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Abstract
The conservation of pollinating insects in agriculture is a global concern since the diversity of such organisms may affect 
the productivity of pollination-dependent crops. In this study, we assessed (i) how distances from natural vegetation affect 
the diversity (guilds, richness, abundance) of flower-visiting insects within mustard crops in Nepal, (ii) how insect richness 
and abundance are related to mustard yields (weight of seeds) and (iii) the contribution of flower-visiting insects to mustard 
pollination by conducting pollinator exclusion experiments. To analyse these data, we carried out (i) hierarchical clustering 
followed by a Procrustes analysis as well as a generalized linear mixed model and (ii), (iii) linear mixed models. We found 
that the guild composition was not similar near and far from natural vegetation, indicating a tendency for Apis bees to dis-
place in opposite directions relative to non-Apis bees. Nevertheless, while both richness and abundance were higher nearer 
natural vegetation, the former showed a stronger and more positive effect on mustard yields than the latter. Furthermore, we 
found that mustard flowers have a significant requirement for insect pollination since productivity increased by ~70% with 
insect visitation. Overall, our data suggest that the diversity of flower-visiting insects enlarges nearer to natural vegetation. 
However, the results indicate that species richness may be more relevant than abundance to mustard production. As such, 
we suggest that the maintenance of natural vegetation could be considered a strategy for ensuring the presence of multiple 
pollinator species within mustard fields to promote its long-term sustainability in Nepal.

Electronic Supplementary Material  The online version of this 
article (https​://doi.org/10.1007/s1084​1-020-00279​-3) contains 
supplementary material, which is available to authorized users.

 *	 Kedar Devkota 
	 devkotakedar@gmail.com

1	 Faculty of Agriculture, Agriculture and Forestry University, 
Chitwan, Nepal

2	 School of Health and Life Sciences, Pontifical Catholic 
University of Rio Grande do Sul, Ipiranga Ave, Porto Alegre, 
RS 6681, 90619‑900, Brazil

http://orcid.org/0000-0002-7365-0851
http://orcid.org/0000-0001-5181-2461
http://orcid.org/0000-0001-8452-1716
http://crossmark.crossref.org/dialog/?doi=10.1007/s10841-020-00279-3&domain=pdf
https://doi.org/10.1007/s10841-020-00279-3


2	 Journal of Insect Conservation (2021) 25:1–11

1 3

Graphic abstract

Keywords  Bees · Brassica campestris · Crop system · Diversity · Habitat · Oilseed rape · Pollination · Production

Introduction

The global decline in pollinating organisms such as bees and 
other insects is of serious concern (Biesmeijer et al. 2006; 
Bartomeus et al. 2013; Koh et al. 2016), as 88% of wild 
angiosperm species rely on pollinators for sexual reproduc-
tion (Ollerton et al. 2011). The decline in pollinators may 
also negatively impact agriculture, as the productivity of 
75% of crops worldwide benefits from this ecological ser-
vice (Klein et al. 2007). As a result, the decline in pollinators 
may compromise both food security and the economy. The 
decrease in wild pollinator populations seems to be mainly 
attributable to anthropogenic disturbances or activities such 
as (a) climate change; (b) spread of pests and pathogens; (c) 
invasion by non-native species; (d) threats from agricultural 
development and intensification and particularly (e) land-use 
alteration leading to habitat loss, fragmentation and degrada-
tion (Steffan-Dewenter and Westphal 2008; Brown and Pax-
ton 2009; González-Varo et al. 2013; Ollerton et al. 2014).

Some pollinator-dependent crops may benefit from their 
spatial proximity to natural areas (hereafter, natural vegeta-
tion) because they may provide a higher number of wild pol-
linators among other benefits (Garibaldi et al. 2011; Halinski 
et al. 2018; but see de Palma et al. 2016). However, if crop 
fields possess extensive cultivated areas, then the diversity of 
pollinators may gradually decrease with increasing distance 

from natural areas (Steffan-Dewenter et al. 2002; Ricketts 
et al. 2008; Garibaldi et al. 2011; Cariveau et al. 2013; Hal-
inski et al. 2018). This asymmetry in pollinator distribution 
within crop fields results in lower pollination in some parcels 
and, in turn, a pollination deficit (Morandin and Winston 
2005; Bailey et al. 2014; Bartomeus et al. 2014; Hipólito 
et al. 2018; Halinski et al. 2018). Therefore, a robust method 
to infer the importance of natural areas in enhancing agri-
cultural productivity is to assess, for example, the pollinator 
diversity from the edge of natural vegetation to different 
distances within crop fields to evaluate whether the spatial 
distribution of beneficial insects is related to crop yields 
(Morandin and Winston 2005; Bailey et al. 2014; Bartomeus 
et al. 2014; Hipólito et al. 2018; Halinski et al. 2018).

