[10], RandAugment[11], the same used
in UDA [6] and explained in Section 5.2.2, and CTAugment [6], which learns during training the
best augmentation policy by separating the possible augmentation values in bins and assigning
weights for each bin. To update the weights, it uses labeled data. Two bins are randomly
sampled, and the weights are updated according to how close the model’s prediction is to the
true label.

5.3 Experimental Design

We employ a multi-label classification approach reproducing the CheXNet model [49],
a popular approach that achieved state-of-the-art results in classifying multiple pathologies us-
ing a DenseNet-121 convolutional neural network architecture [21]. We use it as our supervised
baseline and also as a backbone for the semi-supervised methods. Table 5.2 shows the perfor-
mance of the CheXNet model [49] compared with the initial baseline proposed with the launch
of the ChestX-ray14 dataset [63].

The model is pre-trained on the ImageNet dataset, and the images are resized to 224×
224 pixels and normalized using the ImageNet mean and standard deviation. We use a learning
rate of 0.01, a cosine learning rate schedule, and a Stochastic Gradient Descent optimizer with
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Table 5.2: Supervised baselines using all available training data of ChestX-ray14.

Finding Wang et al. [63] CheXNet [49]

Atelectasis 0.716 0.8094
Cardiomegaly 0.807 0.9248
Consolidation 0.708 0.7901
Edema 0.835 0.8878
Effusion 0.784 0.8638
Emphysema 0.815 0.9371
Fibrosis 0.769 0.8047
Hernia 0.767 0.9164
Infiltration 0.609 0.7345
Mass 0.706 0.8676
Nodule 0.671 0.7802
Pleural Thickening 0.708 0.8062
Pneumonia 0.633 0.7680
Pneumothorax 0.806 0.8887

Average 0.738 0.8414

0.9 momentum, a weight decay of 0.001 and a mini-batch size of 16. In the semi-supervised
methods, we use 8 labeled and 8 unlabeled samples for each batch. The weak augmentations
are the same ones performed in the supervised baseline [49], the strong augmentations are done
by RandAugment [11] with n = 2 and m = 10. Every method is trained for 20 epochs, as we
empirically observed that a longer training does not show improvement.

We use the same model hyperparameters for supervised training in all methods, vary-
ing only the hyperparameters referring to the semi-supervised training. We use subsets con-
taining 25, 100, and 400 labeled samples per class for each method and leave the rest of the
training set as unlabeled samples, which is a common setup for semi-supervised evaluation.
We have three different subsets with different samples used as labeled for each labeled amount,
and we report the mean and standard deviation of the top performance on the three experi-
ments. We evaluate the models’ performance computing the area under the receiver operating
characteristic curve (AUC) for each label.

5.3.1 Methods

We evaluate the following state-of-the-art semi-supervised learning methods: Mean
Teacher [59], Unsupervised Data Augmentation [64], MixMatch [7], and FixMatch [58], as well
as a supervised baseline. We also compared these methods with a simple semi-supervised
baseline, called Pseudo-labeling. In that approach, the model is trained with a regular cross-
entropy loss on labeled data, and we also take the top prediction made in unlabeled data and
use it as a pseudo-label to compute the unsupervised loss, and add it to the combined loss that
optimizes the model. Our approach was based on the work of Lee [31], and since our task is
a multi-label scenario, we tested a soft label approach, in which the pseudo-label is the classes
score prediction, and a hard label approach, in which the pseudo-label is a one-hot vector with
the top prediction as one and the rest as zero.
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We replaced the original softmax output and categorical cross-entropy loss with a
sigmoid output and a multi-label binary cross-entropy loss to adapt to a multi-label scenario.
FixMatch [58], MixMatch [7] and Pseudo-labeling [31] make use of pseudo-labels. To adapt
these approaches, we use a hard pseudo-label through a one-hot vector with the top prediction
as one and the rest as zero, which means that the pseudo-label is not multi-label. In methods
that use a score threshold (FixMatch [58] and UDA [64]), we compute the threshold based only
on the top prediction.

5.3.2 Hyperparameter Search

To select the best set of hyperparameters for our objective task, we performed a
random hyperparameter search for each method using a 25 labels subset. We trained the model
with different hyperparameters for 20 epochs and selected the ones that achieved a higher AUC
on the validation set. In all methods, we searched for a consistency weight between 0.5 and
100.

For Pseudo-labeling, we selected 1 as the unsupervised weight and also searched for
two different pseudo-labeling strategies using soft and hard pseudo-labels. Hard pseudo-labels
had the best performance.

In Mean Teacher, we selected a consistency weight of 100, with an exponential
consistency rampup as proposed by [59] with a length of 10 epochs. We also searched for an
EMA decay rate ρ for the teacher model between 0.8 and 0.99, and selected 0.99.

In UDA, we selected a consistency weight of 2 and searched for a traning signal
annealing schedule among the three proposed by [64], which are linear, exponential, and loga-
rithmic. The logarithmic schedule showed the best validation results, but not using a threshold
was still better, so we did not use TSA.

For MixMatch, we selected a consistency weight of 10 and also searched for the α of
the β(α, α) distribution between 0.1 and 50, selecting 0.1, which indicates a more conservative
interpolation.

For FixMatch, we selected a consistency weight of 1, and also searched for a threshold
between 0.7 and 0.95, selecting 0.8. Since in the original paper the authors reported that a
larger ratio of unlabeled samples increased the model performance, we also searched for a ratio
of 2,3, and 4, but the ratio of 1 still presented the best results.

5.4 Results

We summarize the average results for each method and label subset in Table 5.3.
Our strongest baseline is the fully-supervised CheXNet [49], which achieves an average AUC of
0.8414. Its results and a comparison with the baseline proposed by Wang et al. [63] is shown
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in Table 5.2. The results of all the semi-supervised approaches are similar, with the most gain
being obtained by Mean Teacher using 400 labels (See Table 5.6), achieving an average AUC
9% higher than the one obtained by supervised training. With 25 labels (See Table 5.4), the
highest average result was obtained by UDA, improving supervised training in 5%. Using 100

labels (shown in Table 5.5), the best performance was achieved with Pseudo-label, improving
the baseline in 6%.

