Anti-tumor effects of valproate zinc complexes on a lung cancer cell line

Emanuelle Fraga da Silva a, Paulo Roberto dos Santos b, Krist Helen Antunes a, Caroline Marinho Franceschina a, Deise Nascimento de Freitas a, Priscila Konrad a, Rafael Fernandes Zanin c, Pablo Machado d, Sidnei Moura b, Ana Paula Duarte de Souza a,∗

a Laboratory of Clinical and Experimental Immunology, Infant Center, School of Health Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
b Laboratory of Natural and Synthetic Products, Biotechnology Institute, University of Caxias do Sul, Caxias do Sul, RS, Brazil
c Department of Health and Human Development, La Salle University, Canoas, RS, Brazil
d Research Center in Molecular and Functional Biology, National Institute of Science and Technology in Tuberculosis, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil

ARTICLE INFO

Keywords:
Cytotoxicity
Coordination compounds
Cell viability
Cell cycle
Apoptosis
SCFAs

ABSTRACT

Lung cancer is one of the most common types of cancer worldwide and the development of new treatment strategies is needed. Valproate exhibits anti-cancer properties and has been studied as a candidate for cancer therapy. Novel treatments with synthesized coordination complexes with valproate bioisosteres are promising, as they are often more effective and selective than organic molecules. We evaluated the anti-tumoral effects of two ternary complexes containing Zn 2+, valproate, and 2,2′-bipyridine (complex 1) or nicotinamide (complex 2) in a lung cancer cell line. Both complexes 1 and 2 exerted a 50% reduction in the viability of human epithelial lung cells (A549), indicating that coordination with Zn 2+ improves the cytotoxic effects of valproate. Complex 1 increased the frequency of apoptotic cells 6-fold compared to vehicle, but it was less selective to tumor cells than complex 2. Complex 2 reduced the frequency of cells in S phase at rates similar to valproate (from 10.2% in the control to 0% in both complex 2 and valproate). Our data highlighted the potential anti-tumoral activity of valproate-Zn 2+ complexes and their viability as prototypes for new drugs.

1. Introduction

Valproic acid is a short-chain fatty acid that has been used as an anti-convulsant treatment for epilepsy [1] and as a mood-stabilizing drug for the treatment of bipolar disorder [2]. Furthermore, valproate has been extensively studied as an anti-cancer agent. The anti-cancer properties of valproate are mainly attributed to its effects on cell cycle, apoptosis, cell differentiation, and DNA repair [3,4]. Different mechanisms of action have been associated with the anti-cancer effects of valproate, including inhibition of histone deacetylases (HDACs) 1 and 2 [5,6]. Aberrant expression of HDACs has been linked to several cancer types due to their role in the acetylation of genes involved in cell growth and promoter regions of tumor suppressor genes [7]. In a pioneer study, the anti-cancer effects of valproate were first identified and tested

Abbreviations: 1H NMR, Proton Nuclear Magnetic Resonance Spectroscopy; 7-AAD, 7-Aminoactinomycin D; 13CNMR, Carbon Nuclear Magnetic Resonance Spectroscopy; A549, adenocarcinoma human alveolar basal epithelial cells; Acetone D6, Deuterated acetone; ATCC, American Type Culture Collection; Bipy, 2,2′-bipyridine; CDCl3, Deuterated chloroform; DMEM F12, Dulbecco’s Modified Eagle’s Medium; DMF, Dimethylformamide; DMSO, Dimethylsulfoxide; ΔCOO-, Infrared variation of symmetric and asymmetric vibrations of carboxylate group; FBS, Fetal Bovine Serum; FITC, Fluorescein Isothiocyanate; FTIR, Fourier Transform Infrared Spectroscopy; HDACs, Histone Deacetylases enzymes; Hz, Hertz, NMR frequency; IC50, Half Maximal Inhibitory Concentration; JH, Proton-proton spin coupling constant on NMR; MHz, Megahertz, NMR frequency; MP, Melting point; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; Nic, Nicotinamide, Vitamin B3; OD, Optic density; ORTEP, Oak Ridge Thermal Ellipsoid Plot; PBS, Phosphate Buffer Saline; SD, Standard Derivation; THF, Tetrahydrofuran; UV–Vis, Ultraviolet–Visible spectrophotometry; Valp, Valproate, sodium valproate salt; Vero, Cercopithecus aethiops kidney normal cell line; νas, Asymmetric vibration on infrared; νs, Symmetric vibration on infrared; Zn(Valp)2Bipy, bis-(2-propylpentanoato)2,2′-bipyridine zinc(II), complex 1; Zn(Valp)2(Nic)2, bis-(2-propylpentanoato) bis(nicotinamide) zinc(II), complex 2.

