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PULSAR: EM DIRECAO A UM FLUXO DE SINTESE PARA CIRCUITOS
QDI

RESUMO

Circuitos assincronos quase-insensiveis a atrasos ou QDI sdo conhecidos pela ro-
bustez a variacdes de PVT. Isso os torna bons candidatos para uso de técnicas de projeto
agressivas de reducao da tensao de alimentacédo. No entanto, a adogéo do projeto QDI em
escala industrial € dificultada: (i) pela dependéncia de ferramentas de projeto especializa-
das para circuitos QDI; (ii) pela falta de integragédo com fluxos de projeto ASIC tradicionais.
Esta Dissertacao propde Pulsar, um novo fluxo de sintese para o projeto QDI. Pulsar em-
prega ferramentas comerciais de automacao de projeto eletrénico (EDA) para capturar o
projeto, expandir descricoes para uso de cédigos insensiveis a atrasos, e realizar o mapea-
mento tecnoldgico e a otimizacao de circuitos QDI. Ferramentas EDA comerciais habilitam
projetistas a definir objetivos de desempenho e equilibrar caracteristicas de energia e area.
Esta Dissertacdo traz seis contribuicdes originais: (i) um fluxo pseudo-sincrono estendido,
gue agrega novos modelos de registradores; (ii) o fluxo SDDS-NCL sequencial, para lidar
com descri¢cdes de projeto genéricas (combinacionais e/ou sequenciais); (iii) 0 modelo rede
de canais meio-buffer ou HBCN, que viabiliza a andlise de temporizacéo de circuitos assin-
cronos QDI meio-buffer; (iv) uma formulacao de programacao linear para restringir projetos
a operar com um tempo de ciclo assincrono alvo. (v) uma técnica de captura de projeto
similar a RTL para circuitos sincronos e uma técnica associada para a expansao de descri-
cOes de circuitos para versées em trilha dupla; (vi) uma ferramenta de célculo automatizado
de restricoes de sintese para circuitos QDI. Experimentos mostram que Pulsar permite o
projeto de circuitos assincronos a partir de descri¢gdes similares a RTL sujeitas a restrigcbes
de tempos de ciclo. Pulsar permite designar tempos de ciclo alvo para circuitos QDI usando
ferramentas comerciais, o que constitui um avanco para projetistas QDI, que agora podem
vincular com seguranca métricas de desempenho de pior caso a projetos. Além disso, Pul-
sar permite que projetistas definam o desempenho para otimizacdo de energia ou de area,
capitalizando nas folgas dos orcamentos temporais do circuito.

Palavras-Chave: Circuitos assincronos, QDI, EDA, NCL, modelagem, sintese, projeto.






PULSAR: TOWARDS A SYNTHESIS FLOW FOR QDI CIRCUITS

ABSTRACT

Asynchronous quasi-delay-insensitive (QDI) circuits are known for their robustness
against PVT variations. This makes them good candidates for enabling aggressive voltage
scaling design techniques. However, the adoption of QDI design by industries is hindered
by: (i) the dependency on specialised design tools for QDI circuits; (ii) the lack of integration
with traditional ASIC design flows. This Dissertation presents Pulsar, a new synthesis flow
for QDI circuit design. Pulsar leverages commercial EDA tools for design capture, dual-rail
expansion, technology mapping and optimisation of QDI circuits. Commercial EDA tools
enable designers to define performance targets and naturally balance power and area op-
timisation. The Dissertation brings six main original contributions: (i) an extended pseudo-
synchronous flow, with new register models; (ii) a generalised SDDS-NCL flow to deal with
both combinational and sequential circuits; (iii) the proposition of half-buffer channel network
(HBCN), a new model for timing analysis of half-buffer asynchronous circuits; (iv) a linear
programming formulation to constrain a design to a target asynchronous cycle time. (v)
an RTL-like design capture technique and an associated dual-rail expansion technique; (vi)
a tool that automatically extracts the HBCN model of a circuit and computes its synthesis
constraints. Results show that Pulsar enables the design of asynchronous circuits from an
RTL-like description under cycle-time constraints. Pulsar enables the sign-off of target cycle
times for QDI circuits using commercial EDA tools. This is a breakthrough for QDI designers,
as they can now safely bound worst case performance metrics for applications. Moreover,
Pulsar enables designers to naturally trade performance for power or area optimisations,
whenever there is slack in timing budgets.

Keywords: Asynchronous circuits, QDI, EDA, NCL, modelling, synthesis, design.
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1. INTRODUCTION AND MOTIVATION

Advances in semiconductor fabrication technologies allow higher integration, but
impose design challenges. Some of the challenges faced in newer technologies are: (i)
higher sensitivity to process variations; (ii) higher static power; and (iii) longer wire delays.
Process variations are consequence of imperfections in the fabrication process and mani-
fest themselves as changes in some circuit electrical properties. Static power is the power
dissipated by the circuit when idle, that is, when no switching activity is taking place. Higher
static power can be attributed to higher leakage current, due to thinner oxide layers between
the transistor channel and the transistor gate. It is roughly proportional to the number of
transistors in the die, each providing a contribution to the overall leakage power. Larger wire
delays are attributable to smaller wire cross sections and relatively longer wire length, which
cause reduced wire current capacity, higher parasitic capacitance and (relatively) increased
effects of coupling with neighbour wires. Wire delays in recent technologies make it unfeasi-
ble to route global signals in large circuits without using buffers to “repeat” the signal during
its propagation.

They pose a challenge to synchronous circuits, as these employ a global “clock”
signal to provide a discrete time reference for synchronisation. The clock signal distribution
is assumed to be ideal, meaning that the clock arrives to all locations in the circuit (where it is
used) at nominally the same time. Meeting this clock distribution criteria requires a clock dis-
tribution network composed of buffers and other signal distribution components. This clock
distribution network can have a high cost in area and power. The power consumption asso-
ciated to the clock distribution can be a significant percentage of the overall power dissipated
by complex circuits. Taking 40% of the total power consumption is not unusual [DMMO04].
Also, as ideal clock distribution networks with no skew are difficult to achieve or even im-
possible to obtain, it becomes necessary to compensate the skew and uncertainties by
introducing margins in the clock period. This of course impacts overall circuit performance.

Modern designs mitigate these issues by dividing the circuit in clock domains and
using synchronisers to transfer signals between clock domain boundaries. The approach
only helps solving the problem locally. However, logic spread across a large area (e.g.
interconnects) still suffers from clock distribution problems. Furthermore, the use of multiple
clock domains can result in significant synchronisation overheads, as different clock domains
are possibly working at different clock phases and/or operating frequencies. A possible
solution is the overall elimination of global or semi-global clock signals. Digital circuits without
any global or semi-global clock signals are known as asynchronous circuits.
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1.1 Asynchronous Circuits as an Alternative

In asynchronous circuits the delay of individual pipeline stages is not constrained by
a global clock signal. The overall performance of the circuit is constrained only by the actual
delay of data processing in its pipelines. This creates opportunities to design innovative
pipeline architectures [NS15a, NS15b]. The elimination of the constraints imposed by clock
distribution allows the design of fine-grained pipelines. It also allows on-demand operation
analogous to very fine-grained clock gating without the associated clock gating costs.

There are two major classes of asynchronous circuits: (i) Bundled Data (BD) is a
class of asynchronous circuits where correct functionality depends on assumptions about
the propagation delay of individual pipeline stages; (ii) Quasi Delay Insensitive (QDI) is a
class of asynchronous circuits that use Delay Insensitive (DI) codes to better tolerate gate
and wire delays and their variations. Besides the advantages provided by clock elimination,
QDI circuits are naturally more resilient to delay variations.

A common source of delay variations are PVT variations, ageing and other chal-
lenges faced by recent sub-micron technologies. For example, intra-die process variation
causes the same gate in different parts of the circuit to present different switching delays,
what can possibly lead to faulty circuit behaviour and lower production yield. This problem
affects interconnect circuits more acutely, as they span over a large silicon area. QDI circuits
are thus excellent candidates to tolerate the conditions imposed by intrinsic intra-die process
variations. Circuits that use QDI interconnects between synchronous components can take
advantage of this aspect of QDI circuits. Furthermore, the mixed use of asynchronous cir-
cuits as interconnect for synchronous components solve some of the synchronisation prob-
lems between clock domains.

1.2 Challenges to QDI Adoption

The design of QDI circuits often relies on specialised infrastructures, which can
frequently hinder the adoption of QDI circuit design. This infrastructure often includes: (i)
specific gate libraries, containing e.g. C-Elements, NCL gates or PCHB logic cells; (ii) spe-
cific synthesis tools; and (iii) specific design capture languages.

QDI circuits normally require the use of gates with hysteretic behaviour to facilitate
or enable handshake synchronisation. A hysteretic gate holds the output stable until certain
criteria are met. These special gates, are not usually available in conventional cell libraries
designed for synchronous semi-custom ASIC flows.

Specialised tools like Uncle [RST12] and Balsa [EB02], both briefly covered in Sec-
tion 5.1, can be used to produce asynchronous circuits. However, these specialised tools
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do not integrate well with semi-custom ASIC flows. They also lack the power and flexibility
provided by commercial EDA tools.

Another challenge to design asynchronous circuits is guaranteeing some minimal
throughput operating point. This throughput is constrained by the maximum cycle time of
the circuit. However, on complex concurrent asynchronous systems cycle time is not trivial
to capture. Synchronous circuits typically rely on register transfer level (RTL) models, where
the maximum throughput is limited by a clock period. This not only makes design capture
simpler, but also eases the task of optimising a netlist, as every timing path has a same,
fixed maximum delay constraint, the clock period. In fact, synchronous RTL models drove
decades of development on commercial EDA tools, which provide strong means for design-
ers to explore power, performance and area optimisation in modern technologies. These
means are nonetheless very specific, and efforts to abandon the synchronous paradigm in
exchange for more powerful design techniques can easily make commercial tools not appli-
cable. Accordingly, the support for asynchronous design lags behind and, as technologies
get less predictable and wire dominated, there is a particular need for new solutions that al-
low asynchronous circuit optimisation after technology mapping and during physical design.

An alternative that allows the use of commercial EDA tools started to be explored by
works that proposed the WHCB pseudo-synchronous design flow [TBV12] and the SDDS-
NCL design flow [MTMC14, MNM*14, MBSC18]. These approaches demonstrated advan-
tages over specialised tools. They are further described respectively in Section 3.2 and in
Section 3.1.

1.3 Contributions of this Work

This dissertation presents Pulsar, an innovative synthesis flow for QDI circuits. Pul-
sar enables the design of asynchronous circuits from a RTL-alike description under cycle-
time constraints. Pulsar integrates the pseudo-synchronous and the SDDS-NCL design
flows to enable technology mapping and optimisation of sequential SDDS-NCL circuits with
commercial EDA tools. It proposes a timing model that enables the cycle time analysis
and constraining using standard STA tools. Pulsar also leverages EDA tools for the design
capture and dual-rail expansion of QDI circuits.

The Pulsar Flow enables the sign-off of target cycle times for QDI circuits using
commercial EDA tools. This is a major breakthrough for QDI designers, as they can now
safely bound worst case performance metrics for their target applications. Moreover the flow
enables designers to naturally trade performance for power or area optimisations, whenever
there is slack in timing budgets.

This work has six main original contributions:
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1. Extends the pseudo-synchronous design technique, introducing new registers models.

2. Generalises the SDDS-NCL flow to deal with both, combinational and sequential de-
signs.

3. Proposes the half-buffer channel network (HBCN), a new model for timing analysis of
half-buffer asynchronous circuits.

4. Devises linear programming formulations to constrain an asynchronous design to a
target cycle time.

5. Introduces an RTL-like design capture technique, associated dual-rail expansion and
synthesis flow that leverages commercial EDA tools.

6. Creates a tool that automatically extracts the HBCN model of a circuit and computes
synthesis constraints that meet a target cycle time.

Chapter 3 describes in some detail contributions 1 and 2. Contributions 3 and 4 are the
target of Chapter 4. The last two original contributions (Contributions 5 and 6) are explored
as part of the Pulsar flow description, in Chapter 5.
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2. BACKGROUND

This Chapter provides an introduction to some topics required to read this disserta-
tion. It also establishes some of the terminology used throughout the work. Sections 2.1 pro-
vide formal definitions for Petri nets and marked graphs used throughout this work, which are
the basis for the HBCN model proposed herein. Sections 2.2 and 2.3 provide an overview of
asynchronous circuits, especially QDI circuits. They also provide definitions for the RTO and
RTZ handshake protocols, extensively employed in this Dissertation. Finally, Section 2.4
provides and overview of Static Timing Analysis, a fundamental concept for dealing with
(asynchronous) cycle time constraints and their computation.

2.1 Graphs and Petri Nets

Most definitions used in this work rely on or derive from the fundamental concept
of graphs, or more specifically on directed graphs. Accordingly, a precise definition of this
concept is provided here, based on classical texts definitions such as the one provided by
Cormen et al. [CLRS09].

Definition 2.1.1 (Directed Graph) A directed graph (or digraph) G is a pair G = (V, E),
where V is a finite set and E is a binary relation on V. The set V is called the vertex set of
G, and its elements are called vertices (singular: vertex). The set E is called the edge set
of G, and its elements are called edges.

Given a vertex v € V of a graph G = (V, E), the subset of V with the form {w|w €
V A(w,v) € E} is called the preset of vertex v. Accordingly, given a vertex v € V of a graph
G = (V, E), the subset of V with the form {w|w € V A (v,w) € E} is called the postset of
vertex v.

Unless otherwise noted, in this work all references to graphs refer to directed
graphs and the word directed is omitted. Note that the previous definition includes describ-
ing the predecessor and successor vertex sets in graphs, a concept very important for more
elaborate structures used herein. Graphs are generic structures that can be specialised to
address more specific modelling needs. One such specialisation relevant here is that of
bipartite graphs.

Definition 2.1.2 (Bipartite Graph) A bipartite graph is a directed graph G = (V, E) where
the set V is in the union of two sets, V = W U X and where E is formed by edges having
exactly one element from W and one element from X, i.e. E C {(a,b)|((a € W) A (b €
X)) V((ae X)N(be W))}.
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2.1.1 Petri Nets

Often, the modelling of asynchronous circuits relies on Petri nets, whose static
structure can be captured by graphs. The next definitions formalise the general concept of
Petri nets and particularise it to more specific forms useful in asynchronous circuit modelling.

Note that a Petri net has a static structure, an initial marking and a marking evo-
lution behaviour, the two later ones encompassing the dynamics of the net. The definition
covers all parts of the concept, and is based on [Mur89].

Definition 2.1.3 (Petri Net (PN)) A Petri net is a 5-tuple PN = (P, T, F, W, My) where: P =
{p1, P2, ..., Pm} is a finite set of places, T = {t, b, ..., I} is a finite set of transitions, F C
(Px T)U(T x P) is a set of arcs, collectively called the Petri net flow relation, W : F — N*
is the weight function, and M, : P — N is the initial marking, with PN T =0 and PU T # ().
The Petri net structure is the 4-tuple N = (P, T, F, W) with no consideration of marking. A
Petri net with a given initial marking can be alternatively denoted by (N, My).

The behaviour of a Petri net relies on a set of rules that dictate how a marking or
state evolves into another state, according to the following set of firing rules:

1. A transition t is said to be enabled if each input place p of t is marked with at least
w(p, t) tokens, where w(p, t) is the weight of the arc from p to t;

2. An enabled transition may or may not fire, depending on whether or not the event
actually takes place;

3. A firing of an enabled transition t removes w(p, t) tokens from each input place p of t,
and adds w(t, p) tokens to each output place p of t, where w(t, p) is the weight of the
arc fromt to p.

A transition without any input place is called a source transition, and one without
any output place is called a sink transition. Note that a source transition is unconditionally
enabled, and that the firing of a sink transition consumes tokens, but does not produce any.

