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Abstract—Currently, blockchain proposals are being adopted
to solve security issues, such as data integrity, resilience, and non-
repudiation. To improve certain aspects, e.g., energy consumption
and latency, of traditional blockchains, different architectures,
algorithms, and data management methods have been recently
proposed. For example, appendable-block blockchain uses a
different data structure designed to reduce latency in block and
transaction insertion. It is especially applicable in domains such
as Internet of Things (IoT), where both latency and energy are
key concerns. However, the lack of some features available to
other blockchains, such as Smart Contracts, limits the application
of this model. To solve this, in this work, we propose the use
of Smart Contracts in appendable-block blockchain through a
new model called context-based appendable-block blockchain.
This model also allows the execution of multiple smart contracts
in parallel, featuring high performance in parallel computing
scenarios. Furthermore, we present an implementation for the
context-based appendable-block blockchain using an Ethereum
Virtual Machine (EVM). Finally, we execute this implementation
in four different testbed. The results demonstrated a performance
improvement for parallel processing of smart contracts when
using the proposed model.

Index Terms—IoT, Blockchain, context-based, smart contracts.

I. INTRODUCTION

Distributed applications, such as distributed databases [1],
have existed for a long time. However, they are dependent on
an assumption of trust, i.e. nodes that compose the environ-
ment are honest. Alternatively, trust can be delegated to a third
party that can assure that the environment is trustable. One
such third party is a certificate authority [2] that can assure
the identity of the nodes. The blockchain concept changed
this scenario, ensuring the robust execution of a deployed
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application even if some of the participating nodes misbehave
or become unavailable. Blockchain also offers other benefits,
including audibility, transparency, and the possibility to have
decentralized applications (dApps) [3]. The combination of
those benefits allows to use blockchain in multiple domains,
such as financial operations [4], supply chain [5], Internet of
Things (IoT) [6] [7], health care [8], smart vehicles [9], smart
cities [10] [11] and others [12].

However, a number of challenges need to be addressed
before the widespread uptake of this technology. Zheng et
al. [4] highlight several such challenges, including scalability
and privacy leakage. Furthermore, two key challenges that are
specifically relevant to IoT applications are high latency [13]
and high energy consumption from some consensus algorithms
[14]. They are relevant because of the high amount of gener-
ated data, the need for low latency for specific applications,
and the hardware constraints on most IoT devices.

SpeedyChain [7] [11] [15], which uses the appendable-
block blockchain model, was specifically proposed to address
these issues by employing a different block structure and
network architecture. The block structure allows the insertion
of multiple transactions in the blockchain at the same time,
and the network architecture uses the concept of gateways that
allows higher performance devices to process transactions in
the blockchain [7]. Moreover, it uses the practical byzantine
fault tolerance (PBFT) consensus algorithm for achieving
energy efficiency [14]. Michelin et al. [11] demonstrated
promising performance improvements by adopting Speedy-
Chain for storing and managing sensor data collected from
smart vehicles in the context of smart city applications.

Smart contracts can benefit from the appendable-blocks
blockchain model used in SpeedyChain. In specific scenarios,
the insertion of transactions in parallel can increase the per-
formance of smart contracts. Moreover, the addition of smart
contracts gives flexibility to applications that can work on top
of SpeedyChain. For example, smart contracts can be used to
help in IoT security in the following ways [6]: (i) providing
an IoT update service; (ii) allowing a marketplace between
devices; (iii) management and control of an IoT network; and
(iv) delegated processing and workload balancing.

Due to those benefits, in this work, we propose a model978-1-7281-6680-3/20/$31.00 ©2020 IEEE
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to provide the smart contracts capability on the Speedy-
Chain architecture, called context-based for appendable-block
blockchain. The model works by isolating a group of smart
contracts - from the same context - in a single block. Each
group can receive transactions independently - in parallel - to
the other groups, thus increasing performance. To validate our
model, we present an evaluation focused on delegated process-
ing for route calculation based on GPS data for IoT devices.
Although we apply the context-based smart contracts model to
one specific blockchain technology, the ideas presented in this
paper can be generalized and used in different architectures.

II. BACKGROUND

This section presents the background required to understand
the model of smart contracts for appendable-block blockchain.
Therefore, we discuss different concepts used to build the
model proposed in this paper. First, we present the functions
used in the paper, followed by the immutable-block blockchain
structure, the main appendable-block blockchain concepts, and
the adopted smart contracts definition.