∗ Corresponding author at: Laboratory of Clinical and Experimental Immunology, School of Health Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.
E-mail address: ana.duarte@pucrs.br (A.P.D. de Souza).

https://doi.org/10.1016/j.poly.2021.115415
Received 10 May 2021; Accepted 2 August 2021
Available online 8 August 2021
0277-5387/© 2021 Elsevier Ltd. All rights reserved.
in neuroblastoma cells [8]. Later studies tested and confirmed the anti-tumoral effects of valproate in several different types of cancer including rectal [9], thyroid [10], cervical [11], melanoma [12], leukemia [13], and lung cancer [14,15]. A growing number of studies have started studying valproate as an adjunctive treatment for cancer in association with other chemotherapy drugs, since the anti-cancer effects valproate effects when utilized as a monotherapy are not so effective [16,17]. Conversely, strategies to improve the anti-tumor effects valproate are needed.

Lung cancer is the most common type of cancer and leading cause of death caused by cancer, representing 18% of all cancer deaths [18,19]. The major cause of lung cancer is tobacco smoking, which is the etiology for about 80-85% of lung cancer cases [18], but causes also include previous lung disease [20] and genetics. Genes associated with lung cancer predisposition exhibit a heritability of 18% [21] and the risk of developing lung cancer increases in non-smokers by roughly 1.5-fold when they have a relative with lung cancer [22].

The four main histological types of lung cancer are adenocarcinoma, squamous cell carcinoma, large cell carcinoma, and small cell lung carcinoma, which is the most aggressive type [18]. Treatment of early-stage lung cancer primarily involves surgery [23] following perioperative chemotherapy [24] or both thoracic radiotherapy and chemotherapy, which causes many side effects [25,26]. Antibody-directed therapies have shown promise as a treatment, especially for advanced lung cancer [27–30], but the toxic effects of these approaches remain an issue [29–32]. With a 10–20% survival rates within 5 years [33,34], this cancer type requires effective strategies for detection, prevention, and treatment.

Since the discovery of cisplatin and its anti-proliferative properties, more studies have been conducted on the application of metal complexes in cancer therapy [35]. When a metal coordinates with organic compounds, these coordination complexes can be more effective than treatment.

2.3.3. Synthesis of zinc (II) complexes

2.3.2. Preparation of bis-(2-propylpentanoate)2,2'–bipyridine zinc(II) [Zn(Valp)₂Bipy] (1)

Complex 1 was prepared according to Dos Santos [36] method (31). A solution of 2,2-bi(bipyridine (11.4 mmol) in DMF (10 mL) was added to a solution of Zn(NO₃)₂·2.5H₂O (20 mmol) under vigorous stirring for 20 min. After 24 h, a white solid was formed, which was filtered and dried under vacuum for 12 h. Compound 1: Yield: 59%; MP: 150°C.

2.3.2.1. Physical measurements

\[\text{ν} \text{COO}^- = 1714, 1673, 1607, 1486, 1342, 1329, 1293, 1229, 1112, 874, 757, 526, 1598 (\nu{\text{COO}}^-), 1427 (\nu{\text{COO}}^-), 205C. \]

Cryostream 800 low temperature unit for complex 2). The structure was directly solved using SHELXS [43]. Subsequent difference Fourier map analyses yielded the positions of the non-hydrogen atoms. All
refinements were made by full-matrix least-squares on F2 with anisotropic displacement parameters for all non–hydrogen atoms using the SHELXL package. Hydrogen atoms were accounted for during analysis while the calculated positions were being refined, but the hydrogen atoms that had special bonds were located in the Fourier map. Drawings were created using ORTEP-3.1 for Windows and Mercury 4.1.0.44.

2.5. Cell lines

The cell lines A549 (adenocarcinoma human alveolar basal epithelial cells) and Vero CCL81 (*Cercopithecus aethiops* kidney normal) were purchased from the American Type Culture Collection (ATCC). A549 cells were cultured in DMEM F12 medium supplemented with 10% fetal bovine serum (FBS). Vero cells were cultured in DMEM high glucose bovine serum (FBS). Vero cells were cultured in DMEM F12 medium supplemented with 10% fetal bovine serum (FBS). All cells were incubated at 5% CO2 and 37 °C. All experiments were performed using freshly thawed cells after three passages. Cell lines were tested for Mycoplasma contamination.

