
Pentest on an Internet Mobile App: A Case Study
using Tramonto*

Daniel Dalalana Bertoglio
PUCRS and FEEVALE, Brazil

dalalana@gmail.com

Guilherme Girotto
PUCRS, Brazil

guilherme.girotto@edu.pucrs.br

Charles Varlei Neu
PUCRS and UNISC, Brazil

charles.neu@edu.pucrs.br

Roben Castagna Lunardi
PUCRS and IFRS, Brazil
roben.lunardi@edu.pucrs.br

Avelino Francisco Zorzo
PUCRS, Brazil

avelino.zorzo@pucrs.br

Abstract—Mobile applications are used to handle different
types of data. Commonly, there is a set of personal identifiable
information present in the data stored, shared and used by
these applications. From that, attackers can try to exploit
the mobile application in order to obtain or to cause private
data leakage. Therefore, performing security assessments is an
important practice to find vulnerabilities in the applications and
systems before the application is deployed, or even during their
use. Regarding security assessments, Penetration Test (Pentest)
is one of the security test types that can be used to detect
vulnerabilities through simulated attacks. Additionally, Pentest
can be performed using different methodologies and best prac-
tices, through several frameworks to: organize the test execution,
execute tools, provide estimations, provide reports and document
a Pentest. One such framework is Tramonto, which aims to assist
a cybersecurity expert during the Pentest execution by providing
organization, standardization and flexibility to the whole Pentest
process. This paper presents a Pentest case study applied to a
Brazilian university Mobile App using the Tramonto framework.
The main goal of this case study is to present how Tramonto can
be applied during a Pentest execution, assisting cybersecurity
experts in the tasks included in the Pentest process. Our results
show details on how to perform a Pentest using Tramonto and
the found vulnerabilities in the Mobile App. Besides that, there
is a discussion about the main contributions obtained from our
results, and we were able to verify that Tramonto managed,
organized and optimized the whole Pentest process.

Index Terms—Pentest, Tramonto, Cybersecurity, Mobile App.

I. INTRODUCTION

Over the years, software-based systems have become part
of our daily life. At the same time, these systems have got
larger and more complex, increasing the possibilities to find
vulnerabilities in those systems [1]. In this sense, there is a
need to better understand security practices and apply them
during system development [2]. Several of those practices
are shared by the security research community through ex-

* This study was financed in part by the Coordenao de Aperfeioamento
de Pessoal de Nvel Superior - Brasil (CAPES) - Finance Code 001 and the
Brazilian National Institute of Science and Technology in Forensic Sciences
(INCT Forensic Sciences) project (Grant 465450/2014-8). Avelino F. Zorzo
is supported by CNPq (grant 315192/2018-6). This paper was achieved in
cooperation with HP Brasil using incentives of Brazilian Informatics Law
(Law n 8.248 of 1991).

periences and case studies on security protection methods,
processes or algorithms, applied to networks and systems [3].

Several techniques and strategies to detect system vul-
nerabilities and to improve software security are available
[4]. Penetration Test (Pentest) [5], is a security strategies
that can be used to find vulnerabilities through simulated
attacks through different methodologies and best practices.
Furthermore, several frameworks can be used to organize the
whole Pentest execution, manage tools, provide estimations,
reports and documentation. One example of framework that
can be used to perform Pentest is the Tramonto [6] framework.
Tramonto aims to assist a cybersecurity expert during the
Pentest execution by providing organization, standardization
and flexibility.

This paper presents an actual case study of a Pentest using
Tramonto that aims to find vulnerabilities at a university Mo-
bile Internet App. Tramonto helps to document and to describe
the whole Pentest process1. All the sensitive data obtained
during the Pentest (e.g., the university name) is omitted to
avoid privacy issues. For this study, we used target.com.br as
the alias for the university website and Target University as
the university name. All the test process and the findings were
reported to the security officers of the university. After that,
the security issues were mitigated and properly treated - a new
release of the Mobile App was produced in order to correct the
breaches and weaknesses that were found during our Pentest.