A pair of a place p and a transition t is called a self-loop if p is both an input and
output place of t. A Petri net is said to be pure if it has no self-loops. A Petri net is said to
be ordinary if all of its arc weights are 1.

It should be clear from the PN definition and from Definition 2.1.2 that the structure
N of a PN can be represented by a bipartite graph where the vertex set V of the graph is
the union of the set of places and of the set of transitions of the Petri net, i.e. V = PU T.
Because of this, it is common and practical to informally state that PNs are bipartite graphs,
ignoring the underlying marking and behaviour concepts. A big advantage of treating a PN
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as a graph is inheriting to PNs all graph concepts, e.g. vertex degrees, vertices (places or
transitions) presets and postsets, etc. Where precision is not compromised, this document
adopts this little abuse.

2.1.2  Petri Net Properties

A large set of behavioural properties derives from the definition of a PN; Techniques
to analyse PN instances for such properties abound in the literature. This Section explores
PN properties specifically relevant to this work. The interested reader can refer to [Mur89]
or to PN books such as [Rei13] for a more complete discussion of PN properties.

According to Murata [Mur89], there are two types of PN properties: those that
depend on the initial marking M,, called behavioural properties, and those independent
of My, called structural properties. This works addresses only some of the behavioural
properties.

A first important property is reachability. This is a fundamental property to study
the dynamic properties of any system described by PNs. Reachability relies on the PN’s
firing rules and on the initial marking M, of a PN. A marking M, is said to be reachable
from marking M, if there exists a sequence of firings that transforms M, into M,. A firing
or occurrence sequence is denoted by 0 = Moty Miti My ... t,M,,, or simply o = titil ... tp. In
this case, M, is reachable from My by o and we write Myo[c > M,. The set of all possible
markings reachable from M, in a PN (N, My) is denoted by R(N, M), or simply R(M,). The
set of all possible firing sequences from My in a PN (N, M) is denoted by L(N, M), or simply
L(My). The reachability problem for PNs is the problem of finding, for a given marking
M,, it M, € R(Mp) in a PN (N, Mp). Sometimes it is interesting to define the submarking
reachability problem, where instead of a PN marking M, attentions is restricted to M, a
marking limited to just some subset of places of P.

A second property worth defining here is boundedness, related to the maximum
amount of tokens a place of some PN holds. A PN (N, M) is said to be k-bounded or simply
bounded if the number of tokens in each place does not exceed a finite number k for any
marking reachable from My, i.e. M(p) < k for every place p and every marking M € R(Mo).
A PN (N, My) is said to be safe if it is 1-bounded. In (asynchronous) hardware design places
of a PN are often used to represent buffers and registers for storing intermediate data. By
verifying that the net is bounded or safe, it is guaranteed that there will be no overflows in
buffers or registers, no matter what firing sequence is taken.

A last property needed to define in this work is liveness, associated to concepts
in system design like absence of deadlocks. A PN (N, My) is said to be live (or equivalently
M, is said to be a live marking for N) if, no matter what marking has been reached from M,
it is possible to ultimately fire any transition of the PN by progressing through some firing
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sequence. This means that a live PN guarantees deadlock-free operation, no matter what
firing sequence is chosen.

2.1.3  Marked Graphs

Marked graphs constitute a limited class of PNs that allows modelling concurrency,
but not choice (to avoid e.g. non-determinism). This enables capturing the behaviour of
handshaking circuits. A timed marked graph can capture not only the inter-dependency and
concurrency in asynchronous circuits, but also the timing of certain events occurring within
the circuit.

As a type of Petri net, marked graphs are bipartite graphs. Informally, a marked
graph is a Petri net where each place has exactly one transition in its preset and exactly one
transition in its postset. Also, a marked graph is guaranteed to be a safe Petri net, meaning
that places can hold at most one token at any moment in time. These characteristics enable
deriving a simple definition for a marked graph.

Definition 2.1.4 (Marked Graph) A marked graph is a 3-tuple MG = (T, P, My), where T is
the set of transitions, P C {(u, V) : u,v € T} is the set of edges connecting transitions, and
Mo, C P is the subset of edges initially marked (the initial marking). The marking M; C P
corresponds to the the subset of places holding tokens at some given instant i € N. Of
course, i = 0 corresponds to the initial state of MG, where the initial marking My in in place.
M; represents the state of MG at instant |.

Compared to a regular PN, MGs suppress the representation of places but marks
still occupy their position, between transitions. In a marked graph, token movements (i.e.
state changes) obey a deterministic causality relation formally defined, in this work called
token flow.

Definition 2.1.5 (Token Flow) Let M; be the marking of a marked graph MG at instanti € N.
Let ot = {(u,v) € P|v = t} be the preset of transition t and let te = {(u, v) € P|u = t} be the
postset of transition t.

Then, itis true that3t ¢ T : ot CM; = 3dne N, : te C My, N ot £ M;,,. This
means that if all elements in the preset of a transition (et) are marked, there is a moment in
the future (i + n) where all elements in the postset of that transition (te) will be marked and
its preset ot will be unmarked.

Transitions control the flow of tokens in a network through the firing process. As
defined for any PN (MGs obviously included), when a transition fires, it removes tokens from
all places in its preset and deposits tokens to all places in its postset. Said otherwise, when a
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transition fires it simultaneously marks its postset and unmarks its preset. An MG transition
can only fire after all edges in its preset are marked. Further limitations can be imposed as
to when a transition is allowed to fire (including time counting and other conditions).

An useful extension of the MG concept is adding labels to account for time in either
places and/or transitions, giving rise to the timed marked graphs or TMGs. The former is
relevant to this work and is accordingly precisely defined.

Definition 2.1.6 (Place-Delayed Marked Graph) Given a marked graph MG, it is possible
to define a place-delayed marked graph as a 3-tuple PDMG = (T, P, My), where T and My
are defined as in the corresponding MG and P C {(u, v,d)|u,v € T,d € R+}. The edges, as
in an MG, connect transition u to transition v, with a label d, representing the delay assigned
to each edge.

A token flowing into a PDMG edge (u, v, d) experiences a delay d before enabling
the firing of a transition. That is, once receiving a token, an edge (u, v, d) must remain
marked at least for the duration d before the token is removed. As in any PN, a transition can
only fire in a PDMG after all its predecessor edges are holding tokens. When a transition fires
it removes the tokens from its predecessor edges and deposits tokens in all of its succeeding
edges.

2.2 Handshake Protocols

Handshake protocols are characterised by two distinct steps: (i) request, when a
transmitter announces data availability; (ii) data acknowledgement, when a receiver ac-
knowledges data reception, allowing the transmission of new data. The implementation of
these steps depends on a series of choices for specific actions on control signals. Figure 2.1
displays two possible handshake protocols performing complete handshake cycles.

(a) 2-phase handshake protocol. (b) 4-phase handshake protocol.

Figure 2.1: Examples of handshake protocols: (a) 2-phase; (b) 4-phase.

Figure 2.1a presents a 2-phase, also known as edge-sensitive handshake proto-
col. In this protocol data availability and acknowledgement are determined by transitions
("edges") in control signals. It implements the request and acknowledgement steps in a cy-
cle with 2 phases: (i) Data are placed in the data lines and, at the same time or immediately
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afterwards a transition occurs on the req, announcing data availability; (ii) The transition of
the req line triggers the consumer to capture the data, later acknowledging reception by
transitioning the ack line.

Figure 2.1b presents an instance of a 4-phase, also known as level-sensitive, hand-
shake protocol. In this protocol data availability and acknowledgement are indicated by logic
levels in control signals. Handshakes take place in a cycle with two parts: (i) evaluation,
when handshake signals are asserted; and (ii) reset, when the signals return to their inac-
tive state before the next evaluation part starts. This results in data-exchange cycle with 4
phases: (i) data is placed in the data lines and, at the same time or immediately afterwards,
the req line is raised to announce data availability; (ii) the consumer acknowledges the data
arrival by raising the ack line; (iii) after recognising the rise of the ack signal, the producer
resets the req signal; (iv) the consumer recognises the fall of the req signal by lowering the
ack signal, thus completing the protocol reset stage and allowing a new transmission to take
place.

The use of dedicated request/acknowledge signals separate from the data lines
characterises what is traditionally called Bundled Data (BD) design style. The BD style
allows simpler data path implementations, at the expense of timing constraints complexity.
Since combinational logic transforming data must be transparent to the local handshake
protocol [SFO1], the request line must arrive to the consumer only after all computations on
channel data is concluded, otherwise the consumer sequential barrier may capture incorrect
data.

This poses a design challenge, as the request line may be required to be delayed
with regard to data availability, to guarantee correct synchronisation. Such synchronisation is
often achieved in the BD design style using delay-lines that match the delay of combinational
logic in the data lines to the req logic generation circuit.

As an alternative, the request line can be encoded within the data itself, using
some delay-insensitive encoding for data. This approach reduces the complexity of timing
constraints and provides a more robust circuit implementation, at the cost of additional area.
The next Section further explores this class of circuits, which will be the main target of this
work.

2.3 Quasi-Delay-Insensitive Design

Synchronous design relies on the assumption that the value on the inputs of all its
registers will only be sampled at the rising (and/or falling) edge of the clock signal. This
assumption enables designers to define timing constraints for the maximum delay in logic
paths, which must always be lower than the clock period. This allows ignoring gate and wire
delays, as long as constraints are respected. In other words, combinational logic is allowed
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to switch as it computes data during, say, the interval between two consecutive rising clock
edges, but it must be stable and correct at each such edge. Having such a simple model for
circuit design is possible only because the clock is a periodic signal, i.e. its edges only occur
at specific and known points in time. Hence, in synchronous circuits, events will only take
place at specific moments; time can thus be treated as a discrete variable.

However, in asynchronous circuits there is no such thing as a single clock to sig-
nal data validity on the inputs of all registers. In these, events can happen at any mo-
ment, and time must be regarded as a continuous variable. Thus, asynchronous designers
rely on local handshake protocols for communication and synchronisation, and on different
design templates to build circuits, each with its own specific assumptions about gate and
wire delays [BOF10]. These templates can be classified in two main families: bundled-data
(BD) [Sut89] and QDI [MNO6]. The design of a BD circuit is similar to a synchronous one, the
difference is that BD relies on carefully designed delay elements for matching the timing of
logic paths and controlling registers, rather than having a clock signal. Communication and
synchronisation are accomplished through handshake protocols. QDI, on the other hand,
uses special data codes that allow data to carry their own validity information, enabling
receivers to compute the presence or absence of data at inputs/outputs, and rendering pos-
sible the local exchange of information. Because of this characteristic QDI circuits can adapt
more gracefully to wire and gate delay variations.

QDI design relies on delay-insensitive (DI) codes [Ver88], which include codewords
for valid data, and a special codeword representing the absence of data. The latter codeword
is usually called a spacer. Figure 2.2 shows a basic transition diagram for transmitting data
on a 1-bit QDI channel. Assume transmission always starts with a spacer (S). A transition
from the S codeword to 1 (0) characterises the transmission of a valid 1 (0) and a transition
from 1 (0) to S characterises the removal of data. Thus, there is always a spacer between
any pair of consecutive data values.

No Data Valid 1

~~~~~~~~~~~~~~~

~~~~~~~
~~~~~~~
- <) <)

- -

\\\\\\\\
,,,,,,,,
~~~~~~~~~~~~

Valid 0 No Data

Figure 2.2: The basic transition diagram for transmitting binary data in a QDI channel, where
S stands for the spacer. Adapted from [MBSC18].

In circuit design, often used examples of DI codes are the k-of-n codes, where n
is the number of wires used to represent data (or its absence) and k is the number of wires
that must be at a given logic value for the codeword to represent valid data. Note that an
acknowledge signal is typically required to control the injection of spacers and valid data
in a QDI channel. Albeit different codes are available in the contemporary literature (see
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e.g. [Ver88]), according to Martin and Nystrom [MNO6], the most practical class of DI codes
is the 1-of-n (or one-hot), and more specifically the 1-0f-2 code. The latter is the basis to
form codes to represent any n-bit information using two wires to denote each of the n bits,
producing the so-called dual-rail code. Besides data encoding QDI design usually implies
a choice of either a 2-phase or a 4-phase communication protocol [MNO6]. The majority of
QDI designs available in the state-of-the-art, from networks-on-chip [BCV*05, PMMC10], to
general purpose processors [MNWO03], and network switches [DLD*14] primarily rely on a 4-
phase protocol and dual-rail or 1-of-4 codes. This work focus attention on 4-phase, dual-rail
QDI design.

In a 4-phase dual-rail DI channel D, a single bit datum is represented using two
signals, D.7 and D.0 that carry the datum value, and one signal ack to control data flow.
For the data portion of a channel, as Figure 2.3a depicts, a spacer is classically encoded
as a codeword with all signals at 0. Valid data are encoded using exactly one signal at 1,
D.1=1 for a logic 1 and D.0=1 for a logic 0. In this case, both signals at 1 is a codeword that
does not correspond to any valid datum and is not used. Figure 2.3b shows an example
of data transmission using this convention to demonstrate the control flow allowed by the
ack signal combined to codewords represented in signals D.7 and D.0. In this example a
sender provides dual-rail data in D.7 and D.0 to a receiver that acknowledges received data
through ack. Communication starts with a spacer, all signals at 0. Note that the ack signal
also starts at 0, as the receiving side is ready to receive new data. Next, the sender puts
a valid 0 bit in the channel, by raising the logic value of D.0, which is acknowledged by the
receiver raising the ack signal. After the sender receives ack, it produces a spacer to end
communication, bringing all data signals in the channel back to 0. The receiver then lowers
its ack signal, after which another communication can take place. Due to its nature, which
requires all signals to go to 0 before each data transmission, this 4-phase protocol is also
known as return-to-zero (RTZ).

Codeword ‘ d.0 d.1 ack m

Spacer 0 0 data nuIIX false X null X true X null
False 1 0 dao [\
True 0o 1 iy e

(a) Data encoding.
(b) Example of a data transmission waveform.

Figure 2.3: RTZ dual-rail channel operation: (a) encoding; (b) example waveforms. Adapted
from [MBSC18].

Another 4-phase protocol for dual-rail QDI design is the return-to-one (RTO) proto-
col [MGC12]. RTO employs the same amount of valid codewords as an equivalent RTZ, but
its data values are inverted compared to the latter. As Figure 2.4a shows, a spacer here is
the codeword with all signals at 1 and valid data is represented by one signal at 0, D.7=0 for
a logic 1 and D.0=0 for a logic 0. Figure 2.4b depicts an example RTO data transmission,
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which starts with all signals at 1 in the data channel. As soon as the sender puts valid data
in the channel, the receiver may acknowledge it by lowering ack. Next, all data signals must
return to 1 to denote a spacer, ending transmission. When the spacer is detected by the
receiver, it raises the ack signal and new data can follow. The idea behind the RTO protocol
is simple but powerful and allows a better design space exploration for QDI circuits, enabling
optimisations in power [MGC12] and robustness [MGHC14]. Furthermore, as demonstrated
in [MPC14], RTZ and RTO can be mixed in a same QDI design and the conversion of val-
ues between them requires only an inverter per wire. According to Martin and Nystrém, in
[MNO6], such conversion is DI and does not compromise the robust functionality of a QDI
circuit. This article refers to signals operating under the RTZ (RTO) protocol as RTZ (RTO)
signals.

Codeword | d.0 d.1 O W A

Spacer 1 1 data null X false X nul X true X  null
False o 1 do \___ /
True 1 0 iy Y e

(b) Example of a data transmission waveform.

(a) Data encoding.

Figure 2.4: RTO dual-rail channel operation: (a) encoding; (b) example waveforms. Adapted
from [MBSC18].