2.6. Cytotoxicity assay

Cells were seeded in 96-well flat-bottom plates at concentrations of 5x10^3 cells/well for A549 cells and 2x10^3 cells/well for Vero cells, according Denizot & Lang (1986) [44]. After 24 h of incubation, 250.0, 137.5, 25.0, 13.75 or 2.5 μmol L⁻¹ of 1 or 2 was added and the plates were incubated for an additional 24 h at 37 °C in a humidified incubator with 5% CO2. For the vehicle control, DMSO was added in the same volumes that were used to dilute the complexes. As an additional negative control (NC), untreated cells were also assayed. Cell viability was assessed using a colorimetric assay based on the reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) by mitochondrial enzymes (Molecular Probes™, Thermo Fisher Scientific, Waltham, MA, USA). Briefly, 100 μL of medium was removed and 40 μL of MTT reagent (5 mg mL⁻¹) was added into each well. Cells were washed for 2.5 h and the precipitated formazan crystals were dissolved in dimethyl sulfoxide (DMSO). Finally, the optical density (OD) was analyzed at 570–620 nm using a micro-plate reader (EZ Read 400, Biochrom). Assays were performed in triplicate. For cytotoxicity calculation, the OD of the treated cells was multiplied by the percentage equivalent to the cells treated with DMSO, and then divided by the OD of the cells treated with DMSO.

2.7. Clonogenic assay

A549 cells were treated for 24 h with each compound, then plated in a new 6-well plate at a concentration of 500 cells/well. After 11 days, with a change in medium at day 5, the wells were washed with phosphate buffered saline (PBS) and fixed with 4% paraformaldehyde for 10 min. Cells were then washed with PBS and incubated overnight at 37 °C and 5% CO2 to dry the wells. Cells were then stained with 60% Giemsa 10% ethanol solution. Colonies were counted and graphs were plotted in GraphPad Prism Version 5.00 (GraphPad Software Inc., CA).

2.8. Cell cycle analysis

A549 cells were treated with 250 μmol L⁻¹ of complexes 1 and 2 and NaValp for 24 h. The cells were trypsinized and resuspended in PBS. Then, cells were centrifuged and washed in PBS. Following fixation in cold 70% ethanol for 20 min at −20 °C, the cells were washed with PBS and staining buffer and then stained with 7-amino-actinomycin (7-AAD, 5 μL) and propidium iodide (40 μg mL⁻¹) for 15 min at room temperature. The stained cells were subjected to cell cycle analysis using FACS Canto II (BD Biosciences).

2.9. Apoptosis analysis

Annexin V/PI analyses were carried out using the FITC Annexin V/PI apoptosis/necrosis detection kit (QuatroG). After treatment with 250 μmol L⁻¹ of complexes 1 and 2 and NaValp for 24 h, A549 cells were washed in cold PBS, resuspended in 1X binding buffer, and incubated with FITC annexin V (200 μg mL⁻¹) and propidium iodide (40 μg mL⁻¹) for 15 min at room temperature. Following incubation, cells were washed with PBS and analyzed by FACS Canto II (BD Biosciences).

2.10. Data analysis

The half maximal inhibitory concentrations (IC50) of compounds and controls were calculated using linear and polynomial regression analyses. The IC50 values were reported as a mean of three independent experiments. The selectivity index (SI) was calculated according to the following equation: SI = IC50 of Vero cells / IC50 of tumor cells. Statistical analyses were performed with GraphPad Prism (GraphPad Software Inc., CA) using two-way ANOVA followed by Bonferroni.
3. Results and discussion

3.1. Crystallographic study of complex 2

Crystallization of complex 2 occurs in a monoclinic system with space group (type C2/c) (Table 1), a common molecular packaging unit for Zn complexes containing valproate and pyridine derivatives as described by ABU, et al. (2013) [45]. Fig. 1 shows the structure (ORTEP) of complex 2 based on the assumption that the central Zn II atom is linked to four oxygen atoms from two valproate groups and two nitrogen atoms from two nicotinamide groups. The coordination sphere is formed by a distorted octahedron with two nicotinamide molecules arranged at an angle of 96.08° (Table 2) from each other opposite to two bidentate valproate molecules. The oxygen atoms of the carboxylate group bind asymmetrically to the metal through a 2.090 Å bond with a valence oxygen and 2.310 Å bond with the carbonyl oxygen.

The representation of the intermolecular structure of complex 2 in Fig. 2 shows cohesive molecular packaging through hydrogen bonds. Each nicotinamide binder produces three intermolecular H-bonds, two of which are symmetrical to each other in reference to the amide groups (2.048 Å) (NHO) and the third occurring between the hydrogen of the neighboring molecule 2,118 Å away.

