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Abstract
The main sources of food for stingless bees are the nectar and pollen harvested from flowers, whereas one important kind of
nesting material (i.e. wax) is produced by their own abdominal glands. Stingless bees can, nonetheless, obtain alternative
resources of food and wax from exudates released by sap-sucking insects as honeydew and waxy cover, respectively. To date,
there are no comprehensive studies investigating how diversified and structured the network interactions between stingless bees
and sap-sucking insects are. Here, we conducted a survey of the data on relationship between stingless bees and sap-sucking
insects to evaluate: (1) which resources are collected by which stingless bee species; (2) how diverse the interaction network is,
using species degree and specialisation index as a proxy; and if (3) there would be any phylogenetic signal in the species degree
and specialisation indices. Our findings demonstrate that approximately 21 stingless bee species like Trigona spp. and
Oxytrigona spp. have been observed interacting with 11 sap-sucking species, among which Aethalion reticulatum is the main
partner. From ca. 50 records, Brazil is the country with most observations (n = 38) of this type of ecological interaction.We found
also that stingless bees harvest fivefold more honeydew than waxy covers on sap-sucking insects. However, we did not find any
phylogenetic signal for the occurrence of this interaction, considering species degree and specialisation indices, suggesting that
both traits apparently evolved independently among stingless bee species.We suggest that specific ecological demands may drive
this opportunistic behaviour exhibited by stingless bees, because major sources of food are obtained from flowers and these bees
produce their own wax.
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Introduction

Bees (Hymenoptera) are largely associated with flowers as
they have morphological adaptations (e.g. branched hairs),
which are used to harvest floral resources that they then use
to feed their brood (Lunau 2004; Poinar and Danforth 2006;
Cardinal and Danforth 2013). Additionally, bees are able to
collect food or occasionally nesting materials from alternative
sources. For example, corbiculate bees such as honeybees,
bumblebees and stingless bees are known to harvest honey-
dew or wax from sap-sucking insects (Hemiptera; Santas
1983; Batra 1993; Bishop 1994; Almeida-Neto et al. 2003;
Dimou and Thrasyvoulou 2007; Oda et al. 2009; Barônio
et al. 2012).

Honeydew is a sweet substance expelled by hemipterans
that suck sap from plants (Way 1963; Delabie 2001). This
substance is a source of carbohydrates, amino acids, vitamins,
proteins and other nutrients (Auclair 1963; Simova et al.
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2012). Honeydew is preferentially collected from sap-sucking
nymphs but can be collected from adult sap-suckers too.
These insects selectively release their exudate for specific
partners, based on their potential to protect them against nat-
ural enemies (Schuster 1981; Maschwitz and Hanel 1985;
Letouneau and Choe 1987; Delabie 2001; Naskrecki and
Nishida 2007; Azevedo et al. 2008; Oda et al. 2009; Barônio
et al. 2012). Opportunistic insects touch their antennae to the
abdominal tip of a hemipteran that subsequently elevates its
abdomen and exudes honeydew from its anal tube (Schuster
1981; Maschwitz and Hanel 1985; Letouneau and Choe 1987;
Delabie 2001; Naskrecki and Nishida 2007; Oda et al. 2009;
Barônio et al. 2012). The production and release of honeydew
or wax by sap-sucking insects are intrinsic physiological re-
quirements as well as protective products, respectively, for
these hemipterans. Consequently, opportunistic insects exploit
the honeydew as an alternative food source and exploit the
wax as a supplementary nest material (Way 1963; Maschwitz
and Hanel 1985; Letouneau and Choe 1987; Corke 1999;
Delabie 2001; Camargo and Pedro 2002; Naskrecki and
Nishida 2007; Kondo 2010; Sansum 2013).

Sap-sucking insects are usually sedentary and gregarious,
which facilitates their predation (Way 1963; Delabie 2001).
Therefore, the establishment of a partnership with organisms
capable of providing protection against predators/parasitoids,
or even providing sanitation services, may be a good survival
strategy for such insects (Way 1963; Letouneau and Choe
1987; Figueiredo 1996; Delabie 2001; Barônio et al. 2012;
Oda et al. 2014). Social insects, such as ants, bees and wasps,
seem to be preferred protectors because these taxa may ag-
gressively defend their resources in a collective way (Way
1963; Letouneau and Choe 1987; Buckley and Gullan 1991;
Delabie 2001; Kondo 2010; Novgorodova 2015). This behav-
iour benefits sap-sucking insects, which selectively recipro-
cate with honeydew. However, wax tends to be usurped by
opportunistic insects, potentially exposing the sap-suckers to
desiccation or natural enemies (Way 1963; Letouneau and
Choe 1987; Buckley and Gullan 1991; Delabie 2001; Kondo
2010; Novgorodova 2015).