In Nepal, Southeast Asia, oilseed mustard (Brassica 
campestris L. var. Toria: Brassicaceae) is a dominant win-
ter crop (Basnet 2005). Currently, it occupies approximately 
85% of the total oilseed rape cultivation area, and more than 
80% of people in Nepal use mustard oil for cooking (Bas-
net 2005). The production of mustard in Nepal continues 
to increase each decade (Online Resource 1), and thus, it 
is necessary to consider the long-term sustainability of this 
crop, which requires a wide range of flower-visiting insects 
to enhance its pollination rate. The contribution of insects 
to pollinating Brassica spp. crops may reach 50% (Bom-
marco et al. 2012; Stanley et al. 2013; Garratt et al. 2014; 
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Lindström et al. 2016; Zou et al. 2017). Therefore, even 
though Brassica spp. crops may be self-pollinated or wind 
pollinated, insects seem to play an important role in boosting 
crop yields (Morandin and Winston 2005; Bommarco et al. 
2012; Bartomeus et al. 2014).

The yellow flowers of Brassica spp. produce nectar 
and pollen and are highly attractive to most flower-visit-
ing insects (Kunin 1993; Partap 1999). Several studies in 
Asian regions have found that the main pollinating insects 
of Brassica spp. are social bees such as Apis mellifera, Apis 
cerana, Apis dorsata and Apis florea and, to a lesser extent, 
solitary bee species such as Andrena spp., Halictus spp. and 
Megachile spp. (Mishra et al. 1988; Pudasaini et al. 2015; 
Bajiya and Abrol 2017; Stanley et al. 2017). The Apis bees 
may have some attributes not found in most non-Apis bees 
that seem to favour their greater presence in such crop sys-
tems. For example, (a) their nests are commonly populous 
and may shelter thousands of workers; (b) they may for-
age over wide distances even some kilometers; and (c) they 
have an efficient communication system able to recruit a 
large amount of foragers to mass-flowering plants (Dornhaus 
2002; revised by Abou-Shaara 2014). Furthermore, honey-
bees such as A. mellifera can be managed into beehives, 
which may contribute to increasing their number on flowers 
(Mishra et al. 1988; Pudasaini et al. 2015; Bajiya and Abrol 
2017; Stanley et al. 2017). Other insects, such as butterflies, 
flies and wasps also forage on Brassica flowers, but their 
contribution to boosting yields is negligible (Mishra et al. 
1988; Pudasaini et al. 2015; Bajiya and Abrol 2017; Stan-
ley et al. 2017). The diversity of these insects within such 
crops may be raised if attributes such as restricted use of 
pesticides, wide availability of food and nesting resources 
and large-scale landscape (3 km) heterogeneity are present 
in these areas (Samnegård et al. 2016; Landaverde-González 
et al. 2017; Theodorou et al. 2017; Stiles et al. 2019).

Since the proximity to natural vegetation and its putative 
higher diversity of insects beneficial to crop fields is ques-
tionable (e.g. Garibaldi et al. 2011; de Palma et al. 2016; 
Halinski et al. 2018), more studies are needed to disentangle 
this issue. Thus, using mustard fields in Nepal as a model, in 
the current study we evaluated: (i) whether two different dis-
tances from the edge of natural vegetation affect the diversity 
(guild composition, richness, abundance) of flower-visiting 
insects within mustard crops; (ii) how insect richness and 
abundance are related to mustard yields (weight of seeds); 
and (iii) the contribution of flower-visiting insects to mus-
tard pollination by conducting pollinator exclusion experi-
ments. We hypothesized that proximity to natural vegetation 
may alter the composition of guilds and positively influence 
the richness and abundance of flower-visiting insects within 
mustard crops. Furthermore, we predicted that the weight of 
mustard seeds would increase with the richness and abun-
dance of flower-visiting insects and, finally, that the presence 

of flower visitors will increase mustard yields demonstrating 
their efficiency as pollinators.

