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Introduction

Orthodontic treatment often requires welded appliances, 
such as lingual arches and maxillary expanders. Adequate 
strength of these devices is mandatory, as breakages may 
delay treatment time, damage tissues, or cause aspiration and 
swallowing (Bock et al., 2009). These appliances are often 
made with silver soldering, a conventional method that is 
highly operator dependent and uses Silver (Ag)  brazing alloy 
to join other metals (Hurt, 2002; Ntasi et al., 2019). Excessive 
wire heating during this process may lead to  oxidation, joint 
failure and low mechanical strength of the appliances (ISO 
9333:2006; Ntasi et al., 2014; Perveen at al., 2018). Besides 
these limitations, these joints are prone to galvanic corrosion 
due to the soldered Ag alloy (Jacoby et al., 2017; Ntasi et al., 
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2019; Perveen et al., 2018; Muguruma et al., 2018). Niquel, 
Zinc, Cupper and Cromium may dissolve in the oral cavity 
and cause adverse biological effects (Freitas et al., 2009; 
Jacoby et al., 2017; Ntasi et al., 2014, 2019; Perveen et al., 
2018; Schacher and De Menezes 2020; Sestini et al., 2006). 
Also, Ag nanoparticles have been ranked as strongly cyto-
toxic (Pellissari et al., 2020) and may affect cognitive, sen-
sory and motor functions, which can result in brain and liver 
damage (Chen et al., 2016). The possibility of using different 
welding methods to overcome this lack of biocompatibility 
is of great interest to orthodontists. Alloy-free methods such 
as spot, tungsten inert gas (TIG) (Bock et al., 2009; Fornaini 
et al., 2009; Rocha et al., 2006; Wang and Welsch, 1995), a 
well-known gas tungsten arc welding and laser welding are 
alternatives (Bock et al., 2008b; Nascimento et al., 2012; 
Muguruma et al., 2018). Laser increased its application in the 
orthodontic field (Nalcaci and Gokakoglu, 2013) and may 
also be used for welding.

Spot welding presents higher biocompatibility (Nascimento 
et al., 2012; Sestini et al., 2006) but the mechanical strength 
may vary according to wire and joint configuration 
(Nascimento et al., 2012). TIG welding and laser welding pre-
sent no galvanic corrosion, small focus and argon coating that 
prevents oxidation around the joint (Heidemann et al., 2002; 
Sestini et al., 2006; Solmi et al., 2004; Perveen et al., 2018; 
Muguruma et al., 2018). These two methods offer high bio-
compatibility and may present adequate mechanical strength, 
and are therefore advantageous to orthodontics (Perveen et al., 
2018; Muguruma et al., 2018; Wang and Welsch, 1995). 
However, few studies compare these techniques for orthodon-
tics, and their methodological differences hamper comparison 
between the results (Bock et al., 2008b; Muguruma et al., 
2018; Wang and Welsch, 1995).

Considering the biological risk of silver soldering and 
the possibility of replacing it with alternative methods, the 
aim of the present study was to compare the mechanical 

strength of joints made by the conventional brazing method 
with those made by welding techniques that do not use 
filler metal. In addition, our purpose was to compare the 
microstructural morphology of welded stainless-steel 
orthodontic wires made by silver soldering, spot welding, 
TIG welding and laser welding to better understand the 
welding processes currently available for orthodontics.

Methods

Welded joint

A pilot study was conducted to calculate the sample size. 
Five welded stainless-steel wires were generated for each 
technique: silver, spot, TIG and laser welding (n = 20). The 
samples were submitted to tensile strength test. The largest 
mean difference between groups (212.01 N) and the largest 
standard deviation (100.784 N) were applied. A power of 
80% and significance level of 5% were considered. Minitab 
Inc.® 17.1.0 (State College, PA, USA) was used to calcu-
late sample size. The result showed a minimum of 06 speci-
mens per group, with a total sample of 24.

Round 0.8-mm stainless-steel wires were cut into 
50-mm segments. For each joining method, 10 specimens 
were made (n = 40) to overcome any eventual loss due to 
failure. The total sample was divided in 4 groups: Group 1 
(TIG welding), Group 2 (laser welding), Group 3 (spot 
welding) and Group 4 (silver welding). Representative 
samples of each joining method were produced for micro-
structure evaluation.

Test specimens were made for proper fit of the wires on 
the universal testing machine. For retention, a 10-mm 
round bend was made at the end of each segment followed 
by a 90º bend with a bird beak plier (Orthopli, Philadelphia, 
PA, USA). The retention ends were inserted in the center of 
a silicone matrix (®) of 10-mm diameter and 5-mm height, 
with the aid of utility wax. Self-cured acrylic resin (Vipi, 
Pirassununga, Brazil) was poured inside this structure. 
After the curing process, all wires were fixed to the matrix 
base (Figure 1).