The interaction between sap-sucking insects and their at-
tending ants and wasps is well documented (e.g. Way 1963;
Barrows 1979; Letouneau and Choe 1987; Buckley and
Gullan 1991; Delabie 2001; Novgorodova 2015); however,
the interaction between stingless bees and sap-sucking insects
has received little attention, and has only been anecdotally
reported (Cortopassi-Laurino 1977; Almeida-Neto et al.
2003; Vieira et al. 2007; Oda et al. 2009, 2014; Koch et al.
2011; Barônio et al. 2012). To date, there are no papers com-
paratively and systematically investigating the interactions be-
tween stingless bees and sap-sucking insects evaluating topics
as interaction network and phylogenetic perspective. Most
studies on interaction networks have focused on the mutual-
istic relationships between plants and bees (Olesen and

Jordano 2002; Mitchell et al. 2009; Stang et al. 2009; Aidar
et al. 2015; Giannini et al. 2015) but not on the relationships
between bees (herein, we focus on stingless bees) and sap-
sucking insects. Additionally, the phylogenetic histories of
organisms may contribute to our understanding of the struc-
ture of certain patterns found in ecological networks and thus
offer an important perspective (Rezende et al. 2007). When
comparative phylogenetic methods are incorporated into
quantitative analyses, the models are substantially improved
as type I errors are avoided because differences or similarities
in observed patterns can be associated to phylogenetic histo-
ries rather than ecological characteristics (Felsenstein 1985;
Abouheif 1999; Rohlfs and Nielsen 2015; Adams and
Collyer 2018). The strength of applying comparative phylo-
genetic methods can be explained by the fact that closely
related species are expected to retain some phenotypic simi-
larities due to their shared evolutionary history, and this factor
can be neglected when the phylogenetic history is not explic-
itly considered (e.g. Felsenstein 1985).

To compensate for the absence of information on the inter-
actions between sap-sucking insects and stingless bees, we
analysed this interaction network deeply by considering the
phylogenetic relationships among the stingless bee species
involved in such association. This approach was chosen be-
cause all stingless bees could be identified to species or genus
levels, while some sap-sucking insects could not be identified
by the original authors.We estimated specific parameters from
the interaction network, such as species degree and speciali-
sation index, by incorporating the phylogeny of target sting-
less bee species. Then, we evaluated whether these network
parameters exhibited any phylogenetic signal.

Methods

Survey data

We searched Web of Science™, the Online Scientific
Electronic Library (Scielo) and Google Scholar using the fol-
lowing terms additionally (i.e. two or more words together):
stingless bees * AND honeydew * AND wax * AND
Hemiptera * AND sucking-insects * AND cooperation *
AND association. We then linked these words to all fields that
would include items as topics, titles and abstracts to find texts
in scientific journals addressing these issues. This search was
performed before August 30th, 2018.

Exudates harvest from sap-sucking insects
by stingless bees

When available, we recorded the types of exudate that was
secreted (honeydew or wax) by sap-sucking insects and har-
vested by stingless bees. After that, we analysed which
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exudate has been more documented being collected by sting-
less bees. For that analysis, we used the function chisq.test in
R (Ihaka and Gentleman 1996; R Core Team 2016) to perform
a chi-squared test. Significance was tested by calculating p-
values using 2000 replicates with rescaling (α = 0.05).

Ecological network

After surveying the available literature, we built a Sankey
diagram of the exudates (honeydew or wax) released by a
sap-sucking insects using the geom_alluvium function from
the package ‘ggplot2’ (Wickham 2009). Subsequently, we
evaluated the interactions between hemipterans and stingless
bees by performing an ecological network analysis using the
species level function from the ‘bipartite’ package (Dormann
et al. 2009).

The species level function calculates various indices for
network properties at the species level. In the current study,
we evaluated two indices: species degree and specialisation
index. The former is the number of interactions per species
(Jordano et al. 2003; Bascompte et al. 2006). Therefore, here,
it was used as a proportion (normalised degree, González et al.
2010) of sap-sucking insects in which each stingless bee spe-
cies interacted considering the total number of hemipteran
species present in network. On the other hand, the specialisa-
tion index quantifies the degree of specialisation of a species
within an interaction network (Blüthgen et al. 2006; Dormann
et al. 2009). As such, it is a species-level specialisation mea-
sure (based on frequency data) adapted from Kullback–
Leibler distance (d′) and ranges from 0 (generalist) to 1
(specialist; Blüthgen et al. 2006; Dormann et al. 2009).