A. Mathematical functions

The functions we use throughout these paper are:
• We will use function p to extract element e from a tuple

using a lambda function as presented in equation 1:

pe(tuple) = (λ(T1, ..., Te, ...Tn)→ Te) (1)

As an example for (1), considering t = (1, 6, 3) the
operations p1(t), p2(t) and p3(t) will result in 1, 6 and
3 respectively.

• We will use H(x) as a hash function that can receive any
sequence of bits x as input and outputs another sequence
of bits [16]. The specific H(x) function used here will
be abstracted. Properties of a good hash function, as
collision-free, pseudo-randomness and unpredictability
will just be assumed as true.

• The PK function receives a digital signature as input
and returns the public key from an asymmetric cryptog-
raphy scheme. For this work, we consider a cryptography
scheme in which you can recover a public key directly
from a digital signature [17].

B. Immutable-Block Blockchain

A blockchain is a distributed ledger that permanently stores
all transactions that brought the system to the current state
[18]. Transactions are stored in blocks, once a block is added
to the blockchain it is immutable, hence we call this type of
blockchain an immutable-block blockchain. It is distributed
because the system will work based on a Peer-to-Peer (P2P)
network [19], in which each node in the blockchain network
will maintain a local copy of the blockchain.

The system state is changed by one node using the con-
sensus algorithm to add new blocks. That causes all nodes to
change their local copy of the system state. The consensus
algorithm works as a pre-agreement of how the system can
progress, it helps all nodes to converge to the same system

state despite some nodes malfunctioning or acting in a ma-
licious way [20]. There are multiple consensus algorithms,
like Proof of Work (PoW) [18], Proof of Stake (PoS) [21]
and Practical Byzantine Fault Tolerance (PBFT) [22]. The
consensus algorithm will be abstracted in this work to the
function performConsensus that returns true if a proposed
block is authorized to be added to the blockchain or false
otherwise. More details about consensus are discussed in [3].

The behavior of individual nodes is not presumed as correct
or honest. The consensus algorithm guarantees that even if
part of the nodes work maliciously or incorrectly, the data
inserted in the blockchain can be trusted, and the system will
work correctly. This feature is one of the major benefits of the
blockchain. There are other benefits such as auditability [23],
since all transactions are stored as a ledger the current state
can be audited at any time; resilience [23], since a blockchain
is distributed in a P2P network, hence, if any node fails, the
blockchain can continue to work.

C. Appendable-Block Blockchain

The immutable-block blockchain is nowadays the most
used data architecture in blockchains. It is used in impor-
tant data ledger technologies such as Ethereum [24], Bitcoin
[18] and Hyperledger Fabric [25]. However, there are other
architectures proposed by industry, like the Tangle architecture
proposed by IOTA [26], and by academia, as SpeedyChain
[15], whose data structure is relevant to this work.

SpeedyChain is designed for the context of IoT, where
devices usually have low computing power and limited storage
capacity. This limits the capability to use a blockchain because
of the necessity to store the blockchain in the nodes and the
computing power required for some consensus algorithms such
as PoW. Furthermore, high communication latency is a key
factor in some IoT applications, which is another limiting
factor in the use of blockchain in this case. To mitigate these
problems, SpeedyChain proposes: (i) to use gateways with
more processing power and storage to work as blockchain
full nodes, while other IoT devices have to connect to those
gateways to access the blockchain. This removes the burden
of maintaining a full node for limited IoT devices; and,
(ii) a mutable blocks architecture, referenced as appendable-
block blockchain, where blocks can be expanded with new
transactions. This approach allows the blockchain to expand
appending transaction in multiple blocks in parallel, while
immutable-block blockchain can insert new transactions just
by the introduction of a new block [7] [11] [15]. For more
details about SpeedyChain architecture and security aspects,
please refer to [15].

Formally, a generalization of the appendable-
block blockchain architecture has a set of n nodes
N = {N1, ..., Nn}. Nodes are gateways and IoT devices
that generate data. Each {Ni} has a pair of public/secret
keys (NPKi, NSKi) respectively from an asymmetric
cryptography scheme, where the public keys are accessible to
every participant of the blockchain [15].
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The data structure in an appendable-block blockchain is
a non-empty set BC of blocks. Each block is a tuple
(BH,BL). BL, named block ledger, is a set of transactions
that can be incremented as necessary and linked to a BH .
The BH , named block header, is another tuple composed of
(ParentHash,NPKi, T ), with meta-data about the block:
• ParentHash is the result of H(BH) of the block

inserted in the blockchain, i.e. i-1. It works as a pointer
to the previous block.