3.2. Antitumor analysis complexes 1 and 2

Cytotoxic effects of complexes 1 and 2 were tested against human lung adenocarcinoma cells (A549). Cells were exposed to different concentrations of complexes 1 or 2 (i.e., 250.0, 137.5, 25.0, 13.75, or 2.5 µmol L⁻¹). Controls were treated with valproate in the same concentrations (Fig. 3A).

Table 1: Crystallographic parameters for complex 2.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C₉₀H₇₅N₂O₂Zn</td>
</tr>
<tr>
<td>Formula weight</td>
<td>596.03</td>
</tr>
<tr>
<td>T / K</td>
<td>293(2)</td>
</tr>
<tr>
<td>Radiation, I / Å</td>
<td>Mo Kα 0.71073</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>Monoclinic, C2/c</td>
</tr>
<tr>
<td>Unit cell (Å) dimensions</td>
<td></td>
</tr>
<tr>
<td>a (Å)</td>
<td>14.417(5)</td>
</tr>
<tr>
<td>β (°)</td>
<td>104.246(4)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>20.7978(8)</td>
</tr>
<tr>
<td>α (°)</td>
<td>90</td>
</tr>
<tr>
<td>β (°)</td>
<td>90</td>
</tr>
<tr>
<td>γ (°)</td>
<td>98.2030(10)</td>
</tr>
<tr>
<td>V (Å³)</td>
<td>3093.8(2)</td>
</tr>
<tr>
<td>Z, Calculated density (g·cm⁻³)</td>
<td>4.1280</td>
</tr>
<tr>
<td>Absorption coefficient (mm⁻¹)</td>
<td>0.838</td>
</tr>
<tr>
<td>F(000)</td>
<td>1264</td>
</tr>
<tr>
<td>Crystal size (mm)</td>
<td>0.20 × 0.12 × 0.11</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>3.25 to 30.60 deg.</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-17<h<20</td>
</tr>
<tr>
<td></td>
<td>-14<k<14</td>
</tr>
<tr>
<td></td>
<td>-29<l<22</td>
</tr>
<tr>
<td>Reflections collected / unique</td>
<td>11,878 / 4757 [R(int) = 0.0151]</td>
</tr>
<tr>
<td>Completeness to the theta max</td>
<td>99.8 %</td>
</tr>
<tr>
<td>(30.60)</td>
<td></td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical from equiequivalents</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.9235 and 0.8700</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>4757/20/171</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.022</td>
</tr>
<tr>
<td>Final R indices [I > 2σ(I)]</td>
<td>R1 = 0.0564, wR2 = 0.1539</td>
</tr>
<tr>
<td></td>
<td>R1 = 0.0710, wR2 = 0.1627</td>
</tr>
<tr>
<td>Largest diff. peak and hole (e.Å⁻³)</td>
<td>1.146 and −1.137</td>
</tr>
</tbody>
</table>

Complex 1 exhibited greater cytotoxic effects than complex 2 and the valproate control in A549 cells (Fig. 3A). When administered in concentrations ranging from 25 µM to 250 µM, complex 1 significantly reduced cellular viability compared to valproate (Fig. 3A). Complex 2 also significantly reduced A549 cellular viability, but only when added in the highest concentration of 250 µM (Fig. 3A).

We also evaluated the selectivity of the cytotoxic effects of complexes 1 and 2 using a non-tumor cell line (Vero). We found that complex 2 exhibited less cytotoxicity in Vero cells compared to complex 1 when it was added in concentrations of 137.5 µM and 250 µM (Fig. 3B). Table 2 shows the IC50 of each complex. Complex 1 exhibited the lowest IC50 compared to valproate and complex 2, indicating that complex 1 had the greatest cytotoxic effects. However, complex 1 also had a low IC50 value in Vero cells, which indicate that although complex 1 is effective in inhibiting tumor cell growth, it is not selective. This data is confirmed by the selectivity indices (SI) present in Table 4, which show an SI < 1 for complex 1. Complex 2 presented higher values of SI, indicating that it was more selective than 1 (Table 4).

Using a clonogenic assay, we further investigated the capacity of A549 cells to proliferate after treatment with NaValp, complexes 1 or 2. We used concentrations of 250 µmol L⁻¹ for both complexes and NaValp. Both complexes 1 and 2 did not significantly affect cell proliferation compared to NaValp (Fig. 4).