To visualise the interaction network, we used the plotweb
function (method = ‘cca’) from the bipartite package, which
displays the fewest possible crossing interactions. The plot
was extracted and exported as a PDF before being imported
as vectors into the illustration software ‘Inkscape’ (Inkscape
2017), where the figures were tidied.

Phylogenetic comparative analyses

The phylogenetic relationships and divergence times of
stingless bee species were based on the hypothesis by
Rasmussen and Cameron (2010) for the 21 species included
in the comparative analyses of this study. The nexus file was
transformed in phylo using the ‘ape’ package (Paradis et al.
2004). Such a phylogeny was used to evaluate if the species
degree and/or specialisation index had a phylogenetic signal.
If a phylogenetic signal was found, then, the degree of relat-
edness between species would explain the observed pattern
better than the ecological variables.

We used the function phylosig (with 9999 permutations)
from the ‘phytools’ package (Revell 2012). The method cho-
sen was for the continuous trait (i.e. Pagel’s λ). A λ value of

close to 0 means that the phylogenetic signal is equivalent to
that which would be expected if the data arose on a star phy-
logeny (which has no phylogenetic signal). On the other hand,
a λ value of close to 1 implies covariances among related
species that match those implied by the original phylogeny
(Pagel 1994). To visualise the phylogenetic signals of the spe-
cies degree and specialisation index in the phylogenetic sce-
nario, we employed the contMap function from the phytools
package (Revell 2012). All statistical analyses were per-
formed in R (Ihaka and Gentleman 1996; R Core Team 2016).

Results

Number of species interacting with each other
and exudates harvested by stingless bees

We found that 11 hemipteran species were visited by at least
21 stingless bee species (Fig. 1; Online Resource 1). The
observation that stingless bees interact with sap-sucking in-
sects has been recorded approximately 50 times in the litera-
ture (Online Resource 1). Furthermore, our data survey
showed that relationships between stingless bees and sap-
sucking insects have been recorded in seven countries
(Brazil, Colombia, Costa Rica, Guatemala, India,
Madagascar, and Panama), Brazil having the most observa-
tions (n = 38).Unfortunately, some hemipteran species/genera
that have been involved in these interactions are unknown
(unknown taxon) because the original authors only reported
family-level data. It is noteworthy that the majority of these
authors were the first naturalists describing the little explored
Brazilian entomofauna in the nineteenth century (Online
Resource 1). Honeydew harvesting has been recorded more

Fig. 1 The interaction between Trigona hyalinata (Hymenoptera:
Apidae: Meliponini) and Aethalion reticulatum (Hemiptera:
Aethalionidae) on a branch of Clitoria fairchildiana Howard
(Papilionoideae). Image use authorised by Camila Aoki. For details, see
Oda et al. (2009)
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times (34) than wax harvesting (7; χ2 = 17.78, p value <
0.001; Fig. 2). Our results also indicate that of the 12 stingless
bee genera reported here, Trigona is the genus containing the
most species (ca. 38%) interacting with sap-sucking insects.

Interaction network and phylogenetic signal

Overall, our interaction network analysis presented a propor-
tion of realised vs. possible ecological interactions (i.e.
connectance) of 0.09. However, since our ecological network
had a small number of species investigated, such a
connectance value is unreliable (Dormann et al. 2009).
Concerning the normalised species degree, Trigona spinipes
was the bee species with the highest score (0.33), followed by
Oxytrigona tataira (0.27), suggesting that these two stingless
bees accounted for half of the possible interactions on the
upper level of the network (Fig. 3; Table 1). However, most
stingless bee species exhibited only 5% of the possible sap-
sucking insects. Parapartamona zonata, Plebeia droryana,
Schwarzula coccidophila and Tetragonula iridipennis showed
the highest values of specialisation (i.e. 1), suggesting that
they interacted with sap-sucking insects, but did not share
these resources with other stingless bee species (Fig. 3;
Table 1). Trigona branneri, Trigona amazonensis and
Partamona cupira presented the lowest values of

specialisation (i.e. 0), meaning that they only interacted once
with the most common partners of stingless bees (here,
Aethalion reticulatum; Fig. 3; Table 1).