• NPKi is the public key of a member of the set N , only
one block can have a specific NPKi. To enforce that the
@x |x, b ∈ BC ∧ p2(p1(x)) = p2(p1(b)) post-condition
must be respected. The node that has the NSKi to the
NPKi of a block is said to be the block owner, and only
that node can append new transactions to that block.

• T is the first transaction inserted into a block and the
only one to be part of the block header, furthermore,
this transaction is the first transaction signed by a pair
of public/secret keys, the public key is the NPKi value.

The BC set will form a hash-linked list of blocks B
connected by their ParentHash in the BH .

A transaction withholds data generated by the nodes, the
data content depends on the application and context. In the
appendable-block blockchain a transaction is represented as a
tuple of (Data, PT, Sig), where: Data is specific to the node
generating data through the creation of the transaction; PT is
the hash of the previous transaction inserted into the block, it
works as a hash-link connecting the transactions in the block.
If it is the first transaction in the block, then it will refer to
the hash of the BH; and Sig is a digital signature from the
node originating the Data [15].

Before presenting how appendable-block blockchain adds
new blocks and appends transactions, we present the auxiliary
functions newBlock as shown in Equation 2, which summa-
rizes the creation of a new block filling the necessary fields,
and function lB (Equation 3), which returns a block that has
no other block with the ParentHash in the header pointing
to it. In practice, it is the last block created in the blockchain.

newBlock(T,BC) =
((H(p1(lB(BC))), PK(p3(T )), T ), {}) (2)

lB(BC) = x|x ∈ BC∧
(@y ∈ BC ∧ p1(p1(y)) = H(p1(x)) ∧ x 6= y)

(3)

To add a new block to the blockchain, function
addB(BC, T ) (Equation 4) is used. It creates a new block
for a node and appends the new block to the blockchain if
there is no other block with the same NPK as the transaction
signature public key PK(p3(T )). The predicate uniqueBlock
(Equation 5) guarantees this requirement.

addB(BC, T )=


BC ∪ newBlock(T,BC),
if uniqueBlock

BC, otherwise

(4)

uniqueBlock = @x.x∈BC∧ p2(p1(x))=PK(p3(T )) (5)

New transactions are generated by nodes with new Data to
be inserted into the blockchain. This operation is performed
only if the node’s public key (NPKi) is present in a block
header BH . Function appendT (Equation 6) specifies the
insertion of a new transaction T in a block B that has a public
key equal to the public key used in the transaction signature.

appendT (BC, T )=


(BC −B) + updateB(B, T ),
if p2(T ) = PreTHash(B)

BC, otherwise

(6)

updateB (Equation 7) is an auxiliary function to generate
an updated block where transaction T is appended. Function
PreTHash (Equation 8) returns the hash of a previous
transaction appended to the block or the block B header hash.
This hash will be used to check if a transaction is pointing to
the PT field of the last transaction inserted into the block.

updateB(B, T ) = (p1(B), p2(B) ∪ T ) (7)

PreTHash(B) =

{
H(p1(B)), if |p2(B)| = 0
H(lastT (B)), otherwise (8)

Algorithm 1 shows how the main operation works on this
model for the insertion of new transactions in a continuous
way. The mempool consists of a set of transactions submitted
to the blockchain by multiple nodes, but not yet appended to
the blockchain, this mempool is shared by all nodes. Function
poll, on the mempool, returns one transaction of the set.
Before processing a new transaction, it checks if a block with
the public key of the signer exists through function exists
(line 6); if not, a new block is processed by the consensus
algorithm (line 7) and if approved, a new block is inserted
and broadcast to the network (lines 9 and 10). Otherwise, the
proposed transaction is processed by the consensus algorithm
(line 12) and if accepted, it is appended to the block owned
by the transaction signer (more details about this algorithm is
described in [15]).

Algorithm 1 Main operation for appendable-block blockchain
1 Result: BC //Updated state
2 Input: mempool, BC //Original state
3
4 while(True)
5 T = poll(MemPool)
6 if(!exists(PK(p3(T))))
7 ConsensusResponse = performConsensus(B)
8 if(ConsensusResponse)
9 broadcast(B)

10 BC = addB(BC, T)
11 else
12 ConsensusResponse = performConsensus(T)
13 if(consensusResponse)
14 broadcast(T)
15 BC = appendT(BC, T)
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D. Smart contracts

There are different models for smart contracts implemen-
tation in blockchains. One of these models is the one used
by Ethereum [27]. In Ethereum, smart contracts are stored
in the blockchain as special transactions. Those transactions
are bytecode that can be processed by the Ethereum Virtual
Machine (EVM). Each node in the Ethereum network has an
EVM. Calls, like a program call, for a smart contract, are
appended to the blockchain as transactions. The transaction
contains the bytecode, representing the program call, to be
processed in the context of a specific smart contract.