24 Static Timing Analysis

Timing analysis is an important step in digital circuit design, since establishing the
circuit performance under certain operating conditions is often one of the main project re-
quirements. Historically timing is analysed using electrical simulation, this is called Dynamic
Timing Analysis (DTA). It relies on stimulating every possible path of electrical-level model
of the circuit being tested and measuring the time elapsed until a stable output is given.
However, this type of analysis is computationally expensive and relies on a good source of
stimuli to cover every possible path.

Alternatively, Static Timing Analysis (STA) provides a cheaper alternative to analysing
the timing of the circuit globally through simulation. It relies on delay models of small com-
ponents of the circuit, e.g. logic gates. These delays models are used to estimate the delay
of every possible timing path in the circuit. This avoids the coverage problem and is less
computational intensive, allowing the use of STA on much larger circuits.

The delay models of components are created using electrical simulation in a pro-

cess called characterisation. A delay model of a component captures characteristics of arcs.
An arc is a timing path internal to a component, it captures how changes in a input affects
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the circuit. There are three types of arcs: (i) hidden arcs, where a change in input does
not affect any output; (ii) transition arcs, where a change in input causes a transition in the
output; and (iii) constraint arcs, which are limitations of when an input can change. As an
example, the propagation arcs of an OR gate are shown in Figure 2.5a. Each dashed line
represent two propagation arcs, one for the rise and another for the fall of the output Z.

A possible model is the non-linear delay model (NLDM), which is composed of
tables that capture characteristics for each arc based on the input slew and output capac-
itance. Some characteristics captured by the NLDM tables are: (i) slew rate, the time an
output takes to finish transitioning once it starts; (ii) propagation delay, the time a transition
in an input propagates to the output ; (iii) power consumption, the energy consumed by a
transition in the arc. The delay model of a component also captures the capacitance of pins.

The timing paths are acyclic with well defined start and end points. A timing path
is composed by a chain of arcs. Transitions propagate in these paths thru arcs, due to
this characteristic a timing path is also called a propagation path throughout this work.
Figure 2.5b shows a circuit implementing a XOR gate using two inverters and three NAND
gates. The timing arc relating the fall of the output Z when the input A rises is highlighted. A
rise transition in A activates an arc of g0 which produce a fall transition in its output, in turn
this transition activates an arc of "g2" that causes a rise in its output, which finally activate
an arc of g4 that cause a fall transition in the primary output Z.

A
Z
B
(a) Timing arcs internal to an

OR gate.
(b) Timing path of a multi-gate XOR circuit.

Figure 2.5: Timing models used by the STA engine: (a) gate timing arcs; (b) timing paths.

From the information contained in the delay model, it is possible to analyse the
timing paths of circuits. The STA engine computes the delay of the timing paths with the
following sequence of steps: First the capacitance of each net is computed based on the
components connected to it, the capacitance of primary outputs are provided as a param-
eter. The STA engine then creates an acyclic directed graph containing all possible timing
paths in the circuit from the circuit netlist and propagation arcs. For each arc in the graph,
the STA engine uses the slew information in the delay model to compute the slew rate of
every possible transition, the slew of the primary inputs are provided as a parameter. Once
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the capacitance and slew rate are computed, the STA engine is able to use the propagation
arcs of the delay models to compute the time each transition occurs in the timing path.

On synchronous sequential circuits, the timing paths are bounded by clock events.
The start point of each path is either a primary input or the output of a clocked sequential
element. Also, the end point is either an primary output or the input of a clocked sequential
element.

The clock provides a periodic time reference which can be used to compute the
timing of the circuit. Primary inputs are assumed to be synchronous to clock events and
sequential elements produce new values on clock events. This implies that a clock event
triggers a sequence of transitions in propagation paths. The time between the first and the
last transition in the propagation path is called its propagation delay of that path.

A more comprehensive background on STA lays beyond the scope of this Disser-

tation. The interested reader may consult works like that of Harris “Skew-Tolerant Circuit
Design” [Har01].
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3. THE PSEUDO-SYNCHRONOUS SDDS-NCL DESIGN TEMPLATE

The timing of propagation paths in a digital circuit can be computed using STA.
Commercial EDA tools attempt to find and optimal solution that respects the timing budget
while balancing power and area consumption. Also, during physical implementation, STA
enables an optimal placement of gates in the layout, guaranteeing that wire delays do not
compromise the circuit functionality. On synchronous flop-based circuits, the clock period
bounds the delay of propagation paths between two registers. The last transition in each
path must occur a certain time prior to the clock edge for the circuit to work correctly.

The pseudo-synchronous flow enables us to define a pseudo-clock period, analo-
gous to a clock period of a synchronous flop-based circuit. This pseudo-clock can then be
used to constrain the delay of propagation paths between two registers. The SDDS-NCL
design template leverages standard EDA to synthesise and optimise combinational QDI cir-
cuits. This Chapter introduces the Pseudo-Synchronous SDDS-NCL, a QDI template that
combines and extends both SDDC-NCL and the Pseudo-Synchronous flows. This enables
the synthesis and optimisation of sequential asynchronous circuits with constrained propa-
gation paths using commercial EDA tools.

3.1 The SDDS-NCL Asynchronous Desigh Template (Related Work)

NCL is an asynchronous design template to construct QDI circuits — Nowick and
Singh present a good summary of this and other templates in [NS15a, NS15b]. Fant and
Brandt proposed NCL in [FB96], targeting RTZ 1-of-n schemes. It was the technology used
for industrial designs produced by Theseus Logic in the late 90s. Since then, NCL has
been explored by different research groups and employed for different applications, typically
focusing on low power and robust design [JSL*10, CCGC10, SCH*11, ZSD10, GLY10]. NCL
assumes a semi-custom design method, and relies on a basic set of components designed
at the cell level, called NCL gates. As Fant and Brandt discuss in [FB96], these gates
allow the construction of logic blocks that ensure the completeness of input criterion, which
enforces that a logic block only produces a spacer (valid data) in its outputs when all its inputs
have a spacer (valid data). The authors state that this is the key to ensure DI operation.

NCL gates are often called threshold gates, but this is imprecise, because they do
not exactly implement threshold logic functions (TLFs) as defined, e.g. in [Hur69]. Rather,
these gates implement modifications of such TLFs coupled to specific mechanisms to ensure
the completeness of input criterion [FB96]. Before defining TLFs, a useful concept is that of
unate functions [BSVMH84], as all TLFs are unate [Hur69]:
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Definition 3.1.1 A Boolean function f(xy, X, ..., X,) is said to be positive unate inx; (1 < i <
n), itNx;, i #j, f(X1, ..., Xi—1,1,..., Xn) > f(X1, ..., Xi—1,0, ..., Xn). Similarly, f is called negative
unate in x; ifvx;, i #j, f(x1, ..., Xi-1,0,..., Xp) > f(X1,..., Xi—1, 1, Xps1, ..., Xn). If @ function is
neither positive unate nor negative unate in x;, it is said to be binate in x;. Moreover, if a
function is positive or negative unate in all its variables it is called a unate function. A unate
function that is positive (negative) unate in all its variables is called a positive (hegative)
unate function. Also, this dissertation calls positive (negative) unate gates those that
implement positive (negative) unate functions.

Definition 3.1.2 An n-variable threshold logic function (TLF) r is an n-variable unate
function defined by a threshold value T € N* and weights w; € N* assigned to each
of its variables x; such that:

=0 (3.1)

1
0, wix; < T
i=0
Hurst [Hur69] defines threshold gates with the threshold and weights being real
numbers. This work restricts attention to non-zero, natural threshold and weights. TLFs can
be either negative or positive unate in a given input — but not binate. However, to ensure the
completeness of input criterion, NCL gates must be positive unate in all their inputs, as they
target RTZ templates, where data validity is given by wires at 1. The OFF-set of a logic gate
is the set of input patterns that force its output to 0. Analogously, the ON-set is the set of
input patterns that force the output of a logic gate to 1. Because the spacer corresponds to

all wires at 0, the OFF-set of an NCL gate includes just the condition where all inputs are 0.

As Fant and Brandt discuss in [FB96], while a QDI logic block is transitioning be-
tween a spacer and valid data, output values of the block should be either a spacer or valid
data. Therefore, NCL gates must also account for situations where an input combination is
neither in the ON-set nor in the OFF-set. In these no gate output should transition. This
leads to the definition of the correct behaviour for NCL gates.

Definition 3.1.3 An n-input NCL gate is a logic gate with a threshold value T € N*, a weight
w; € N* assigned to each variable x; (i =1, ..., n), and a hysteresis mechanism such that the
gate output Q at each instant of time t is given by:

n
1, Yowixp>T
i=1
n
Q =<0, > x;=0 (3.2)
i=1
n
01_1, O<ZW/X,’< T
\ i=1

Figure 3.1a shows a generic NCL gate symbol, where n is the number of inputs of
the gate and T is the threshold of the TLF it implements, for which each input has a weight
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w;. If a weight w; is omitted, w; = 1 is assumed. Weights come after the W specifier. As an
example, Figure 3.1b shows the symbol of a 3-input NCL gate with threshold 3 and weights
2, 1 and 1 (in the order from the topmost input down). Figure 3.1c shows the truth table for
this latter example, computed from Equation (3.2). Accordingly, the output of the gate only
switches to 0 when all inputs are at 0. Also, because x; has weight 2, x, and x; have weight
1 and the threshold is 3, the gate only switches to 1 when x; is at 1 and at least one of the
other inputs is at 1. In all other cases the output remains unchanged.

Xo

Xo Xy Xo| Q
0O O O 0
0 0 1 |Quq
0 1 0 |Qq
(a) NCL gate, generic. 0 1 1 | Qg
Xo 1 0 0 |Qq
1 0 1 1
Xi Q 1 1 0] 1
X2 1 1 1 1

(c) 3W211 gate truth table.
(b) Specific NCL gate.

Figure 3.1: Characteristics of NCL gates: (a) generic symbol; (a) generic symbol; (b) specific
symbol example; (c) example truth table behaviour.

It is possible to build classic Boolean logic blocks with NCL gates, as Figure 3.2
illustrates. This schematic shows a generate path circuit fragment for an RTZ dual-rail
Kogge-Stone adder, taken from [MTMC14]. Note that this circuit only generates a spacer
output when all dual-rail inputs (G, P;, Gp) have spacers. Recalling Figure 3.1, the output of
an NCL gate only goes to 0 when all its inputs are at 0, which means that gates G0-G3 in
Figure 3.2 only write a 0 in their outputs when all primary inputs have spacers. Also note
that the outputs become valid data only when all inputs display valid data. Accordingly, n0 is
1 only if P; and G, are valid 1s (i.e. P.1 =1 and G,.1 = 1) and n1 is 1 only if P; has a valid
0 and G, has avalid 1, P; has a valid 1 and G, has a valid 0, or both P; and G, have a valid
0. In this way, n0 and n1 are valid only if the primary inputs P; and G, are valid. Similarly,
gates G2 and G3, which generate the outputs of the logic block, have their inputs connected
to n0, n1 and primary input G;, and these gates only generate valid data when their inputs
are valid.

Even though the classic definition of an NCL gate relies on TLFs for their ON-set,
different works (e.g. [JN08, RST12]) report the usage of non-TLF positive unate functions.
This work also considers such functions, but as exceptions to the definition. Since these do
not agree with the given NCL gate definition, they are called hysteretic functions. Hysteretic
functions can be described using three minterm sets: (i) the ON-set contain all minterms that
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Figure 3.2: Example of an NCL implementation: the generate path of part of a Kogge-Stone
adder. Adapted from [MTMC14].

force the output high; (ii) the OFF-set contains all minterms that force the output low;and (iii)
the HOLD-set contain all minterms that hold the current output value.

NCL supports the design of RTZ QDI circuits and, to meet the requirements of as-
sociated templates, NCL gates are typically restricted to implement only positive unate func-
tions. This limits the potential logic optimisations on NCL circuits and complicates achieving
compatibility with conventional EDA tools. However, the introduction of RTO [MGC12] and
the NCL+ gates described in [MOPC13] change this situation. NCL+ gates are similar to
NCL gates, but, because they target RTO templates, they need to synchronise spacers
encoded by all wires at 1 and compute valid data signalled by logic 0s, as Section 2.3 de-
scribed. The definition of an NCL+ gate is straightforward.

Definition 3.1.4 An n-input NCL+ gate is a logic gate with a threshold value T € N*, specific
weights w; € N* assigned to each variable x; (i = 1, ..., n), and a hysteresis mechanism such
that the gate output Q at each instant of time t is given by:

( n
1, X =0
i=1
n
Q =10, Swixi>T (3.3)
i=1
n
01_1, 0<ZW/7,‘<T
i=1

The symbol of an NCL+ gate is similar to that of an NCL gate, but with a + sign on
its top right corner, as Figure 3.3a shows. Figure 3.3b shows an example of an NCL+ gate
with 3 inputs, threshold 3 and weights 2, 1 and 1. The truth table of this gate appears in
Figure 3.3c. As its truth table shows, this gate output only switches to 1 when all inputs are
at 1. Also, its output only switches to 0 when x;, which has a weight of 2, and at least one of



43

the other inputs, both with weight 1, are at 0. For all other combinations of inputs, the gate
keeps its output value. In these cases, the output only switches to 1 (0) when all inputs are
at1 (0).

Xo Xi Xo| Q
0O 0 O 0
O 0 1 0
0 1 0 0
(a) NCL+ gate, generic. 0 1 1 |Quq
Xo + 1 0 0 sz1
1 0 1 | Quy
Xi Q 1 1 0| Q.
Xa 1 1 1 1

(c) 3W211 gate truth table.
(b) Specific NCL+ gate.

Figure 3.3: Characteristics of NCL+ gates: (a) generic symbol; (a) generic symbol; (b)
specific symbol example; (c) example truth table behaviour.

As in NCL, NCL+ gates are also useful to build logic blocks. For instance, Fig-
ure 3.4 shows the NCL+ version of the same generate path of the Kogge-Stone adder from
Figure 3.2. The circuit topology is exactly the same as that of the NCL version. In fact,
the gate characteristics are the same. The only difference is that NCL+ gates replace NCL
gates with the same number of inputs, thresholds and weights. Hence, all internal nodes
and primary inputs and outputs follow the RTO protocol, instead of RTZ.

| G2
Gi.1 —._< 4+ o 1
Gi0 3W2211
GO N—

Pi.1 ® + a3

Gp.1 o Go.0
Gp.0 G1

3w2211+ —

Figure 3.4: Example of an NCL+ implementation: the generate path of part of a Kogge-Stone
adder. Adapted from [MTMC14].

The advent of NCL+ created the possibility of mixing NCL and NCL+ in a single cir-
cuit, because RTO protocol signals can be translated to RTZ protocol signals and vice-versa
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[MPC14]. Recalling Section 2.3, the conversion of a signal from RTO to RTZ, or the other
way around, only requires inverters, each of which implements a negative unate function.
Thus, as discussed in [MTMC14], the mix of NCL and NCL+ enables the use of negative
unate functions, which allows further optimisation opportunities and expands the design
space of QDI circuits. For each positive unate NCL (NCL+) gate, a negative unate gate can
be defined, where the latter has its OFF-SET defined as the ON-SET of the former. To differ-
entiate negative unate gates from positive unate ones from Definitions 3.1.3 and 3.1.4, these
are named Inverted NCL and NCL+ gates (or INCL and INCL+, respectively) and defined
accordingly.