The remaining of this paper is structured as follows. Section
II presents the main concepts, definitions and subjects that
are the base for this work - including a brief description of
the Tramonto framework. Section III discusses related work.
Section IV presents details about the case study and its spec-
ification. Section V describes details about the attack vectors
present in the Execution Step of the Tramonto framework -
and also discusses the Pentest results. Section VI presents the
main contributions and lessons learned related to our research.
Finally, Section VII concludes this paper and indicates some
future work.

1The guide explaining and showing how to use the framework is available
on Tramonto’s website - https://www.tramontosecurity.com

ar
X

iv
:1

91
2.

09
77

9v
1 

 [
cs

.C
R

] 
 2

0 
D

ec
 2

01
9



II. BACKGROUND - PENTEST AND TRAMONTO

Penetration test (Pentest) is a controlled tentative to pe-
netrate into a system or network in order to identify vul-
nerabilities [5]. Pentest applies the same techniques that are
used in a regular attack by a hacker to allow measures in
order to eliminate vulnerabilities before they can be explored
by unauthorized people. Usually, the Pentest process may
be divided into the following activities: data gathering of
the target system; scanning the target system to identify the
available services/protocols; identifying existing systems and
applications that are running on the target system; and iden-
tifying and exploit the known vulnerabilities on the systems
and applications [5].

In order to improve systems security, several organisations,
such as OWASP [7], introduced projects that aim to help people
and companies to understand the most common vulnerabilities
and mistakes, presenting examples on how to reproduce such
attacks. One example that has helped companies to improve
security in the past years is the OWASP Top Ten Project [8].

Despite of that, there are still challenges and open issues
regarding to the manner that a Pentest is conducted, mod-
elled and what methodology to use. Due to the variety of
characteristics and functionalities, the main challenges faced
by cybersecurity experts during the planning, or during the
exploitation, are the lack of a standard way to use formal
methods, models, methodologies and frameworks [5].

The Tramonto framework [6] was proposed as an alternative
to help testers that needed flexibility. Tramonto aims to guide
testers during a Pentest process according to three fundamental
principles: Organization, to increase the planning capacity
of the Pentest and management optimization, also allow-
ing the tester to better understand the Pentest requirements;
Standardization, to establish a common Pentest conduction
structure and, at the same time, greater reliability considering
the use of methods that are already known and applied by
security professionals; and, Flexibility, which addresses the
suitability of the tasks and concepts provided by Tramonto
according to the tester experience. Tramonto also provides
more flexibility to the whole Pentest conduction, although it
was designed based on the following consolidated security
test methodologies: OSSTMM [9], ISSAF [10], PTES [11],
OWASP [7] and NIST SP 800-15 [12].

Fig. 1: Tramonto recommended steps.

Basically, Tramonto drives a Pentest through five steps: 1)
Fitting Scope, where data management and initial choices
about the scope and rules of engagement are initialized;
2) Performing Checklist, to provide a checklist containing
requirements, documents, artifacts and tasks for the Pentest
plan; 3) Refinement Tools and Strategies, as a place to
inform the tester about possible strategies and tools that can be
used in the Pentest; 4) Penetration Execution, to describe the
attack vectors and the actions performed to try the exploitation
and other testing types; and 5) Final Findings and Report, to
prepare reports based on the previous information and artifacts
obtained during the other steps. These steps are organized in
order to provide a kind of script to the tester, allowing better
management and control of activities. Nonetheless, any of the
steps can be revisited at any time (see Figure 1).

III. RELATED WORK

This section describes some case studies on penetration test
on specific institutions. These case studies use strategies that
are very close related to the ones used in our work.