We did not find statistical significance to support the phy-
logenetic signal related to the normalised species degree
(Pagel’s λ = 6.73 × 10−5, p value = 1; Fig. 4) and specialisa-
tion index (Pagel’s λ = 0.40, p value = 0.36; Fig. 4).
Therefore, the relative number of interactions per species, as
well the degree of specialisation of stingless bee species with-
in the network, are more likely associated to ecological traits
than to shared phylogenetic histories. This suggests that both
species degree and degree of specialisation are independent of
the phylogenetic history.

Discussion

Our findings show that ca. 0.013% (~ 82,000 spp., Bourgoin
and Campbell 2002) of hemipteran species have been reported
interacting with ca. of 3.5% (> 600 spp., Rasmussen and
Cameron 2010) of stingless bee species. This proportion
would certainly be higher if some species/genera of sap-
sucking insects and stingless bees had been identified by orig-
inal authors.

Fig. 2 Flow diagram (Sankey diagram) showing the proportion of links (width) between two entities (rectangles), including stingless bee genera (left)
and sap-sucking insect exudates (right). The colours indicate whether the genera are harvesting honeydew (pink) or waxy cover (blue) from hemipterans
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Stingless bee species harvest more honeydew than wax as
they opportunistically visit sap-sucking insects. This fact re-
veals that alternative sources of food are in higher demand by
their colonies than complementary nest materials are.

The strong association of the stingless bee genera Trigona
(mainly T. spinipes) and Oxytrigona (O. tataira) with sap-
sucking insects is noteworthy, and particularly their interac-
tion with A. reticulatum, a very common agricultural pest. It is
known that A. reticulatum is sedentary and gregarious and
often occurs at high population densities (e.g. Brown 1976;
Hamity et al. 2003). They are prone to intense predation and
parasitism (Brown 1976; Hamity et al. 2003), and as a result,
females (mothers) provide maternal care by protecting her
eggs or nymphs against natural enemies and desiccation
(Brown 1976). Consequently, the most common interactions
between sap-sucking insects with Trigona and Oxytrigona
may be because these stingless bees of these genera exhibit
territorial and aggressive behaviour when visiting hemip-
terans, whereas other stingless bees do not display such be-
haviour (Cortopassi-Laurino 1977; Schuster 1981; Figueiredo
1996; Almeida-Neto et al. 2003; Vieira et al. 2007; Azevedo
et al. 2008; Oda et al. 2009; Barônio et al. 2012).

Trigona bees have strong-toothed mandibles that are used
for, among other things, attacking their competitors and ene-
mies (Schwarz 1948; Slaa et al. 2003; Shackleton et al. 2015).
As a result, sometimes, only the presence of Trigona workers
around sap-sucking insects suffices to indirectly ward off
competitors or potential enemies of the sap-sucking insects
(Schuster 1981; Almeida-Neto et al. 2003). Furthermore,
Trigonaworkers may assume threat postures by opening their
mandibles and wings towards opponents (Vieira et al. 2007;
Oda et al. 2009; Schorkopf et al. 2009; Barônio et al. 2012), or
may release repelling substances able to deter potential pred-
ators or competitors (such as ants) from sap-sucking insect
aggregations (Schorkopf et al. 2009). On the other hand, fire
bees (Oxytrigona spp.) may expel formic acid from their man-
dibular glands onto their natural enemies (Bian et al. 1984;
Roubik et al. 1987), a strategy that potentially helps these bees
to successfully defend aggregates of sap-sucking insects
(Cortopassi-Laurino 1977; Oda et al. 2014). The aggregates
of sap-sucking insects releasing honeydew may occur ran-
domly in nature, which in turn may hinder encounters with
stingless bees for making their detection by these bees more
challenging (Chamorro et al. 2013; Wolff et al. 2015).

Fig. 3 Bipartite ecological network plotted as weighted parallel coordinates showing the interactions between sap-sucking insects (upper level) and
stingless bees (lower level). Rectangle width is proportional to the sum of the interactions involving each species
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Honeydew harvesting is more common than wax harvest-
ing by stingless bees, and this phenomenon can certainly be
explained by the fact that these bees produce their own wax
from their abdominal glands (Cruz-Landim 1967).
Furthermore, with the exception of rare cases of mutualism
between stingless bee species (Schwarzula spp.) and coccids
(Cryptostigma spp.; Camargo and Pedro 2002; Kondo 2010;
Roubik 2006), the removal of wax from hemipterans is usu-
ally detrimental for them. This waxy cover of hemipterans
functions as a protective layer against predators, so its removal
by stingless bees may make them more vulnerable to natural
enemies (Peronti et al. 2013).