It is important to evaluate the performance of smart con-
tracts in the blockchain. To this end, several works have
been proposed. Aldweesh et al. proposed in their works [28]
[29] to analyze the computational performance of EVM’s
operation codes, and compare the results to the monetary
incentives miners receive from their work. The Hyperledger
project proposed a more general approach [30], which presents
guidelines for performance evaluation of any blockchain.

Throughout this work, we will refer to a generic virtual
machine as a function VM , which works similarly to the
EVM [24], i.e., VM(S,Data) = S′. VM receives two inputs:
Data, which is the bytecode with operations for the virtual
machine; and, S, which is a pointer to a data structure that
contains a state for the virtual machine and multiple smart
contracts. The output for the VM function is a reference
to new state S′, based on the modifications that the Data
incurred. We store different states in a Merkle Patricia Trie
[27]. A new S with no modifications is refereed as the constant
newS.

III. CONTEXT-BASED MODEL

This section presents the context-based model for extending
the appendable-block blockchain architecture with the smart
contracts capability. In this model, each block can hold a
block state, which is a data structure capable of holding a
mapping from an address to a smart contract state and code.
Remember from the previous section that we use as a reference
for the data structure a Merkle Patricia Trie [27]. Aside from
these new blocks with this capability to hold the block state,
the blocks that carry just data from nodes, as presented in
appendable-block blockchain (see Section II-C) still exist.
During the creation of a new block it is decided which type
of block will be created: a pure data block, which will carry
just data; or, a block with context, which will hold a state.

Figure 1 presents an overview of the model. In the figure,
three blocks are presented, only blocks B− 1 and B+1 hold
smart contracts, identified by the absence of a block PKi.
Therefore they are blocks with context. While block B is
a pure data block, identified by the presence of a PKi. A
context can have smart contracts, those smart contracts are
isolated from other block contexts and can only interact with
smart contracts in the same block, thus this model is called
context-based model. In Figure 1, Smart Contract I can interact
with Smart Contract II and III, this includes making a call to
the other smart contracts, changing their states and querying

information. Smart Contract IV, in block B+1, cannot interact
with Smart Contract I, II and III in any form. A blockchain
that adopts the proposed model can have any amount of blocks
with context. The transactions stored in those blocks will carry
a bytecode that represents a call for a smart contract or a
command to create a new smart contract.

ParentHash ∅

Transaction 0

Transaction 1

Transaction 2

Transaction n

...

Context Block B-1

BH B-1

Block B-1

ParentHash PK i

BH B

Block B

ParentHash ∅

Context Block B+1

BH B+1

Block B+1

SMART CONTRACT I

SMART CONTRACT II

SMART CONTRACT III

SMART CONTRACT IV

SMART CONTRACT V

Context Block B-1 Context Block B+1

Transaction 0

Transaction 1

Transaction 2

Transaction n

...

Transaction 0

Transaction 1

Transaction 2

Transaction n

...

Fig. 1. Smart contracts and block context

All the functions in an appendable-block blockchain work
exactly as previously presented in Section II-C, unless
stated otherwise. The elements of the tuple (BH, BL)
representing the blockchain are different. BH is a
tuple (ParentHash, Index,NPK,CTransaction) where
ParentHash and NPK work as in the appendable-block
architecture, although when the block has a context the value
of NPK will be equal to ∅, because there is no block owner or
restriction of devices who can operate in a block. The Index
field is a natural number whose value corresponds to the
order of blocks created in the blockchain. The CTransaction
field stores a committed transaction, it is different from a
transaction. A node can check if a block B has a context by
using function HasContext (Equation 9), and get a specific
block by the index using function getBlock (Equation 10).

HasContext(B) =

{
true if P3(P1(B)) = ∅
false if P3(P1(B)) 6= ∅ (9)

getBlock(Index) = x|x ∈ BC ∧ P2(x) = Index (10)

A committed transaction is defined as a tuple
(Data, Sig, PT,BlockState), it is originated from a
transaction that was processed by a node. The tuple fields
are:
• Data is a binary sequence that depending on the block

type will be treated differently. If it is a pure data block,
then Data represents data generated by a node, which
will not be processed as bytecode. If it is a block with a
block state, then it is a bytecode that will be inserted as
an input in the VM function.
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• Sig is the digital signature of the transaction that gener-
ated this committed transaction.