Table 5.3: Average AUCs of our proposed approaches and baselines using different amounts of
labeled samples on ChestX-ray14.

25 labels 100 labels 400 labels

Supervised 0.6142 ± 0.0291 0.6596 ± 0.0300 0.6805 ± 0.0675
Pseudo-labeling 0.6675 ± 0.0155 0.7232 ± 0.0014 0.7565 ± 0.0050
Mean Teacher 0.6677 ± 0.0155 0.7223 ± 0.0102 0.7708 ± 0.0013
MixMatch 0.6627 ± 0.0195 0.7139 ± 0.0045 0.7612 ± 0.0048
FixMatch 0.6643 ± 0.0186 0.7129 ± 0.0110 0.7634 ± 0.0029
UDA 0.6691 ± 0.0176 0.7225 ± 0.0125 0.7612 ± 0.0065

The proposed baseline method presented by Wang et al. [63] in ChestX-ray14’s re-
lease achieved an average AUC of 0.738. Comparing it with the original results in [63], our
implemented approaches were capable of outperforming their fully-supervised model using only
400 labeled samples per class, in which we achieved 0.7708 AUC, and achieved similar results
when using 100 labels, which scored an average AUC of 0.7232. Based on the average results
of each method shown in Table 5.3, we computed an overall gain for each method with respect
to the supervised baseline. Mean teacher had the best performance with an overall gain of
0.2065, followed by UDA with 0.1985, Pseudo-labeling with 0.1929, FixMatch with 0.1863 and
MixMatch with 0.1839.

Table 5.4: AUC results for the implemented methods using 25 labels per class during training.

25 labels
Supervised Pseudo-label Mean Teacher MixMatch FixMatch UDA

Atelectasis 0.5987 0.6637 0.6609 0.6665 0.6775 0.6736
Cardiomegaly 0.5682 0.6421 0.6283 0.6270 0.6646 0.6671
Consolidation 0.6753 0.6816 0.6882 0.6771 0.6797 0.6945
Edema 0.7748 0.8082 0.7953 0.8086 0.7995 0.8043
Effusion 0.6587 0.7635 0.7591 0.7464 0.7545 0.7482
Emphysema 0.5447 0.6579 0.6864 0.6761 0.6600 0.6535
Fibrosis 0.6594 0.6586 0.6687 0.6474 0.6336 0.6478
Hernia 0.6992 0.8005 0.8192 0.7851 0.7811 0.8141
Infiltration 0.6099 0.6028 0.6031 0.6042 0.6080 0.5943
Mass 0.5243 0.5362 0.5495 0.5148 0.5590 0.5647
Nodule 0.5512 0.5752 0.5640 0.5826 0.5713 0.5537
Pleural Thickening 0.5650 0.6231 0.6353 0.6248 0.6071 0.6233
Pneumonia 0.6088 0.6311 0.6144 0.6180 0.6267 0.6261
Pneumothorax 0.5799 0.6997 0.6915 0.7018 0.6870 0.7035
No Finding 0.5953 0.6681 0.6521 0.6598 0.6553 0.6683

Average 0.6142 0.6675 0.6677 0.6627 0.6643 0.6691
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Table 5.5: AUC results for the implemented methods using 100 labels per class during training.

100 labels
Supervised Pseudo-label Mean Teacher MixMatch FixMatch UDA

Atelectasis 0.6464 0.7170 0.7112 0.6833 0.6966 0.7121
Cardiomegaly 0.6489 0.7986 0.7622 0.7791 0.7690 0.7773
Consolidation 0.7117 0.7292 0.7230 0.7222 0.7315 0.7360
Edema 0.8130 0.8366 0.8378 0.8350 0.8236 0.8289
Effusion 0.7225 0.8055 0.8068 0.7870 0.7989 0.8032
Emphysema 0.6381 0.7628 0.7717 0.7663 0.7515 0.7850
Fibrosis 0.6603 0.6829 0.7035 0.6777 0.6941 0.6976
Hernia 0.7834 0.8945 0.8844 0.8923 0.8692 0.8743
Infiltration 0.6268 0.6298 0.6393 0.6314 0.6309 0.6255
Mass 0.5613 0.6221 0.6283 0.6192 0.6238 0.6235
Nodule 0.5648 0.5881 0.5880 0.5828 0.5733 0.5814
Pleural Thickening 0.5797 0.6515 0.6544 0.6258 0.6273 0.6466
Pneumonia 0.6356 0.6657 0.6495 0.6577 0.6616 0.6552
Pneumothorax 0.6561 0.7609 0.7661 0.7512 0.7457 0.7780
No Finding 0.6450 0.7030 0.7089 0.6970 0.6968 0.7129

Average 0.6596 0.7232 0.7223 0.7139 0.7129 0.7225

Table 5.6: AUC results for the implemented methods using 400 labels per class during training.

400 labels
Supervised Pseudo-label Mean Teacher MixMatch FixMatch UDA

Atelectasis 0.6739 0.7448 0.7489 0.7404 0.7417 0.7343
Cardiomegaly 0.6884 0.8516 0.8642 0.8639 0.8547 0.8501
Consolidation 0.7220 0.7367 0.7319 0.7430 0.7613 0.7430
Edema 0.8196 0.8536 0.8674 0.8626 0.8613 0.8563
Effusion 0.7282 0.8286 0.8365 0.8349 0.8317 0.8261
Emphysema 0.6761 0.8415 0.8706 0.8496 0.8382 0.8564
Fibrosis 0.6873 0.7249 0.7575 0.7555 0.7385 0.7503
Hernia 0.8125 0.8934 0.8908 0.8841 0.9089 0.8863
Infiltration 0.6345 0.6506 0.6562 0.6438 0.6580 0.6410
Mass 0.5910 0.6909 0.7226 0.7056 0.6987 0.7040
Nodule 0.5893 0.6328 0.6529 0.6439 0.6505 0.6463
Pleural Thickening 0.6073 0.6859 0.6956 0.6772 0.7042 0.7060
Pneumonia 0.6373 0.6651 0.7071 0.6721 0.6919 0.6660
Pneumothorax 0.6889 0.8113 0.8178 0.8120 0.7767 0.8177
No Finding 0.6518 0.7353 0.7418 0.7298 0.7342 0.7338

Average 0.6805 0.7565 0.7708 0.7612 0.7634 0.7612

5.4.1 Comparison with Previous Approaches

The work of Rivero et al. [3] aims at reducing the need for annotated data in medical
imaging. They propose GraphXNET , a graph-based semi-supervised learning approach for X-ray
data classification. It is a graph model that contains all the training samples and only a limited
amount of them are labeled. They tested the approach in the ChestX-ray14 dataset. When
using only 20% of the data, they achieve results close to a fully-supervised model. However,
under extreme minimal supervision (2% labeled data), the model does not perform well, having
an average AUC of 0.53.

