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1  | INTRODUCTION

Stress impacts human behavior and cognition in all stages of life. Its ef‐
fects in early childhood (early‐life stress) as a result of trauma, violence, 
and institutionalization have been largely investigated (Birn, Roeber, & 
Pollak, 2017; Bremne & Vermetten, 2001; Pechtel & Pizzagalli, 2011; 

Rahdar & Galván, 2014; Silvers, Goff, Gabard‐Durnam, Gee, Fareri, 
Caldera, & Tottenham, 2016; Taylor, 2010; Walker, Wachs, Grantham‐
McGregor, Black, Nelson, Huffman, & Richter, 2011). Physical and 
mental health effects of stress emerge as a factor of chronicity (of 
exposure to violence, for example) and the period in which expo‐
sure occurs (Lupien, McEwen, Gunnar, & Heim, 2009): stress also 
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Abstract
The present study investigated exposure to violence and its association with brain 
function	and	hair	cortisol	concentrations	in	Latin-American	preadolescents.	Self-re‐
ported victimization scores (JVQ‐R2), brain imaging (fMRI) indices for a social cogni‐
tion task (the ‘eyes test’), and hair cortisol concentrations were investigated, for the 
first time, in this population. The eyes test is based on two conditions: attributing 
mental state or sex to pictures of pairs of eyes (Baron‐Cohen, Wheelwright, Hill, 
Raste, & Plumb, 2001). The results showed an association among higher victimization 
scores and (a) less activation of posterior temporoparietal right‐hemisphere areas, in 
the mental state condition only (including right temporal sulcus and fusiform gyrus); 
(b)	higher	functional	connectivity	indices	for	the	Amygdala	and	Right	Fusiform	Gyrus	
(RFFG) pair of brain regions, also in the mental state condition only; (c) higher hair 
cortisol concentrations. The results suggest more exposure to violence is associated 
with	significant	differences	in	brain	function	and	connectivity.	A	putative	mechanism	
of	less	activation	in	posterior	right-hemisphere	regions	and	of	synchronized	Amygdala:	
RFFG time series was identified in the mental state condition only. The results also 
suggest measurable effects of exposure to violence in hair cortisol concentrations, 
which contribute to the reliability of self‐reported scores by young adolescents. The 
findings are discussed in light of the effects of exposure to violence on brain function 
and	on	social-cognitive	development	in	the	adolescent	brain.	A	video	abstract	of	this	
article can be viewed at https://www.youtube.com/watch?v=qHcXq7Y9PBk. 
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affects adolescent and adult mental health (Bick & Nelson, 2016; Birn 
et al., 2017; Hanson, Nacewicz, Sutterer, Cayo, Schaefer, Rudolph, 
& Davidson, 2015; Moffitt & Tank, 2013; Mueller, Maheu, Dozier, 
Peloso, Mandell, Leibenluft, & Ernst, 2010; Shonkoff, Garner, Siegel, 
Dobbins, Earls, Garner, & Wood, 2012).

Adolescence	 is	a	period	of	heightened	susceptibility	 to	the	envi‐
ronment (Schriber & Guyer, 2016). It is also a second window of op‐
portunity for extending and safeguarding early childhood policies (The 
Lancet, 2017; UNICEF, 2017): The investments in adolescent health 
and wellbeing may bring triple dividends (Patton, Sawyer, Santelli, 
Ross,	Afifi,	Allen,	&	Viner,	2016).	Most	mental	health	 issues	begin	 in	
early adolescence and youth (Patel, Flisher, Hetrick, & McGorry, 2007). 
The combination of exposure to violence and susceptibility may help 
trigger maladaptive processes and mental health disorders that impact 
the quality of adolescent and adult life (Eiland & Romeo, 2013; Lamblin, 
Murawski, Whittle, & Fornito, 2017; Lupien et al., 2009; Schriber & 
Guyer, 2016). The effects of stress in the adolescent brain may also be 
dormant: In animal models, the effects did not emerge until adulthood 
(Isgor,	Kabbaj,	Akil,	&	Watson,	2004;	Lupien	et al., 2009).

Violence promotes chronic stress, it affects learning and cogni‐
tion, and it is a major public health concern (WHO, 2014). It affects 
school	attendance	and	dropout	rates	(Abramovay,	2002;	Werthein,	
2003), among other health, education, and social aspects (Shonkoff 
et al.,	2012;	Werthein,	2003;	WHO,	2014).	 In	Latin	America,	vio‐
lence (e.g. homicide) affects youths disproportionately (Consejo 
Ciudadano	para	 la	Seguridad	Pública	y	 Justicia	Penal	A.C.,	2014),	
and permeates the school ground: 84% of Brazilian students per‐
ceive their schools as violent environments and 70% report being 
direct victims of violence at school, including physical violence, 
social discrimination, and social exclusion (Waiselfisz, 2016). The 
school setting is not perceived as a safe harbor for learning and 
growth, but it offers an unique opportunity to reach youths and 
investigate environmental effects on cognition (Lupien, 2017).

The present study investigated preadolescent brain function in a 
social cognition and perception task adapted for functional magnetic 
resonance imaging (fMRI). We aimed to investigate brain and biolog‐
ical correlational effects of exposure to violence based on a multi‐
level combination of self‐reports of victimization, fMRI indices, and 
biological markers of stress (hair cortisol concentration). We inves‐
tigated	preadolescents	in	one	of	Latin	America's	50	most	dangerous	
cities in the world (Cerqueira et al., 2017; Consejo Ciudadano para 
la	Seguridad	Pública	y	Justicia	Penal	A.C.,	2014;	Waiselfisz,	2016).

1.1 | The social brain: frontolimbic and right 
posterior brain networks

Humans are highly social beings. Brain networks associated with so‐
cial cognition skills vary as the skills themselves (Fonzo, Ramsawh, 
Flagan,	Simmons,	Sullivan,	Allard,	&	Stein,	2016;	Moll,	De	Oliveira-
Souza, & Zahn, 2008; Moll & Schulkin, 2009; Tsavoussis, Stawicki, 
Stoicea, & Papadimos, 2014). Social perception, for example, is the 
ability to glean mental states from facial expressions. It feeds social 
cognition,	which	in	turn	informs	behavior	(Adolphs,	2001).