Tiago Vieira and Carlos Serro [13], for example, described
a penetration test performed on a Financial Web Application.
The authors had access to the institution internal network and
used different techniques to discover a set of vulnerabilities,
and analyzed a set of reports generated from Pentest executions
over different Financial Web Applications. They used the
OWASP Testing Guide (version 4) methodology and the test
was conducted under a controlled environment. The first task
was to collect all existing vulnerabilities and categorize them
by their risk as high, medium or low. The authors also used
the OWASP Top Ten Project to perform this risk segmentation
and, finally, performed a risk analysis, which consisted of
measuring the likelihood of a risk circumstance to occur and
the potential impact of it.

Omeiza and Owusu performed a case study of a penetration
test within an Educational Institute Portal [14]. In order to
perform the Pentest, the authors adopted an homemade test
methodology to organize the Pentest process. The authors also
classified the vulnerabilities into three levels (low, medium and
high), according to their own methodology. Furthermore, the
study discussed ways to mitigate and to fix all the security
issues related to vulnerabilities that were found.

Both studies provide different approaches to perform se-
curity tests - specifically Pentest - regarding the importance
to understand the characteristics, aspects, functionalities and
how the tests were performed in different scenarios. Moreover,
different methodologies to perform the tests were adopted, i.e.,
OWASP Testing Guide and a homemade methodology. Our
proposal uses the Tramonto framework along with Tramonto-
App [15] to assist the test conduction. Important to remember
that through Tramonto any methodology can be used during
the Pentest, hence, either works could have been performed
using Tramonto. Other strategies to improve applications se-
curity could also be applied, for example, model-based testing
[16].



IV. CASE STUDY - PENTEST SPECIFICATION

The target scenario used in the case study, as mentioned
previously, is represented by an education institution as a
“client” and the main asset tested is a Mobile App. Based
on that, this section presents a general specification about
the performed test, as well as its basic data. In order to
organize this set of information, we designed the test process
according to the Tramonto framework [5] (see Section II),
which allows the annotation of all required information for
each target scenario.

A. Methodology

This case study is used as a way to analyze the im-
provements obtained in a system when using the Tramonto
framework. Considering that the tested asset is a mobile
application, strategies related to traffic interception, request
analysis, investigation of known vulnerabilities and access
control attack methods were used.

B. Fitting Scope

The following items were set in the Fitting Scope step:
Pentest goals, Pentest type, aggressiveness and approach, and
other information about dates, estimated time, limitations and
constraints. Table I presents a summary of the Pentest scope.

TABLE I: Pentest summary according to Tramonto

Item Description
Client Target University

Title Target University Mobile App Pentest

Test Description Find vulnerabilities in the mobile app

Goals

1) Intercept HTTP request and seek sensitive
open data;

2) Reverse engineer the Android
mobile app;

3) Find relevant ciphertext or plaintext information
in the Android Mobile App;

Date Range 03/30/2019 — 12 hours.

Type Reversal

Approach Overt

Aggressiveness High

C. Refinement Tools and Strategies

By choosing a strategy, according to the Tramonto guide-
lines, it is possible to give more information about the tech-
niques that should be applied considering the scope definition.
From this, the strategy selected can be an alternative to address
tasks during the Pentest process - aiming to achieve the goals.

Usually, several tools are necessary to perform a Pentest. In
this case study, the main tools that were used are Charles
[17] and Dex2jar [18]. Charles is a Web Debugging
Proxy tool that enables a developer to view all the HTTP
and SSL/HTTPS traffic between a device and the Internet.

This includes requests, responses, and HTTP headers (which
contain cookies and caching information). Charles was used
to find any open request, i.e, a request between the app and
the server that is not encrypted. This could be the easiest
way to discover sensitive data.Dex2jar is a set of tools that
handles Android .dex and Java .class files. It can be used,
e.g., to perform Android APK reverse engineering to retrieve
the original source code of .apk files.

V. CASE STUDY - PENETRATION EXECUTION

The Pentest execution, following the Tramonto steps, occurs
when the tools and techniques are applied to try the test
goals achievement, find vulnerabilities and establish attack
vectors. The process started with the requests interception to
find open sensitive data or any kind of relevant information.
After that, the APK source code was carefully analyzed - so
the decryption/encryption functions were revealed.