• PT is the hash value of the previous inserted committed
transaction or the block header;

• BlockState is a pointer to a data structure holding
the block state, as the Merkle Patricia Trie. The last
committed transaction in the block has the most updated
state, its value is generated by VM .

When a Data transaction includes bytecode to a block with
context, it will be processed by function VM (Equations 11).
For that, Data and BlockState of the last inserted committed
transaction in the block are inserted as input in the VM
function, the resulting pointer to a new state will be attached
to a new committed transaction in the BlockState field. S′

is a pointer to the resulting state, S is the original BlockState
and NewS is an empty BlockState.

VM(S,Data) =

{
S′ if S 6= ∅
VM(NewS,Data) if S = ∅ (11)

A node that wants to operate on the blockchain will create a
transaction for that operation. The transaction is composed of
(Data, ToBlock, Sig, PT,OPCode), where the fields previ-
ously described in committed transactions are the same, the
ToBlock represents the destiny block where this transaction
is to be processed. If the ToBlock value is equal to ∅ and
OPCode is a specific value, then the transaction intention
is to create a new block with a context or a pure data block.
OPCode is an integer that represents a code for the transaction
intention, where 1 means the transaction is to create a new pure
data block, 2 means the transaction is to create a new block
with a context, and 3 means it is a transaction to be appended
in a block.

Two functions will be used to summarize the block creation,
when OPCode is 1 or 2: Function NewCBlock (Equation
12), which creates a new block with a context starting from
a newS; and, function NewPDBlock (Equation 14), which
creates a new pure data block.

newCBlock(T,BC) =
((H(p1(lB(BC))), p2(p1(lB(BC))) + 1, ∅, NCTC), {}) (12)

NCTC = (P1(T ), p3(T ), p4(T ), V M(∅, P1(T ))) (13)

newPDBlock(T,BC) = ((H(p1(lB(BC))),
p2(p1(lB(BC))) + 1, PK(p3(T )), NCTPD), {}) (14)

NCTPD = (P1(T ), p3(T ), p4(T ), ∅) (15)

A transaction that has OPCode 3 will be appended to a
block. However, the transaction appended is treated differently
if the intention is to append a transaction in a pure data block
or a block with context. The CTC function (Equation 16)
creates a committed transaction to be appended in a block
with a context. On the other hand, function CTPD (Equation
17) will create a transaction to a pure data block.

CTC(T,B) =


(P1(T ), p3(T ), p4(T ),
V M(p4(lastCT (B)))),
if p4(T ) = preCTH(B)

B, otherwise

(16)

CTPD(T,B)=


(P1(T ), p3(T ), p4(T ), ∅, P1(T )))
if p4(T ) = preCTH(B)

B, otherwise

(17)

preCTH(B) =

 H(p1(B)), if |p2(B)| = 0

H(lastCT (B)), otherwise
(18)

lastCT (B) = x |x ∈ p2(B) ∧ (@y|y ∈ p3(B) ∧ p3(y) = H(x))
(19)

The functions in Equations 16 and 17 are used in function
AppendT (Equation 20), which directs a transaction to the
correct function type by their OPCode and updates BC. An
expiration field was proposed in SpeedyChain [11] to avoid
unbalanced blocks, i.e., a block B that has a high number of
transactions.

AppendT (BC, T ) =



(BC −B) ∪ CTC(T,B)
if HasContext(B) = true

(BC −B) ∪ CTPD(T,B)
if p3(B) = PK(p3(T ))

BC, otherwise

(20)

B = getBlock(P2(T )) (21)

The algorithm for the main operation for this model is
presented in Algorithm 2. In the algorithm, memPool works
exactly like presented in Section II. Line 6 checks if the
transaction being processed wants to append a new transaction
to the blockchain (OPCode 3) and if the destination block
exists. If both are true, then the transaction is processed by
the consensus algorithm and appended using the appendT
function (line 10). When the destination block does not exist,
then a transaction creates a new block with a context (line 11).
It checks whether the OPCode value is equal to 2 and if the
destination block is equal to emptyset. If both conditions are
true, then a new block will be created (line 15) after being
processed by the consensus algorithm. Finally (line 16), the
algorithm checks if the transaction wants to create a new pure
data block (OPCode 1). If so, then it is checked if there is
no other block with the same public key as the signature, then
it proceeds to create a new pure data block (line 20).