Social perception processes capture information from facial 
expression (Engell & Haxby, 2007; Haxby, Hoffman, & Gobbini, 
2000; Hoffman & Haxby, 2000; Schilbach, 2015) eye gaze direc‐
tion	 (Allison,	 Puce,	 &	 McCarthy,	 2000;	 George	 &	 Conty,	 2008;	
Zilbovicius, Meresse, Chabane, Brunelle, Samson, & Boddaert, 
2006), and speech (Ethofer, Bretscher, Wiethoff, Bisch, Schlipf, 
Wildgruber, & Kreifelts, 2013). For example, facial cues allow 
a speaker to identify rapport during a conversation (e.g. a smile 
combined with mutual gaze). The social perception brain circuitry 
includes the right superior temporal sulcus and inferior temporal 
lobe	 (Adolphs,	 2003;	Haxby	 et al., 2000; Moll & Schulkin, 2009; 
Saxe, 2006) and the fusiform gyrus (fusiform face area) (Grill‐
Spector, Knouf, & Kanwisher, 2004; Kanwisher, McDermott, & 
Chun,	1997;	McCarthy,	Puce,	Gore,	&	Allison,	1997).	Face	process‐
ing is associated with activation of the right fusiform gyrus (RFFG) 
(Kanwisher et al., 1997; McCarthy et al., 1997; Rossion, Caldara, 
Seghier,	 Schuller,	 Lazeyras,	&	Mayer,	 2003;	Vuilleumier,	Armony,	
Driver, & Dolan, 2001) and of the right superior temporal sulcus 
(RSTS)	 (Allison,	Ginter,	McCarthy,	Nobre,	Puce,	 Luby,	&	Spencer,	
1994; Deen, Koldewyn, Kanwisher, & Saxe, 2015; Engell & Haxby, 
2007).	The	fusiform	face	area	(FFA)	 is	a	portion	of	the	right	fusi‐
form gyrus (RFFG), its function is associated with detection and 
identification of faces (Grill‐Spector et al., 2004). The RFFG and 
right superior temporal sulcus (RSTS) operate in association with a 
distributed brain circuitry that includes the amygdala, the orbitof‐
rontal cortex, somatosensory areas, and the insular cortex in the 
processing	of	facial	cues	and	emotions	(Adolphs,	2001);	they	form	
a frontal, limbic, and temporal network of regions involved in social 
perception and cognition.

The frontolimbic system includes the amygdala, hypothalamus, 
the basal forebrain, and the orbitofrontal and anterior tempo‐
ral regions (Fonzo et al., 2016; Moll & Schulkin, 2009; Moll et al., 
2008; Tsavoussis et al., 2014). The right occipitotemporal social 
perception hubs interact with frontolimbic regions, such as the 
amygdala, in the processing of affective visual stimuli (Pessoa & 
Adolphs,	2010).	The	amygdala	is	involved	in	the	processing	of	emo‐
tional faces, especially ones that carry fearful expressions (Pessoa, 
2008; Pessoa, McKenna, Gutierrez, & Ungerleider, 2002). Evidence 
suggests that activation of the amygdala is partial to processing 
emotional facial cues. Recently, a combination of machine‐learning 

Research Highlights
Preadolescent exposure to violence was associated with:
• Less activation of right‐hemisphere areas involved in so‐

cial perception and cognition, including the right supe‐
rior temporal sulcus and right fusiform gyrus.

• Higher Z‐score for the correlation between amygdala 
and right fusiform gyrus (RFFG) time series in the mental 
state condition.

• Higher levels of cortisol concentrations in hair samples.
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algorithms and fMRI data was used to decode face‐selective re‐
gions. The study showed that only the amygdala and the posterior 
superior temporal sulcus (STS) accurately discriminated between 
neutral faces and emotional faces (Zhang, Japee, Nolan, Chu, Liu, 
& Ungerleider, 2016).

Brain imaging has shown atypical amygdala function and connec‐
tivity associated with adolescent anxiety disorders (Toazza, Franco, 
Buchweitz, Molle, Rodrigues, Reis, & Manfro, 2016), early‐life stress 
and institutionalization (Herringa, Burghy, Stodola, Fox, Davidson, 
& Essex, 2016; Malter Cohen, Jing, et al., 2013; Silvers et al., 2016), 
and	PTSD	(Cisler,	Bush,	James,	Smitherman,	&	Kilts,	2015).	Atypical	
fusiform gyrus connectivity, in turn, has been shown in association 
with social anxiety (Frick, Howner, Fischer, Kristiansson, & Furmark, 
2013). Based on brain imaging studies of the effects of stress on brain 
function, we hypothesized that higher levels of exposure to violence 
in preadolescents would be associated with atypical function and 
connectivity of right posterior and frontolimbic network regions. We 
investigated the brain regions that make up the social perception and 
frontolimbic circuitry for differences in activation and functional con‐
nectivity associated with exposure to violence. The hypotheses of the 
study stem from brain imaging evidence of the effects of stress on 
social cognition (Malter Cohen, Tottenham, & Casey, 2013; Moulson, 
Fox, Zeanah, & Nelson, 2009; Pollak, Cicchetti, Hornung, & Reed, 
2000; Pollak & Sinha, 2002; Rahdar & Galván, 2014). We construed 
stress in terms of self‐reported victimization scores and hair cortisol 
concentration.

1.2 | Cortisol: a psychobiological marker of stress in 
a multilevel approach

Stressful experiences promote biological system changes that 
increase vulnerability to mental illnesses (McEwen, 2008; 
Wisse, Reitsma, Vries, Gersons, & Olff, 2007). The neuroen‐
docrine	 hypothalamic-pituitary-adrenal	 (HPA)	 axis	 is	 a	 key	
mediator of changes that result from stress. It produces the 
glucocorticoid cortisol in response to external and internal 
stimuli. Cortisol measurement has thus been used to investi‐
gate	 HPA	 axis	 reactivity	 to	 acute	 and	 chronic	 stress	 (Levine,	
Zagoory‐Sharon, Feldman, Lewis, & Weller, 2007). Traditional 
cortisol reactivity measures are suited for the investigation of 
acute cortisol exposure, but less so for assessment of cumula‐
tive endocrine output (Kirschbaum, Steyer, Erd, & Patalla, 1991; 
Stalder & Kirschbaum, 2012; Stalder, Kirschbaum, Heinze, 
Steudte, Foley, Tietze, & Dettenborn, 2010). Cortisol output 
from plasma, serum, saliva or urine can be used to investigate 
the dynamics and the concentration of acutely (serum, saliva) 
or short‐term (urine) circulating cortisol concentration. But 
cortisol secretion has substantial state/situational variability 
by circadian rhythmicity (Lightman, 2008; Spiga, Walker, Terry, 
& Lightman, 2014), it presents significant variation during the 
day and reactivity to acute transient stress (Hellhammer, Fries, 
Schweisthal, Schlotz, Stone, & Hagemann, 2007). Hair cortisol 
concentration is a promising matrix for retrospective measures 

of systemic cortisol exposure (Russell, Koren, Rieder, & Van 
Uum, 2012; Stalder & Kirschbaum, 2012). We investigated 
hair cortisol concentrations as a systemic index of exposure 
to violence in preadolescents as part of an overarching goal 
of investigation of indices to suggest a mechanistic account of 
brain function changes associated with exposure to violence in 
preadolescents.

2  | METHODS

Participants were from elementary schools in one of the 50 
most dangerous cities in the world, in southern Brazil (Consejo 
Ciudadano	para	la	Seguridad	Pública	y	Justicia	Penal	A.C.,	2014;	
Waiselfisz, 2016). Schools were the choice of setting for reaching 
preadolescents and their families (Lupien, 2017). Participation fol‐
lowed a citywide invitation by the state Department of Education. 
Principals of state‐run schools were invited to a meeting with 
the researchers. We presented the project and school principals 
freely set up school meetings with parents and guardians of stu‐
dents regularly enrolled in the 4th and 5th grades, the last 2 years 
of the first phase of elementary school in Brazil. The invites 
reached	 an	 estimated	 500	 families.	 Approximately	 300	 families	
attended the meetings; parents or guardians who consented par‐
ticipation of their children later returned the informed consent 
forms in a sealed, anonymous envelope provided with the form. 
In total, 140 parents or guardians consented that their children 
participate in the study (roughly 28.0% of invites). No financial 
incentive was given for participation. The study was approved by 
the Ethics Committee of the Pontifical Catholic University of Rio 
Grande	do	Sul	 (Certificate	of	Evaluation	of	Ethics	number	CAAE	
57741516.6.0000.5336).