Materials and methods

Study area

We carried out flower-visiting insect sampling and measured 
the effect of pollination on oilseed rape mustard crops in 
the Chitwan (27°35′N 84°30′E) and Nawalparasi (27°32′N 
83°40′E) districts of Nepal. The selected study sites are 
well known for their production of oilseed mustard crops. 
They lie in the tropical zone and are characterized by similar 
topographies, vegetation, and agricultural landscapes and 
practices.

We selected eight mustard fields in the two districts men-
tioned above with a completely randomized design using two 
distances from the natural vegetation (i) four near the forest 
(100 metres) and (ii) four far from the forest (3 km), both 
within mustard crops (Fig. 1). Since most wild bees have a 
maximum foraging range under three kilometres (Greenleaf 
et al. 2007), this latter distance was chosen to avoid as much 
spatial pseudoreplication among sample units as possible. 
Within each of the eight mustard fields, we established a 
50 m × 25 m study area with homogeneous and continuous 
crop cover according to the protocol for assessing pollination 
deficits within crop fields (Vaissière et al. 2011).

Insect sampling

In each of the eight mustard fields, we assessed the species 
richness and abundance of flower-visiting insects. For insect 
sampling, we used transect walks with sweep nets (Fig. 1) 
through six 25 m transect lines for 5 min per line for a total 
of 30 minutes (Vaissière et al. 2011). Then, we recorded 
the number of visiting insects in an individual floral unit, 
defined here as five hundred flowers as suggested in a spe-
cific protocol (Vaissière et al. 2011). Thus, to establish such 
floral units within mustard crops, they were assessed using 
a scan sampling technique, which is the most reliable way 
to assess pollinator density on flowers (Levin et al. 1968); 
the units were assessed in sequence on each transect line 
by walking slowly along it (Vaissière et al. 2011). We per-
formed transect walks between 0900 and 1600 h on days 
with temperatures at or above 15 °C, with no precipitation, 
dry vegetation, and low wind speed (< 40 km/h) (Westphal 
et al. 2008). Insect specimens were pinned, labelled, and 
subsequently identified to the genus and species levels in 
the entomology laboratory at Agriculture and Forestry Uni-
versity, Nepal.

Therefore, our sampling effort comprised insect sampling 
in eight mustard fields (four near the forest = 100 metres; four 
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far from the forest = 3 km) from two districts where we per-
formed two repetitions totalling 32 sampling units during the 
main flowering period of the target crop.

Pollinator exclusion experiments and crop yield 
analysis

In each of the eight mustard fields, we demarcated an experi-
mental area with four divisions. Each division had two treat-
ments, and five tagged contiguous plants were monitored per 
treatment. The first treatment (open cages) was open pollina-
tion, in which all flowers of the mustard plants were accessible 
to autonomous self-pollination, wind pollination and insect 
pollination. In the second treatment (closed cages), a plot (1 
× 1 m) with mustard plants was covered with a nylon mos-
quito net before the onset of flowering. In the closed cage, all 
flowers were exposed to wind pollination and self-pollination, 
such that the difference between the first and second treat-
ments represented the real contribution of insect pollination. 
After blooming was finished, we removed the cages and left 
the fruits to ripen.

After harvesting and threshing, we recorded the agronomic 
units (= total seed weight [g] per plant) within both open and 
closed cages to attain a more precise level of pollination in 
both experiments. The crop yields as a function of pollination 
level were compared by using the following formula (Vaissière 
et al. 2011, p. 11):

Y = F(X) + A

where Y is the total crop yield measured in agronomic 
units, F(X) is the yield resulting from the level of pollina-
tion in the pollinator exclusion treatment, and A is the yield 
resulting from the open experiment, with both X and A 
measured in the same unit as Y (Vaissière et al. 2011, p. 11).