In our comparative analyses, we did not indicate any
phylogenetic signal concerning to species degree and spe-
cialisation. Therefore, on this latter trait, for example, even
though Trigona spp., Partamona spp. and Liotrigona spp.
are generalists, this shared trait may not be attributed to the
phylogenetic history of the species because it probably
evolved multiple times independently. We suggest that this
mutualistic behaviour exhibited by stingless bees appears
to be opportunistic and may be driven by ecological de-
mands, as indicated by the fact that relationships between
stingless bees and sap-sucking insects are not explained by
the phylogenetic history. Scarcity of flowering plants with-
in locality may favour the alternative foraging strategies,
such as the interaction with sap-sucking insects. Similarly,
periods when the number of bee workers producing wax is

Fig. 4 Continuous character maps of two network parameters for 21
stingless bee species: left—species degree (i.e. number of interactions
per species); right—specialisation index (i.e. degree of specialisation of
a species within an interaction network). Trait changes are shown as a

colour scale. Phylogenetic relationships among stingless bee species were
adapted from the Meliponini time-tree from Rasmussen and Cameron
(2010). Branch lengths are proportional to divergence times among
lineages

Table 1 Network parameters of stingless bee species

Species Species degree* Specialisation

Liotrigona madecassa 0.055 0.053

Liotrigona mahafalya 0.055 0.053

Nannotrigona testaceicornis 0.055 0.594

Parapartamona zonata 0.055 1.000

Partamona cupira 0.055 0.000

Partamona peckolti 0.055 0.053

Plebeia droryana 0.055 1.000

Plebeia emerina 0.055 0.290

Schwarzula coccidophila 0.055 1.000

Schwarzula timida 0.111 0.334

Tetragonisca angustula 0.111 0.529

Tetragonula iridipennis 0.055 1.000

Oxytrigona tataira 0.277 0.222

Trigona amalthea 0.166 0.208

Trigona amazonensis 0.055 0.000

Trigona branneri 0.055 0.000

Trigona corvina 0.055 0.053

Trigona fuscipennis 0.111 0.486

Trigona hyalinata 0.166 0.193

Trigona hypogea 0.055 0.053

Trigona spinipes 0.333 0.493

*Normalised species degree: the proportion of sap-sucking insects with
which each stingless bee species could theoretically interact
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low may trigger nestmates to harvest any material resem-
bling their own wax. Furthermore, we have shown that
sap-sucking insects which interact with the genera
Trigona and Oxytrigona may benefit from the stingless
bees’ protection from natural enemies, whereas sap-
sucking insects interacting with waxy cover robbers may
be further exposed to desiccation and natural enemies.
These two genera should be further investigated because
of their broad range of interactions with sap-sucking in-
sects . In part icular, the visi tat ion of flowers by
Oxytrigona is rarely documented (Camargo and Pedro
2013). We suggest that when entomologists observe sap-
sucking insects interacting with stingless bees (for exam-
ple, Oxytrigona spp.), they should also inspect whether the
bees are also visiting flowers at the same locality. This
would further the analysis of such relationships and help
determining the role of alternative sources of food (like
honeydew ) w i t h i n p l a n t - po l l i n a t o r n e two rk s .
Additionally, the relative amounts of both nectar and hon-
eydew present within honey could be analysed using, e.g.
physicochemical and microscopic tools, because honey
produced by stingless bees is commonly consumed by
people.

In summary, the Hymenoptera is a relevant insect order for
ecological relationships established by various of its taxa with
sap-sucking insects. Not only ants and wasps (Maschwitz and
Hanel 1985; Letouneau and Choe 1987; Delabie 2001), but
also, certain groups of bees have in hemipterans’ exudates an
alternative food source (Barônio et al. 2012; Batra 1993;
Bishop 1994b; Dimou and Thrasyvoulou 2007; Herrmann
et al. 2003; Konrad et al. 2009; Oda et al. 2014, Vieira et al.
2007). Even though the bees are insects widely associated to
flowers, from which they obtain most of their food provisions
(particularly nectar and pollen), their ecological interactions
are not restricted to these reproductive structures of plants.
Their food and or nest material needs can be obtained from
sources as honeydew and waxy cover from sap-sucking in-
sects, which turn out to be very special and interactions, al-
though largely neglected so far.
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