2.1 | Participants

We invited all 140 preadolescents whose parents or guardians con‐
sented participation. Participants were excluded after the first stage 
of testing due to: IQ score below 75 (seven participants); illiteracy or 
inability to fill out the self‐report questionnaires (10 participants); 
and frequent truancy–at least two additional attempts at data col‐
lection at the school were made if the participant missed school (five 
participants). Forty‐three participants voluntarily withdrew from the 
study. The remaining 25 participants voluntarily withdrew from the 
study after completion of the first stage.

We scanned a total 50 participants; the present study reports on 
40 right‐handed preadolescents (boys: n = 24; girls: n = 16). Nine par‐
ticipants were excluded due to excessive head motion (see below); 
one participant was excluded due to focal demyelination on the 
left	hemisphere	 temporal	 lobe	 (A	neuroradiological	 reading	of	 the	
structural scans was carried out to ensure there were no lesions, 
malformations or other abnormalities in the brain; all readings were 
reported to the guardians). The average age of the participants was 
11.45 years (SD = 1.01; range 10–14 years).
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2.2 | Materials and data collection procedures

The first stage of evaluations included IQ tests and self‐reports 
of exposure to violence. IQ was investigated using the Wechsler 
Abbreviated	 Scale	 of	 Intelligence™ (M = 95.27; SD = 10.69; range 
75–112). Exposure to violence was investigated using the Juvenile 
Victimization Questionnaire in its reduced format (JVQ‐R2) 
(Finkelhor, Ormrod, Turner, & Hamby, 2005). The second stage in‐
cluded the fMRI session, collection of hair samples, investigation of 
socioeconomic status, and additional investigation of exposure to 
violence (JVQ‐R2 full format). Socioeconomic status (SES) was es‐
tablished using a standardized questionnaire for SES classification in 
Brazil	(ABEP,	2016),	which	provides	a	score	based	on	schooling	and	
possession	of	consumer	goods	(range	from	A,	highest,	to	D,	lowest).	
Parents or guardians filled out the SES questionnaire. The partici‐
pants were on average from low SES backgrounds: average score of 
19.58 (SD = 4.63), which corresponds to level C1 (n = 39; data miss‐
ing from one family who did not fill out the form; the SES and their 
respective number of participants in the study were D = 1; C2 = 16; 
C1 = 11; B2 = 9; B1 = 2).

2.2.1 | Exposure to violence: Juvenile Victimization 
Questionnaire 2nd revision (JVQ‐R2)

Victimization was assessed using the Juvenile Victimization 
Questionnaire ‐ 2nd revision (JVQ‐R2). The JVQ‐R2 was developed to 
evaluate self‐reported interpersonal victimization in youths (Finkelhor 
et al., 2005). The JVQ‐R2 gathers information on 34 items that as‐
sess five types of victimization as such: nine items for Conventional 
Crime, four items for Maltreatment, six items for Peer and Sibling 
Victimization, seven items for Sexual Victimization, and eight items for 
Witnessing and Indirect Victimization. The JVQ‐R2 assesses recency 
and chronicity of events (last year and lifetime scores). Reported vic‐
timization was scored as one based on the item‐level scores proposed 
by the manual,1 the absence of victimization was scored as zero. The 
total victimization scores were the sum of all 34 items. The JVQ‐R2 
was also used to assess the item‐level scores of the five modules 
(Module	A	=	any	Conventional	Crime;	Module	B	=	any	Maltreatment;	
Module C = any Peer and Sibling Victimization; Module D = any 
Sexual Victimization; and Module E = any Witnessing or Indirect 
Victimization). The module scores were also used as dichotomous 
scores. Thus, a ‘yes’ for a module indicated that at least one form of 
victimization on that module was reported, whereas a ‘no’ indicated 
that no forms of victimization on that module were reported.

The JVQ‐R2 full interview was translated and adapted to 
Portuguese with the permission of its authors. The JVQ‐R2 was 
field‐tested and piloted among youths in the target range before 
administration in the main survey. In the present study, the JVQ‐
R2 was filled out in two separate occasions. First, at the schools, 
participants filled out the abbreviated version of the questionnaire 
in groups of 10–20 individuals. The abbreviated version assesses di‐
chotomous presence or absence of types and instances of victimiza‐
tion. The questionnaires were later scored and evaluated. Second, a 

trained member of the clinical research team administered the full 
version of the questionnaire in an individual interview. This inter‐
view was carried out on the day of the fMRI scan. The full version of 
JVQ‐R2 gathers additional information about each of the types and 
instances of victimization reported in the reduced format; for exam‐
ple, recency and frequency of the events. The internal consistency 
reliability among the reduced version and the full version scores for 
the	JVQ-R2	was	excellent	(Cronbach's	alpha	0.915).	The	JVQ-R2	has	
good construct validity and acceptable test‐retest reliability. The 
agreement between two administrations ranged from 77% to 100% 
(Finkelhor et al., 2005). The mean test‐retest correlation was esti‐
mated	at	0.63,	and	internal	consistency	was	very	good	(Cronbach's	
alpha 0.80) (Finkelhor et al., 2005).

The JVQ‐R2 score may also be divided into last year (recent) and 
lifetime violence. The correlation among scores for lifetime and last 
year	 victimization	 was	 excellent	 (Pearson's	 r = 0.870). Moreover, 
the	 internal	 consistency	 reliability	 (Cronbach's	 alpha)	 among	 last	
year and lifetime scores for the full version was also excellent (alpha 
0.923). These analyses suggest that for the average 11‐year old in 
our study, lifetime JVQ‐R2 scores reflect mostly victimization in the 
previous year. Therefore, we investigated the brain‐victimization ef‐
fects using last year JVQ‐R2 scores (lifetime scores are reported, 
nonetheless).

2.2.2 | Hair cortisol: hair sample collection, cortisol 
extraction and analyses

Hair strands of approximately 3–5 mm in diameter 
(M ± SEM = 114.60 mg ± 11.36 of hair strands) and of 2 cm in length 
were cut from the posterior vertex position of subjects’ heads with 
surgical	scissors.	After	collection,	the	scalp	end	of	the	sample	was	
identified, and hair samples were stored at room temperature for 
up to 12 months. Subsequently, 1‐cm hair sections (representing 1‐
month periods) were cut and minced with clean and fine‐tipped sur‐
gical scissors into 1 mm pieces. Based on an average hair growth rate 
of 1 cm per month (Wennig, 2000), each of the two hair segments 
should reflect cumulative cortisol secretion for the previous 30 and 
60 days, respectively.