Tanan et al. [37] perform semi-supervised classification in skin lesion classification
and thoracic image analysis. The proposed method is called SRC-MT. It is a semi-supervised
classifier based on Mean Teacher [59] and introduces a sample relation consistency term to
the optimization function. This enforces the consistency based on the relationship information
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among different samples instead of individual predictions. They achieve similar results to
GraphX-NET when using 20% of ChestX-ray14, but when using only 2% of labeled data, they
achieve an average AUC of 0.67.

These two previous studies [3, 37] had addressed the problem of reducing the need for
annotated data in medical imaging and evaluated their results on the ChestX-ray14 dataset.
They use subsets of the available training data as labeled data and the rest as unlabeled data.
We selected our Mean Teacher approach to compare with their results. When using 2% and
5% of the labeled data, our approach outperforms the previous results by Rivero et al. [3] and
the results by Tanan et al. [37], as presented in Table 5.7.

Table 5.7: Average AUC of our best approach with two previous approaches for semi-supervised
classification in ChestX-ray14.

2% 5%

GraphXNET [3] 53 58
SRC-MT [37] 66.95 72.29
Ours (Mean Teacher) 71.82 74.82

5.5 Discussion

In this chapter, we evaluated different semi-supervised learning methods performing
multi-label classification in a medical imaging scenario and achieved state-of-the-art results on
semi-supervised classification on ChestX-ray14. Most of the trained methods showed similar
results, with Mean Teacher having a slightly better gain in overall performance when compared
to a supervised baseline. The improvement over a supervised baseline is not as high as the ones
reported by the original methods in common computer vision datasets like CIFAR-10 [26], high-
lighting that we might need to make some adaptations to these methods specifically designed
for the context of medical imaging scenarios.
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6. SEMI-SUPERVISED PATHOLOGY LOCALIZATION

In this chapter, we propose a novel training procedure that combines multiple instance
learning with semi-supervised learning for pathology localization on chest radiographs.

As public datasets provide over 700, 000 chest radiographs labeled with radiological
findings [63, 22, 24], but only a small amount of those (880) are annotated with bounding boxes,
approaches for pathology localization have been developed to make use of the classification
labels by performing weakly-supervised learning [63] and multiple instance learning [33].

In the weakly-supervised learning scenario [63], a model is trained for classification
using the available labels. Then, saliency maps like Grad-CAM [56] are used to explain the
classification output and the pixels with the higher contribution to the selected output are used
as a localization inference. This approach is not ideal since wrong classes can still produce
high activation values on image regions [53], and it performs poorly on locating diagnostically-
relevant regions for medical image interpretation, as shown by Saporta et al. [55].

To work within a multiple instance learning scenario, Li at al. [33] use an architecture
that divides the image into patches and predicts the pathology probability in each region by
outputting a P×P×C matrix of scores (C is the number of classes/pathologies) and training in
a supervised manner using the ground-truth localization labels. Then, they use the classification
labels by formulating a pooling mechanism that transforms a P × P × C matrix into a 1× C
vector containing the score for each class. Assuming that an image is positive for a particular
pathology, then at least one patch needs to be positive. The pooled vector is compared with
the ground-truth and the difference is added to the loss function and used during training to
optimize the network’s weights. They make use of both the classification and localization labels
available on the dataset.

Our problem thus consists of extending a semi-supervised learning method to a model
that locates pathology patterns on radiographs using limited localization supervision but abun-
dant classification labels. Since we have a large amount of samples labeled regarding a pathology
presence, we can propose a multiple instance learning scenario based on [33], in which the bag
labels are pathology presence, and the sample labels are pathology localization. To extend the
use of the unannotated data, we propose to adapt Mean Teacher, the we identified as being
the best semi-supervised approach in the experiments of Chapter 5, to this multiple instance
learning framework.



52

6.1 Methodology

6.1.1 Data description

We use the ChestX-ray14 dataset in our experiments. ChestX-ray14 [63] is a public
dataset from the National Institute of Health containing 112, 120 frontal-view chest radiographs
from 32, 717 different patients labeled with 14 radiological findings and with 984 manually an-
notated bounding boxes on 880 different images for 8 of the 14 pathologies. The pathologies
containing location annotation are: atelectasis, cardiomegaly, effusion, infiltration, mass, nod-
ule, pneumonia, and pneumothorax. Based on the results of the analysis of Chapter 4, we also
performed an experiment using the CheXpert dataset as unlabeled data. CheXpert [22] is a
dataset from the Stanford Hospital containing 224, 316 frontal and lateral chest radiographs of
65, 240 patients.

In our experiments, we use the official training, validation, and test split of the ChestX-
ray14 dataset, which keeps the images from the same patient on the same set to avoid data
leakage. The training set contains 78, 484 samples, the validation set has 8, 040 samples, and
the test set has 25, 596 samples with classification labels. Since the samples annotated with
bounding boxes are limited (880), we perform a 4-fold split cross-validation to evaluate the
method’s performance. In each fold, there are 660 images used for training and 220 used for
testing. The training and validation set of unannotated data remains the same in all 4 folds.
We also perform one experiment using CheXpert data as unlabeled data. In this experiment
we select one random frontal sample for each patient, adding 65, 240 samples to the training
set.