IV. IMPLEMENTATION

The implementation of the model should be easy to maintain
and also easy to incorporate into the existing blockchain
technology, in this paper into SpeedyChain. Taking that into
consideration, we designed an ideal node architecture (see
Figure 2). Three new components are inserted in the Speedy-
Chain framework: Interface EVM (1), which is an interface
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Algorithm 2 Main operation for appendable-block blockchain
with context-based model
1 Result: BC //Updated state
2 Input: memPool, BC //Original state
3
4 while(True)
5 T = poll(memPool)
6 if(exists(p2(T)) AND p4(T) = 3)
7 ConsensusResponse = performConsensus(T)
8 if(consensusResponse)
9 broadcast(T)

10 BC = appendT(BC, T)
11 else if(p2(T) = ∅ AND p4(T) = 2 )
12 ConsensusResponse = performConsensus(B)
13 if(ConsensusResponse)
14 broadcast(B)
15 BC = newCBlock(T, BC)
16 else if(!exists(PK(p3(T))) AND p4(T) =1)
17 ConsensusResponse = performConsensus(B)
18 if(ConsensusResponse)
19 broadcast(B)
20 BC = newPDBlock(T, BC)

in the SpeedyChain to communicate, through an inter-process
communication protocol (2), with an internal EVM (3).

Interface 
EVM (1)

SpeedyChain(2)

Blockchain Interface

EVM (3)

Fig. 2. EVM and SpeedyChain

The process to run a smart contract starts with a new
proposed transaction, which contains a bytecode. We assume
that all fields of the transaction and the blockchain are correct
to receive this generic transaction. As presented in the model,
Section III, this transaction targets an existing block. From this
block, the last state is extracted and together with the bytecode
is passed to the Interface EVM inside the SpeedyChain.

Interface EVM wraps both datas in a JavaScript Object
Notation (JSON) format, which is then sent through an inter-
process communication channel to the EVM. After sending the
JSON, it awaits a return from the EVM with a result. The EVM
receives the JSON with the state and bytecode. It changes
the virtual machine state to the state received and, using
the bytecode as input, processes the request, which yields a
resulting bytecode and an updated state. Both are wrapped in
a new JSON object and sent as a response to Interface EVM.
An error message is sent, if there is any problem when running
the smart contract.

The results are unwrapped by the Interface EVM and
handed to the blockchain, which will use the updated state
to create a committed transaction as described in Section III.
If an error is returned, then the transaction is discarded, and
no alteration is applied to the blockchain.

The approach shown in Figure 2, allows to use the EVM
developed by the Ethereum Foundation. It is implemented
in Golang and could not be integrated internally with the
SpeedyChain, implemented in Python. The use of that EVM
implementation is important for maintainability. Any further
update and modification by Ethereum Foundation in the
EVM’s operations would be inherited in our solution. Note
that we are using just the VM from the Ethereum foundation,
other modules are not incorporated in our solution. The
cryptocurrency, Ether, is intrinsic to the EVM. However it
is not used, since there are no rewards for blocks creation
and no way to create Ether in our implementation. Generally
in Ethereum, the cost of computation, named gas, is paid
to miners using Ether. However, this feature was removed in
our solution. We adopted an unlimited gas limit (computation
power).

V. EVALUATION

In order to evaluate context-based smart contracts in
appendable-block blockchains, we applied our solution in four
testing scenarios (see Table I). Every scenario was performed
on a Virtual Machine (VM) with 4-core processor, 16GB of
memory and 64MB of graphics memory running Ubuntu 18.04
operating system using a Virtual Box hypervisor over a Mac-
book Pro with 2.3 GHz 8-Core Intel Core i9 processor, 32GB
DDR4 memory. In order to create a container-based network
to emulate network equipment, gateways and devices, the Core
Emulator [31] was used. For all scenarios, a network with ten
gateways was simulated (see Figure 3). In all scenarios, a GPS
tracking smart contract was used, which uses an approximation
to calculate the distance between GPS positions. The source
in Solidity language is available on Github1.