Hair cortisol extraction followed a protocol described in the liter‐
ature (Kirschbaum, Tietze, Skoluda, & Dettenborn, 2009) but with an 
adaptation (Boeckel, Viola, Daruy‐Filho, Martinez, & Grassi‐Oliveira, 
2017).	At	least	10	mg	of	hair	per	1-cm	section	was	weighed	and	manu‐
ally milled into different clean centrifuge tubes (M ± SEM: 1‐cm hair seg‐
ment = 43.85 mg ± 4.40, and 2‐cm hair segment = 43.28 mg ± 6.08). 
Powdered hair was prepared in 1.5 ml methanol and incubated in 
water	bath	 for	24	hr	 at	50°C.	After	 incubation,	~1.0	ml	of	 superna‐
tant methanol (containing cortisol extract) was removed to a clean mi‐
crotube and evaporated under a constant stream of nitrogen at 50°C 
using TurboVap® Classic LV (Biotage, Sweden).

The residues were reconstituted with 0.2 ml of phosphate‐buff‐
ered saline (pH 8.0) and vortexed for 1 min. For a double‐blinded 
measurement of cortisol in the extracts, we used a commer‐
cially available high‐sensitivity salivary cortisol enzyme‐linked 
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immunosorbent	assay	 (ELISA)	 (Salimetrics	LLC,	State	College,	PA,	
USA)	 according	 to	 the	 manufacturer's	 instructions.	 All	 samples	
were run in duplicates. We obtained a total of 71 hair samples 
from the 40 subjects (boys: n = 24; girls: n = 16): 1‐cm hair segment 
(n = 35, boys: n = 20, girls: n = 15, missing data: n = 4 boys and n = 1 
girl), and 2‐cm hair segment (n = 31, boys: n = 16, girls: n = 15, miss‐
ing data: n = 8 boys and n = 1 girl) Of the 40 youths, 12.5% (n = 5) 
was excluded from the current analyses due to a failure in hair cor‐
tisol extraction and analysis (missing data). In addition, a total of 
two participants (n = 1 boy and n = 1 girl) was considered statistical 
outliers and excluded from the 1‐cm analyses due to low levels of 
hair cortisol concentration in the 1‐cm hair sample (mean in pg/
mg ± SD) (1‐cm hair segment: 1.64 ± 0.73). The final analyses for 1‐
cm hair cortisol included 33 participants (boys: n = 19; girls: n = 14).

2.2.3 | fMRI parameters

Data were collected on a GE Healthcare HDxT 3.0T MRI scan‐
ner with an eight‐channel head coil. Three MRI sequences were 
acquired: a T1 structural scan (TR/TE = 6.16/2.18 ms, isotropic 
1 mm3 voxels), and two task‐related functional FMRI EPI sequences 
using the eyes test (run 1 = 8 min; run 2 = 8 min 04 s). For the task 
EPI sequence, we used the following parameters: TR = 2,000 ms, 
TE = 30 ms, 29 interleaved slices, slice thickness = 3.6 mm; slice 
gap = 0.3 mm; matrix size = 64 × 64, FOV = 240 × 240 mm, voxel 
size = 3.75 × 3.75 × 3.90 mm.

2.2.4 | Reading the Mind in the Eyes Test (RMET)

The participants performed the ‘Reading the Mind in the Eyes Test’ 
(RMET) in the MRI scanner (Baron‐Cohen et al., 2001). The test 
was previously adapted to Brazilian Portuguese (Sanvicente‐Vieira 
et al., 2014), and it has been previously applied in fMRI investiga‐
tions of mental state attribution in schizophrenia (Russell et al., 
2000) and alcohol dependence (Gizewski et al., 2013). It includes 
two conditions, namely ‘Mental State’ and ‘Sex.’ The conditions are 
made up of pictures of pairs of eyes. In the Mental State condition, 
participants are asked to infer a state of mind from the pictures of 
pairs of eyes (experimental condition); in the Sex condition, they 
are asked to identify the sex of the person in the picture (control 
condition).

The task includes 36 pictures of pairs of eyes. Each picture is 
presented twice, one in the Mental State condition and once in the 
Sex condition. The exact same stimuli are used in both conditions 
(Hence, the task includes a total 72 trials). Participants are instructed 
to infer the mental state the person is in, or to identify if the eyes 
belong to a man or woman. The response choices were displayed at 
the bottom of the screen at the same time the picture is displayed. 
After	 the	 picture	 of	 pairs	 of	 eyes	 has	 been	on	 the	 screen	 for	 3	s,	
a question mark cued participants to choose between two options 
given (two mental states, or man ‐ woman); participants had 3 s to 
respond. Please see Supplementary Methods for additional task pre‐
sentation and timing information.

2.3 | fMRI data analyses

Functional	data	were	processed	using	AFNI's	 (http://afni.nimh.nih.
gov/) afni_proc.py program (Cox, 1996). Preprocessing included 
slice‐time and motion correction, smoothing with a 6 mm FWHM 
Gaussian kernel and a non‐linear spatial normalization to 3.5 × 3.5 
× 3.5 mm3 voxel template (HaskinsPedsNL template) (Molfese, Glen, 
Mesite, Pugh, & Cox, 2015). Time points between volumes with 
framewise displacement (motion) >0.9 mm were censored from 
the data. These timepoints were regressed out within the 1st level 
multiple regression calculation (see below). Nine participants who 
finished the scanning session were excluded due to excessive mo‐
tion. The criterion for exclusion was excessive head motion in 20% 
of the total TRs. The average head motion for the participants in the 
study was 0.1262 mm (SD = 0.065). To ensure motion artifacts did 
not have an effect on the correlation among victimization scores and 
brain imaging, we calculated the correlation between participants 
average head motion during the scan and their respective JVQ‐R2 
score: There was no correlation between exposure to violence and 
the average motion in the scanner (r = 0.0388; p = 0.8121). During 
the scan, a real‐time motion detection software was used to moni‐
tor participant cooperation. In case participants presented more 
than framewise displacement of 0.9 mm motion in more than 20 TRs 
before completing the run, we interrupted the experiment, talked 
with the participant, and ran the task again. We made one attempt 
to re‐run the task if it was stopped due to excessive head motion. Six 
participants had to redo one of the RMET runs, one had to redo both 
(see Supplementary Methods for full report and additional analyses; 
redoing the task had no significant effects on the group results).

First‐level analyses included modeling regressors for each con‐
dition (Mental State, Sex), which were convolved with the canoni‐
cal	hemodynamic	response	function	as	implemented	in	AFNI	(Cox,	
1996). The hemodynamic response was modeled for the full duration 
of each visual stimuli (6 s). To avoid matrix singularity, a random jitter 
was included between each trial. The jitter intervals were 1.5, 1.75, 
and 2.5 s. Regressors of no interest were also included in the mul‐
tiple regression model including six estimated motion parameters 
(3‐translation and 3‐rotation) and a 4th‐degree polynomial fit. To 
correct for multiple comparisons, the 3dClustSim program (estimat‐
ing the blurring of the data by the autocorrelation function) was used 
to calculate the cluster threshold for a corrected p-score	of	ɑ	<	0.05.	
The calculation showed that the threshold of p < 0.005 combined 
with a minimum cluster size of 74 voxels (3172, 8 μl) corresponded to 
a	score	corrected	for	multiple	comparisons	of	ɑ	<	0.05.