6.1.2 Baseline

For our baseline, we implemented the multiple instance learning architecture proposed
by Li et al. [33]. The first component is a ResNet-50 [18] network without the final linear layer,
which works as a feature extractor of the h×w input image, producing a h/32×w/32× 2048

feature vector. Then, an upsampling layer rescales the feature vectors to the desired patch
setting of P × P × 2048 using bilinear interpolation. P here is the number of patches, an
adjustable hyperparameter which we set to 20. The upscaling layer is followed by a convolution
layer with 512 filters with a 3 × 3 size, a batch normalization layer, and a ReLU activation
function. Then, a final convolution layer with C filters with 1× 1 size and a sigmoid activation
function outputs a P × P × C score matrix. A visual depiction of the method is presented in
Figure 6.1.
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Figure 6.1: Architecture of the developed multiple instance learning localization model based
on [33]. The model comprises a ResNet-50 encoder, which extracts features from the input
image, an upsampling layer, and a sequence of convolution, batch normalization, ReLU, and
another convolution, outputting a patch score matrix. A pooling function δ converts the patch
scores into class scores and the model is optimized to reduce the classification loss Lcls between
the prediction and the ground-truth ycls. When the localization label is available, a localization
loss Lloc is also computed using the patch scores and the yloc ground-truth.

We did our implementation by adapting the re-implementation code made available by
the work of Preechakul et al. [47] on weakly-supervised pathology detection, since the original
authors of [33] did not publicly release their code. Table 6.1 compares the performance of our
re-implemented baseline with the original reported results. Our baseline did not match the
expected results reported by Li et al. [33].

Table 6.1: Comparison of IoR accuracy in all 8 pathologies of the re-implemented baseline and
the metrics reported by Li et al. [33], in which we based our baseline, and Wang et al. [63],
which introduced the dataset. The “Avg” column presents the value of a macro-average of the
accuracy results on the 8 pathologies.

T(IoR) Method Atelectasis Cardiomegaly Effusion Infiltration Mass Nodule Pneumonia Pneumothorax Avg

0.1
Wang et al. [63] 0.62 1.00 0.80 0.91 0.59 0.15 0.86 0.52 0.68
Li et al. [33] 0.77± 0.06 0.99± 0.01 0.91± 0.04 0.95± 0.05 0.75± 0.08 0.40± 0.11 0.69± 0.09 0.68± 0.10 0.75
Our baseline 0.59± 0.06 0.96± 0.09 0.76± 0.08 0.83± 0.09 0.60± 0.13 0.19± 0.14 0.69± 0.06 0.44± 0.10 0.63

0.25
Wang et al. [63] 0.39 0.99 0.63 0.80 0.46 0.05 0.71 0.34 0.55
Li et al. [33] 0.57± 0.09 0.99± 0.01 0.79± 0.02 0.88± 0.06 0.57± 0.07 0.25± 0.10 0.62± 0.05 0.61± 0.07 0.66
Our baseline 0.33± 0.08 0.93± 0.12 0.56± 0.16 0.68± 0.09 0.36± 0.09 0.03± 0.03 0.58± 0.13 0.28± 0.11 0.47

0.5
Wang et al. [63] 0.19 0.95 0.42 0.65 0.31 0.00 0.48 0.27 0.41
Li et al. [33] 0.35± 0.04 0.98± 0.02 0.52± 0.03 0.62± 0.08 0.40± 0.06 0.11± 0.04 0.49± 0.08 0.43± 0.10 0.49
Our baseline 0.12± 0.06 0.88± 0.15 0.28± 0.15 0.39± 0.10 0.21± 0.09 0.00± 0.00 0.37± 0.06 0.11± 0.07 0.30

0.75
Wang et al. [63] 0.09 0.82 0.23 0.44 0.16 0.00 0.29 0.17 0.28
Li et al. [33] 0.20± 0.04 0.87± 0.05 0.34± 0.06 0.46± 0.07 0.29± 0.06 0.07± 0.04 0.43± 0.06 0.30± 0.07 0.37
Our baseline 0.04± 0.02 0.70± 0.16 0.12± 0.07 0.18± 0.07 0.08± 0.05 0.00± 0.00 0.18± 0.08 0.05± 0.05 0.17

0.9
Wang et al. [63] 0.07 0.65 0.14 0.36 0.09 0.00 0.23 0.12 0.21
Li et al. [33] 0.15± 0.03 0.59± 0.04 0.23± 0.05 0.32± 0.07 0.22± 0.05 0.06± 0.03 0.34± 0.04 0.22± 0.05 0.27
Our baseline 0.01± 0.01 0.56± 0.12 0.07± 0.06 0.07± 0.03 0.05± 0.04 0.00± 0.00 0.12± 0.08 0.03± 0.04 0.11

If an image is positive for class c, then, at least one of the patch scores pci must be
classified as positive. The probability of an image being positive, which can also be seen as
the classification scores, are obtained through a pooling function δ(·). Considering a set of
generated patchesM, where |M| = P × P , the function δ(·) multiplies the score pci outputted
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bym(x) for every patch inM, as shown in Equation 6.1. To avoid the numerical underflow that
happens when multiplying small numbers, the patch scores 1− pkij are rescaled to [0.98, 1.00].

δ(m(x)c) = 1−
∏
i∈M

(1− pci) (6.1)

The loss function is calculated over the patch scores for images with annotated bound-
ing boxes and over the classification scores provided by δ when there is no localization anno-
tation. The localization loss (Equation 6.2) is computed using a binary cross entropy BCE(·)
between the predicted patch scores for each class c and the ground-truth. The ground-truth
yloc is obtained by converting the bounding boxes information into a h×w×C binary matrix,
containing a value of 1 if the pixel is inside the bounding box of the pathology class c and 0

otherwise. Then, this matrix is downscaled to P ×P ×C using nearest neighbor interpolation.
In the classification loss term (Equation 6.3), we use the pooled scores δ(m(x)) and compute a
BCE loss with the ground-truth class scores ycls. Both losses are added to form a combined loss
function that is used to optimize the network’s parameters (Equation 6.4). Since there are far
less samples with localization annotations, the localization loss has a weight hyperparameter
λloc to increase its importance on the combined function.

Lloc = BCE(m(x), yloc) (6.2)

Lcls = BCE(δ(m(x)), ycls) (6.3)

Lcomb = λlocLloc + Lcls (6.4)

6.1.3 Proposed approach

To extend the use of the non-annotated data, we propose to introduce consistency
regularization, a semi-supervised training mechanism to the baseline multiple instance learning
framework. We call our method Consistent Multiple Instance Localization (C-MIL). Since Mean
Teacher [59] was identified as the best semi-supervised approach for classifying chest radiographs
as shown in the experiments of Chapter 5, we decided to base C-MIL on the key aspects of Mean
Teacher.