The free ends of the wires were prepared in a standard-
ised manner with low-speed silicon carbide stones. Silver 
and spot welding were performed by the same operator, and 
TIG and laser techniques were performed in specific labo-
ratories by the same operator.

Silver welding used 50 mm of silver solder alloy and 10 
mg of flux (Morelli® Sorocaba / SP, Brazil). The test speci-
mens were immobilised with Matthieu clamps (Orthopli®) 
at a distance of 0.3 mm between the segments. Flux was 
applied to both ends of the wires. A dental soldering torch 
with butane gas (Blaser®) and flame of approximately 10 
mm was used. Welding used the apex of the flame, at the 
reducing zone. Silver solder was added and heated until it 
flowed around the wires. After soldering, the assembly was 
immediately removed from the flame and cooled at room 
temperature.

Figure 1. Test specimen preparation and positioning for 
the tensile strength test: (a) retention bend; (b) insertion 
in acrylic resin; (c) soldering; (d) specimens on the testing 
machine.
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Spot welding was performed with an overlap of 5 mm 
between the wires and two welding points. The machine 
(SMP 3000, Kernit, Indaiatuba, Sao Paulo, Brazil) was set 
at 30 W for 1 ms, and the ends of the electrodes were flat-
tened with 400 mesh sandpaper before welding.

Laser and TIG welding followed the manufacturer’s 
instructions. Laser (Sisma® LM-D60, Piovene Rocchette, 
Italy) was set with a power of 11% and speed of 6.5 Hz. The 
beam diameter was 0.6 mm. TIG welding (Lampert ® Puk 
D2, Werktechnik, GmbH) was performed with a power of 
30% and speed of 15 ms.

All welded joints were polished with gray stone for 20 s, 
followed by silicone rubbers in the following sequence: 
white for 15 s (L22 polishing rubber, EVE, Pforzheim, 
Germany); brown for 30 s; and green for 30 s (EVEFLEX 
HP 708 and 808, EVE, Pforzheim, Germany).

Morphology and microstructure evaluation

The wires were initially embedded in PVC rings using 
oven-cured epoxy resin at 60 °C for 24 h, to fix the sample 
and facilitate metallographic preparation. Specimen prepa-
ration is an important part of the process as it ensures cor-
rect observation of internal structures. Samples were 
initially prepared with a sequence of #220, #320, #400, 
#600 and #1200 mesh abrasive papers with rotating discs 
under constant water irrigation. Then they were polished 
with 1.0-µm alumina particles in a Pantec Polipan-Ud® 
polishing machine and 0.30-µm particles in a 300-rpm rota-
tion Struers DPU® polishing machine. Fry’s reactive agent 
was used for 5 s (90 g of CuCl2, 120 mL of H2O: HCl and 
100 mL of distilled water). The piece was then removed 
and washed in distilled water. Micrographs were generated 
by an Olympus PMG3 optical microscope (50× and 100× 
magnification) with an EDN-2 reading program.

The morphology analysis was carried out through scan-
ning electron microscopy (FEG Inspect F50 – FEI®) using 
secondary (SE) and back-scattered electron (BSE) detec-
tors. The BSE images are generated by a contrast mecha-
nism between different atomic numbers of the elements 

present in the material. SE imaging responds minimally to 
atomic number variations, providing insight into the mate-
rial’s topography and not on its chemical composition.

The samples were metallised with gold (Q 150 R ES, 
Quorum, UK) and observed at magnifications of 50×, 
100×, 200× and 500×. The parameters used were voltage 
of 20 kV and point resolution of 1.2 nm.

Welded joint resistance test

Tensile strength test was carried out in a universal testing 
machine (EMIC DL-2000). All samples were stretched 
with the same load until breaking point. After the test, the 
wires were analysed to determine the rupture site using an 
optical microscope under 10× magnification.

Statistical analysis

Data were analysed for normal distribution using the 
Shapiro–Wilk test. Despite normal distribution, the analy-
ses of variance (ANOVA) identified differences between 
groups, violating a one-way ANOVA assumption. Thus, we 
started with the non-parametric alternative of Kruskal–
Wallis. The effect size of this test was calculated as the Eta-
squared, based on the H-statistic: eta2[H] = (H - k + 1)/(n 
- k); where H is the value obtained in the Kruskal-Wallis 
test; k is the number of groups; n is the total number of 
observations. According to the literature, we considered a 
small effect from 0.01 to 0.06, moderate effect from 0.06 to 
0.14 and large effect higher than 0.14. Dunn’s post-hoc test 
with Bonferroni correction was used. All tests considered a 
significance level of 95% with p-value less than 0.05. The 
software used was R version 4.0.2 (R Core Team, 2020).   