Data analysis

Insect diversity: Guild composition, richness 
and abundance

The sampled insect community was grouped into four 
groups: bees, butterflies, flies and wasps. However, since 
honey bees most often dominate Brassica crops (as pre-
viously indicated), we subdivided bees into (a) Apis bees 
belonging to this genus and (b) non-Apis bees (all other bee 
taxa), as we shall reference later. Then, we performed two 
hierarchical clustering analyses to evaluate the similarity in 
the structure of insect guild composition between the nearer 
distances (100 m) and those farther (3 km) from natural veg-
etation. Both matrices were scaled and centred to zero mean 
and unit variance using the function decostand (method = 
standardize) of the ‘vegan’ package (Oksanen et al. 2018). 
After that, they were transformed into Euclidean distance 
matrices using the unweighted pair group method with arith-
metic mean (UPGMA) as a method of hierarchical cluster-
ing. The results were plotted as clustered heatmaps using 
the ‘pheatmap’ package (Kolde 2019). The goodness-of-fit 
of the resulting dendrograms was evaluated with cophenetic 

Fig. 1   Study areas (Nawalparasi and Chitwan) showing sampling 
sites in oilseed rape mustard (Brassica campestris var. Toria) fields in 
Nepal. Inner plot depicts from left to right: upper (i) blossoming mus-
tard field, (ii) the harvesting of flower-visiting insects using a sweep 

net and (iii) a closed cage being installed for the pollinator exclusion 
experiment; lower (iv) an Apis mellifera worker, (v) an Apis dorsata 
worker and (vi) a hoverfly. Map source: Google Earth (https​://earth​
.googl​e.com/web/)

https://earth.google.com/web/
https://earth.google.com/web/
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a correlation index using the functions cophenetic and cor 
in R.

The congruence between both matrices was assessed with 
a Procrustean superimposition approach (Gower 1971). This 
analysis is a least-squares orthogonal mapping useful to 
compare two multivariate sets of data in which the ordina-
tion is scaled and rotated to find an optimal superimposition 
that maximizes its fit (Gower 1971; Peres-Neto and Jackson 
2001). As a result, the sum of the squared residuals between 
configurations in their optimal superimposition is used as a 
degree of concordance, i.e., M2 (Gower 1971). This metric 
of association varies from 0 to 1, where lower values of M2 
indicate greater concordance among configurations (Peres-
Neto and Jackson 2001). Consequently, if both matrices are 
similar to each other the points in the rotated configuration 
should be as close as possible in the same subspace (i.e., 
small length of residuals). Since Procrustes analysis exhibits 
the corresponding displacement between target and rotated 
matrices, we considered the direction of residuals to infer the 
trajectories of guilds if near or far from natural vegetation. 
The congruence between both matrices was tested with a 
permutation test (protest). We used the functions procrustes 
and protest (1999 permutations), both in the ‘vegan’ package 
(Oksanen et al. 2018) for these analyses.

To evaluate how the distance to the edge of natural veg-
etation (near = 100 m; far = 3 km) affects the diversity (rich-
ness, abundance) of flower-visiting insects within mustard 
crops in Nepal, we fit two generalized linear mixed models 
(GLMMs) with the Poisson distribution family (link = log). 
Since we repeated the insect sampling at both study sites, 
i.e., the selected districts (Chitwan and Nawalparasi), the 
structure of our data included repeated measures. Therefore, 
the variable “districts” was included as a random effect in 
both GLMMs. The models above were fit using the function 
glmer in the package ‘lme4’ (Bates et al. 2015).

On the other hand, to assess how the richness and abun-
dance of flower-visiting insects and the interaction between 
them affect mustard yields (total weight of seeds), we fit-
ted a linear mixed model (LMM). Since districts (Chitwan 
and Nawalparasi) and distances (near = 100 m; far = 3 km) 
might have their own environmental particularities that 
could improve model fit, but assuming that its underlying 
variables were not harvested here, they were included as 
crossed random effects. This model was also fit using the 
function lmer in the package ‘lme4’ (Bates et al. 2015).