Definition 3.1.5 An n-input INCL gate is a logic gate with a threshold value T € N*, specific
weights w; € N* (i =1, ..., n), assigned to each variable x; and a hysteresis mechanism such
that the gate output Q at each instant of time t is given by:

( n
1 , Z Xi = 0
i=1
n
Q =10, dwixp > T (3.4)
i=1
n
Qt_1, 0<ZW;X;< T
\ i=1

Definition 3.1.6 An n-input INCL+ gate is a logic gate with a threshold value T € N*, spe-
cific weights w; € N* (i =1, ..., n), assigned to each variable x; and a hysteresis mechanism
such that the gate output Q at each instant of time t is given by:

( n
1, Yowixi>T
i=1
n
Q=10 S X =0 (3.5)
i=1
Qt_1, 0<ZW/7,‘<T
\ i=1

From a functional point of view, the only difference between an NCL (NCL+) and an
INCL (INCL+) gate is that their ON- and OFF-sets are swapped. However, they all still rely on
a hysteresis behaviour to ensure the respect of QDI properties. To produce INCL/INCL+ gate
symbols, a bubble is added to the output of the respective non-inverted gate symbol. Using
inverted gates it is possible to convert signals from RTZ to RTO, and vice versa. Because
each time an inverted gate is used the protocol changes (including the codeword to rep-
resenting spacers), circuits using (I)NCL and (I)NCL+ gates are called spatially distributed
dual spacer NCL (or SDDS-NCL) [MTMC14].

Figure 3.5 shows an example of SDDS-NCL circuit equivalent to the ones in Fig-
ures 3.2 and 3.4. As the figure shows, when the circuit inputs present spacers, it issues a
spacer in its output. In this figure, all INCL gates have 1 in their outputs, which means that
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the INCL+ gates have 1 in all their inputs and a 0 in their outputs. In other words, all first
level wires (in blue) will be at 0 and all second level wires (in red) will be at 1. From this state,
whenever the inputs become valid dual-rail data, exactly two of the INCL gates fire, setting
their outputs to 0, which causes exactly one of the INCL+ gates to fire, setting its output to
1.

The two inverters G4 and G5 (1W1 gates) are required to ensure that all the inputs
of gates G2 and G3 are in the same domain (RTO). Also, because there are only two levels
of logic and all gates are negative unate, the inputs and outputs of this circuit must be RTZ.
If the output was expected to be RTO, inverters should be added after gates G2 and G3, or
these gates could be mapped to NCL+ ones. In fact, different combinations of NCL, INCL,
NCL+ and INCL+ gates can be explored, depending on the requirements for the circuit input
and output channels.

G4
Gi.1 1W 1 n2
G2
GS ~ \¢ Go.1
GiO Wi n3 3W2211 0.
\
Pil __o n0 63
Pi.O
<2w11 + o0
Gp.1 O GO O .
Gp.0
3W2211 ni
G1

Figure 3.5: Example of an SDDS-NCL circuit: the generate path for a Kogge-Stone adder.
Adapted from [MTMC14].

Having available negative and positive unate cells to compose circuits enables the
use of commercial tools to perform logic and physical synthesis steps. These tools allow
exploring new automation degrees in technology mapping and further logic optimisations.
However, conventional CAD tools cannot explicitly handle NCL and NCL+ gates, as these
present the hysteresis behaviour, which cannot be naturally handled by such tools. To over-
come this problem and leverage the optimisation and automation degrees allowed by EDA
tools, [MBSC18] proposes a design flow for circuits based on the SDDS-NCL template. The
flow presented by Moreira et al. supports logic blocks only, requiring the designer to split
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sequential from combinational blocks and synthesise the latter in isolation. This Chapter
later further extends the SDDS-NCL and the pseudo-synchronous [TBV12] design flows to
support the fully automated synthesis of both combinational and sequential blocks.

The SDDS-NCL design flow comprises two steps: logic and physical synthesis.
Both are based in the usage of virtual libraries, a concept similar to that of image libraries
proposed for the Proteus asynchronous design flow [BDL11]. The virtual library (VL) concept
builds upon the definition of virtual function (VF), presented herein.

Definition 3.1.7 A virtual function (VF) is an n-input Boolean function associated with an
n-input NCL, NCL+, INCL or INCL+ gate, called its support gate. The truth table of a virtual
function f is defined as follows:

1. if the support gate of f is an NCL gate 0, the ON-set of f is the same as the ON-set of
6. The OFF-set of f comprises all other n-input patterns;

2. if the support gate of f is an NCL+ gate ¢, the OFF-set of f is the same as the OFF-set
of ¢. The ON-set of f comprises all other n-input patterns;

3. ifthe support gate of f is an INCL gate 1, the OFF-set of f is the same as the OFF-set
of . The ON-set of f comprises all other n-input patterns;

4. if the support gate of f is an INCL+ gate v, the ON-set of f is the same as the ON-set
of v. The OFF-set of f comprises all other n-input patterns.

If the support gate of f is of types NCL or NCL+, f is a positive VF. Otherwise, f is a negative
VF.

Note that each VF always has exactly one NCL and one NCL+ support gates or
one INCL and one INCL+ support gates. Reference [MNM*14] provides the detailed de-
scription of a method to compute the support gates for VFs. As another consequence of
Definition 3.1.7, all positive VFs are positive unate functions, but not all positive unate func-
tions are positive VFs. Furthermore, all negative VFs are negative unate functions, but not
all negative unate functions are negative VFs. Hence, all VFs are unate functions, but not
all unate functions are VFs. As an example, consider the 3-input NCL gate 3W211 depicted
in Figure 3.1. The reader can verify that the virtual function f; for this gate can be expressed
by f; = Xo.(X1 + X2). Another example is the 3-input NCL+ gate 3W211 depicted in Figure 3.3
has a virtual function £, expressible by £ = Xy + x1.x2. As expected and can be verified, these
VFs are positive unate.

Definition 3.1.8 A virtual library (VL) is a library of cells such that their functions are mod-
elled exclusively using VFs. In this way, it is guaranteed that synthesis tools will be able to
handle a VL, as all VFs are unate functions. Two types of VLs exist, NCL VLs and NCL+
Vis.
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1. AnNCL VL is a VL composed exclusively by NCL and INCL gates modelled using VFs.

2. AnNCL+ VL is a VL composed exclusively by NCL+ and INCL+ gates modelled using
VFs.

3.2 Pseudo-Synchronous Weak-Conditioned Half Buffer (Related Work)

Weak-Conditioned Half Buffer or WCHB is a classical asynchronous QDI template
used to build sequential asynchronous circuits [BOF10]. It assumes the use of a DI code
(often, the dual-rail one) and allows constructing asynchronous pipelines where stages con-
taining data are surrounded by stages containing spacers and vice-versa (originating the
half buffer denomination, meaning a data token at each two stages).

In [TBV12] Thonnart et al. compare the timing arcs of a resetable C-element, a
basic building block of WCHB pipeline registers, to those of edge-triggered flip-flops, a
basic building block of synchronous pipelines. From this analysis arises the proposal of
pseudo-synchronous WCHB design technique, which relies on a clever modelling of asyn-
chronous components and on standard static timing analysis (STA) tools to optimise se-
qguential logic specifically for the WCHB QDI design template. They propose a modified,
pseudo-synchronous (flop-like) model to represent resetable C-elements, building timing ta-
bles in the Open Liberty standard supported by conventional STA tools. The underlying
reasoning is that conventional tools can analyse timing paths that start and end only at
flip-flops, primary inputs, or primary outputs.

The Thonnart et al. model allows the analysis of paths that start and/or end in
pseudo-synchronous flops without adding significant error to the actual delay of these C-
elements. This work also details the specification of a pseudo-clock that guides the synthesis
decision making process and constrains each logic stage during synthesis. Included is also
a methodology to characterise pseudo-synchronous C-elements.

The original timing arcs of a C-element appear in Figure 3.6a, arcs from A, B to
Z, and the arc from Reset to Z. These arcs are modelled as a function of the slew from an
incoming transition in an input pin and the capacitance being driven by the output pin. In the
model devised for use in the pseudo-synchronous flow, the arcs are modified to mimic those
equivalent to a flip-flop (as in Figure 3.6b) [TBV12].

Here, the C-element Reset is transformed into a pseudo-clock pin and each of its
original propagation arcs are split in two parts: (i) a clock propagation delay (in green),
from Reset to Z (a function of the slew in Reset and of the capacitance in Z); and (ii) setup
constraints (in blue), from A to Reset (a function of the slew in A and of the slew in Reset)
and from B to Reset (a function of the slew in B and of the slew in Reset). Note that, since
the sequential nature of the Reset pin is only a mechanism to create the pseudo-clock, its
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Figure 3.6: Two arc models for a resetable C-element: (a) conventional description; (b)
pseudo-synchronous description [TBV12].

slew is usually ignored. This way, the generated delay tables are a single row (or column)
that depends only on the slew of A or B and on the capacitance driven by Z.

The reasoning behind this is that the original arcs can be constructed from the sum
of a clock propagation delay and from a setup constraint of the Thonnart et al. model. For
example, the original A to Z arc is represented by the propagation delay from Reset to Z
added to the setup constraint from A to Reset.

This way, every time the STA tool encounters a pseudo-synchronous flop model of
a C-element, it identifies a new start point for paths that begin at output Z and a new end
point for paths finishing at inputs A or B. This is crucial to enable STA in WCHB pipelines,
as every pipeline stage is marked by the presence of a group of C-elements (e.g. 2 for a
1-of-2, 4-phase encoding, 1-bit data channel). The logic paths between these C-elements
are optimised to meet the defined period (say \) of the pseudo-clock connected to the Reset

pin.

For example, Figure 3.7 shows how these paths are analysed in a WCHB pipeline.
It shows a single C-element composing the memory of each pipeline stage (hardly true in
practice, due to the use of DI codes) and two types of logic paths: (i) the forward logic
(usually where useful computation happens); and (ii) the backward logic (usually used for
flow control). As the Figure shows, between every pair of C-elements in a cycle there are
forward and backward logic paths that are constrained by a single pseudo-clock, with period
A, entering at the Reset pin (not shown). Furthermore, there are also paths between the
input channel and the first C-element and the last C-element and the output channel.

One of the major drawbacks of the Thonnart et al. method is that it can cause errors
when computing delays for the C-elements, as a result of the regeneration of the original arc
from the sum of the two new arcs. This takes place because the new arcs do not measure
the delay of the cell as an explicit function of the slew in its inputs and the capacitance in its
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Figure 3.7: Simplified view of a 1-bit data channel WCHB pipeline, showing the inner cycles
controlled by the pseudo-clock.

output. It rather builds two independent delay values that are then added, one as a function
of the capacitance driven by Z and another as a function of the slew in A or B.

Another drawback is that the reset network is tied to a (pseudo-)clock network
and optimising these signals independently becomes challenging, since balancing of reset
signals conflicts with the tool trying to synthesise a clock tree for the pseudo-clock. Also,
the annotation of delays for post-implementation simulations in this model is tricky. The
created arcs will be in accordance to the pseudo-synchronous model, not fitting the original
C-element arcs, and will not reflect the real delay of the circuit. Thonnart et al. suggest that
the original models be provided to the tool for delay annotation. However, this causes the
insertion of loop breakers, which complicates analysis.

To deal with these issues, this work proposes creating a fictitious clock pin (G) and
two new models for characterising resetable C-elements, as Figure 3.8 details: the pseudo-
flop model (Figure 3.8a), used during synthesis; and the pseudo-latch model (Figure 3.8b)
that preserves all original propagation arcs and is only used to extract delay annotations for
post-synthesis simulation. The fictitious pin G allows preserving the original Reset pin timing
arcs. This enables using STA to design a reset network, meeting the constraints extracted
from the cell characterisation process.

The pseudo-latch model relies on the fundamental behaviour of latches. A latch
is a sequential element that has two distinctive operation modes, transparent and opaque.
During the transparent mode operation, a latch has a direct arc from its data input to its
data output and during the opaque mode it holds data. Transitions between these modes
are governed by a clock signal, which imposes sequential arcs on the latch. Therefore, a
latch timing model typically includes a setup constraint and a clock to output delay (as in
flip-flops), and a combinational arc from its input to its output (to serve in those cases when
the latch is transparent). This model respectively creates valid start and end points for STA
at the outputs and inputs of latches. During the pseudo-latch characterisation, this feature is
leveraged to preserve the original arcs of the C-element, while avoiding the insertion of loop
breakers. In simulation, it is enough that the behavioural model consider the cell as always
in transparent mode to reflect these delays, ignoring any sequential arc.
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Figure 3.8: Proposed characterisation models for a resetable C-element with a dummy clock
pin, G: (a) pseudo-flop; (2) pseudo-latch.

Although this work only explores the use of pseudo-synchronous C-elements with
reset, the use of a fictitious pin for the pseudo-clock allows any NCL(NCL+) gate to be
characterised both using pseudo-flop or pseudo-latch models. Gates characterised using
this technique can be modelled as sequential combo cells, composed of a combinational
gate with the virtual function (VF) of the original gate followed by the sequential element.
This allows EDA tools to differentiate pseudo-flop functions during synthesis.

3.3 The Pseudo-Synchronous SDDS-NCL Synthesis Flow

The SDDS-NCL combinational synthesis flow, originally proposed in [Mor16] was
significantly extended and modified to produce the SDDS-NCL sequential synthesis flow. Yet
the flow described in this Section bears some resemblance to the original one. For example,
the use of commercial tools also produces netlists that do not correspond to the intended
behaviour of the final circuit (the X-Netlists). As in the original combinational flow, these can
be corrected by using a low complexity Fix X-Netlist procedure, but the new flow uses a quite
distinct approach to implement this procedure, and it is used in more places in the flow.

Figure 3.9 depicts the pipeline structure for a sequential SDDS-NCL circuit. Both
forward (in green) and backward (in blue) propagation logic modules are SDDS-NCL. Reg-
isters are pseudo-synchronous resetable C-elements. Forward-propagation logic is always
positive unate, meaning it preserves the logic protocol of the inputs. Conversely, backward-
propagation (completion detection) logic is negative unate, meaning that it inverts the proto-
col of its inputs. Hence, sequential elements have their inputs at opposite protocol domains.
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Figure 3.9: Structure of a sequential SDDS-NCL pipeline.

Figure 3.10 depicts the pseudo-synchronous SDDS-NCL synthesis flow. The flow
is substantiated as a set of TCL scripts driving tools of the Cadence™EDA framework. Logic
synthesis and optimisation employ Genus™ 18.1. Placement and routing are achieved with
Innovus™ 18.1.

The flow takes a pre-expanded dual-rail netlist as input. The process of dual-rail
expansion, part of the Pulsar flow, is addressed in Section 5.4. The dual-rail input netlist con-
tains both combinational and sequential elements. Pseudo-flops are explicitly instantiated
as sequential elements in pipeline stages. Boolean expressions are used to describe the be-
haviour of combinational logic as VFs for both forward and backward propagation between
sequential elements.

SDDS-NCL requires that the logic modules be strictly unate, meaning that all inputs
of a gate must reside on the same domain. Since SDDS-NCL is only used for combinational
logic, there is no problem in having sequential gates with their inputs at different domains.
To solve this, a “size_only” constraint is set on all sequential elements to preserve their logic
function.

Genus synthesises and optimises the combinational logic in both backward and
forward propagation paths. Synthesis and optimisation must meet some requirements to
generate a fixable X-Netlist: (i) they must not generate intermediate circuits with binate
functions, as gates in these circuits have inputs at different domains (RTZ and RTO), which
would break the circuit behaviour; (ii) they must not produce circuits with gate inputs tied to a
constant, as a constant at gate inputs may inhibit the set or reset behaviour of NCL (NCL+)
gates.

In the new design flow the input always implements unate functions, all internal
nodes should be unate in path start points, i.e. primary inputs and register outputs. However,
according to Das et al. [DCB93] it is possible that the synthesis tool to perform a binate
realisation of a unate input function. To overcome this issue Moreira [Mor16] proposed using
design for testability (DFT) techniques, guaranteeing that requirement (i) above is always
meet. Requirement (i) is fulfilled setting “iopt_force_constant_removal=true” on Genus.
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Assuming the initial circuit description is NCL (i.e. an RTZ description), the output
of sequential gates are guaranteed to be RTZ, since initial synthesis and optimisation steps
preserve this characteristic. It is also safe to assume from this condition that all primary
inputs are also RTZ.