The explanation of the activities performed is divided into
two steps (detailed in the following subsections): Request In-
tercept - explaining how the HTTP Requests were intercepted,
and APK Reverse Engineering - showing how the reverse
engineering process was applied in the APK file to find any
sensitive/personal information.

A. Requests Intercept

The Charles tool was used to intercept the requests and
relevant data. Concerning this interception, it was important to
set a proper configuration in order to receive and analyze the
requests. In this sense, a smartphone was used as a starting
point to generate the requests and a proxy was establish from
this smartphone. The proxy run on a desktop computer. From
that, all HTTP requests were redirect from the Android to
the computer. Henceforth, Charles was able to sniff that
network traffic.

Analyzing one of the open HTTP requests, as presented in
Fig. 2, the tester is able to retrieve a considerable amount
of sensitive data about a specific student - private data was
blurred in the figure. This set of information, such as the user
identification, full name and email are provided during the
requests - that alone is a data breach that should be avoided.

TABLE II: Tramonto Criteria

Criteria Value
Reproducibility 8

Impact 9
Probability 7

Risk 6
Priority 8

The reproducibility level, following Tramonto definitions,
can be considered high since this is a simple process to retrieve
data. At the same time, the impact level of this attack vector
is also high due to the disclosing of sensitive data with almost
no effort. By setting the reproducibility and impact levels,
Tramonto indicates the Risk, Priority, and Probability values,
as shown in Table II.



Fig. 2: User information request intercepted using Charles.

One simple strategy to mitigate - or even solve - these
attack vectors is to use the HTTPS protocol, where the requests
are first encrypted to be sent from the app to the server, so
that only the destination (that has the decryption key) will
be able to read the requests data. Moreover, the adoption
of HTTPS could also avoid the sniffing/request interception
problem, since the hacker will be able to get the message but
not to retrieve its content, as the decryption key is required.

B. APK Reverse Engineering

As shown in Fig. 2, the password field has the value
141CCD268E74. Since we knew the university security pol-
icy, where the password in the app had exactly four numeric
digits, it was possible to conclude that the intercepted pass-
word was not in plaintext. The app probably applied a hash
function, such as SHA256, WHIRLPOOL or any other hash
function, to the plaintext password before submitting it to the
backend application. Thus, the analysis allowed us to know
that the password “encryption” is being performed through a
hash function, which also means that it was performed inside
the mobile application. Therefore, analysing the source code
of the Mobile App could give us information on which hash
function would have been applied to the user password.

APK files are known to be very easy to reverse engineer.
i.e. given the APK file, it is simple to access the source code
from the app through some easy steps - using, for example, the
dex2jar tool. This process begins by accessing the app APK
file. One way to get the APK file is to download it through
an online APK library, such as APKPure [19].

Fig. 3: Java Decompiler GUI.

After that, the dex2jar tool was used to retrieve
the source code from the recently downloaded APK - in
this example, named mobileapp.apk. The bash code
used to decompile the APK was d2j-dex2jar.sh -f
/mobileapp.apk d2j-de, which generated a .jar file
at the end of the process. Then, a Java decompiler [20] was
used to retrieve and export all the source files from the .jar
file, as shown in Fig. 3.

By analyzing the code, a function called authenticate
inside SessionInfo.java file was found. Hence, this class
was explored in order to understand the authentication process.
A snippet of the decompiled code is shown in Fig. 4.

This function shows how the user information is inserted



Fig. 4: Snippet of the authentication function.

Fig. 5: Private key.

into the HTTP request. Furthermore, it is possible to notice
how the password is encrypted using the Cryptography
class. A further analysis showed that the private key was stored
inside the strings.xml file. Thus, accessing that file, the
private key used to encrypt the user password was found (see
Fig. 5).