Finally, we analysed the importance of flower-visiting 
insects to mustard pollination (pollinator exclusion experi-
ments) by comparing yields (total weight of seeds) in open 
cages with those in closed cages using LMM. Again, both 
districts and distances were included as crossed random 
effects in the model. This analysis was performed using the 
function lmer in the package ‘lme4’ (Bates et al. 2015). The 
LMM was chosen after evaluating assumptions of normality 

of residuals using the function shapiro.test and homogeneity 
of variances using the function leveneTest in the package 
‘car’ (Fox and Weisberg 2011). Since the residuals of the 
LMM presented normality (W = 0.97, p value = 0.18) and 
equal variances (F(1,62) = 0.30, p value = 0.57), this model 
was kept. The goodness-of-fit of all GLMM and LMM were 
analysed with a coefficient of determination (R2) that was 
computed by applying a standardized generalized variance 
approach using the function r2beta of the ‘r2glmm’ package 
(Jaeger 2017). All analyses were carried out in the statistical 
programming language R (Ihaka and Gentleman 1996; R 
Core Team 2016).

Results

Flower‑visiting insect composition, richness 
and abundance

In total, we sampled 1986 flower-visiting insects (n = 1,046 
at 100 m; n = 940 at 3 km) from 24 taxa within mustard 
crops belonging to four taxonomic groups: bees (n = 9 spp.), 
butterflies (n = 4 spp.), flies (n = 4 spp.) and wasps (n = 7 
spp.) (Fig. 1d–f for examples, Table 1).

The structuring pattern of the flower-visiting insect 
community between near (100 m) versus far (3 km) dis-
tances from natural vegetation clustered bees (Apis and 
non-Apis) closer to each other, whereas butterflies, flies and 
wasps formed another group (Fig. 2a). Both coefficients of 
cophenetic correlation were equal, i.e., 0.98, indicating that 
dendrograms exhibited substantial two-dimensional rep-
resentation of the calculated distances. However, the Pro-
crustes analysis did not demonstrate congruence between 
both community matrices, suggesting a mismatch in the 
pattern observed for guilds at 100 m compared to those 3 
km away from natural vegetation (M2 = 0.02, correlation = 
0.98, p > 0.05, Fig. 2b). While the low M2 would indicate a 
similarity between two configurations and high correlation, 
the non-significance of this analysis suggests that some dis-
placements of guilds were larger than expected by chance 
(Fig. 2b). Therefore, there seems to have been considerable 
and opposite displacements exhibited by guilds of Apis bees 
vs non-Apis bees (Fig. 2b). On the other hand, butterflies, 
flies and wasps presented nearly no movement.

Our findings demonstrate that the richness and abundance 
of insects were significantly higher close to the edge of natu-
ral vegetation than farther from natural vegetation (Fig. 3a 
and b). We found that close to natural areas, the richness (n 
= 14) of flower-visiting insects was significantly higher than 
that farther from such areas (n = 11 species), as predicted by 
our model (GLMM Poisson; estimate = 0.21, z value = 2.21, 
p value = 0.02, R2 = 0.28, Fig. 3a). Similarly, the abundance 
of flower-visiting insects within mustard crops was higher 
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nearer to natural areas (n = 281 individuals; median) than 
farther from such areas (n = 209 individuals), as predicted 
by our model (GLMM Poisson; estimate = 0.11, z value = 
5.17, p value < 0.001, R2 = 0.38, Fig. 3b).

Effect of flower‑visiting insects on mustard yields

Overall, our model had a moderate power of explanation 
(R2 = 0.46). However, each variable (richness, abundance) 
individually showed a different slope and effect. Thus, rich-
ness had a positive effect (LMM; χ2 = 24.6, p value < 0.001, 

R2 = 0.25), while abundance had a negative but negligible 
effect on mustard crop yields (LMM; χ2 = 4.88, p value = 
0.02, R2 = 0.01), as shown in Fig. 3c and d. By contrast, we 
did not find a significant effect of the interaction between 
richness and abundance of flower-visiting insects on mustard 
yields (LMM; χ2 = 0.20, p value = 0.65).

Our data also indicated that mustard plants in the field 
condition, i.e., not caged (free access to flower-visiting 
insects), had higher yields (weight of seeds) than netted 
plants (closed cages) with restricted insect visitation (LMM, 
estimate = 23.2, R2 = 0.42, t value = 6.95, p value < 0.001, 

Table 1   Insect species identified visiting flowers of oilseed rape mustard (Brassica campestris var. Toria: Brassicaceae) in Nepal, South Asia.