2.3.1 | Correlations: fMRI and exposure to violence

We carried out correlations among the JVQ‐R2 scores and indi‐
vidual participants images for the contrast between the two con‐
ditions (Mental State > Sex). The rationale for using the Mental 
State > Sex images was to investigate effects of victimization in 
association with activation specific to the inference of emotional 
cues in facial expressions, thus removing lower‐level processes 

http://afni.nimh.nih.gov/
http://afni.nimh.nih.gov/
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common to the conditions. The Mental State and Sex conditions 
used the exact same stimuli; thus, the images for the contrast be‐
tween the two conditions reflect brain activation specific to the 
inferring of emotions from the pairs of eyes (Newman, Twieg, & 
Carpenter, 2001). The correlation was calculated using the JVQ‐
R2	scores	and	using	the	3dRegAna	function	from	the	AFNI	pack‐
age (Cox, 1996). We also investigated correlations among age of 
participants and the brain imaging conditions (Mental State; Sex) 
and their contrast (Mental State > Sex). There were no significant 
correlations between age and activation either in the main condi‐
tions or in the contrast.

2.3.2 | Impulse Response (IRESP) and functional 
connectivity analysis

Impulse responses for Mental State and Sex conditions were cal‐
culated	using	 the	3dDeconvolve	 function	 from	 the	AFNI	package.	
IRESP was modeled for each condition for 36 s for each of the 
six blocks for the condition. Subsequently, an average IRESP time 
course for each condition (including all six blocks of 36 s) was cal‐
culated for each brain region, each condition and each participant.

Functional connectivity was computed separately for each partic‐
ipant, each condition and pairs of brain regions as a correlation be‐
tween the 36‐s average time course for the pairs of regions of interest. 
The correlation was calculated between the average time courses for 
pairs of brain regions, within the condition. For example, for the func‐
tional	connectivity	correlation	between	the	Amygdala	and	the	RFFG	
(Amygdala:RFFG)	 in	 the	Mental	State	condition,	we	correlated	each	
participant's	average	time	course	for	the	Mental	State	condition	for	
the	amygdala	with	the	participant's	average	time	course	for	the	Mental	
State condition for the RFFG; likewise, for the Sex condition, we used 
the average time courses for the pair of regions, for this condition. The 
average impulse response was measured for the following regions of 
interest, based on the literature for social cognition and social percep‐
tion	 in	 the	brain	discussed	above	 (Adolphs,	2001,	2003;	Kanwisher	
et al., 1997; Saxe & Kanwisher, 2003): Right Superior Temporal Sulcus 
(RSTS);	Amygdala	(left	+	right	Amygdala);	Right	Inferior	Parietal	Lobe	
(RIPL);	Right	Inferior	Frontal	Gyrus	(RIFG)	(triangularis	+	opercularis);	
and Left Orbitofrontal Cortex (LOFC).

The correlations reflect the relation between the activation of 
two	brain	regions	for	the	duration	of	the	task.	Subsequently,	Fisher's	
r‐to‐z transformation was calculated using the correlation coefficients 
calculated for each pair of areas for each participant, and each con‐
dition.	The	participant's	 individual	Z‐scores for each pair of areas in 
each condition were subsequently used for statistical analysis. This 
method for investigation of functional connectivity has been widely 
used for mechanistic investigations of individual differences of con‐
nectivity in the brain, in clinical and healthy populations (Buchweitz, ; 
Buchweitz, Keller, Meyler, & Just, 2012; Just, Cherkassky, Keller, Kana, 
& Minshew, 2007; Just, Cherkassky, Keller, & Minshew, 2004; Keller & 
Just, 2009, 2016; Mason, Williams, Kana, Minshew, & Just, 2008). The 
method provides task‐related indices that indicate differences in brain 
networks communication between pairs of regions.

2.3.3 | Correlations: functional connectivity 
indices and JVQ‐R2 scores

To investigate a relation among changes in connectivity and self‐
reported victimization, we calculated the correlations among the 
Fisher's	Z‐score for each pair of brain regions of interest (described 
above),	for	each	participant	and	the	participant's	JVQ-R2	scores.

2.4 | Victimization and hair cortisol 
statistical analyses

We tested JVQ‐R2 scores and hair cortisol concentration for nor‐
mality of distribution using the Kolmogorov‐Smirnov or Shapiro‐
Wilk tests. The tests for hair cortisol concentration showed the data 
were not normally distributed. We log transformed the hair cortisol 
concentration values, and the transformation effectively reduced 
the skewness statistic and allowed for the use of parametric models 
in the analyses. We calculated descriptive statistics for all items and 
modules	 of	 the	 full	 version	 of	 JVQ-R2.	We	 calculated	Cronbach's	
alpha for the item scores of JVQ‐R2 to evaluate scale reliability 
among lifetime and last year scores.

We	 used	 Pearson's	 correlation	 to	 test	 the	 relationship	 among	
hair cortisol concentration for two hair segments (1‐cm and 2‐cm) 
and JVQ‐R2 total score. We also used multiple testing correction 
of p‐values for the correlations among hair cortisol concentration 
and JVQ‐R2 total score and module scores (Benjamini & Hochberg, 
1995). Generalized Estimating Equation (GEE) was carried out after 
checking for data normality (Kolmogorov‐Smirnov or Shapiro‐Wilk 
tests) to analyze within‐individual correlations of repeated‐mea‐
sures of hair cortisol concentrations (1‐cm and 2‐cm hair segments), 
and to analyze victimization scores. GEE model with linear distribu‐
tion was carried out using the log‐transformed values of the hair cor‐
tisol concentration. Repeated measurements in the same subjects 
were taken into account in an exchangeable matrix. We modeled 
the log‐transformed hair cortisol concentration (dependent variable) 
using hair segment (factor), last year victimization scores of JVQ‐R2 
(covariate), and hair segment × last year victimization (interaction ef‐
fect).	All	statistical	analyses	of	cortisol	and	instrument	scores	were	
performed using SPSS software 20th version (SPSS, Chicago, IL, 
USA).	A	p-value	<	0.05	was	considered	statistically	significant.	The	
Scatterplots of the correlations were generated using GraphPad 
Prism	6	(GraphPad	Software	Inc.,	La	Jolla,	CA,	USA).

3  | RESULTS

3.1 | Preadolescents and self‐reported victimization

The majority of the sample (82.5%, n = 33) experienced at least one 
form of victimization in their lifetime. The prevalence of last year 
victimization was 72.5% (n = 29), which in turn corresponds to 87.8% 
of the youths who reported lifetime victimization events. The mean 
lifetime victimization score was 4.20 (SD = 4.40); the mean last year 
score was = 2.25 ± 3.38 (Supplementary Table S1 shows descriptive 
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data by module and total scores for the JVQ, last year and lifetime; 
it also presents analyses of differences between hair cortisol among 
boys and girls—no sex differences were found). In types of last year 
victimization, 30% (n = 12) reported two forms of victimization 
(which corresponds to 48% of the youths who were victimized in 
their lifetime), 22.5% (n = 9) reported three forms of victimization 
(60% of the youths who were victimized in their lifetime), 7.5% (n = 3) 
reported four forms of victimization (42.8% of the youths who were 
victimized in their lifetime), and 2.5% (n = 1) reported experiencing 
all five forms of victimization (the same participant who reported 
five	forms	of	lifetime	victimization).	A	total	62.5%	(n = 25) reported 
two forms of lifetime victimization; 37.5% (n = 15) reported three 
forms of victimization; 17.5% (n = 7) reported four forms of victimi‐
zation, and 2.5% (n = 1) experienced all five forms of victimization.