Additionally, by accessing the Cryptography class, we
were able to discover that - instead of using known hash
functions to encrypt the user password, such as SHA-2, SHA-
3 - the app uses a custom implemented hash function, as
shown in Fig. 6. Thus, after a simple analysis of the class
function signatures, it is possible to notice that the encryption
function is not secure, i.e., the encrypted message can be easily
deciphered.

Fig. 6: Retrieved Cryptography Java class used in the APK.

At this point, with the Cryptography class source code
and the private key, the test is followed by a task to build
a decipher function. Considering the password obtained by
the request interception (141CCD268E74), it was possible
to decipher it easily. The result provided by running the
decryption function revealed that the password was 2406.
This password matches exactly the pattern established by
the security policy in the Target University, as mentioned
previously.

Taking the discovered student identifier and password to
access the portal, it was possible to access the student account.

Once authenticated, the hacker has free access to register
into classes, and also retrieve financial, academic and other
sensitive information that should be protected.

As mentioned before, APK files are easy targets for reverse
engineering. In this sense, developers should take care in
relation to the data that can be obtained during a request
interception or source code analysis. One strategy to improve
that could be binary obfuscation [21].

Finally, the use of a weak custom encryption function should
never be used. Nowadays, even secure hash functions (e.g.,
SHA-2 and SHA-3) may have some weakness when not used
properly. For example, there are “hash crack” bases with most
common used passwords. Nonetheless, some best practices can
improve security when using hash functions, for example, to
use a salt value.

VI. DISCUSSION

Based on the case study presented in this paper, we discuss
the usage of Tramonto, Tramonto-app, attack vectors influence
on the case study, and some issues regarding data privacy
vulnerabilities that must be dealt with by companies:

• Tramonto & Tramonto-App: During the Pentest planning
and execution, the use of Tramonto allowed to better
conduct the test process. Supported by Tramonto-App,
the Tramonto guidelines provide recommendations that
helped us to determine what tasks and activities should
be performed. At the same time, it was also possible to set
vulnerability metrics, to define tools that would be used,
to check Pentest goals, to gather the information about
the target, and helped to generate a complete report at the
end of the Pentest. Besides that, the tasks could be con-
ducted in a more organized way. Furthermore, Tramonto
provides ways and alternatives to execute the Pentest,
which allowed better management of the Pentest process.
Thus, if a tester prefers to use a specific methodology, the
Tramonto framework is able to fit the activities according
to its structure.

• Attack Vectors, Techniques and Tools: According to
the Tramonto structure, the core of a Pentest is in the
Execution step. Hence, this case study showed, in details,
the attack vectors used to test the Mobile App. The case
study showed also, how a Pentest can be performed in this
specific scenario - in a Mobile App assessment. Briefly,
the Pentest execution section shows the application of two
attack vectors - APK reverse engineering and requests
intercept - as well as the usage of popular tools that are
adopted when applying these attack vectors. Tha section
also introduces the attacker viewpoint when trying to find



breaches on a system, and is helpful to understand how
to mitigate those breaches and what to do to protect a
system against those attack vectors. Hence, we provide,
as one of the contributions of this case study, a quick
overview of activities and methods commonly used by
testers when attacking a mobile app.

• Companies vs Vulnerabilities: By describing our case
study, we were able to realize that there is no direct
relation between the company size and its system vulner-
abilities. In our target scenario - an education institution
- there is a large set of efforts related to the secu-
rity concerns and strategies to improve security issues.
Considering the business requirements in this specific
scenario, we can imagine the amount of personal data
handled by the employees and treated by the systems.
The privacy aspects, in this sense, require more attention
from the managers, considering current issues on privacy
regulation, e.g. see the European General Data Protection
Regulation (GDPR) [22]. The emergence of new regu-
lations, laws and compliance criteria are requiring that
organizations use structured ways to show that data is
protected against breaches. Pentest is a way to provide it
and Tramonto may help that.