The original Mean Teacher framework [59] consists of using two models with identical
architecture, which are called the student ms and the teacher mt. At every training iteration,
both models are fed the same inputs with different augmentation policies, then a consistency loss
is computed based on the distance between both models predictions. Following the smoothness
assumption, these perturbations on the input should not alter the model’s prediction. The
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Figure 6.2: Architecture of C-MIL. A training dataset D contains images x, classification labels
ycls for each image, and localization labels yloc for some images. The image is fed to a student
model ms that outputs patch scores, which are converted into class scores by a pooling function
δ and compared to the ground-truth class labels ycls to compute the classification loss Lcls. If
the localization labels are available for that image, a localization loss Lloc is computed using the
patch scores and the ground-truth. And for all images, a teacher model mt with an identical
architecture receives a flipped version of the input image φt(x) and also generates patch scores.
Then, the teacher output is flipped and compared against the student output to compute the
consistency loss Lcon. The student is optimized to reduce these loss functions and the teacher
is updated through an EMA of the student’s weights.

student weights Θs are updated via loss optimization, and the teacher weights Θt are updated
via an exponential moving average (EMA) of the student weights after each training step
e. A hyperparameter ρ controls the EMA decay rate to update the teacher’s weights, as in
Θt

e = ρΘt
e−1 + (1 − ρ)Θs

e. A combined loss function Lcomb is used to update the student’s
weights. This loss is the sum of the task loss Ltask with the consistency loss Lcons controlled by
a consistency weight hyperparameter λcon as in Lcomb = Ltask +λconLcons. The task loss Ltask is
a regular cross-entropy loss between the ground-truth labels y and the predictions of the student
model ms(x), which is only computed on labeled instances. The consistency loss is a mean-
squared error of the predictions from the student and the teacher on unlabeled data u when
submitted to two different augmentation policies φs and φt, defined as ||ms(φs(u))−mt(φt(u))||2.
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As shown in Equation 6.4, the multiple instance loss already contains classification and
localization terms, so to enforce consistency regularization, we add a consistency loss term to the
combined function. Since most of the samples do not provide localization annotation, we design
the consistency loss on patch-level scores. Image augmentation pipelines can include rotation,
translation and image distortion functions. In a classification scenario, the labels remain the
same if the image is rotated or shifted, however in a localization scenario these functions can
alter the output prediction, being a concern when computing the consistency metric. Based
on the work of Jeong et al. [23], we design an augmentation strategy φ(·) that flips the input
image x horizontally, and thus the patch-level output of the model is also flipped. As shown
in Equation 6.5, to compute the patch consistency loss Lpcon we also apply the transformation
φt(·) to flip the output of the teacher model in order to correctly enforce consistency. The
mean-squared error is computed over every patch score on the P × P ×C matrix predicted by
both the student and the teacher.

Lpco = ||ms(x)− φ(mt(φ(x))||2 (6.5)

We use the following combined loss shown on Equation 6.6 to update the weights
of C-MIL’s student model. The teacher’s weights are updated through an EMA of the student’s
weights as it is done in the original mean teacher framework. Our proposed framework is
illustrated on Figure 6.2.

Lcomb = λlocLloc + Lcls + λconLcons (6.6)

6.1.4 Experimental Settings

Throughout this experimental analysis, we use the official training, validation, and
test sets of the ChestX-ray14 dataset. We perform a 4-fold cross-validation with the images
with bounding box annotation to evaluate the method performance regarding localization. In
each split, there are 660 images used for training and 220 used for testing. The reported metrics
are the mean and standard deviation of the best model trained on each of the 4 folds. The best
model is selected based on its performance in the validation set. The training and validation
sets of unannotated data remain the same in all 4 folds. Table 6.2 shows pathology frequency
in each of the 4 folds.

Table 6.2: Frequency of bounding boxes for each pathology in each data fold.

Fold Atelectasis Cardiomegaly Effusion Infiltration Mass Nodule Pneumonia Pneumothorax
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

0 124 56 117 29 109 44 87 36 64 21 62 17 97 23 74 24
1 135 45 107 39 116 37 95 28 63 22 62 17 77 43 78 20
2 136 44 112 34 117 36 100 23 64 21 57 22 86 34 74 24
3 145 35 102 44 117 36 87 36 64 21 56 23 100 20 68 30
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The feature extractor proposed in [33] is a ResNet architecture, so we make use of a
ResNet-50 backbone in our experiments. We also use a DenseNet-121 as a feature extractor
in some experiments, based on its superior performance in chest radiograph classification [49].
Both network architectures are initialized with pre-trained weights on the ImageNet Dataset
[54]. We use a batch size of 64 when using a ResNet-50 backbone and a batch size of 48 for
DenseNet-121. Each batch randomly contains annotated and unannotated samples, with a
fixed random seed for each fold in order to standardize comparisons. Due to the low number
of annotated samples, some batches might only have non-annotated samples. The baseline
and proposed methods were executed with the same hyperparameters and under the same
conditions.

We use a learning rate value of 10−4, with a scheduled reduction of the learning rate
by a factor of 0.2 based on a plateau of the validation loss. The training stops when the
learning rate becomes lower than 10−6, which happens usually in about 15 epochs. For the
loss hyperparameters, the weight of the localization term λloc is set to 5, the patch consistency
weight λcon is set to 10 and we employ a consistency rampup lenght of 15 epochs. The EMA
decay rate ρ is set to 0.99. The weights are optimized using the Adam optimizer [25].

An augmentation pipeline is applied to the unannotated data, containing random
resized crops, 90° rotation, horizontal flip, brightness, and contrast variations. Each augmen-
tation function has a 0.5 probability of happening. The images are pre-processed by resizing
them to 256×256 pixels, and normalized based on ChestX-ray14 mean and standard deviation.

We use the Python programming language and the Pytorch framework [44] to imple-
ment our experiments. The experiments were executed in a NVIDIA Geforce GTX 1080 TI
GPU, with 12GB of VRAM.