Results

Statistically significant differences were found between 
groups (P < 0.001, Kruskal–Wallis test). Differences 
occurred between groups 2 and 3 (p = 0.046), 1 and 2   
(p = 0.016), 3 and 4 (p <0.001), and 4 and 1 (p <0.001) 
(Dunn’s post-hoc test). There were no significant differ-
ences between 2 and 4 and between 3 and 1 (p>0.05). 
(Figure 2) The effect size of the Kruskal-wallis test was 
small in all groups (0.01).

Figure 2. Box plots showing tensile strength values (N).

Table 1. Mean tensile strength values (N).

Group Welding technique n Mean ± SD

1 TIG 10 296 ± 8

2 Laser 10 420 ± 18

3 Spot 10 301 ± 54

4 Silver 10 532 ± 61
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Figure 3. Silver joint. (a, b) Back-scattered electron images with magnifications of 50× and 100×. (c) Secondary electron 
image with 100× magnification. (d–g) Metallography with 50× and 100× magnification. Porosities are indicated by the arrows. 
Micromechanical union can be observed, with coverage of the wires by the Ag alloy.

Figure 4. Spot joint. (a) BSE image with 100× magnification, (b) secondary electron image with 100× magnification,  
(c) BSE image of point 1 with 500× magnification, (d) BSE image of point 2 with 500× magnification, (e) metallography of 
point 1 with 50× magnification, (f ) metallography of point 2 with 50× magnification. The distinct point configurations can be 
observed. (e, f ) The arrows indicate (e) lack of union between the segments in a deeper layer and (f ) the heat-affected zones. 
BSE, back-scattered electron.
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Figure 5. Tungsten inert gas joint. (a, b) BSE images with 100× and 200× magnifications, (c) secondary electron image with 
200× magnification, (d) BSE image of point 1 with 500× magnification, (d) BSE image of point 2 with 500× magnification, (e) 
metallography with 50× magnification, (f ) metallography with 100× magnification. The arrows in (e) indicate the large heat-
affected zone. In (f ), cracks may be observed. BSE, back-scattered electron

Figure 6. Laser joint. (a, b) Back-scattered electron images with 100× and 200× magnifications, (c) secondary electron image 
with 200× magnification. The arrows point to adequate union between the segments. The regions indicated by the asterisks are 
compatible with chromium oxide formation. (d–f) Metallography with 50× and 100× magnification. The arrows point to the 
small heat-affected zones.
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The highest tensile strength mean values were obtained 
by silver soldering (532 N), followed by laser (420 N), spot 
(301 N) and TIG (296 N) welding (Table 1). SEM and met-
allography images are shown in Figures 3–6.

The analysis of the wires after tensile strength test 
revealed that rupture occurred in the weld region for all TIG 
and spot joints. Fracture occurred in the wire near the weld 
region on eight samples with silver joints and immediately 
adjacent to it on two, with fracture of a small portion of the 
weld region. Laser-welded wires had all ruptures occurring 
very close to the weld, without involving it (Table 2).

Discussion

The original tensile strength of the 0.8-mm orthodontic 
wire averages 1492 ± 55 N according to the manufactur-
er’s specifications. All welding techniques altered the origi-
nal properties of the wires, with significant differences 
between the methods. Despite this reduced resistance, all 
techniques generated structures strong enough to withstand 
orthodontic forces (Mathew et al., 2016; Mesquita et al., 
2018; Muguruma et al., 2018).

Mechanical tests were performed in this study, similar to 
others in the literature (Bock et al., 2008a, 2008b, 2009; 
Heidemann et al., 2002; Nascimento et al., 2012; Sestini 
et al., 2006; Muguruma et al., 2018). Metallographic and 
morphologic evaluations were carried out to analyse the 
visual quality of joints, providing information for better 
interpretation of the tensile strength results. Metallography 
allows a broader understanding of the morphological and 
structural characteristics of the joints. This analysis served 
as a tool for comparing between groups and identifying 
possible causes for the mechanical performance. Changes 
in the microstructure appear in all photomicrographs of the 
soldered specimens. The SEM morphologic evaluation 
used BSE and SE imaging.

In silver welding, the segments are completely covered 
without melting the steel, forming a micromechanical 
union (Figure 3). On the other hand, in TIG and laser weld-
ing, a new structure is formed with the melting of the seg-
ments (Figures 5 and 6). The spot technique provides partial 
joining of the wires (Figure 4). Thus, BSE images of the 

silver solder reveal different compositions between the 
wire and the welded region (Figure 3). This composition is 
not observed in the other techniques where there is electron 
sharing with fusion between the segments (Figures 4–6). 
Laser images present irregular dark areas in the weld 
region, probably compatible with chromium oxide, sug-
gesting structure oxidation despite the inert gas coating.