TABLE I
EVALUATED SCENARIOS

Scenario Description

A Sequential execution of 1,000 smart contracts without
external load

B

Sequential execution of 1,000 smart contracts with an
additional load of 50 devices per gateway and 100
transactions per device, i.e., 5,000 transactions per
gateway and 50,000 transactions in total

C 10 parallel context with 100 smart contracts transactions
per context (1,000 in total) without external load

D

10 parallel context with 100 smart contracts transactions
per context (1,000 in total) with an additional load of 50
devices per gateway and 100 transactions per device, i.e.,
5,000 transactions per gateway and 50,000 transactions
in total

Scenario A was performed to establish a baseline for
smart contracts execution in appendable-block blockchains.
One hundred smart contracts operations were executed to
compute the distance between a device and a target using GPS
information. We simulated ten devices with sequential compu-
tation of smart contracts operations (total of 1,000 sequential
transactions) in the same gateway. Similarly to Scenario A,

1https://github.com/conseg/GPSTracker
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Fig. 3. Emulated gateways architecture

Scenario B performed the same number of sequential smart
contracts computations, however, with an extra load of normal
type of transactions in every gateway. A normal transaction in
this experiment is a random input of data in a pure data block.
The load was simulated through the insertion of 50 devices for
each gateway and 100 “normal” transactions produced by each
device. In total, 50,000 additional “normal” transactions were
simulated. These transactions were produced by 500 devices.

Different from previous described scenarios, Scenario
C used the proposed context-based smart contracts in
appendable-block blockchains. To do that, this scenario con-
sidered ten devices connected to ten different gateways and
requesting 100 smart contracts operations (1,000 operations,
the same computations as in A and B) in parallel, without
any extra load in the gateways. Similarly to C, Scenario D
adopted context-based smart contracts, with the same number
of transactions operations as C, but with the same extra load
present in B.

A. Metrics

In order to perform an evaluation of the proposed context-
based smart contracts in SpeedyChain, metrics called T1, T2,
T3, T4, T5, and T6 were used:
• T1: Time to perform consensus, insert a new block (first

time that device is connected) and replicate it to all
gateways;

• T2: Time to add and replicate a device block to all
gateways (after consensus);

• T3: Time to perform consensus, insert a new special
block for smart contracts and update EVM with the new
smart contract bytecode;

• T4: Time to insert a transaction into the blockchain;
• T5: Time to run a smart contract in the EVM and update

the blockchain;

• T6: Time to run all smart contracts evaluated (1,000
contracts operations).

All metrics are represented by an average time of ten
repetitions for each scenario. A confidence level of 95% was
achieved.

B. Results

Context-based smart contracts execution can impact the
consensus algorithms (T1) as presented in Table II. We can
see that time to perform consensus can increase ≈ 65% when
using context-based smart contracts (Scenario C) when com-
pared to a sequential smart contracts execution (Scenario A) in
a scenario without an extra load in gateways. When comparing
the scenario with extra load (“with normal transactions”), we
can observe that consensus time is increased by less than 13%
when comparing with (Scenario D) and without (Scenario B)
the context-based approach. This can be explained by the time
required by the gateways to process smart contracts, affecting
the time to perform consensus.

Also, we can observe similar behavior in the time to perform
consensus and update all the gateways to ensure a global view
of the blockchain (T2) presented in Table II. In this case, we
can observe a higher increment comparing Scenarios C to A
(≈ 85%), and D to B (≈ 14%). This result shows that it also
affects not only the leader of the consensus but also all the
gateways.

Table II presents the time to insert special blocks for a smart
contract (T3). In all scenarios, the time required was higher
than the average presented in T2. That can be explained by
the communication and processing performed in the EVM.
Additionally, a lower difference was observed when comparing
D to B (≈ 11%), than comparing C to A (≈ 81%).

Time to insert transactions into the blockchain (T4) was less
affected than block insertion by the proposed context-based
smart contracts solution, as presented in Table II. Scenario
C increased ≈ 23% over A, and D increased ≈ 7.5% over
B. Comparing the usage of context-based smart contracts
adoption in T3 and T4, we can observe that the impact in
mean time to insert transactions (T4) was lower than in block
insertion (T3).

One important measure is how much the processing of
smart contracts is affected by individual executions (T5).
We can observe in Table II that Scenario C increased in
≈ 18% over A and Scenario D increased in ≈ 23% over
B. This shows that the parallel approach proposed in context-
based smart contracts affect individual insertions. It can be
explained by the larger number of messages exchanged by
nodes. Although, 79.58ms (in the worst case) to receive the
result of computation still very good considering the usual
GPS update rate of one update per second (1Hz) [32].