§ Distances from natural vegetation and number of sampled individuals per taxa

Species Order, family Guilds Amount at: Proportion 
of drop or 
rise100 m 3 km

Bees
 1. Apis cerana Hymenoptera, Apidae Apis bees 87 107 ↑ 9%
 2. Apis dorsata Hymenoptera, Apidae Apis bees 56 28
 3. Apis florea Hymenoptera, Apidae Apis bees 145 134
 4. Apis mellifera Hymenoptera, Apidae Apis bees 127 186

Subtotal: 415 455
 5. Bombus spp. Hymenoptera, Apidae Non-Apis bees 11 0 ↓ 19%
 6. Andrena spp. Hymenoptera, Andrenidae Non-Apis bees 137 176
 7. Halictus spp. Hymenoptera, Halictidae Non-Apis bees 147 82
 8. Megachile spp. Hymenoptera, Megachilidae Non-Apis bees 139 95
 9. Xylocopa spp. Hymenoptera, Apidae Non-Apis bees 18 16

Subtotal: 452 369
Butterflies
 10. Danaus chrysippus Lepidoptera, Nymphalidae Butterflies 7 6 ↓ 41%
 11. Eurema brigitta Lepidoptera, Pieridae Butterflies 13 10
 12. Pieris brassicae nepalensis Lepidoptera, Pieridae Butterflies 14 0
 13. Junonia almana Lepidoptera, Nymphalidae Butterflies 3 3

Subtotal: 37 19
Flies
 14. Chrysomya megacephala Diptera, Calliphoridae Flies 7 4 ↓ 34%
 15. Hoverflies Diptera, Syrphidae Flies 29 15
 16. Musca domestica Diptera, Muscidae Flies 33 27
 17. Stomorhina discolor Diptera, Rhiniidae Flies 9 6

Subtotal: 78 52
Wasps
 18. Athalia lugens Hymenoptera, Tenthredinidae Wasps 6 0 ↓ 30%
 19. Cerceris arenaria Hymenoptera, Crabronidae Wasps 12 5
 20. Eumenes maxillosus Hymenoptera, Vespidae Wasps 7 0
 21 Evania appendigaster Hymenoptera, Evaniidae Wasps 3 2
 22. Oxybelus uniglumis Hymenoptera, Crabronidae Wasps 22 19
 23. Polistes spp. Hymenoptera, Vespidae Wasps 8 12
 24. Vespa spp. Hymenoptera, Vespidae Wasps 6 7

Subtotal: 64 45
Total: 1046 940
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Fig. 2   a Clustered heatmaps based on the number of guilds of insects 
sampled within mustard fields at 100 m (near) and 3 km (far) from 
natural vegetation. The hierarchical cluster analysis was performed 
with the UPGMA method and Euclidean distance measure. b Pro-
crustean superimposition analysis exhibiting the lack of concordance 
(M2 = 0.02, correlation = 0.98, p > 0.05) between both matrices 

(near = target; far = rotated). Notes: in B, points indicate the position 
of the guilds of insects in the first clustering (“100 m”), while arrow-
heads point out the corresponding displacement towards the “3 km” 
rotated matrix. The lengths of residuals (i.e., straight lines) indicate 
how closely matched both configurations are after optimal fit

Fig. 3   Richness (a) and abundance (b) of insects within mustard 
crops at different distances from natural vegetation. Effect of flower-
visiting insect richness (c) and abundance (d) on mustard crop yields. 
Note: box = 1st and 3rd quartiles, whiskers = the minimum and maxi-
mum range of variation, median [white line] = 2nd quartile, notches= 

the confidence interval around the median. p values: *< 0.05, ***< 
0.001. White numbers in boxes indicate the median value. Dots are 
observed values, and solid lines show the model-predicted fits with 
95% confidence intervals (shaded areas, dashed lines)
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Fig. 4). Thus, the real contribution to mustard pollination 
ascribed to flower-visiting insects is 69.4% (56.6 g; median) 
for mustard flowers exposed to local entomofauna compared 
with flowers that do not receive such visits (33.4 g; median, 
Fig. 4).

Discussion

Insect diversity within mustard crops

We found that the proximity of natural vegetation surround-
ing mustard fields had a positive effect on flower-visiting 
insect diversity (richness, abundance) compared with those 
at farther distances. Our results suggest that there may be 
a decline in pollinating insect diversity within crop fields 
with increasing distance from the edge of natural vegetation 
as observed in other studies (Morandin and Winston 2005; 
Garibaldi et al. 2011; Bailey et al. 2014; Bartomeus et al. 
2014; Halinski et al. 2018; Hipólito et al. 2018). However, 
this reduction in the diversity of beneficial insects far from 
natural vegetation may not be found anywhere since each 
place has its own local particularities (de Palma et al. 2016).