VII. CONCLUSION AND FUTURE WORK

Currently, security issues are producing financial impact in
different organisations. Thus, penetration tests are an important
step in the life-cycle of modern software development. In order
to help the Pentest research field, we presented in this paper
the results of a Pentest execution over a Mobile App from a
Brazilian university, but this could have been applied to any
university that provides similar mobile apps.

The Pentest performed in this paper used the Tramonto
framework. Obtained results showed relevant issues in the
system and helped software developers to improve the eval-
uated system. Furthermore, Tramonto provided an organised
and guided way to perform Pentests, and helped to identify
relevant information from each executed Pentest and to apply
attack vectors.

Since different companies need some strategy to verify the
security of their software, we believe that this paper can
contribute in the sense that the case study presented here is
a common type of application and its vulnerabilities are also
very common. Hence, we believe that the use of frameworks
and tools, such as Tramonto, that can assist the tester during
the assessments is very important.

As future work, we intend to produce more case studies
using different techniques, methods, and tools to help the com-
munity with other common mistakes, produced by developers,
that can affect the security of an application. Furthermore, we
believe that Tramonto is an important way to organize, in a
flexible way, Pentests.

REFERENCES

[1] X. Zhang and H. Pham, “An analysis of factors affecting software
reliability,” Journal of Systems and Software, vol. 50, no. 1, pp. 43
– 56, 2000.

[2] K. Bagchi and G. Udo, “An analysis of the growth of computer
andinternet security breaches,” Communications of the Association
for Information System, vol. 12, 2003. [Online]. Available: https:
//doi.org/10.17705/1CAIS.01246

[3] E. Gal-Or and A. Ghose, The Economic Consequences of Sharing
Security Information, L. J. Camp and S. Lewis, Eds. Boston,
MA: Springer US, 2004. [Online]. Available: https://doi.org/10.1007/
1-4020-8090-5 8

[4] FBI, “Internet crime report 2018.” [Online]. Available: https:
//pdf.ic3.gov/2018 IC3Report.pdf[AccessDate:12November,2019].

[5] D. D. Bertoglio and A. F. Zorzo, “Overview and open issues on
penetration test,” Journal of the Brazilian Computer Society, vol. 23,
no. 1, pp. 1–16, 2017. [Online]. Available: http://dx.doi.org/10.1186/
s13173-017-0051-1

[6] D. D. Bertoglio and A. F. Zorzo, “Tramonto: a framework
for penetration test (user manual),” 2019. [Online]. Avail-
able: https://tramontosecurity.com/assets/documents/Tramonto 1.0 EN.
pdf[Accessdate:20November2019]

[7] M. Meucci and A. Muller, OWASP Testing Guide v.4, 4th ed. USA:
OWASP Foundation, 2014.

[8] OWASP, “Owasp top ten project,” 2019. [Online]. Avail-
able: https://www.owasp.org/index.php/Category:OWASP Top Ten
Project[AccessDate:12November,2019].

[9] P. Hertzog, OSSTMM - Open Source Security Testing Methodology Man-
ual. Barcelona, ESP: Institute for Security and Open Methodologies
(ISECOM), 2010.

[10] ISSAF, “Information systems security assessment framework,” 2006.
[11] PTES, “Penetration testing execution standard,” 2012. [Online]. Avail-

able: http://www.pentest-standard.org[AccessDate:12November,2019].
[12] K. Stouffer, J. Falco, and K. Scarfone, NIST SP 800-115: Technical

Guide to Information Security Testing and Assessment. Maryland, USA:
National Institute of Standards and Technology, 2008.