6.2 Results

6.2.1 Quantitative analysis

C-MIL performed better than the baselines in almost every pathology. Table 6.3 shows
the localization accuracy under multiple thresholds of IoR. The improvement over higher thresh-
olds like T (IoR) = 0.75 or T (IoR) = 0.9 is more significant than on smaller thresholds as
T (IoR) = 0.1, which shows that the consistency regularization is helping the model to increase
the confidence of the predictions closer to the ground-truth. To compute the accuracy metrics
we apply a score threshold of 0.5 to define positive or negative patches. In Table 6.3, we also
compare C-MIL using different backbones, the ResNet-50 and the DenseNet-121 architectures.

The largest improvement over the baseline was on the Cardiomegaly localization met-
rics, with the accuracy values going from 0.56 to 0.85 in a stronger threshold T (IoR) = 0.9.
The smaller pathologies like Mass and Nodule did not improve significantly with C-MIL. The
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Table 6.3: Pathology localization accuracy based on the Intersection over the detected Re-
gion (IoR), where T (IoR) = {0.1, 0.25, 0.5, 0.75, 0.9}. The reported methods are our re-
implementation of the method from Li et al. [33] (baseline) and our semi-supervised proposed
approach C-MIL with ResNet-50 and DenseNet-121 as backbones.

T(IoR) Method Atelectasis Cardiomegaly Effusion Infiltration Mass Nodule Pneumonia Pneumothorax Micro-Avg.

0.1
Baseline 0.59± 0.06 0.96± 0.09 0.76± 0.08 0.83± 0.09 0.60± 0.13 0.19± 0.14 0.69± 0.06 0.44± 0.10 0.67± 0.03
C-MIL (ResNet) 0.59± 0.15 1.00± 0.00 0.84± 0.04 0.85± 0.05 0.51± 0.13 0.03± 0.04 0.83± 0.13 0.54± 0.07 0.69± 0.04
C-MIL (DenseNet) 0.67± 0.08 1.00± 0.00 0.85± 0.03 0.90± 0.05 0.61± 0.06 0.01± 0.02 0.92± 0.08 0.60± 0.08 0.74± 0.01

0.25
Baseline 0.33± 0.08 0.93± 0.12 0.56± 0.16 0.68± 0.09 0.36± 0.09 0.03± 0.03 0.58± 0.13 0.28± 0.11 0.51± 0.02
C-MIL (ResNet) 0.40± 0.12 1.00± 0.00 0.74± 0.04 0.67± 0.08 0.40± 0.18 0.00± 0.00 0.66± 0.23 0.31± 0.09 0.56± 0.06
C-MIL (DenseNet) 0.44± 0.02 1.00± 0.00 0.73± 0.10 0.73± 0.09 0.37± 0.07 0.00± 0.00 0.79± 0.09 0.44± 0.12 0.61 ± 0.02

0.5
Baseline 0.12± 0.06 0.88± 0.15 0.28± 0.15 0.39± 0.10 0.21± 0.09 0.00± 0.00 0.37± 0.06 0.11± 0.07 0.32± 0.02
C-MIL (ResNet) 0.26± 0.14 0.99± 0.01 0.44± 0.05 0.52± 0.11 0.24± 0.12 0.00± 0.00 0.45± 0.24 0.15± 0.08 0.42± 0.08
C-MIL (DenseNet) 0.25± 0.04 1.00± 0.00 0.53± 0.12 0.52± 0.14 0.21± 0.02 0.00± 0.00 0.51± 0.07 0.30± 0.12 0.45± 0.04

0.75
Baseline 0.04± 0.02 0.70± 0.16 0.12± 0.07 0.18± 0.07 0.08± 0.05 0.00± 0.00 0.18± 0.08 0.05± 0.05 0.19± 0.02
C-MIL (ResNet) 0.12± 0.11 0.95± 0.04 0.20± 0.05 0.38± 0.12 0.14± 0.12 0.00± 0.00 0.36± 0.19 0.10± 0.07 0.31± 0.08
C-MIL (DenseNet) 0.11± 0.01 0.99± 0.02 0.29± 0.05 0.43± 0.15 0.07± 0.06 0.00± 0.00 0.30± 0.06 0.18± 0.08 0.33± 0.02

0.9
Baseline 0.01± 0.01 0.56± 0.12 0.07± 0.06 0.07± 0.03 0.05± 0.04 0.00± 0.00 0.12± 0.08 0.03± 0.04 0.13± 0.02
C-MIL (ResNet) 0.05± 0.05 0.78± 0.06 0.12± 0.05 0.26± 0.07 0.08± 0.08 0.00± 0.00 0.25± 0.15 0.10± 0.07 0.22± 0.06
C-MIL (DenseNet) 0.04± 0.01 0.85± 0.08 0.14± 0.04 0.24± 0.11 0.06± 0.04 0.00± 0.00 0.19± 0.03 0.11± 0.04 0.22± 0.01

performance of “Nodule” localization was the only one that dropped when training with C-MIL.
This might be happening due to the fact that most nodule bounding boxes are very small, and
since it is smaller than the other pathologies the generated consistency values are not signifi-
cant enough to help improving the model, and the optimization method focuses on the bigger
pathologies instead.

The ResNet-50 backbone shows better results on pathologies with smaller bounding
boxes. On T (IoR) ≥ 0.5, ResNet-50 performed better than the DenseNet-121 on localizing
“Atelectasis”, and with T (IoR) ≥ 0.1 on localizing “Mass”. The “Nodule” localization metric
was also better using ResNet-50 on T (IoR) = 0.1.

Point localization accuracy values reported on Table 6.4 show how often the highest
scoring patch is inside of the bounding box. The results of the point accuracy values seem
consistent with the T (IoR) evaluations. The performance is also higher than the baseline
when training with C-MIL with the exception of the “Nodule” class, and it also presents higher
values for the smaller pathologies like Mass and Atelectasis for ResNet-50 over the Densenet-121
backbone.

Table 6.4: Point localization accuracy of each pathology. The reported methods are our re-
implementation of the method from Li et al. [33] (baseline) and our semi-supervised proposed
approach C-MIL with ResNet-50 and DenseNet-121 as backbones.

Method Atelectasis Cardiomegaly Effusion Infiltration Mass Nodule Pneumonia Pneumothorax Micro-Avg.