Finally, as presented in Figure 4, time to perform calls for
every smart contract (T6) was reduced when using context-
based smart contracts in parallel execution (Scenarios C and
D) compared to “traditional” sequential execution (Scenarios
A and B). Differently to the other metrics, T6 is presented
in seconds for each scenario. Scenarios A and B required
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TABLE II
RESULTS SUMMARY

Scenario T1 (in milliseconds) T2 (in milliseconds) T3 (in milliseconds) T4 (in milliseconds) T5 (in milliseconds) T6 (in seconds)

A 19.54± 0.24 46.53±0.48 61.24± 0.65 0.97± 0.003 29.17± 0.03 31.22± 0.43
B 90.98± 0.77 279.64± 2.53 305.22± 33.45 2.81± 0.008 64.18± 0.40 70.40± 0.97
C 32.40± 1.43 85.59± 3.55 111.03± 4.45 1.20± 0.10 34.47± 0.10 3.46± 0.12
D 102.67± 0.87 320.24± 2.93 340.03± 40.04 3.02± 0.01 79.58± 0.72 6.96± 0.48

an average of 31.22s±0.43s and 70.40s±0.97s, respectively.
Although, Scenarios C and D required only 3.46s±0.12s
and 6.96s±0.48s. While context-based approach (C and D)
presented an impact in the main operations (T1, T2, T3, T4
and T5) of the blockchain, T6 required around 10% of the time
to perform all smart contracts than in the sequential approach
(scenarios A and B).
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Fig. 4. T6: Time to execute 100 calls for each 10 different smart contracts

C. Discussion and threats to validity

Results presented in the Evaluation section show the possi-
ble gains when using context-based smart contracts. Reducing
the total time of smart contracts can contribute to a more
distributed execution of smart contracts than the current solu-
tions. The adoption of appendable-block blockchain allowed a
parallel execution, resulting in smaller time to perform smart
contracts operations (as presented in T6).

Nonetheless, overhead is introduced by context-based smart
contracts, especially when comparing a scenario without an
extra load on gateways. Context-based approach increased in
more than 60% the time to achieve consensus for new blocks
in the blockchain (T1, T2 and T3) in scenarios without extra
load. However, scenarios with extra load (simulating a real
blockchain scenario) presented a small increase for the same
indicators (less than 15%). Also, it is important to note that
the block insertion is performed only once for each context.

There are some threats to the validity on the results pre-
sented in Section V-B. The first threat is related to hardware
capability. In this work, we did not use physical IoT devices
and GPS. However, we used the same cryptography algorithms
and methods than those that were adopted by Lunardi et al. [7]
in their experiments (using real hardware). Consequently,

devices using IoT hardware should be capable of executing
the same operations, but probably with different performance.

Additionally, the evaluation did not consider possible signal
and communication problems. Consequently, the experiments
did not take into account issues that mobile devices and/or
gateways can produce. Hence, this threat should be further
discussed and mitigated in a future work.

Finally, threats related to security issues that the proposed
approach can introduce. For example, the impact of tampered
devices producing invalid data (e.g., invalid coordinates) were
not considered. This specific threat should also be better
addressed in future work.

VI. FINAL CONSIDERATIONS & FUTURE WORK

In this paper, we presented a new model for context-
based smart contracts that can be applied to appendable-block
blockchains. This model expands the possibilities that the
appendable-block blockchains can be used for. Also, it can
allow improvements in the performance of smart contracts
computation through parallel execution.

Results presented in the evaluation indicate that the execu-
tion of smart contracts can be reduced when they are classified
in independent contexts. For example, in the scenario with
additional load, the time to perform all the smart contracts
computations was reduced from more than 70 seconds to less
than 7 seconds. However, the proposed context-based smart
contracts increased the time to perform consensus, due to the
usage of gateways’ processors to compute smart contracts,
although, block insertion is performed only once per context.
Additionally, in the scenario with extra load, this increase was
reduced when compared to a scenario without extra load.

Due to space limitation, in this paper we did not discuss
security issues that could be introduced by this new model.
For example, there is no protection against replay attacks, an
attack where a transaction is copied by a malicious user and
sent to be processed again.

As future work, we intend to evaluate the proposed approach
using actual hardware, in special to evaluate the impact that
both latency and constrained hardware can have in context-
based smart contracts. Also, we expect to reduce the overhead
introduced by the context-based approach. Additionally, we
intend to evaluate possible security issues and possible new
attacks that can be explored in this approach. Finally, we
intend to expand the context-based smart contracts model to
other blockchains, such as Ethereum and Hyperledger Fabric.
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