[13] T. Vieira and C. Serro, “Web applications security and vulnerability
analysis financial web applications security audit a case study,”
Infonomics Society, vol. 2, 2016. [Online]. Available: http://dx.doi.org/
10.20533/ijibs.2046.3626.2016.0014

[14] D. Omeiza and J. Owusu-Tweneboah, “Web security investigation
through penetration tests: A case study of an educational institution
portal,” CoRR, vol. abs/1811.01388, 2018. [Online]. Available:
http://arxiv.org/abs/1811.01388

[15] D. D. Bertoglio, L. G. B. Schuler, and A. F. Zorzo, “Tramonto-app:
an application to help penetration tests,” 2019. [Online]. Available:
https://www.tramontosecurity.com/

[16] K. P. Peralta, A. M. Orozco, A. F. Zorzo, and F. M. Oliveira, “Specifying
security aspects in UML models,” in ACM/IEEE 11th International
Conference on Model Driven Engineering Languages and Systems, Nov
2008.

[17] C. Proxy, “Charles - web debugging proxy application,”
2019. [Online]. Available: https://www.charlesproxy.com/[AccessDate:
12November,2019].

[18] pxb1988, “Tools to work with android .dex and java .class files,” 2019.
[Online]. Available: https://github.com/pxb1988/dex2jar[AccessDate:
12November,2019].

[19] APKPure, “Apkpure - online apk library,” 2019. [Online]. Available:
https://apkpure.com/[AccessDate:12November,2019].

[20] J. Decompiler, “A standalone java decompiler gui,” 2019. [Online].
Available: http://java-decompiler.github.io/[AccessDate:12November,
2019].

[21] N. Mavrogiannopoulos, N. Kisserli, and B. Preneel, “A taxonomy of
self-modifying code for obfuscation,” Computers & Security, vol. 30,
no. 8, pp. 679–691, 2011.

[22] E. Union, “General data protection regulation,” 2016. [Online]. Avail-
able: https://eur-lex.europa.eu/eli/reg/2016/679/2016-05-04[Accessdate:
20November2019]

https://doi.org/10.17705/1CAIS.01246
https://doi.org/10.17705/1CAIS.01246
https://doi.org/10.1007/1-4020-8090-5_8
https://doi.org/10.1007/1-4020-8090-5_8
https://pdf.ic3.gov/2018_IC3Report.pdf [Access Date: 12 November, 2019].
https://pdf.ic3.gov/2018_IC3Report.pdf [Access Date: 12 November, 2019].
http://dx.doi.org/10.1186/s13173-017-0051-1
http://dx.doi.org/10.1186/s13173-017-0051-1
https://tramontosecurity.com/assets/documents/Tramonto_1.0_EN.pdf [Access date: 20 November 2019]
https://tramontosecurity.com/assets/documents/Tramonto_1.0_EN.pdf [Access date: 20 November 2019]
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project [Access Date: 12 November, 2019].
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project [Access Date: 12 November, 2019].
http://www.pentest-standard.org [Access Date: 12 November, 2019].
http://dx.doi.org/10.20533/ijibs.2046.3626.2016.0014
http://dx.doi.org/10.20533/ijibs.2046.3626.2016.0014
http://arxiv.org/abs/1811.01388
https://www.tramontosecurity.com/
https://www.charlesproxy.com/ [Access Date: 12 November, 2019].
https://www.charlesproxy.com/ [Access Date: 12 November, 2019].
https://github.com/pxb1988/dex2jar [Access Date: 12 November, 2019].
https://github.com/pxb1988/dex2jar [Access Date: 12 November, 2019].
https://apkpure.com/ [Access Date: 12 November, 2019].
http://java-decompiler.github.io/ [Access Date: 12 November, 2019].
http://java-decompiler.github.io/ [Access Date: 12 November, 2019].
https://eur-lex.europa.eu/eli/reg/2016/679/2016-05-04 [Access date: 20 November 2019]
https://eur-lex.europa.eu/eli/reg/2016/679/2016-05-04 [Access date: 20 November 2019]

	I Introduction
	II Background - Pentest and Tramonto
	III Related Work
	IV Case Study - Pentest Specification
	IV-A Methodology
	IV-B Fitting Scope
	IV-C Refinement Tools and Strategies

	V Case Study - Penetration Execution
	V-A Requests Intercept
	V-B APK Reverse Engineering

	VI Discussion
	VII Conclusion and Future Work
	References