3.2 | fMRI results

3.2.1 | Exposure to violence and less activation of 
social perception brain circuitry

Results showed that exposure to violence was associated with 
less activation of a right‐hemisphere temporoparietal network of 
areas for Mental State > Sex activation. The network of areas that 
negatively correlated with exposure to violence included the right 
inferior parietal lobe (RIPL), the right superior temporal gyrus and 
sulcus (RSTG and RSTS), and the posterior cingulate gyrus. Results 
also showed a negative correlation among victimization scores and 
activation of the right fusiform gyrus (RFFG). Figure 1 shows the 
RFFG and right posterior and superior temporal lobe clusters of 
activation that negatively correlated with the level of victimization. 
Table 1 reports all clusters negatively correlated with JVQ‐R2; there 

were no clusters that showed significant positive correlation with 
victimization scores. (Supplementary Tables S2 and S3 report acti‐
vation for each condition and for the contrast between conditions; 
Supplementary Figure S1 shows a scatterplot of the correlation 
among JVQ last year scores and the beta values for each participant 
in the RSTS and the RFFG regions shown in Figure 1).

3.2.2 | Violence and amygdala‐RFFG connectivity 
in the Mental State condition

Correlations among amygdala:RFFG Z‐scores for each condition 
(Sex and Mental State) with victimization were significant for the 
Mental State attribution task only. This suggests significant con‐
nectivity between the RFFG and the limbic system only when 
participants were asked to attribute mental states (Figure 2; corre‐
lation Z-score	Amyg:RFFG	for	the	Mental	State	condition	with	last	
year JVQ‐R2 r = 0.313, p = 0.049; correlation Z-score	Amyg:RFFG	
for the Sex condition with last year JVQ‐R2 r = 0.083; p = 0.608). 
The images presented in either condition were the same. Thus, 
the result suggests an effect of task on connectivity between the 
fear center of the brain and one of the brain regions that nega‐
tively correlated with victimization (RFFG was among the regions 
that negatively correlated with JVQ‐R2). Supplementary Table 
S4 reports the correlations for the other pair of regions with 
JVQ‐R2 last year scores; there were no other significant correla‐
tions among the Z-scores	and	the	victimization	score.	A	Wilcoxon	
Signed‐Ranks Test indicated no statistically significant difference 
between the Z‐scores for the Mental State condition and for the 
Sex	condition	for	the	Amygdala:RFFG	pair	(Z	=	−0.121;	p = 0.757).

Differences in amygdala‐fusiform connectivity have been found 
in association with adolescent anxiety disorders (Toazza et al., 2016), 

F I G U R E  1   Less brain activation associated with increased exposure to violence. Negative correlation for JVQ‐R2 last year scores with 
the images for the Mental State > Sex contrast. Clusters significant at p	<	0.05	corrected	for	multiple	comparisons	(3dClustSim:	threshold	
of p	<	0.005	for	a	minimum	cluster	size	of	74	voxels;	3172,	8	μl). (a) Renderings of decreased activation associated with violence and the 
Right Superior Temporal Sulcus cluster (green crosshairs at x = 44; y	=	−37;	z = 14): Top: lateral view; Bottom: axial and coronal views. (b) 
Rendering of less activation associated with violence and the Right Fusiform Gyrus (green crosshairs at x = 44; y	=	−37;	z	=	−15).	The	number	
of negatively correlated voxels and their respective regions are described in Table 1
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early‐life stress and institutionalization (Herringa et al., 2016; Malter 
Cohen, Jing, et al., 2013; Silvers et al., 2016), and PTSD (Cisler et al., 
2015). The choice of brain region pairs was not exploratory, but we 
carried out a correction for multiple comparisons for the correlations 
among the Z‐scores for activation time series and the JVQ scores. 
The	significant	correlation	between	Amygdala:RFFG	and	JVQ	scores	
did not survive correction for multiple comparisons (Benjamini & 

Hochberg, 1995). Evidently, the result needs to be replicated to 
establish evidence of an actual mechanism of increased communi‐
cation among social cognition and limbic system brain regions that 
emerges in association with violence.

3.3 | Preadolescents and self‐reported victimization

The majority of the sample (82.5%, n = 33) experienced at least one 
form of victimization in their lifetime. The prevalence of last year 
victimization was 72.5% (n = 29), which in turn corresponds to a 
total of 87.8% of the youths who reported lifetime victimization 
events. The mean lifetime victimization score was 4.20 (SD = 4.40); 
the mean last year was = 2.25 ± 3.38 (Supplementary Table S1 
shows descriptive data by module and total scores for the JVQ, last 
year and lifetime; it also presents analyses of differences between 
hair cortisol among boys and girls—no sex differences were found). 
For reports of last year victimization, 30% (n = 12) reported two 
forms of victimization (which corresponds to 48% of the youths 
who were victimized in their lifetime), 22.5% (n = 9) reported three 
forms of victimization (60% of the youths who were victimized 
in their lifetime), 7.5% (n = 3) reported our forms of victimization 
(42.8% of the youths who were victimized in their lifetime), and 
2.5% (n = 1) experienced all five forms of victimization (the same 
participant	 who	 reported	 five	 forms	 of	 lifetime	 victimization).	 A	
total 62.5% (n = 25) reported two forms of lifetime victimization; 
37.5% (n = 15) reported three forms of victimization; 17.5% (n = 7) 
reported four forms of victimization, and 2.5% (n = 1) experienced 
all five forms of victimization.

3.4 | Victimization and HPA: hair cortisol 
concentration reflects youth's self‐reported levels of 
exposure to violence

Participants self‐reported victimization scores correlated with indi‐
vidual differences in concentration in hair cortisol. Results showed 
that last year victimization scores positively correlated with 

TA B L E  1   Right‐hemisphere regions, number of voxels and peak 
coordinates for the brain regions negatively correlated with 
JVQ-R2	scores.	Atlas	number	and	name	for	the	pediatric	template	
region used to extract the voxels significantly negatively correlated 
with JVQ‐R2 scores (parentheses), and coordinates for the peak T 
value in each cluster. There were no clusters of voxels that 
positively correlated with victimization. Number of voxels reported 
based on voxels negatively correlated with the JVQ‐R2 score above 
the corrected threshold of α		<		0.05

Region (atlas 
number)

Voxels

Peak

Right‐Hemisphere x y z

Sup. Temporal 
Sulcus (74)

4 59 33 9

Sup. Temporal 
Gyrus (102)

1 42 30 16

Inf. Temporal (81) 30 56 47 15

Fusiform (79) 7 38 37 15

Inf. Parietal Lobe 
(80)

27 35 56 54

Sup. Parietal Lobe 
(101)