To produce a circuit with the correct behaviour, gates which are in the RTO domain
must be NCL+ and gates in the RTZ domain must be NCL. The combinational logic in both
forward and backward propagation paths are processed by Algorithm 3.1, which identifies
the protocol of each gate and employs the correct gate type.

In the Fix X-Netlist algorithm, a gate is considered in RTZ if its non-inverting fan-ins
are RTZ and its inverting fan-ins are RTO. Conversely, a gate is considered in RTO if its
non-inverting fan-ins are RTO and its inverting fan-ins are RTZ. Figure 3.11 illustrates this.

i > i
L o Ao
; S >4 e :
C e T
----- > 3 :
RTZ RTO RTZ RTO

Figure 3.11: lllustration of the RTO and RTZ gate classification process.

If a combinational gate is classified as both RTO and RTZ, the X-Netlist is deemed
unsuitable for correction and the synthesis is invalid. The only gates allowed to be in both
RTO and RTZ domains are the registers, but these do not need to be processed by the Fix
X-Netlist algorithm.

The initial netlist correction may result in a circuit that no longer meets the design
constraints. In this case, further optimisation steps are needed to meet them. These optimi-
sation steps are run on each set of gates independently, to avoid undoing the initial netlist
correction. After optimising a set of gates, the Fix X-Netlist correction algorithm is re-run to
correct any domain changes introduced by the optimisation. These steps are iteratively run
until the timing constraints are fulfilled.
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Require: Mapped X-Netlist
Ensure: Fixed SDDS-NCL Netlist
{Breath first gate classification}
Add all primary inputs to rtz set;
Add all registers to riz set;
while exist unexplored gates in the X-Netlist do
for gin riz do
if g is inverting gate then
Add combinational fanout of g to the rto set;
else
Add combinational fanout of g to the rtz set;
end if
end for
for gin rto do
if g is inverting gate then
Add combinational fanout of g to the riz set;
else
Add combinational fanout of g to the rto set;
end if
end for
end while

{Correct gates in RTZ}
for gin rizdo
if g is NCL+ then
Replace g with NCL gate of same vFunction;
end if
end for

{Correct gates in RTO}
for g in rto do
if g is NCL then
Replace g with NCL+ gate of same vFunction;
end if
end for

Algorithm 3.1: The Fix X-Netlist algorithm.
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After logic synthesis, optimisation and correction steps, the final netlist can be
placed and routed by a physical synthesis tool. However, meeting timing constraints during
physical synthesis may require some additional optimisation steps. If the logic is changed
during these steps, logical correctness of the circuit may be compromised.

Prior to place and route, NCL+ gates are marked with “dont_touch” and “dont_use”,
NCL gates are marked “size_only” and buffers are left free for the physical synthesis tool to
use. This guarantees the logic will not suffer any changes during physical synthesis and
gives the physical synthesis tool freedom to place buffers and resize gates to meet timing.
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4. A NEW MODEL FOR CYCLE TIME COMPUTATION

The throughput of asynchronous circuits is not directly dictated by its slowest prop-
agation path. It is rather defined as the inverse of the system cycle time, i.e. the mean
time between two results. The cycle time depends on complex interactions between multi-
ple pipeline stages and the involved delays. The definition of (asynchronous) cycle time is
explored in Section 4.1.

Analysis of the cycle time is also not straightforward. It requires complex models
that capture the interactions internal to asynchronous circuits. Section 4.2 reviews the full-
buffer channel network (FBCN) timing model and Section 4.3 extends this model to support
half-buffer pipelines. These models can be used in conjunction with STA to compute the
maximum cycle time of an asynchronous circuit. This is further explored in Section 4.4,
where we present a methodology based on linear programming to compute the maximum
cycle time of circuits modelled using both FBCN and HBCN.

By the end of this chapter it is expected that the reader is provided with a methodol-
ogy to analyse the maximum cycle time of asynchronous circuits using global timing models
and traditional STA techniques. Thus, estimating the minimal throughput of the circuit during
its design.

4.1 Cycle Time of Asynchronous Circuits

According to Beerel, Ozdag, Ferretti [BOF10] the cycle time of an asynchronous
circuit is the time between two consecutive computation results. On a synchronous circuit
this is dictated by the clock period, i.e. a synchronous circuit (most often) produces a result
every clock cycle. However, for asynchronous circuits this is defined as the time between
two consecutive tokens.

The cycle time is limited by the internal delays and token placement in the circuit. It
is best observed under an ideal null-delay environment, i.e. an environment that consumes
tokens as soon as they arrive and produces new tokens as soon as the previous is acknowl-
edged. This ideal of null-delay environment is used here to isolate the circuit from external
influences and data dependent delay variations. Another reason for using an ideal environ-
ment model is that the cycle time is observed when the pipeline is at full capacity. When the
pipeline is empty or partially empty, the time between results at the output is not dependent
on internal factors only, but also on the availability of tokens coming from the environment
and propagating in the pipeline.

Also, the cycle times observed in an asynchronous circuit can present data depen-
dent variations. The data flow within the asynchronous system may be data dependent,
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because they may present choice behaviour due to characteristics such as arbitration, splits
and merges. Systems with such behaviour are called non-deterministic. On such systems,
the tokens propagate through different paths with different delays, thus affecting the cycle
time.

Furthermore, even deterministic systems, which present no data-dependent token
flow, can show variations in the cycle time observed at inputs or outputs. For instance,
the delays of an individual pipeline stage can be data dependent, e.g. an adder unit may
complete faster if all inputs are zero. This can lead to situations that a token advances faster
through the pipeline, arriving earlier at the output, but leaving part of the pipeline idle waiting
for data from a slower part. This idle waiting time will appear as an increase in the cycle time
of the output for the next token. Also, temporarily faster delays near the input may accept
tokens into the pipeline faster than they can be processed by later pipeline stages. This
can cause tokens to queue up in the pipeline entrance. This queuing causes a delay to the
admission of the next token, which translates as increases in the observed cycle time in the
input.

On average, these variations may cancel each other, i.e. a token with a faster cycle
time can be followed by a token with a slower cycle time. The observed cycle time forms a
distribution around the average cycle time. On a system that generates an output for each
input, the observed average cycle time must be the same on the system inputs and outputs.
This average cycle time is the system cycle time, i.e. disregarding transient variations, on
average the pipeline is capable of producing new results after each cycle time has elapsed.

To demonstrate this effect, the observed cycle time of the input and output of 6-
stage multiply and accumulate (MAC) unit is shown in Figure 4.1. The measurements were
extracted using delay annotated post-synthesis simulation and a zero-delay external envi-
ronment to produce and consume data.

The circuit presents a wider cycle time distribution at the output, indicating that
sometimes the pipelines stages near the output (namely the accumulator) complete faster
than the multiplier (at the beginning of the pipe) is capable of providing new data.

4.2 The FBCN Timing Model (Related Work)

Beerel, Ozdag, Ferretti [BOF10] proposed in their book the Full-Buffer channel
network (FBCN), a timed marked graph model that captures the behaviour of full-buffer
asynchronous pipelines. FBCN allows modelling the global timing of an asynchronous circuit
from individual circuit timing paths (extractable using STA tools).
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Figure 4.1: Observed cycle time distribution at the input and output of an integer, 6-stage,
multiply-and-accumulate circuit.

The formal definition in [BOF10] derives from a comprehensive Petri net definition.
However, since FBCN is a marked graph, it is possible to use the definition in Section 2.1.3
to formally redefine FBCN as follows:

Definition 4.2.1 (Full-Buffer Channel Network - FBCN) A Full-Buffer Channel Network is
defined as the 3-tuple N = (T, C, k), where T is a set of transitions, C = {(u,v) : u,v €
T,u # v} is a set of channels, and I, : C — {ack, req} is a function defining each channel
initial state.

An FBCN is equivalently represented as a marked graph defined as the 3-tuple
N = (T, P, M), where T is a set of transitions; P = {(u, V) : u,v € T} is a set of places and
My is a set of initially marked places. The equivalence between N and G is defined by the
following set of rules:

Y(u,v) € P:3{(u,v),(v,u)} C P (4.1)
Y(u, V)| lb((u, v)) = ack, 3(v, u) € My
Y(u, V)| lb((u, v)) = req,3(u, v) € My

Equation 4.1 states that every channel is represented by a pair of places, a forward
propagation place and a backward propagation place; Equation 4.2 states that the channel
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backward propagation place is marked when the channel is initialised to the ack state; and
Equation 4.3 states that the channel forward propagation place is marked when the channel
is initialised to the req state.

These definitions introduce the structure of the FBCN. Figure 4.2 depicts a graph-
ical representation of an example FBCN. The token propagation behaviour in an FBCN is
governed by the timed marked graph process, as defined in Section 2.1.3. From this, it
is viable to define correlations to describe how an FBCN models handshake channels of
full-buffer asynchronous circuits.

in ro r1 out

Figure 4.2: FBCN modelling a 2-phase, half-buffer pipeline. Vertical lines are transitions,
circles are forward-propagation places, squares are backward-propagation places and black
dots are tokens.

Each pair of places ({(u, v), (v,u)} C P) models a channel. Each channel is com-
posed of a forward-propagation place and a backward-propagation place. The forward-
propagation place models the forward-propagation path that transport data, and the backward-
propagation place models the backward-propagation path that carries control signals. The
arrangement of places and transitions creates cycles that model the cyclic paths of hand-
shake channel circuits.

Places are marked with tokens to indicate the state of the handshake channel.
When a token is marking the backward-propagation place in a channel, it indicates that
the channel is acknowledging the reception of data. When a token is marking the forward-
propagation place in a channel, it indicates that the channel is currently carrying valid data.
These states are mutually exclusive, a channel cannot be simultaneously at both states,
which is formalised as:

Definition 4.2.2 (Handshake state) Let M; C P be the set of marked places at instant i €
N. The following predicates are true for all instants i € N:

Y(u,v) e M; : H(v,u) e M;

Y(u,v) e P:3(u,v) e Miv3(v,u) e M;

That is, a pair of places taking part on a channel cannot be simultaneously marked
and at least one place of a channel must be marked at any time.
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Transitions capture the handshaking behaviour of registers or of the environment.
A transition fires when all of its inbound places are holding tokens, that is, it synchronises the
acknowledgement from the outbound channel with the data from the inbound channel pro-
ducing an acknowledgement in the inbound channel and propagating data to the outbound
channel. This effectively models the behaviour of a 2-phase handshake protocol.

Each place is annotated with the delay from the propagation path it represents.
This delay can be extracted from the circuit using STA tools. For instance, assuming a 2-
phase bundled-data design, the place indicating the forward propagation place in a channel
is annotated with the propagation delay of the request signal on that channel. Conversely,
the backward propagation place is annotated with the delay of the acknowledge signal on
the channel.

4.3 The HBCN Timing Model

As the name states, an FBCN is a model suitable to describe full-buffer pipelines.
In a full-buffer pipeline there are only valid data being propagated and acknowledged. Each
channel in some FBCN can be in one of two states, either acknowledging or transmitting
valid data.

Conversely, in half-buffer pipelines valid data tokens are always followed by spacer
tokens. Spacer tokens are characteristic of half-buffer circuits such as WCHB pipelines.
They need to be represented in the model to correctly capture the behaviour of a half-buffer
pipeline. In a half-buffer pipeline each channel can be in one of four states: propagating
data, acknowledging data, propagating a spacer and acknowledging a spacer.

Since FBCN is not capable of modelling this behaviour naturally, this work proposes
the Half Buffer Channel Network (HBCN), a modification of FBCN to explicitly model half-
buffer pipelines. HBCNs are also timed marked graphs, and all properties of FBCN regarding
cycle time analysis hold true for them. An HBCN models the behaviour of 4-phase half-buffer
pipelines, by representing the four possible states of each half-buffer channel. These states
are captured using four places per channel. A pair of transitions is required at each end of
a channel to synchronise the propagation of valid data and spacers. The structure of the
HBCN can be formalised as follows.

Definition 4.3.1 (HBCN) A Half-Buffer Channel Network (HBCN) is defined by the 4-tuple
N = (T,I,C, ), where T is a set of transitions, I = {(t,t) : t,t € T,t # t'} is a set
of transition pairs, C = {(u,v) : u,v € T,u # v} is a set of channels, and I, : C —
{acknui, réQuata; @CKaatas r€qnun} is a function defining each channel initial state. An HBCN
has a characteristic marked graph defined as the 3-tuple G = (T, P, My) where T is a the set
of transitions of the HBCN, P = {(u,v) : u,v € T} is a set of places, and My C P is a set
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of initially marked places. The relation between N and G is defined by the following set of
rules:

(uyv) el = u,veT
(u, ), (v,V) e C = {(u,v),(U,V),(V,u),(v,Uu)} C P
(((u, ), (v, V)
(((u, ), (v, V))
U, (v, V)
), (v, V)

U, (v, V')

o )
lo )) = reQaata = (U, V) € Mo
lo(((u
lo(((u
Implication 4.4 states that every transition taking part on a transition pair must exist
on the transition set; Implication 4.5 states that each channel is expanded to four places,
two forward propagation places (for data and spacer) and two cross-connected backward
propagation places; Implications 4.6 to 4.9 define which places are initially marked to set
channels to their respective initial states.

A possible intuition to understand the HBCN model is to see it as two parallel
FBCNs cross-connected by the backward propagation places at each channel. One net-
work captures the propagation of spacers and the other valid data. The handshake protocol
is captured by cross-connecting the null backward propagation place of a stage to the data
transition of the previous stage and by connecting the data back-propagation place to the
previous stage null transition. This enforces that data propagation depends on the propaga-
tion of spacers and vice-versa.

Delays can be attributed to each place of the HBCN to capture the propagation
time of data and spacers in the network. This allows using HBCN to analyse the timing
characteristics of a half-buffer pipelines. The cycle time is defined as the time a token takes
to return to a place after being removed, that is, the time it takes for a channel to transitions
to between all its states back to its initial state.

To illustrate concepts an example HBCN is now derived from the Weak-Conditioned
Half Buffer (WCHB) pipeline in Figure 4.3. This WCHB is a simple Quasi-Delay Insensitive
(QDI) half-buffer pipeline template that employs Delay Insensitive (DI) codes, completion
detectors and a 4-phase RTZ handshake protocol. C-elements are used as registers to
latch DI codes in each stage. This example uses a 1-of-2 code, thus requiring 2 C-elements
(one for each rail), the employed completion detector is a NOR gate. A spacer is represented
by having the two rails at zero and valid data is represented by having one of the rails at one.

The example circuit comprises two registers (r0 and r1), one input (in) and one
output (out). There are 3 channels in this circuit: (i) from the input to r0; (ii) from r0 to r1;
and (iii) from r1 to the output. For each channel, the forward propagation path is the pair
of rails transporting data and spacers, and the backward propagation place is the comple-
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Figure 4.3: A 2-stage dual-rail linear buffer, implemented using a WCHB half-buffer 4-stage
RTZ pipeline.

tion detection circuit and its output acknowledgement signal. All channels in this circuit are
initialised to spacers.

From the example circuit, we construct the example HBCN in Figure 4.4. Each
register (r0 and r1) is modelled as pair of transitions: the transition in blue captures the
arrival of valid data and the transition in red captures the arrival of a spacer. The environment
(in and out) is also modelled as a pair of transitions to capture the behaviour of an ideal
environment. Each propagation path is modelled as a pair of places: (i) one indicating the
propagation of a data token; and (ii) another indicating the propagation of spacers. Square
places are backward propagation places representing backward propagation paths. Round
places are forward propagation places representing forward propagation paths.