Baseline 0.28± 0.10 0.90± 0.14 0.53± 0.07 0.55± 0.10 0.39± 0.16 0.05± 0.05 0.38± 0.06 0.21± 0.08 0.44± 0.04
C-MIL (ResNet) 0.45± 0.13 0.99± 0.03 0.66± 0.05 0.63± 0.11 0.43± 0.12 0.01± 0.02 0.62± 0.14 0.32± 0.05 0.55± 0.05
C-MIL (DenseNet) 0.39± 0.05 1.00± 0.00 0.69± 0.03 0.69± 0.04 0.40± 0.06 0.00± 0.00 0.66± 0.16 0.40± 0.12 0.57± 0.02

Table 6.5 shows the classification performance of C-MIL when using the multiple in-
stance learning pooling mechanism defined in Equation 6.1 to generate classification scores. We
also compare C-MIL with our baseline and with classification-only methods [63, 49]. C-MIL de-
creases the classification performance for every pathology, which is an evidence that the consis-



59

tency loss on the patch-level labels ends up prioritizing localization performance. However, the
most significant drop happens on the non-annotated pathologies. The last 6 of the 14 patholo-
gies (Consolidation, Edema, Emphysema, Fibrosis, Pleural Thickening and Hernia) do not
provide bounding box annotation, and the consistency loss for localization becomes completely
unsupervised. It seems that without bounding box supervision, the consistency regularization
affects the classification performance much more harshly. The classification weight in the com-
bined loss of C-MIL is lower than the localization and classification ones, becoming a smaller
part of the training objective.

Table 6.5: Classification results (AUC) of our implementations of the multiple instance models
on the ChestX-ray14 test set with the classification model designed by Wang et al. [63] and the
CheXNet [49] network. Results from related work as reported in the original papers.

Finding Wang et al. [63] CheXNet [49] Baseline C-MIL (ResNet) C-MIL (DenseNet)

Atelectasis 0.716 0.809 0.762± 0.06 0.702± 0.04 0.710± 0.02
Cardiomegaly 0.807 0.925 0.856± 0.08 0.834± 0.06 0.852± 0.02
Effusion 0.784 0.864 0.818± 0.04 0.786± 0.02 0.771± 0.02
Infiltration 0.609 0.734 0.698± 0.02 0.657± 0.00 0.665± 0.02
Mass 0.706 0.868 0.791± 0.12 0.661± 0.08 0.715± 0.04
Nodule 0.671 0.780 0.753± 0.08 0.620± 0.04 0.650± 0.02
Pneumonia 0.633 0.768 0.734± 0.06 0.684± 0.04 0.692± 0.02
Pneumothorax 0.806 0.889 0.855± 0.06 0.761± 0.07 0.812± 0.03
Consolidation 0.708 0.790 0.739± 0.04 0.671± 0.02 0.663± 0.01
Edema 0.835 0.888 0.830± 0.05 0.715± 0.03 0.728± 0.01
Emphysema 0.815 0.937 0.856± 0.15 0.623± 0.03 0.664± 0.06
Fibrosis 0.769 0.805 0.783± 0.11 0.590± 0.02 0.612± 0.05
Pleural Thickening 0.708 0.806 0.755± 0.08 0.612± 0.04 0.612± 0.03
Hernia 0.767 0.916 0.809± 0.21 0.456± 0.01 0.538± 0.04

Average (14 classes) 0.738 0.841 0.788 0.669 0.692
Average (8 classes) 0.716 0.828 0.783 0.713 0.733

6.2.2 Qualitative analysis

Figure 6.3 shows some visual examples of the output score prediction of the baseline
compared to C-MIL with a DenseNet-121 backbone. The patch score matrices were interpolated
to match the image size. As stated before based on Table 6.3, the impact of the consistency
regularization seems larger on higher threshold values, meaning that even though the baseline
presents small intersection with the ground-truth, the consistency is helping to bring the larger
and more confident prediction scores closer to the pathology. In some cases, C-MIL seems to
learn beyond the labels as we can see that some inferences follow anatomical lines and shapes,
predicting a better localization than the ground-truth bounding box, which is limited to being
in a square shape. We also show two examples of classes that did not perform as well with
C-MIL , “Nodule” and “Mass”. On the “Mass” example, there are multiple masses inside one
bounding box, which is not very common on the dataset and might have confused the model.
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The “Nodule” class performance is the weakest of C-MIL, which usually predicts high scores
randomly over the lung area.

Figure 6.3: Visual comparison of both baseline and C-MIL regarding their pathology localization
predictions (test set images). The white bounding box represent the annotated ground-truth
and the heatmap colors represent the patch score intensity for the specified pathology. Images
and annotations from the ChestX-ray14 dataset [63].
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6.2.3 Ablation Study

Exponential Moving Average

We perform an ablation study to evaluate the impact of different aspects of C-MIL on
its final performance. The first experiment removes the teacher model, which is updated via
an EMA of the optimized model, and using the same model for computing the consistency,
using only the transform function φt to apply some noise to the input image. We do that by
replacing mt with ms on the original C-MIL consistency function. Equation 6.7 shows how the
consistency loss term is computed in this case.

Lpcons = ||ms(x)− φ(ms(φ(x))||2 (6.7)

As shown in Table 6.6, both training procedures have similar performance, presenting
the same average result with both backbones. Using an EMA of the optimized model to
compute consistency does not seem to improve the final result with the used hyperparameters.
We speculate that using custom hyperparameters and schedulers for the EMA model could
maybe boost the method’s performance.

Table 6.6: Ablation study to assess the impact of keeping an exponential moving average
(EMA) model as teacher, compared to using a single model to compute consistency. Reported
values are point accuracy performance for each pathology. The reported methods are the
original C-MIL and C-MIL without the EMA model. Experiments include both ResNet-50 and
DenseNet-121 as backbones.

Method Atelectasis Cardiomegaly Effusion Infiltration Mass Nodule Pneumonia Pneumothorax Micro-Avg.