Our results indicate that the surrounding natural areas 
seem to be a relevant driver that sustains the richness and 
abundance of native pollinators within crop systems (Kre-
men et al. 2004; Fabian et al. 2013; Forrest et al. 2015). 
Commonly, natural areas provide key resources to polli-
nator populations, such as perennial forage areas, nesting 
substrates and breeding sites, which are otherwise una-
vailable in or temporarily offered by crop fields (Steffan-
Dewenter and Tscharntke 1999; Chacoff and Aizen 2006; 
Ricketts et al. 2008; Knight et al. 2009; Halinski et al. 
2018). The forest edge provides habitats to pollinators, 

creating nesting sites for cavity nesting and ground nest-
ing bees, which increase the pollination of mass flowering 
crops (Le Féon et al. 2011). The forest edge provides a 
diversity of floral resources throughout the bee activity 
period (Bailey et al. 2014). Therefore, it would be expected 
that pollinator diversity declines within crop fields whose 
cultivated plants are more isolated from natural habitats 
because most insects have a limited flight range (Greenleaf 
et al. 2007).

However, contrary to other studies carried out within 
Brassica spp. crops in Asian regions (Mishra et al. 1988; 
Pudasaini et al. 2015; Bajiya and Abrol 2017; Stanley et al. 
2017), our data suggest that honey bees may not be the 
dominant pollinators in mustard fields, at least for those 
observed here. For example, Apis bees (A. mellifera, A. 
cerana, A. dorsata, A. florea) have been identified as the 
dominant taxonomic group of insects (> 80%) in similar 
crops while non-Apis bees such as Andrena spp., Halictus 
spp. and Megachile spp. have been observed to a lesser 
extent or in negligible quantities (Mishra et al. 1988; Puda-
saini et al. 2015; Bajiya and Abrol 2017; Stanley et al. 
2017). Conversely, our data indicate that, as a whole, both 
guilds of bees were represented at comparable quantities, 
but the number of Apis bees tended to increase far away 
from natural vegetation, while the number of non-Apis 
bees decreased at the same spatial distances. This fact may 
be due to, among other things, Apis bees being able to for-
age hundreds or even thousands of metres from their nests 
(Dornhaus 2002; revised by Abou-Shaara 2014). On the 
other hand, non-Apis bees such as Andrena spp., Halictus 
spp. and Megachile spp. are expected to forage over short 
distances since their small body size and/or solitary life-
style may restrain their flight range (Greenleaf et al. 2007; 
Everaars, Settele and Dormann 2018).

Fig. 4   Pollinator exclusion 
experiments evaluating the real 
contribution of flower-visiting 
insects to mustard pollination. 
Note: box = 1st and 3rd quar-
tiles, whiskers = the minimum 
and maximum range of varia-
tion, median [white line] = 2nd 
quartile, notches= confidence 
interval around the median. 
p values: ***< 0.001. White 
numbers in boxes indicate the 
median value
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Insect diversity and its contribution to mustard 
yields

The richness and abundance of pollinators are two diversity 
indices that are widely used by researchers to investigate 
how agriculture yields shift with changes in the variety and 
quantity of such organisms at spatial scales within pollina-
tion-dependent crops (Kremen et al. 2004; Morandin and 
Winston 2005; Garibaldi et al. 2011; Bommarco et al. 2012; 
Bailey et al. 2014; Bartomeus et al. 2014; Zou et al. 2017; 
Halinski et al. 2018; Hipólito et al. 2018). In our study, we 
found that while both richness and abundance of flower-
visiting insects had significant effects on mustard yields, the 
former index had a more predictive power (R2 = 0.25) than 
the latter (R2 = 0.01).