The example HBCN can be described using the channel network formulation pre-
sented in Definition 4.3.1 as:

N=(T,T,C,b) (4.10)
T ={in,in’,r0,r0’, r1,r1’, out, out'} (4.11)

[ = {(in,in'), (r0, rQ’), (r1, r1’), (out, out’)} (4.12)

C = {((in, in’), (r0, rQ’)), ((r0, rQ’), (r1, r1")), ((r1, r1’), (out, out’))} ( )
(4.14)

Ve € C: h(c) = ackny

In this formulation, Equation 4.10 declares the channel network; Equation 4.12 declares
the transition pairs that represent the input, the two registers (r0 and r1) and the output;
Equation 4.13 declares the channels connecting the registers; and Equation 4.14 declares
the initial state of all channels as ack,,;. The channel network formulation is equivalent to a
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out

in' ro’ r' out'
Figure 4.4: Example HBCN modelling a 4-phase, half-buffer circuit. Blue lines are valid

data transitions; red lines are spacer transitions; squares are backward propagation places;
circles are forward propagation places.

marked graph expansion defined as:

G=(T,P, M) (4.15)
T ={in,in’,r0, r0’, r1,r1’, out, out'} (4.16)
(in, r0), (r0, in'), (rQ’, in), (i, r0’)
P=<(r0,r1),(r1,r0),(r1’, r0), (r0’, r1’ (4.17)
(r1, out), (out, r1’), (out’, r1), (r1’, out’)
Mo = {(r0', in), (r1’, r0), (out’, r1)} (4.18)

Here, Equation 4.15 declares this HBCN marked graph; Equation 4.16 declares
the set of transitions extracted from the transition pairs I'; Equation 4.17 declares the set of
places of the marked graph according to the expansion rule from Equation 4.5; and Equa-
tion 4.18 is the set of places marked to initialise all channels to ack,,;, according to the
expansion rule from Equation 4.6.

The marked graph expansion is important, since this representation will later be
seen to enable asynchronous cycle time computations. The next Section explores the delay
model associated with places in a timed marked graph and introduces a linear programming
formulation that aids in the computation of the maximum cycle-time from the timed marked
graph.
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4.4 Calculating the Maximum Cycle Time

Both HBCN and FBCN are timed marked graphs that contain cycles. Cycles are
defined as a cyclic sequence of places where tokens repeatedly flow. On a timed marked
graph, token propagation is ruled by the place delays. On these models, the cycle time is
defined as the sum of the delays of places taking part in a cycle divided by the number of
tokens residing in the cycle.

The maximum cycle time is the largest cycle time in the graph. Ultimately, due to
complex interactions in the circuit, this largest cycle time dominates the overall asynchronous
pipeline performance. Determining the maximum cycle time is important to analyse pipeline
performance.

The maximum cycle time is an upper limit for the circuit cycle time. This is an
important performance measurement, as it bounds circuit performance floor. On a marked
graph model (such as the HBCN) the maximum cycle time is defined as the greatest cycle
time in the circuit. This value is not always intuitively found, especially on large marked
graphs with multiple interacting cycles such as the HBCN of a large circuit.

Magott [Mag84] has devised a methodology using linear programming to compute
the maximum cycle time in a Petri net. It works by estimating the time each transition fires
based on a system of constraints.

The time a transition fires is called the transition arrival time. A transition arrival
time is limited by its incoming places. The transition can only fire after all of its incoming
places allows it. A place only allows its outgoing transition to fire after it has been holding a
token for the duration of its delay.

Any place receives a token after its incoming transition fires. If a place holds a
token at the initial time it is assumed that it has received that token at the previous cycle
time. From these statements it is possible to formalise an arrival time constraint for each
place.

Definition 4.4.1 (Arrival time constraint) /nequation 4.19 is the arrival time constraint de-
fined for a place p = (u, v), where a, is the arrival time for the incoming transition u; a, is the
arrival time for the outgoing transition v; d, > 0 is the delay associated with place p; my(p)
is the number of initial tokens in p (1, if initially marked, else 0); and ¢ > 0 is the cycle time
of the marked graph.

a, > ay + d, — mo(p) (4.19)

Inequation 4.19 states that v fires dj, time units after u has fired, unless p is initially
marked, than it is assumed that v has fired one cycle before.
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Since the delay attributed to each place is the maximum delay of the propagation
path, it is safe to assume that the transition will fire as soon as all arrival constraints are
satisfied. Following this assumption, the maximum cycle-time is the minimal value of ¢
that satisfies the set of constraints. This can be computed using a linear programming (LP)
solver, by providing the arrival time constraints with the place delays and setting the objective
function as minimising ¢.

The LP solver solution returns values for each variable in the input formulation. This
includes the value of ¢, which is the maximum cycle time. But it also includes values for the
arrival time of each transition, byproduct values with no concrete meaning, one solution of
many possible ones. The LP solver is free to attribute values to these variables, only the
distance and ordering of these values are important to the solution process.

However, more useful information could be extracted from the solution. For in-
stance, the free slack is the amount of time a token stays in a place after its delay has expired.
This information is useful for optimising the pipeline performance. Beerel et al. [BLDKO06] has
extended the arrival time constraint formulation to extract the free slack of each place, cre-
ating the arrival time equation.

Definition 4.4.2 (Arrival Time Equation) Equation 4.20 is the arrival time equation defined
for each place p = (u, v), where a, is the arrival time for the incoming transition u; a, is the
arrival time for the outgoing transition v; d, > 0 is the delay associated with place p; p, > 0
is the free slack of place p, my(p) is the number of initial tokens in p (1 if initially marked,
else 0); and ¢ > 0 is the cycle time of the marked graph.

ay=ay+dy+pp— Mo(p)o (4.20)

The arrival time equation can replace the arrival time constraint in the LP solver
formulation. The solution of the augmented formulation yields the maximum cycle time, the
arbitrary transition arrival times and the free slack of each place.

An example to demonstrate this methodology is to compute the maximum cycle

time of a 3-stage circular half-buffer circuit. The example circuit is modelled as an HBCN,
depicted in Figure 4.5, with the formulation below.



Figure 4.5: HBCN of a 3-stage, circular half-buffer circuit.

N=(T,C,b)
r={r0,r1,r2}
C={(r0,r1),(r1,r2),(r2,r0)}

réQaa € =(r0,r1)
l(c) = § acknu ¢ =(r1,r2)
requu € =(r2, r0)

ro
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(4.21)
(4.22)
(4.23)

(4.24)

Using Definition 4.3.1 it is possible to find the HBCN equivalent marked graph,

which is as follows.
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G=(T,P, M) (4.25)

T={r0,r0’,r1,r1’,r2,r2'} (4.26)
(r0,r1),(r0’, r1’),(r1’, r0), (r1, ro’)

P=1<(r1,r2),(r1’,r2),(r2',r1),(r2, r1’) (4.27)
(r2,r0),(r2’, r0’), (ro’, r2), (r0, r2’)

Mo = {(r0, r1),(r2’, r1),(r2’,r0’)} (4.28)

On this example, assume every forward propagating place is assigned a delay of
1.5 time units and that every backward propagating place is assigned a delay of 1 time
unit. Using the arrival equation from Definition 4.4.2, it is possible to obtain an LP problem
formulation to compute the maximum cycle time and the free slacks for the Example HBCN.
Algorithm 4.1 shows the LP formulation, and its solution, obtained from an LP solver appears
in Table 4.1. All variables are bounded to be positive real values.

Variable Value

1) 6

ar 0

Minimise o 1
) arp 2
Subject To arv 3
arn=an+1.5+pr0m —¢ arn 4
ar = aro + 1.5+ piror 1) ar 5

ar = an + 1+ pr1r.r0) P(r0,r1) 0.5
&y = an + 1+ pi1,0) P(ror.r7) 0.5
aro = ar + 1.5+ p(r1,r2) P(r1,r2) 0.5
arz = apr + 1.5+ pr1r 2 P(rir2) 0.5

an =ar +1+pyory— ¢ P(r2,r0) 0.5
arir = a2 + 1+ prrz, 1) P2 o) 0.5

aro = a2+ 1.5+ p2,r0) P(rt,ro) 0
ar = a2 + 1.5+ pror rory — ¢ P(r1’,r0) 0

arz = a + 1+ p(ro,r2) Pr2,r17) 0
ar = aro + 1+ prorz P(r',r) 0
End Piro.r2) 0
Algorithm 4.1: LP formulation to compute L0 r2) 0

the cycle time and free slack for the ex-
ample HBCN. Table 4.1: Solution of the LP formulation.

The solution of ¢ shows that the maximum cycle time of the Example circuit is 6
time units. The solutions of the arrival variables from a,; to a,» are the estimated arrival
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times, they show the order in which transitions happen in a cycle. The solution of variables
pero.rty 10 per2r oy sShow that the forward propagation places have a free slack of 0.5 time units,
which means that data transitioning in that path have to wait 0.5 time units to propagate
after they are ready. The solution of variables p 1,0/ t0 p(0,r2) indicates that the backward
propagation paths are part of the critical cycle, data propagating in these paths evolve to the
next stage as soon as they arrive to their registers. The existence of free slack in this circuit
shows that the pipeline is not optimised.

4.5 Constraining the Maximum Cycle Time

The last Section proposed and explored a technique to analyse the cycle time of
HBCNSs. However, this technique assumes a pre-synthesised circuit. This Section extends
the linear programming (LP) formulations used for cycle time analysis to derive the individual
path delays that satisfy a target cycle time.

Commercial EDA tools heavily rely on Static Timing Analysis (STA). Tools that per-
form STA are timing driven, they operate with the concept of a timing budget to guide their
synthesis effort. For a circuit to work correctly, the timing of the combinational logic in these
paths must be less or equal to their timing budget. Logic synthesis tools employ STA to
elaborate logic circuits that respect the defined timing budget. Usually, for synchronous
flop-based circuits, the timing budget is constrained using the target clock period, but timing
exceptions can also be set to constrain individual paths. Chapter 3 introduced the pseudo-
synchronous SDDS-NCL, a novel QDI design template that enables commercial EDA tools
to synthesise and optimise sequential QDI circuits with constrained propagation paths. The
pseudo-synchronous SDDS-NCL template allows defining a pseudo-clock and some timing
exceptions to constraint the delay of individual propagation paths.

The previous Section developments relied on annotating an HBCN model with de-
lays of individual propagation paths. From such HBCN it was then possible to derive a
system of arrival equations a, = a, + d, + pp — mMo(P)¢. These were then used in an LP
formulation to compute the maximum cycle time of the circuit modelled by the HBCN. Recall
that dj, is the place delay corresponding to a timing path and ¢ is the maximum cycle time.

The cycle time analysis method is now extended to a synthetic approach. Instead
of analysing the maximum cycle time of a given circuit, the HBCN and arrival equation are
used to compute the delay constraints of places required to meet a desired maximum cycle
time (¢). For that, a single delay ) is assigned to every place corresponding to timing paths
which are to be constrained. A system of arrival time equations is then extracted from the
HBCN model, the maximum cycle time value ¢ is set to the desired value and the value
of X\ is maximised using an LP solver. The computed value of X is the pseudo-clock used
to constrain the timing paths of the original circuit. The intuition behind this method is to
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discover “how slow” the constrained timing paths can be, without violating the maximum
cycle time constraint. Since the pseudo-synchronous SDDS-NCL template allows defining
a pseudo-clock to constrain the delay of individual paths, it is fair to assume that the delay
of these paths will be limited by A.

Notice that the method proposed here allows the designer to optionally specify a
fixed delay for any place p by attributing a numeric value to d,. This is useful when a timing
path has a known delay or is its delay is fine-tuned by the designer using timing exceptions.
These fixed delays are taken in consideration during the pseudo-clock computation, thus
guaranteeing that the pseudo-clock constraint still bounds the maximum cycle time. The
use of fixed delays on timing paths known to be fast in the critical cycle may allow the
pseudo-clock constraint to be more relaxed.

To demonstrate the method, consider an example of constraining the 3-stage cir-
cular buffer whose HBCN appears in Figure 4.5, to the maximum cycle time of 2ns. In this
example, assume that the places corresponding to the channel connecting the transition pair
(r0, r0’) to (r1,r1’) have a fixed delay of 100 ps. The LP formulation used to compute the
pseudo-clock constraint A is depicted in Algorithm 4.2. It states that the value of A should
be maximised, subject to ¢ = 2 and the system of arrival equations. Each arrival equation
corresponds to a place p = (u, v) in the HBCN. These equations state that the transition on
the postset of a place should occur at least A time units after the transition on the preset of
the same place, except on places with tokens where the transition can occur ¢ time units
ahead. Here, the free slack p, is a positive real value that captures the amount of time a
token has to wait idling in a place after its propagation delay. Running this model on an LP
solver results in the solutions for the variables presented in Table 4.2.
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Variable Value

A 0.45ns
Maximise ar Ons
D\ aro/ 0.1ns
Subject To ar2 0.55ns
p=2 ar 1ns
ari = ar + 0.1+ ppory) — ¢ aro 1.1ns
ar = aro + 0.1 + piror 1) aror 1.55ns
aro = a1’ + 0.1 + p(r1/.r0) £(r0,r1) 0.8ns
aro = ar1 + 0.1 + p(r1,01 P(ror 1) 0.8ns
app=a1+A+ P(r1,r2) P(r1,r2) 0.1ns
8o = ar1r + A+ p(r1,r2) P(r17,r2") 0.1ns
art = + A+ p(r2r r1) — ¢ P(r2,r0) 0.1ns
art = a2 + A+ p(r2,r) P(r2!,r0) 0.1ns
ar0 = a2 + A\ + p(r2,r0) P(r1,r07) Ons
ar = ar + A+ pre oy — @ P(r1",r0) Ons
ar2 = ary + A+ (o r2) P(ra,r1’) Ons
8o = 80 + A + p(r0,r2/) P2’ 1) Ons
End P(r0.r2') Ons
Algorithm 4.2: LP formulatioq to qonstrain Pu0rr2) 0ns
the cycle time of the HBCN in Figure 4.5
to 2ns, using the pseudo-clock method Table 4.2: Solutions to the LP problem in
with fixed delays. Algorithm 4.2

In this example, the fixed delays take part on the critical cycle and helped relaxing
the pseudo-clock constraint. To understand their impact, the experiment is repeated without
fixing any place delays. Here, every timing path is equally constrained with the pseudo-
clock value. The LP formulation is depicted in Algorithm 4.3 and its solution is presented in
Table 4.3. Notice that value of )\ is much lower in comparison. Note also the free slack is
equally distributed along all forward-propagating places.
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Variable Value

A 0.333ns

ar Ons

Maximise ar 0.333ns
DY arp 0.667ns
Subject To arv 1ns
H=2 arno 1.333ns

ari =am+ A+ pror) — @ aror 1.667 ns
ar = ay + A+ pporr1y P(r0,r1) 0.333ns
a=an + A+ P(r1’,ro) P(r07,r17) 0.333ns
ay =ar+ A+ P(r1,ro") £(r1,r2) 0.333ns

=81+ + P(r1,r2) r17,r2/) 0.333ns

aror = arr + A+ piriv o) r2,r0) 0.333ns

ar =ar + A+ pPrer,rly — ) P(r2",r0r) 0.333ns
ary = ar + A+ p(r2,r1) Pr, 1) Ons

aro = ar2 + A + p(r2,r0) P(r1’,r0) Ons
ary =z + A+ prarrory — ¢ P(r2,r1’) Ons
ar2 = a0 + A+ p(r0',r2) Pir2!,r) Ons
En;rz/ = aro + A+ p(ro,r2)) P(ro,r2’) Ons
) Ons

Algorithm 4.3: LP formulation to constrain
the cycle time of the HBCN in Figure 4.5 Table 4.3: Solutions to the LP problem in
to 2ns, using the pseudo-clock method. Algorithm 4.3.