33 21 61 51

Mid. Temporal (87) 36 52 33 5

Posterior Cingulate 
(95)

9 7 37 37

Supramarginal (103) 16 31 30 20

Paracentral (89) 9 14 37 41

Precuneus (97) 80 14 47 34

F I G U R E  2   Significant correlation 
among	JVQ-R2	and	Amygdala:RFFG	
connectivity (Z‐scores). Significant 
correlation found among amygdala and 
RFFG Z‐scores for their time courses 
of activation and the participants 
victimization scores. (a) shows a rendering 
of the Haskins pediatric template left and 
right amygdala and RFFG regions used; (b) 
shows the scatter plot for the correlations 
among Z‐scores for the pair of regions in 
the Sex and the Mental State condition 
and JVQ‐R2 (r‐squared for Mental 
State	Amygdala:RFFG = 0.098; for Sex 
Amygdala:RFFG = 0.007)
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hair cortisol concentration for the 1‐cm hair segment (r = 0.624, 
p = 1.06E‐04, total n = 33) (Figure 3). The results show a signifi‐
cant last year victimization effect (GEE model with linear distri‐
bution, main effect: Wald‐χ2 (1) = 19,606; p = 1E‐05) on hair 
cortisol concentration of preadolescents. Moreover, there was a 
significant hair segment × last year victimization interaction effect 
(GEE model with linear distribution, interaction effect: Wald‐χ2 
(1) = 8,623; p = 0.003) on hair cortisol levels in 1‐cm hair segment. 
No significant hair segment effect was detected (GEE model with 
linear distribution, main: Wald‐χ2 (1) = 2,216; p = 0.137). By con‐
trast, last year victimization scores did not correlate with hair 
cortisol concentration in 2‐cm (r = 0.200, p = 0.281, total n = 31) 
(Supplementary Table S3 presents descriptive results and Figure 4 
the correlations with JVQ‐R2module scores). The results for cor‐
tisol concentration (mg/pg) in hair segments were (M ± SEM): 1 
cm (32.23 ± 3.98 in boys and 16.47 ± 3.30 in girls, total n = 33, 
p = 0.007), and 2 cm (26.04 ± 3.68 in boys and 25.87 ± 3.43 in 
girls, total n = 31, p = 0.973). The correlations for comparisons 
among hair cortisol levels and lifetime and last year module scores 
are reported in Figure 4. The p values were adjusted for multiple 
comparisons using Benjamini and Hochberg method (Benjamini & 
Hochberg, 1995).

3.5 | Behavioral results

We analyzed the accuracy and response times (time to making a 
choice after the question mark was presented) for mental state and 
sex. Results showed an average accuracy of 0.64 (range 0.33–0.89; 
SD = 0.13) for the mental state condition and 0.92 (range 0.75–1.00; 
SD = 0.05) for the sex condition; the average response time after 
presentation of the question mark for mental state was 998 ms 
(range 615–1,460; SD = 223), and for sex, 872 ms (range 572–872; 
SD = 181). The response times were significantly different between 
conditions [paired t(39)	=	−5.212;	p	<	0.001].	There	were	no	signifi‐
cant correlations among response times for Mental State (r = −0.037;	
p = 0.411) or Sex (r = 0.016; p = 0.460) with the victimization score.

4  | DISCUSSION

Our study shows, for the first time, an association of exposure to vi‐
olence	reported	by	Latin-American	preadolescents	with	differences	
in the neural underpinnings of social cognition. Exposure to violence 
was associated with significantly less activation of right superior 
temporal sulcus, a brain hub for social perception (Saxe & Kanwisher, 
2003;	Schurz,	Radua,	Aichhorn,	Richlan,	&	Perner,	2014),	and	of	the	
RFFG, which is associated with processing faces. The negative cor‐
relation between RFFG and victimization co‐occurred with evidence 
of a correlation among the RFFG and amygdala connectivity with 
higher victimization scores. The study also showed higher concen‐
trations of cortisol, a psychobiological marker of chronic stress, were 
associated	with	 youth's	 self-reported	 exposure	 to	 violence.	 These	
results are discussed in light of the corroborating literature.

4.1 | Victimization and decreased activation of right 
superior temporal sulcus: is violence taking its toll 
on the social brain?

The results suggest synchronized communication between the lim‐
bic system and RFFG associated with higher victimization scores, in 
the mental state attribution condition only. Synchronized brain func‐
tion in a pair of areas of the brain suggests more communication, or 
exchange of information (Just et al., 2007); the significantly corre‐
lated brain function in the mental state condition could be evidence 
that RFFG activation is being modulated by the amygdala when more 
victimized participants infer mental states. The results may be early 
evidence of a coping mechanism, or a maladaptive process in social 
brain circuitry as a function of exposure to violence.

Differences in the function of brain networks that regulate emo‐
tion, such as the amygdala, may be a prelude to violent behavior 
(Davidson,	Putnam,	&	Larson,	2000).	Animal	models	of	early	life	stress	
show alterations in amygdala circuitry and function associated with 
stress; these alterations, in turn, increase the risk for psychopatholo‐
gies (Malter Cohen, Jing, et al.,	2013).	Altered	fusiform	activation	and	
connectivity have been associated with processing negative, emo‐
tional faces and with mental disorders: Social anxiety disorder patients 

F I G U R E  3  Association	between	hair	cortisol	concentration	
and juvenile victimization in the last year. The figure shows the 
scatterplot of the Pearson correlation among JVQ‐R2 total scores 
(X‐axis) and cortisol concentration (pg/mg) after log transformation 
(Y‐axis) in 1‐cm hair segment. Data from three participants are 
missing due to assay failure of cortisol measurement. These 
participants were excluded from the analyses. Two participants 
were considered statistical outliers due to low levels of hair cortisol 
concentration (mean in pg/mg ± SD) (1‐cm hair segment: 1.64 ± 
0.73). Thirty‐three participants were included in the final analyses
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present altered amygdala‐fusiform connectivity while viewing fearful 
faces (Frick et al., 2013); phobic patients show decreased activation 
of the fusiform gyrus for processing angry or negative faces (Gentili, 
Gobbini, Ricciardi, Vanello, Pietrini, Haxby, & Guazzelli, 2008).

Of course, exposure to violence and adversity in adolescence does 
not necessarily lead to mental health disorders. Some people thrive 
despite or in the face of adversity. But the exposure may increase the 
risk for psychopathologies in a period of heightened susceptibility to 
the environment (Schriber & Guyer, 2016). Evidence of differences in 
brain function and connectivity can be more meaningfully interpreted 
longitudinally as predictors of brain‐behavior relationship and of risk 
for mood disorders, for suicidal ideation, for violent behavior, among 
other mental health issues. The current study does not link exposure 
to violence with present or long‐term changes in behavior.