To investigate the effects of NaValp, complex 1 or 2 on tumor cell death, apoptosis was analyzed via annexin V assays. We found that complex 1 caused more apoptosis than complex 2 and NaValp (Fig. 5A, B and C). To observe if any of the compounds affected cell cycle dynamics, flow cytometry using 7-AAD dye was performed. A549 cells were treated for 24 h and then harvested and labeled. Complex 2 and valproate caused a reduction in cells in S phase compared to the DMSO, negative
Cancer is one of the leading causes of death in the developed world. Lung cancer especially cause high mortality rates and is prevalent worldwide [46]. Consequently, several studies have been conducted to characterize the anti-proliferative effects of various classes of compounds, ranging from naturally occurring molecules and their derivates to inorganic or coordination compounds. In this study, we described the cytotoxic effects of two zinc(II) complexes with sodium valproate, complexes 1 and 2, and found that they are more cytotoxic than NaValp alone in lung adenocarcinoma cell lines. Valproate is a histone deacytylase inhibitor and exhibits antitumor properties, which have been

Table 3

Cytotoxic activities (IC50) of NaValp, complexes 1 and 2.

<table>
<thead>
<tr>
<th>Cell line</th>
<th>IC50 (µmol L⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>A549</td>
<td>205.66</td>
</tr>
<tr>
<td>Vero</td>
<td>190.70</td>
</tr>
</tbody>
</table>

Table 4

Selectivity indices (SI) of NaValp, complexes 1 and 2.

<table>
<thead>
<tr>
<th>Cell line</th>
<th>SI (µmol L⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>A549</td>
<td>0.92</td>
</tr>
</tbody>
</table>
demonstrated in different tumor models and clinical trials [47,48]. In a phase II trial, valproate, when used in association with other drugs, provided clinical benefits for 12 of 15 patients (80%) with different tumor types, including lung cancer [49]. Adjunctive therapeutic use of valproate has already been tested in patients with cisplatin-resistant ovarian cancer and cervical cancer with recurrent metastasis in phase III trials, among other types of cancer in phase I/II trials [50]. A combination of magnesium valproate and hydralazine was also approved for use in cervical cancer in Mexico [51].

We demonstrated that complexes 1 and 2 cause a significant reduction in growth of human lung cells (A549) compared to NaValp, suggesting that the addition of Zn complexes improves the cytotoxic effects of valproate. However, complex 2 was more selective to tumor cells compared to complex 1.

The cytotoxic effects of NaValp (1 mmol L⁻¹) were previously evaluated in the lung cancer cell line A549, which resulted in a reduction in 20% of cell growth after 5 days of treatment [15]. In the present work, valproate did not reduce the viability of A549. However, we used a lower concentration of NaValp (250 µmol L⁻¹), which may explain the discordance in findings. In contrast, Hao 2017 observed a significant 20% increase in A549 cell death by apoptosis after applying 1 µmol L⁻¹ concentrations of valproate [52]. The differences between our data may be associated with the sensitivity of our detection methods since we found that 250 µmol L⁻¹ concentrations of valproate promote around 2% cell death. However, in agreement with our findings, Hao 2017 detected lower rates of A549 cells in S phase after valproate treatment. Gavrilov 2015 also described the reduction of cells in the pre-G1 phase of the cell cycle after treatment with 1000 µmol L⁻¹ valproate [15].

4. Conclusion

Although complex 2 reduced the viability of A549 cells and the cell cycle S phase, it did not induce apoptosis. As such, the mechanisms by which complexes 1 and 2 decrease the cell viability of this cell lineage are likely different. Complex 1 primarily caused cell death by inducing apoptosis. In contrast, complex 2 only regulated cell cycle, which may not be the only mechanism by which complex 2 caused reduced viability. This phenomenon can be attributed to the known cytotoxic effect of the bipy group present in complex 1, a DNA intercalating agent while complex 2 has Nic groups as n-donor moiety, a known biological compound with function and more tolerable to the cellular machinery.

In summary, our results demonstrated that complexes 1 and 2 are more effective than NaValp in reducing cellular growth of A459, highlighting the potential antitumoral activity of compounds derived from valproate-Zn²⁺ complexes.
Fig. 6. The effect of complexes 1 and 2 and valproate on cell cycle. A549 cells were treated and incubated for 24 h and dyed with 7-AAD. Cells were analyzed on a BD FACS Canto III. (A) Histograms of 7-AAD stained cells showing cell cycle phases. (B) Quantification of cell populations in G0/G1, G2/M and S phases.

CRediT authorship contribution statement

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

Thanks to UCS-Caxias do Sul, PUC Porto Alegre and La Salle University-Canoas. Especial thanks to CAPES for scholarships (Financial...
References