The maximum delay A is used as a pseudo-clock during synthesis, constraining all
paths in the circuit. This solution is simple and scales very well to large designs, but it limits
the maximum cycle time at the expense of over-constraining some paths. As a consequence,
this unnecessarily reduces the time budget of some paths, possibly causing negative impact
on the quality of the synthesis on designs with free slack. The result can be the production
of circuits with higher than minimum area and power consumption. To understand the is-
sues with the free slack and the pseudo-clock period, take the 3-stage loop example HBCN
shown in Figure 4.5. On this example, the longest cycle, i.e. the cycle with most places
per token, is marked with a dashed orange line. It has 6 places for a single token, while
all other cycles have 4 places per token. If every place is to be constrained equally by the
pseudo-clock period, places not taking part in this longest cycle would be overly constrained.
This is further evidenced in the LP formulation, showing that the places taking part in the
highlighted cycle have nought free slack while all other places have some free slack. The
paths corresponding to these places could be made slower without negatively impacting the
maximum cycle time constraint. The maximum cycle time ultimately limits the throughput of
the circuit. The free slack could be incorporated in the corresponding path constraint to relax
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the synthesis of these paths without affecting the cycle time. This could be solved by setting
timing exceptions on these paths.
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5. THE PULSAR SYNTHESIS FLOW

The Pulsar flow is the main contribution of this dissertation. It is a complete flow
for synthesising a constrained QDI circuit from an RTL description. Pulsar comprises the
Pseudo-Synchronous SDDS-NCL Template and the HBCN timing model to leverage com-
mercial EDA tools. The Pulsar Flow is depicted in Figure 5.1. Here, the synthesis flow begins
with a single-rail synthesis, which produces a single-rail netlist. This netlist is processed and
transformed into a virtual netlist comprising virtual functions and pseudo-flops. The virtual
netlist is the input to the Pseudo-Synchronous SDDS-NCL synthesis flow. The Pulsar flow
also constructs the HBCN and creates the cycle time constraints automatically. Readers
should notice that the Sequential SDDS-NCL Synthesis Flow, detailed in Section 3.3 is at
the heart of the Pulsar flow.

Components Dual-Rail

Expansions of

Library components

RTL description Single Rail | ,fSingle Rail Netlist| |  Dual Rail L 5] Virtual Netlist
Synthesis Expander
\/\ — \/\

Cycle Time Design

Circuit Graph
| HBCN Expander > Constrainer

Sequential SDDS-

—>| Constraints [ NCL Synthesys
Flow

Output for
Physical
Synthesis

Figure 5.1: The Pulsar synthesis flow.

The design capture methodology shares similarities with Uncle [RST12], as it uses
an especially crafted RTL description and traditional EDA tools to synthesise a single-ralil
netlist. However, Uncle relies on its own specialised tool for technology mapping and opti-
misation of the NCL netlist, whereas Pulsar flow relies on SystemVerilog constructs and the
Sequential SDDS-NCL Synthesis Flow. The RTL netlist is synthesised using a traditional
EDA tool to produce a single-rail netlist of components. These components are defined in
the components library using the Synopsys Liberty format. This library contains the combi-
national and sequential components that can be used by the EDA tool during the synthesis
of the single-rail netlist. Each component has an equivalent SystemVerilog module defining
its dual-rail expansion.
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The dual-rail expansion takes advantage of SystemVerilog interfaces [SDF06] to
represent dual-rail four-phase RTZ channels. These channels interconnect modules imple-
menting the dual-rail expansion of components. The SystemVerilog interface is also used
for constructing the acknowledgement network for channels. A simple tool replaces every
wire in the single-rail netlist with a channel to create the virtual netlist. The virtual netlist and
the modules implementing the dual-rail expansion of components are input to the synthesis
flow described in Section 3.3.

Concurrent to the creation of the virtual netlist, cycle time constraints are com-
puted. The scripts used for the single-rail synthesis produce a structural graph describing
the pipeline topology. This circuit graph is used to model the HBCN of the expanded circuit.
The same tool that constructs the HBCN also computes the cycle-time constraint using the
linear programming technique discussed in 4.5.

Each topic taking part on this flow is explored in specific Sections herein. Sec-
tion 5.2 covers details on the channel expansion process. The component library and its
components are explored in Section 5.3. The Pulsar flow is depicted using a simple example,
in Sections 5.4 and 5.6. The automatic construction of the HBCN and the implementation of
the cycle time constrainer are the subject of Section 5.5

5.1 QDI Synthesis Systems (Related Work)

Balsa [EB02] is a CSP-derived [Hoa78, Hoa85] language and framework for imple-
menting asynchronous circuits. The Balsa language comprises primitives for explicit paral-
lelism of sequential statements and communication channels. Balsa produces handshake
circuits using a process called syntax-directed translation. Handshake circuits [Ber93] imple-
ment control-driven asynchronous circuits. They are composed of handshake components
connected by channels. Each handshake component is designed to handshake with their
neighbours sequentially, conditionally or in parallel. The behaviour of handshake compo-
nents are directly related to the behaviour of CSP constructs. A handshake circuit can be
seen as direct hardware equivalent of a CSP program, controlling the data flow in a datapath.
In syntax-directed translation handshake components are selected from a small predefined
set that maps directly onto Balsa language constructs. Each handshake component has
a parameterisable gate-level implementation. The circuit gate-level netlist is generated by
applying the parameters to each component instance and composing the resulting compo-
nent gate-level netlists. This approach gives control to the designer, providing one-to-one
relation between language constructs and handshake components. However, the control
driven nature of handshake circuits imposes overheads that hurt performance sensitive ap-
plications [PTE05, BTEQ09]. Data-driven asynchronous circuits provide an interesting lower-
overhead alternative to control-driven circuits.
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Uncle [RST12] is a design flow for producing NCL circuits from RTL descriptions.
The first step in the Uncle data-driven design flow is to use a commercial synthesis tool to
produce a single-rail synchronous netlist from the RTL description, using a simple library of
gates composed of 2-input AND/OR/XOR gates, NOT gates, edge sensitive flip-flops and
level sensitive latches. The single-rail netlist is next expanded to a dual-rail netlist in the
following four steps: (i) the clock network is removed; (ii) every net (except the global re-
set) is replaced by two nets (for dual-rail encoding) and logic gates are replaced by dual-rail
NCL equivalents using predefined templates of NCL gates; (iii) single-rail latches are re-
placed by a single dual-rail latch and flip-flops are substituted by a sequence of two dual-rail
latches; Uncle dual-rail latches are implemented using a resetable NCL2W110F2 gate (a
resetable C-Element) and an NOR, 1-of-2 completion detection gate; (iv) the acknowledge
network (backward propagation path) is generated between latches. The generated dual-rail
netlist passes through optional optimisation steps that improve performance: (i) cell merg-
ing, where a subset of simple connected NCL gates is replaced by a more complex NCL
gate; (ii) retiming, a process that attempts to balance the propagation delay of the forward
and backward path by moving logic across latches; and (iii) relaxation, a process in which
NCL gates are replaced by simple combinational gates without compromising the indication
principle.

5.2 Dual-rail Channels

As discussed in Section 2.2, handshake channels allow the communication of to-
kens between entities in an asynchronous circuit. A producer sends tokens through the
channel and consumers receive it. Once a consumer receives the token, it acknowledges
the reception. A producer must wait until all consumers connected to it acknowledge the
reception of token prior to starting a new transmission.

Each channel is a interconnection between components in an asynchronous circuit.
They are analogous to wires in a single-rail netlist, i.e. a single element sends tokens to
multiple elements. But in contrast to a wire, a channel provides synchronisation between
these elements. Pulsar dual-rail expansion replaces all wires from the single-rail netlist with
channels. However, a channel is not a simple wire. A channel implementation may require
multiple wires and some logic.

To this end, this works takes advantage of SystemVerilog interfaces [SDF06]. An
interface is a SystemVerilog construct that allows abstracting interconnections on a system-
level description. They are instantiated and bound to module instances much like wires.
However, each interface bundles multiple wires that are part of the same interconnect, e.g.
bundling the tokens, address and control lines of a processor bus. Besides wires, interfaces
include modports, that allow defining how modules connect the interface, e.g. bus master or
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slave. These modports define the direction that each wire takes when the interface is bound
to a module.

SystemVerilog interface and modport are supported by current commercial synthe-
sis tools. Since an interface binds to module instances like a wire, it is straightforward to
replace a wire with an interface instance. It only requires modifying the Verilog file of the
single-rail netlist, replacing every wire declaration with an instance of the desired interface.

To exploit this, we define the drwire interface, depicted in Listing 5.1. This interface
bundles three wires that together implement a dual-rail four-phase RTZ channel: wires t
and £ encode the forward-propagating token; and the ack wire carries the back-propagating
acknowledgement.

Listing 5.1: The drwire interface.

interface drwire();
wire t, f;
wand ack;

modport in (input t, input f, output ack);
modport out (input ack, output t, output f);
endinterface // drwire

The drwire interface also features two modports. These are used by SystemVerilog
modules implementing the dual-rail expansion of components to bind with the channel: (i)
modport in is used by modules as a replacement for input ports, binding to the channel as
a consumer; and (ii) modport out is used by modules as a replacement for output ports,
binding to the channel as a producer.

Since channels here are replacements for wires, they must support multiple con-
sumers. At a given time the producer may send tokens, starting a handshake on the channel.
The token reception must be acknowledge by all consumers listening to the channel before
the producer is allowed to send more tokens. This means that the producer must receive
the acknowledgement only after all consumers have acknowledged the reception.

Sparsg and Furber [SFO1] describe in their book this situation where a channel
feeds two or more consumers, as in a fork. A fork is implemented by merging the concurrent
acknowledgement coming from different consumers with n-input C-elements, i.e. the chan-
nel acknowledgement only raises (lowers) when every consumer has raised (lowered) its
acknowledgements. An n-input C-element is commonly implemented using a tree of smaller
C-elements. This tree of C-elements is also know as the acknowledgement network, be-
cause it propagates the acknowledgement from consumers to producers in the channel.

To implement forks transparently in channels, this work uses the Verilog wand wire
type to create the acknowledgement network. Wire declared as wand is a wire that and-
reduces multiple assignments. The synthesis tool implements wand wires as n-input AND
gates, where every assignment creates a new input. Reading from a wand wire yields
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the output of the associated n-input AND gate. During synthesis, this n-input AND gate is
interpreted as an and-reduction virtual function.

As discussed in Section 3.1, virtual functions are used to select NCL or NCLP gates
during synthesis according to required protocol. By design, all channels in the virtual netlist
implement the RTZ protocol. Therefore, the virtual functions associated with the channel are
interpreted as virtual functions of NCL gates. C-elements are valid NCL gates and they can
be selected by their v-function during synthesis. The virtual function of NCL gates is equal
to their activation function.

The activation function of an n-input C-element is the and-reduction of its input,
i.e. its output changes to one when all inputs are one. Therefore, the and-reduction virtual
function is realised by an n-input C-element on RTZ. This allows creating the acknowledge-
ment network for the channel by setting the ack wire type to wand in the drwire interface
definition.

The use of drwire allows the construction of fine-grain channel networks, where
each channel represents a single dual-rail “bit”. Combinational components bind to channels
passively, they manipulate tokens and propagate acknowledgements between their inbound
and outbound channels. Conversely, sequential components bind to channels as active pro-
ducers and consumers. They consume tokens from their inbound channels and commence
handshaking on their outbound channels.

The construction of this fine-grain channel network allows handshakes to be per-
formed only where data dependency exists. Parallel independent channels in a bus can
complete their handshakes concurrently. This allows for instance that individual bits in an
adder complete handshaking as soon as their computation is ready, regardless the compu-
tation status of other bits.

5.3 A Library of Components

The synthesis of a sequential SDDS-NCL circuit with the Pulsar flows starts with
the synthesis of a single-rail netlist. This single-rail netlist comprises sequential and com-
binational components from the component library. During single-rail synthesis, these com-
ponents are presented to the synthesis tool as cell models using a Synopsys Liberty file.
However, these bear no physical layout. Instead each component is expanded by a System-
Verilog module that binds to channels implemented by the drwire interface.

Combinational components binds passively to their input and output channels. This
means that they do not complete handshakes, instead they act as a passive consumers and
producers. Combinational components combine tokens from their input channels on the
output channel. They also propagate the acknowledgement between their output and input
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channels. Conversely, sequential components are active handshaking elements that control
the propagation of tokens in the pipeline. They complete handshakes between their input
and output channels.

These SystemVerilog modules are instantiated by the virtual netlist. The content
of these modules are used during the synthesis process to implement the circuit using
the Pseudo-Synchronous SDDS-NCL template. Combinational components are expanded
using virtual functions and sequential components are expanded to pseudo-synchronous
WCHB registers. The following Sections cover the expansion of each component type.

5.3.1 Combinational Components

To understand how the expansion of a combinational element is constructed, con-
sider the expansion of a nand2 gate. This is a passive element that binds to drwire channels.
Since the drwire interface implements dual-rail RTZ encoded channels, a component ex-
pansion needs to implement adequate delay insensitive logic to manipulate dual-rail RTZ
codewords. The component corresponds to a 2-input NAND gate. The truth table for its
single-rail equivalent is depicted in Figure 5.2a. It implements the function y = —(aA b). The
implementation is not delay insensitive, as it does not differentiate intermediary computa-
tions from final computation results.

Remember the discussion about delay insensitive codes in Section 2.3. To make it
delay insensitive, it is necessary to encode the gate input and output with a delay insensitive
(DI) code. For this purpose, it is possible to use the 3NCL code presented by Fant in [Fan05].
This code introduces a null (N) codeword, alongside the traditional true (T) and false (F)
valid Boolean values. Each codeword encodes a token that propagates in channels.

The 3NCL code table of the gate is depicted in Figure 5.2b. In this expansion, the
values from the single-rail truth table are mapped to codewords of 3NCL: 1 maps to T and
0 maps to F. As a requirement of QDI circuits, logic must be transparent to the channel
handshake. This requirement implies that the state of the output channel of a combinational
element must indicate the state of its input channels. This is guaranteed by implementing
a strong-indicating component, meaning that the component output must only become valid
(T or F) when all inputs are valid and must become null (N) only when all inputs are null. To
implement a strong-indicating component, it is possible to introduce a hysteresis behaviour
to the output. This means that the component output holds its previous value unless all input
are null or all are valid. This guarantees that when a valid (null) output is detected, all inputs
are valid (null).

This 3-valued logic is not implementable using CMOS conventional gates. How-
ever, it is possible to encode 3NCL codewords using a dual-rail code. Section 2.3 reviewed
two possible dual-rail codes, each suitable to a matching protocol. The return-to-one (RTO)
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Figure 5.2: Expansion of the nand2 gate from: (a) a single-rail Boolean truth table to (b) a
3NCL code table. In the tables, (-) indicates hysteretic behaviour.

dual-rail code is employed when the channel implements the RTO protocol and the return-
to-zero (RTZ) protocol is used when the channel implements the RTZ protocol. Figure 5.3
depicts the mapping between Boolean, 3BNCL and dual-rail RTZ and RTO codes.

Dual-Rail

Boolean | 3NCL | RTZ | RTO
t f|t f

1 T 1 0|0 1

0 F 0O 1/1 0

N O O|1 1

Figure 5.3: Map between codes. Only valid codewords are depicted.

A dual-rail code uses two wires to encode tokens. Of course there are 4 possible
combination of Boolean values that can be encoded with 2 wires. However, DI codes require
that no codeword is contained in another [Ver88], which limits possible DI codewords to
2. Dual-rail RTZ is a bitwise one-hot code (each bit is one-hot coded), where each valid
codeword is represented by rising its respective rail and the null codeword is represented
by setting both rails low. Rising both rails is considered an invalid codeword, this invalid
codeword can be use during the expansion as a “don’t-care” to minimise logic.