The higher tensile strength values were obtained by sil-
ver soldering, which is in agreement with previous results 
(Muguruma et al., 2018). Higher resistance values have 
been found   for TIG and laser (Bock et al., 2008a). TIG and 
laser welding presented a low standard deviation, indicat-
ing a more standardised technique, while silver welding 
presented a high standard deviation. The high standard 
deviation sheds light on the difficulty of performing con-
ventional soldering, which has great individual variability. 
This may be considered a weakness of this technique.

Spot, TIG and laser welding are less individual-depend-
ent processes with higher ease of operation (Perveen et al., 
2018). These alloy-free methods generate appliances with 
lower corrosive potential. The ease of operation and the 
generation of appliances with higher biocompatibility are 
advantages of these techniques. However, the tensile 
strength of TIG and spot-welded joints was significantly 
lower. Spot welding requires overlapping joints and is most 
efficient when joining thin sections of materials, such as 
wires and molar bands (ISO 9333:2006; Perveen et al., 
2018). Despite using the same settings, irregular and super-
ficial penetration depth points were observed for spot weld-
ing (MEV). It is possible that the high diameter and 
positioning of the 0.8-mm round wires are responsible for 
this variation, as stabilisation of these wires is difficult 
when pressed by the electrodes. The weak tensile strength 
presented by the spot joints may also be related to the num-
ber of welded points. We performed two weld points at 
each joint, according to the size of the region to be welded. 
However, the increase in the number of weld points may 
possibly increase the resistance values (Nascimento et al., 
2012). Due to these limitations in the high diameter of the 
wire and the number of points, it is not viable to extrapolate 
our findings to the expected performance of welded wires 
of smaller diameters or rectangular section, nor for welding 
in molar bands. These surfaces may present higher strengths 
than those found in our study.

Large heat-affected zones were observed on TIG joints, 
corroborating previous reports (Da Silveira et al., 2012; 
Perveen et al., 2018; Wang and Welsch, 1995). Failures 
observed (Figure 5) are probably associated with the com-
plex metallurgical transformations after exposure to high 
temperature. These findings may explain the lower mechani-
cal performance of the wires and breakage in the weld region.

Laser is presented as the most efficient welding method 
in dentistry (Perveen et al., 2018; Muguruma et al., 2018). 
Its concentrated heat source causes less distortion and nar-
row heat-affected zone, producing a higher-quality joint 

Table 2. Rupture sites of the wires after tensile strength.

Rupture site

 On the weld Near the weld

Tungsten inert gas 10 0

Laser 0 10

Spot 10 0

Silver 8 2
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(Perveen et al., 2018). This was confirmed in our study. 
Despite laser presenting lower strength than silver joints, 
there was no statistically significant difference (P = 0.320). 
Limitation of this technique lies in the higher cost of the 
equipment and laboratory process.

TIG is used for joining dental alloys and can offer high-
quality joints (Perveen et al., 2018) but has not been rou-
tinely used in orthodontics. In our study, the outcomes of 
TIG welding, yet possibly suitable for clinical use, were 
below expectation. Considering that TIG is a low-cost 
alternative, when compared with laser welding, and that 
small modifications during this process may significantly 
influence the outcomes (Bock et al., 2008b), a broader 
understanding (Schacher and De Menezes, 2020) and defi-
nition of optimal welding parameters may enable and 
expand this technique for orthodontic use.

The purpose of this study was to test alternative methods 
for welding, looking at more biocompatible appliances. 
Mechanical tests are important tools to evaluate metallic 
structures, but the results have limitations. Considering 
their in vitro nature, the conditions vary greatly from clini-
cal situations. Exposure of the appliances to the oral envi-
ronment, with pH variations (Muguruma et al., 2018), 
chewing efforts and aging of the materials, may alter their 
performance (Soteriou et al., 2014). Moreover, the tensile 
strength result gives an idea of   the structure’s behaviour, 
but it is not possible to assume that the values   refer to the 
weld strength specifically (Matsunaga et al., 2015). Factors 
such as wire heating and presence of porosities may be sig-
nificant for tensile performance, and the results should cor-
relate with microstructural changes of each welding 
method. Whilst all methods of welding are strong enough 
to withstand orthodontic forces, it would be worthwhile in 
future to consider if this can be conducted in vivo. New 
studies are indicated for a broader understanding of the 
clinical performance of different welded appliances with 
more biocomatible characteristics.

Conclusion

Laser welding strength is high and comparable to silver 
welding. Spot and TIG welding techniques present compa-
rable and significantly lower strengths. Despite the differ-
ences, the four welding methods presented resistance 
values   compatible with orthodontic use in this in vitro 
study.

The microstructural morphology is different for each 
welding technique. A new structure is formed for laser and 
TIG methods, while for conventional brazing the segments 
are covered in a micromechanical union. The spot tech-
nique provides partial joining of the wires. The association 
between the mechanical performance and the microstruc-
ture evaluation allowed us to conclude that laser presented 
the highest-quality joint.
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