Children and adolescents who experience maltreatment, one 
of the modules in the JVQ‐R2, are more likely to become de‐
pressed and suicidal (Brown, Cohen, Johnson, & Smailes, 1999). 
The results show evidence of less activation in a brain network 
for which (putatively atypical) function has been associated with 
mental health disorders, stress and early institutionalization 
(Dien	&	O'Hare,	2008;	Pollak	&	Sinha,	2002;	Silvers	et al., 2016; 

Tottenham, Hare, Quinn, McCarry, Nurse, Gilhooly, & Casey, 
2010). RFFG activation also correlated negatively with differences 
in victimization. Studies have shown differences in FFG activation 
associated with negative emotional stimuli in PTSD, social anxiety, 
and	phobic	patients	(Etkin	&	Wager,	2007).	Anatomically,	altered	
gray matter volume in the visual cortex has been associated with 
experiences of childhood sexual abuse (Tomoda, Navalta, Polcari, 
Sadato, & Teicher, 2009). In sum, our results corroborate the ev‐
idence that different forms of exposure to violence, trauma and 
maltreatment are associated with differences in neurobiological 
function that underpins social perception. It remains to be seen 
whether these differences in social brain function represent early 
signs of risk for future mental health troubles as a consequence of 
present chronic exposure to violence.

4.2 | Exposure to violence and cortisol levels: a 
neuroendocrine telltale sign

Our results showed an association among preadolescents’ hair corti‐
sol concentrations and self‐reported victimization scores. The corre‐
lation supports the notion that increased scores in these reports may 

F I G U R E  4   Correlation matrix for Hair Cortisol Concentrations (HCC) and JVQ‐R2 module scores for lifetime and last year victimization 
Pearson's	correlation	test	was	carried	out	among	HCC	and	LT	(a)	and	LY	(b)	victimization	subscores:	conventional	crime,	maltreatment,	
victimization	by	peers	and	siblings,	sexual	victimization,	and	witnessing	and	indirect	victimization.	The	circles	represent	the	Pearson's	
correlation coefficients: the r values are color coded and reported in the legend (red color: positive r; blue color: negative r). Significant 
correlations are indicated by (*) inside the circle (adjusted p-value	<	0.05).	Correlation	coefficient	and	significant	p‐value for the association 
among LT victimization scores and HCC 1‐cm hair segment: conventional crime (r	=	0.451,	Adjusted	p‐value = 0.020); maltreatment 
(r	=	0.408,	Adjusted	p‐value = 0.030), victimization by peers and siblings (r	=	0.561,	Adjusted	p‐value = 0.005), and witnessing and indirect 
victimization (r	=	0.467,	Adjusted	p‐value = 0.020). Correlation coefficient and significant p‐value for the association among LY victimization 
scores and HCC 1‐cm hair segment: conventional crime (r	=	0.432,	Adjusted	p‐value = 0.024); victimization by peers and siblings (r = 0.576, 
Adjusted	p‐value = 0.004), sexual victimization (r	=	0.392,	Adjusted	p‐value = 0.030), and witnessing and indirect victimization (r = 0.395, 
Adjusted	p‐value = 0.030). Thirty‐three participants had 1‐cm hair samples (boys: n = 19; girls: n = 14); 31 participants had 2‐cm hair 
samples (boys: n = 16; girls: n	=	15).	Adjusted	p‐value refers to multiple testing correction of p‐value (Benjamini & Hochberg, 1995). JVQ‐
R2 = Juvenile Victimization Questionnaire ‐ 2nd Revision (full interview). HCC = hair cortisol concentration (1‐cm hair segment or 2‐cm hair 
segment)
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result in increased stress. The differences in concentrations identi‐
fied in the present study suggest biomarkers of enduring changes 
due to exposure to chronic stress (Negriff, Saxbe, & Trickett, 2015). 
Children and adolescent hair cortisol concentration is sensitive to 
exposure to stressful situations (Rippe, Noppe, Windhorst, Tiemeier, 
van	Rossum,	 Jaddoe,	&	van	den	Akker,	 2016;	 Serwinski,	 Salavecz,	
Kirschbaum, & Steptoe, 2016; Ursache, Merz, Melvin, Meyer, & 
Noble, 2017).

In comparison to other studies, our results suggest an average 
victimization score at an earlier age. For the last year scores, 72.5% 
of our population reported at least one victimization experience; 
this percentage is slightly higher than that found in a study with 
4,549 U.S. children and adolescents (69.3%) (Finkelhor, Ormrod, 
& Turner, 2009), and in a study with 1,107 Spanish adolescents 
(68.6%)	 (Pereda,	Guilera,	&	Abad,	2014).	 In	both	cases,	 the	pop‐
ulation was older than ours. The percentage of participants who 
reported at least one form of lifetime victimization in our study 
was slightly higher than that of participants who reported one for 
of lifetime victimization for a study of 4,053 people in the United 
States (80% reported victimization) (Turner, Finkelhor, & Ormrod, 
2010); also, our lifetime percentage of victimization was compa‐
rable to an older, but large sample of 5,960 students (mean age 
17.3 years) from Sweden (84.1% reported lifetime victimization) 
(Aho,	Gren-Landell,	&	Svedin,	 2016).	 The	percentage	of	 preado‐
lescents who had experienced at least one form of victimization 
in our study was comparable to the percentages of older popula‐
tions, thus suggesting a higher prevalence of at least one experi‐
ence at an earlier age.

Witnessing and indirect victimization was the most frequently 
reported type of last year victimization: 42.5% of preadoles‐
cents. This prevalence was higher than that for Spanish youths 
(32.1%) (Pereda et al.	 2014)	 and	 Swedish	 adolescents	 (34%)	 (Aho	
et al., 2016), who were also generally older than our population. 
Conventional Crimes were the second most frequent type of 
victimization	 in	 our	 sample:	 37.5%.	A	 similar	 prevalence	was	 ob‐
served in Hong Kong (35.8%) (Chan, Fong, Yan, Chow, & Ip, 2011). 
Maltreatment in last year was reported by 17.5% of preadoles‐
cents, similarly to the Spain (18.1%) (Pereda et al. 2014) and Hong 
Kong (21.1%) (Chan et al., 2011) studies. Peer and sibling victimiza‐
tion (30% of preadolescents) was also similar to Spanish (30.6%) 
(Pereda et al. 2014) and Swedish (30%) estimates with adolescents 
(but	 again,	 those	 studies	 included	 older	 participants)	 (Aho	 et	 al.,	
2016). The results show 7.5% of youths reported sexual victimiza‐
tion in the last year; this result is higher than the prevalence of 
sexual abuse in other studies (Chan et al., 2011; Pereda et al., 2014). 
Finally, most studies report SES as an intervenient factor for hair 
cortisol concentrations. Our results showed no association of hair 
cortisol concentration with SES. There was no correlation among 
SES scores and the victimization scores for JVQ lifetime (r = 0.092; 
p = 0.576) or last year (r = 0.095; p = 0.566). No correlation be‐
tween socioeconomic data and hair cortisol concentrations may 
result from the homogeneity of the sample; all but one participant 
had low or very low SES (see Methods).

The present findings do not show that social cognition pro‐
cesses are actually compromised, at this point. The cross‐sectional 
evidence suggests associations of exposure to violence with less 
activation of the social brain, and with synchronized function be‐
tween limbic and posterior face‐processing brain networks. The 
results corroborate the existing evidence of associations between 
brain function and violence and contribute to an increasing array 
of studies that are seeking to better understand the risk and early 
signs for negative spirals in behavior and mental health with brain‐
informed evidence.
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