Even though the predictive power of the abundance of 
flower-visiting insects was negligible, as shown above, this 
model had a negative effect on mustard yields, suggesting 
that a larger quantity of such organisms is not necessary to 
increase mustard production. Many studies have shown that 
the richness and abundance of pollinators can have either 
converging or contrasting effects on crop yields (Klein et al. 
2003; Kremen et al. 2004; Morandin and Winston 2005; Zou 
et al. 2017; Bommarco et al. 2012; Bartomeus et al. 2014; 
Landaverde-González et al. 2017; Halinski et al. 2018). 
These studies suggest that a wider variety (richness) and 
quantity (abundance) of such organisms at a given spatial 
scale do not necessarily correspond to higher production 
(Klein et al. 2003; Morandin and Winston 2005; Kremen 
et al. 2004; Bommarco et al. 2012; Bartomeus et al. 2014; 
Zou et al. 2017; Landaverde-González et al. 2017; Halin-
ski et al. 2018). In other words, depending on locality and 
the cultivated plant species, only the richness but not the 
abundance of pollinating insects may have a positive effect 
on the final productivity of target crop. Our study suggests 
that while both richness and abundance of flower-visiting 
insects were higher near natural vegetation, the latter diver-
sity measure, even significant, was not reliable since it fails 
to accurately explain the variability of the mustard yields.

We believe that the richness of flower-visiting insects 
had a greater effect (positive) on mustard production than 
the corresponding abundance of such organisms because 
each species possesses behavioural particularities that 
could optimize the chances of mustard flowers to be ade-
quately pollinated. It is known that different species of pol-
linators may show different behaviours when visiting the 
same flowers (forage period, time per visit, floral resources 
harvested, stigma contact and so on), which may augment 
the pollination rate due to complementary or synergistic 
activities of such organisms (Rader et al. 2009; Brittain 
et al. 2013; Witter et al. 2015). Nevertheless, the abun-
dance of pollinators in similar situations does not neces-
sarily contribute to increased crop yields in a linear way. 

Plants have pollen limitations; for example, the density 
and visitation rate may restrain pollen deposition on the 
stigma (Morandin and Winston 2005; Morris et al. 2010; 
Rogers et al. 2014; Garibaldi et al. 2020). Since mustard 
plants greatly benefited from the presence of flower-visit-
ing insects, we assume that the abundance of such organ-
isms in the studied fields may not have been a limiting 
factor to enhance pollination, while richness seems to have 
better predictive power to explain the positive effects on 
the weight of mustard seeds.

Finally, in our study we found that the presence of flower-
visiting insects accounted for ~ 70% of the increase in the 
weight of mustard seeds. Such a proportion ascribed to the 
majority of organisms in the wild is relevant for at least two 
reasons. First, if a single pollinator species is allowed to 
access mustard flowers (e.g., beehives of Apis mellifera), 
then the weight of seeds drops to 45% (Devkota et al. 2016). 
This is not a small value, but compared to the pollination 
service naturally provided by this species plus the other 
flower-visiting insects identified here, mustard production 
may still be more enhanced. Second, some studies have 
found that multiple pollinating insects may contribute dif-
ferently to enhance yields (e.g. 18 to 71%) depending on the 
crop (Bartomeus et al. 2014; Kleijn et al. 2015; Landaverde-
González et al. 2017). Accordingly, in the current work this 
contribution was elevated demonstrating that if mustard 
crops are well managed the community of flower-visiting 
insects will provide a sufficient pollination rate.

Conclusion

The mustard crop fields in Nepal may receive a great variety 
of flower-visiting insects, such as bees, butterflies, flies and 
wasps. If bees are subdivided into groups as Apis bees vs. 
non-Apis bees it is possible to observe a pattern opposite in 
community structure with Apis bees being more representa-
tive far away from natural vegetation, while non-Apis bees 
tend to be more widely observed near natural vegetation. As 
the richness and abundance of flower-visiting insects were 
higher close to natural vegetation, but only the former had 
a great and positive effect on the weight of mustard seeds, 
the maintenance of the diversity of these organisms within 
mustard crops should be encouraged since they contribute 
to an increase of ~ 70% in the weight of seeds. To promote 
this, we suggest that large natural areas surrounding mustard 
crops continue to be conserved and that pollinator-friendly 
practices such as offering nest substrates and cultivating a 
wider variety of plants consortiated with mustard could be 
adopted by Nepalese farmers. We believe that such practices 
have the potential to keep mustard production sustainable for 
the long term in Nepal.
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