C-MIL (ResNet) with EMA 0.45± 0.13 0.99± 0.03 0.66± 0.05 0.63± 0.11 0.43± 0.12 0.01± 0.02 0.62± 0.14 0.32± 0.05 0.55 ± 0.05
C-MIL (ResNet) no EMA 0.43± 0.13 0.99± 0.01 0.62± 0.06 0.63± 0.05 0.31± 0.09 0.03± 0.04 0.71± 0.11 0.32 ± 0.12 0.55± 0.05

C-MIL (DenseNet) with EMA 0.39± 0.05 1.00± 0.00 0.69± 0.03 0.69± 0.04 0.40± 0.06 0.00± 0.00 0.66± 0.16 0.40± 0.12 0.57± 0.02
C-MIL (DenseNet) no EMA 0.40± 0.08 0.98± 0.03 0.70± 0.09 0.67± 0.11 0.38± 0.08 0.01± 0.02 0.72± 0.15 0.33± 0.07 0.57± 0.02

Adding CheXpert Data

In the experiments of Chapter 4, classification models trained on the CheXpert dataset
generalized better to other datasets. Based on this result, we assume that CheXpert data is
more representative of other datasets, and thus could improve the performance of the consis-
tency regularization when used as unlabeled data. We make use of a subset of the CheXpert
dataset, selecting one frontal image per patient, in a total of 65, 000 images to balance the num-
ber of samples from each dataset. Therefore, we add CheXpert data to our pipeline, using it to
compute the consistency loss, discarding the original labels and using both NIH and CheXpert
samples in the consistency loss, and only NIH data for the classification and localization loss
terms. We also perform an experiment using NIH for classification and localization only, and
using CheXpert unlabeled samples in the consistency loss. Table 6.7 shows the results of these
experiments.
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Table 6.7: Ablation study to include the use of CheXpert data [22] in the computation of
the consistency loss. Reported values are point accuracy performance for each pathology. We
performed this ablation with C-MIL without an EMA model and using only DenseNet-121 as
backbone.

Method (Unlabeled data) Atelectasis Cardiomegaly Effusion Infiltration Mass Nodule Pneumonia Pneumothorax Micro-Avg.

C-MIL (NIH Only) 0.40± 0.08 0.98± 0.03 0.70± 0.09 0.67± 0.11 0.38± 0.08 0.01± 0.02 0.72± 0.15 0.33± 0.07 0.57± 0.02
C-MIL (NIH + CheXpert) 0.41± 0.09 0.99± 0.01 0.66± 0.05 0.58± 0.12 0.48± 0.04 0.10± 0.02 0.65± 0.22 0.30± 0.18 0.55± 0.06
C-MIL (CheXpert only) 0.38± 0.07 0.99± 0.01 0.67± 0.03 0.66± 0.09 0.41± 0.05 0.05± 0.04 0.65± 0.10 0.14± 0.07 0.53± 0.03

The results of this experiment show that despite having a lower average performance,
adding CheXpert data helps increasing the performance of the pathologies that C-MIL performed
worse, “Mass” and “Nodule”. We speculate that maybe the increase in the frequency of nodule
positive samples might have increased the importance of the “Nodule” class in the consistency
loss, boosting the localization performance of this pathology and achieving better results than
our baseline (Table 6.4). Using only CheXpert data still presented a slight improvement in
those metrics, but had a lower performance on the remaining pathologies.
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7. CONCLUSIONS

In this dissertation, we argued on how semi-supervised learning methods can make
use of unlabeled data when training deep learning models with limited annotations available.
We explained the task of pathology localization on chest radiographs and used it as an example
of a relevant medical imaging task with abundant publicly available data but limited available
annotations.

First, we evaluated the available large public datasets, showing how a model trained
over one large-scale dataset generalizes to another. We showed that radiologist-level performing
models can display performance drop on unseen data if the training set is not representative
enough. In this experiment, we also found that some large public datasets were more representa-
tive of others. For instance, classification models trained over the CheXpert dataset performed
well on unseen data from the ChestX-ray14 dataset, but we experienced performance drops
when doing it the other way around.

Next, we defined and compared state-of-the art semi-supervised methods in a chest
radiograph classification scenario. These methods were originally developed to perform multi-
class classification and were only benchmarked on natural images. In our work, we extended
those methods to also perform multi-label classification and compared them in a medical image
classification problem. Based on the experiments, we identified Mean Teacher as the best-
performing method for semi-supervised medical imaging classification. With Mean Teacher,
we achieved state-of-the-art performance when comparing to previous work that developed
methods for classification of chest radiographs with limited supervision.

Finally, we introduced C-MIL by extending the Mean Teacher method to a multiple
instance localization framework. Our method uses the key concepts in the Mean Teacher
approach, mainly consistency regularization and self-ensembling, to extend the use of non-
annotated data on a multiple instance learning scenario. Comparing to a supervised baseline,
our experimental analysis showed superior performance of C-MIL for almost all pathologies when
evaluating localization metrics and, therefore, evidencing that semi-supervised mechanisms such
as consistency regularization, can improve the results of a multiple instance learning scenario.

Notwithstanding, C-MIL had a negative impact on classification performance. How-
ever, when considering a clinical setting, using C-MIL as a classification model might provide
better insights to justify the prediction of the model, presenting an advantage regarding its
explainability power, since the classification scores are computed directly on patch scores, in-
dicating exactly which portions of the image contributed to the score of that particular class.

As future work, we want to explore C-MIL in other deep learning scenarios with limited
annotated data, such as localization and segmentation of pathologies in other medical imaging
modalities and common object detection in natural images. We also want to explore how
to mitigate the weaknesses of C-MIL and whether extending mechanisms from other state-of-
the-art semi-supervised methods can improve its performance, such as pseudo-labels, MixUp
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regularization, and stronger augmentation policies as well as proposing different ways to convert
the localization labels into classification labels.

7.1 Limitations

Reproducing the baseline performance was our greatest limitation. We did not achieve
the results reported by the original work in our re-implementation, and therefore we did not
directly compare C-MIL’s performance improvement to the state-of-the-art pathology localiza-
tion methods. This limitation could be solved with a public release of the original code, since
their work was not entirely reproducible using the information provided by the paper.

In addition, we believe a more thorough hyperparameter search could improve C-MIL per-
formance, but this is very computationally demanding and due to hardware limitations we could
not perform a more extensive hyperparameter search. The results we have achieved in this dis-
sertation may not be a true display of our proposed approach’s real performance due to our
inability in properly optimizing its hyperparameters.
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