The code table for the dual-rail RTZ encoding of the NAND2 gate is depicted in
Figure 5.4. This table establishes how output y behaves as a function of inputs a and b. On
the left-hand side it depicts SNCL codewords and on the right-hand side appears their dual-
rail RTZ equivalents. Each line establishes possible output values for each input minterm.
There are three possibilities contemplated for each output rail: (-) hold the previous value;
(1) the output is high; (0) the output is low. Note that it requires 16 minterms to cover the
4 input rails, but there are only 9 valid codewords combinations. The missing minterms can
be associated to any value on the output rails. This is not a problem since invalid codewords
are not expected to occur during normal circuit operation and this allows us to simplify the
circuit implementing this code table.

It is interesting to analyse each line type in the code table. The first line captures
the reset phase of the component, when both inputs are null the output rails are driven low.
The next four lines state that if any of the inputs are null the output must hold its previous
value. In the next four lines all inputs are valid. These lines capture the behaviour of the
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3NCL Dual-rail RTZ
a b|lylat af bt bf|yt yf
N NIN|O O O 0|0 O
N F|-10 0 O 1] - -0
N T|-/0 0 1 0] - -
F N/ -]0 1 0 O -/0
T N|-|1 0 O 0| - -
F F|T|0 1 0 1 1 -/0
F T, 70 1 1 0] 1 -0
T F|T|1 0 O 1|1 -0
T TIF{|1 0 1 0]-/0 1

Figure 5.4: Dual-rail RTZ code table of the NAND2 gate with equivalent 3NCL codewords.
Here, (-) means hold the previous value and (-/0) means that either: hold the previous value,
or set it low.

component evaluation phase. When the component is expected to set the output to T it
drives the true rail high and when evaluating to F it drives the false rail high.

Note that some lines indicate that one of the output rails can either hold its previous
value or go to a certain specific value. This is allowed because the protocol alternates
evaluation and reset phases, thus guaranteeing that under correct operating condition the
value of some output rails can be assumed. For instance, the reset phase always resets
the rails to a known null value prior to the evaluation phase. Therefore, driving a single rail
and holding the state of the other during evaluation is enough to produce a valid dual-rail
codeword on the output. A similar situation occurs on the reset phase, when the evaluation
is known to not have changed a certain output rail. For instance, in the gate in question, the
false rail is only risen when both input codewords are T, therefore it must only hold its state
on the reset phase if one of the inputs are T. If one input is F and the other is N, it is safe to
assume that the false output rail is 0.

From this code table it is possible to establish two hysteretic functions, each im-
plementing the behaviour of an output rail. Remembering from Section 3.1, an hysteretic
function can be described using three minterm sets: (i) the ON-set contain all minterms that
force the output high (1); (ii) the OFF-set contains all minterms that force the output low (0);
and (iii) the HOLD-set contain all minterms that keep the previous value in the output (-).
The output rail functions are depicted in Figure 5.5. Each of them captures the behaviour
of the output rails in the code table. These functions are minimised, but they still respect
the values on the code table. For instance, the function of the output rail, depicted in Fig-
ure 5.5a, depends only on two variables but it satisfies all values associated with the false
rail on Figure 5.4.

Functions operating on the channel must by strictly unate. A strictly unate hysteretic
function must change its output in response only to one direction of stimuli on its input.
Seeing that during the reset phase the rails of a channel are driven in one direction and
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Figure 5.5: Truth tables for the output rail functions: (a) false rail; (b) true rail. Here, (-)
represents hysteretic behaviour and (?) represents that the value is a “don’t-care”.

during the evaluation phase they are driven in the opposite direction. For instance, when the
channel implements a dual-rail RTZ code, during the reset phase all rails go low to encode
a spacer and on the evaluation phase a single rail goes high to encode valid data. Both our
output rail functions satisfy this requirement.

The logic described by the output rail functions can be realised using any QDI tem-
plate that supports the required protocol. However, the Pulsar Flow uses standard EDA tools
to implement SDDS-NCL circuits. Although a hysteretic function describes the behaviour of
a SDDS-NCL circuit at both reset and evaluation phases, they are not supported by stan-
dard EDA tools. Remembering Section 3.1, SDDS-NCL uses virtual functions which allow
standard EDA tools to select NCL and NCL+ gates. To implement the logic it is necessary
to map hysteretic functions to virtual functions.

A virtual function is described by only two sets of minterms: the ON-set is the set
of minterms that drive the output high; and the OFF-set is the set of minterms that drive the
output low. We say that a virtual function preserves the ON-set (OFF-set) of a hysteretic
function when their ON-sets (OFF-sets) are equivalent. Contrary to a hysteretic function, a
virtual function does not have a HOLD-set. If the HOLD-set is not empty, the virtual function
cannot preserve both ON-set and OFF-set. Therefore, when mapping an hysteretic function
to a virtual function one must choose to preserve either the ON-set or the OFF-set and
merge the HOLD-set to the set chosen not to be preserved.

A virtual function must capture the distinctive behaviour of the circuit evaluation
phase. When using the RTO protocol the circuit reset phase is characterised by its hysteretic
function ON-set and its evaluation phase by the OFF-set. Conversely, when using the RTZ
protocol the circuit reset phase is characterised by its hysteretic function OFF-set and the
evaluation phase by its ON-set. Therefore, the virtual function of a circuit implementing the
RTZ protocol preserves the ON-set of its hysteretic function and the virtual function of a
circuit implementing the RTO protocol preserves its OFF-set.
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The example output rail functions are hysteretic functions that describe a circuit
implementing the RTZ protocol. Therefore, the virtual functions for its output rails must pre-
serve the ON-set of the hysteretic function and merge the HOLD-set with the OFF-set. The
virtual functions for these output rails are depicted in Figure 5.6. Here, each function rises
its output under the same input as the hysteresis functions. However, under the conditions
that the hysteresis function holds its output, the virtual function drives its output low. This
is not an issue, since the fix X-Netlist algorithm guarantees that the reset phase is correctly
implemented.

at af bt bf]|yt
?7 0 7?7 00
at o | A 0 0 ? 10
o 0 0 ?7 1. 0 0|0
1' 111 ?2 1?2 1|1
?2 1 1 ? 11
(a) False rail. 1 ? ? 1 1
(b) True rail.

Figure 5.6: Truth tables for the output rail virtual functions: (a) false rail; (b) true rail. Here,
(?) represents that the input value is a “don’t-care”.

To map virtual functions during synthesis, these are represented as Boolean ex-
pressions. Each of these expressions are assigned to an output rail in the expansion mod-
ule. This module, depicted in Listing 5.2, is implemented using SystemVerilog. The ports
for the module are channels implemented using drwire interfaces. Input ports are declared
using the drwire. in modport and outputs are declared using drwire.out modport. The ac-
knowledgement of the output channel is connected directly to the acknowledgement of input
channels. This module is instantiated by the virtual netlist during the sequential SDDS-NCL
synthesis.

Listing 5.2: The nand2 expanded module.

module nand2
(drwire.in a,
drwire.in b,
drwire.out y);

assignh y.t = a.f & b.f |
a.f &b.t |
a.t & b.f;
assigh y.f = a.t & b.t;
assignh a.ack = y.ack;
assign b.ack = y.ack;

endmodule // nand2
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However, to construct the virtual netlist, it is first necessary to synthesise a single-
rail netlist. This single-rail netlist instantiates standard cells by name. The virtual netlist
is a simple textual transformation of the single-rail netlist that preserves the name of the
instantiated cells. Therefore, for the virtual netlist to instantiate components, a cell with the
same name must be selected during the single-rail synthesis. For this reason, components
are modelled as cells in the component library. This component library is presented to the
synthesis tool as a Liberty file. Table 5.1 presents the list of available components in the
library. nand2 and nor2 are the most fundamental components, paired by the inv they can
generate any combinational logic. xor2 is provided to allow efficient implementations of
arithmetic logic and buff is provided to allow forking a channel.

Component Rail  Virtual Function Transition Virtual Delay
nando True y.t=(afAb.fyv(afAb.t)Vv(atnb.f) Rise 20 ps
False y.f=a.tAnb.t Fall 10ps
True y.t=afAb.f Rise 10ps
nor2 False y.f=(atAb.t)v(atAb.f)v(afAab.t) Fall 20 ps
<or2 True y.t=(a.tAb.f)yv(afAb.t) Rise 15ps
False y.f=(a.tAb.t)Vv(afAb.f) Fall 15ps
iny True y.t=af Rise Ops
False y.f=a.t Fall Ops
True y.t=at Rise Ops
buft False y.f=a.f Fall 0ps

Table 5.1: Combinational gates of the component library.

The synthesis tool is driven by timing, it attempts to synthesise the circuit with the
smallest area that meets the timing constraint. This work takes advantage of this to guide
the single-rail synthesis flow to produce a virtual netlist that is simpler to synthesise. For
that, virtual delay and area values are assigned to combinational elements of the compo-
nent library, according to the complexity of their virtual function expansions. This heuristics
attempts to produce an expanded dual-rail netlist with simpler virtual functions for each rail.

Table 5.1 also presents the virtual delay of combinational components in the li-
brary. The virtual delay corresponding to the true rail virtual function is expressed in the rise
transition. Conversely, the virtual delay corresponding to the false rail is expressed in the fall
transition. The timing estimations are based on the minimal number of 2-input gates required
to activate the virtual function in a disjunctive normal form, for each OR gate is attributed a
5ps delay and for each AND gate is attributed a 10 ps delay. For instance, consider that
the nand2 gate, activating its true rail virtual function requires activating one AND gate and
two OR gates, totalling 20 ps. In contrast, the inv component, when using dual rail code, is
basically two crossed wires, it does not introduce any additional logic to channels, therefore
it has 0-delay.
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5.3.2  Sequential Components

Another class of components used during the dual-rail expansion are sequential
components. These implement registers in asynchronous pipelines. They are modelled as
flip-flops on the single-rail synthesis, allowing standard synthesis tools to instantiate them
from canonical RTL constructions. The sequential components expand to dual-rail pseudo-
synchronous WCHB registers, providing endpoints to be used during the sequential SDDS-
NCL synthesis. Sequential elements bind to drwire channels actively, performing hand-
shake on their input and output channels. There are three sequential components in the
Library: (i) the dff half-buffer dual-rail RTZ register; (ii) the dffr resetable full-buffer com-
ponent; and (iii) the dffs settable full-buffer component. These components are explored in
the next paragraphs.

From a high-level perspective, registers allow sequential parallelism. They control
the propagation of tokens in the pipeline, allowing subsequent stages to perform handshake
concurrently. A half-buffer register achieves this by allowing its input and output channels
to be in opposite handshake phases. The half-buffer register latches tokens, either valid or
null, until both channels finish their handshake phase. This is controlled by incoming output
acknowledgement and data availability in the inputs. When the register latches a new token
on its output channel, it acknowledges the reception to the channel, thus allowing a new
handshake phase to occur.

The implementation of a half-buffer dual-rail RTZ register is depicted in Figure 5.7a.
The half-buffer register is the simplest sequential component and is the base for constructing
pipelines. It connects to two channels, an input channel (d) and an output channel (q). The
half-buffer consists of: two resetable C-Elements, here named using the NCL-style threshold
gate denomination RNCL20F2; one OR gate (NCL10OF2); and an inverter. When the output
channel acknowledges the reception of a null (valid) token, the resetable C-Elements can
latch an incoming valid (null) token. This register operates on RTZ channels, valid token
codewords are one-hot and null token codewords are presented by all bits in 0. Therefore,
an OR gate acknowledges when either a valid or null token has been latched in the input
channel. A null token is acknowledged by lowering the ack wire of the input channel and a
valid token is acknowledged by rising the same signal. The inverter on the output ack wire
enables the alternation between reset and evaluation phases.

During initialisation it is important to place the circuit in a known state. This is due
the fact that all components in the circuit consist of gates with hysteresis, which start at
unknown initial states. A QDI circuit with an unknown state may not operate properly, as
it may contain invalid codewords and possibly inconsistent handshake signal values on its
channels. Both RTZ and RTO protocols require that combinational components outputs are
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null prior to entering the evaluation phase. Thus, it is important to initialise all combinational
components in the circuit by propagating the null codeword.

For the reason stated above, half-buffer registers employ resetable C-Elements
that initialise their output channels to null codewords. Null codewords propagate through
combinational components in cascade, placing the forward propagation logic in a well-known
state. Similarly, the backward propagation logic on the input channel must also be initialised.
When the register initiates the output rails low, the OR gate sets the acknowledgement signal
of the input channel low. This signals that the channel is ready to receive new data, an
information which cascades in the backward propagation of the inbound channel, initialising
it. This is evident when the HBCN model depicted in Figure 5.7b is analysed. Here, the
inbound channel is represented by four places preceding the register and the outbound by
four places succeeding the register. The initial marking represents the initial state of the
channel, it marks that both channels are ready to accept new data tokens.

< g.ack in

reg out

RNCL20F2

NCL10F2

RNCL20F2

in' reg’ out'
(b) The half-buffer HBCN model.

reset

(a) Implementation schematic.

Figure 5.7: The dff half-buffer dual-rail register: (a) schematic; (b) HBCn model.

Sometimes it is necessary to initialise a circuit with data. For example, a counter
must initialise to a known data value. This implies initialising some channels with valid
tokens. This can be achieved using the full-buffer components depicted in Figure 5.8. The
settable full-buffer component, depicted in Figure 5.8a, places a valid true data token in the
circuit. The resetable full-buffer component, depicted in Figure 5.8b, places a valid false data
token in the circuit. A full-buffer component can simultaneously hold a valid and a null token.
This separates their inbound and outbound channels by a full handshake cycle.

The full-buffer component comprises three half-buffer registers in sequence. These
are required to place valid and a null token in the pipeline while correctly initialising the in-
bound and outbound channels. Propagating valid tokens in a circuit at an unknown state
would yield invalid results. Therefore, the first and the last are regular half-buffer registers
that reset to null. These two registers are responsible for initialising the inbound and out-
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bound channels. Due to the provided isolation, the middle register can safely reset to a
valid token without compromising circuit initialisation. This is implemented by instantiating a
settable C-Element (SNCL20F2) for either the true or the false rail depending on the com-
ponent.

The behaviour of full-buffer components is further evidenced by an analysis of its
HBCN model, depicted in Figure 5.8c. Here, the inbound and outbound channels are ini-
tialised to a state where both are ready to accept new tokens, similar to the initial state of
the half-buffer register. However, two channels internal to the component are initialised to a
valid and a null tokens. These internal channels contain no logic, thus they do not need to
be initiated by a null token.

The settable and resettable C-elements employed in full-buffer components are
pseudo-flop instances. Remembering Section 3.2, a pseudo-flop allows breaking the cycles
of WCHB pipelines and using STA to analyse the forward and backward propagation paths.
This is important during the sequential SDDS-NCL synthesis. However, a commercial EDA
tool cannot infer these gates from virtual functions, as it does with NCL and NCLP gates
employed in combinational component expansions. Therefore, these pseudo-flops are man-
ually instantiated in the SystemVerilog module implementing the component expansion. This
makes the implementation of sequential component expansions technology dependent.

Just as in the case of combinational components, the sequential components are
also instantiated by name during the single-rail synthesis. They are modelled as D-type
flip-flops in the component library Liberty file. The settable and resettable full-buffer compo-
nents are modelled as flops with preset and reset, respectively. The half-buffer register is
modelled as a D-type flip-flop with neither reset nor preset control signals. This approach
contrasts with Uncle [RST12], where half-buffer registers are modelled as latches. Note that
according to the author’s experience, standard EDA tools do not support retiming latch cir-
cuits. Therefore, modelling sequential components as flops additionally enables performing
retiming during single-rail synthesis. This balances the amount of components employed in
each pipeline stage and opens new opportunities for optimisation in early synthesis steps.

5.4 A Case Study: Applying the Dual Rail Expansion Flow

After presenting the building blocks of the design capture and dual-rail expansion
processes, it is now possible demonstrating the dual rail expansion flow with a simple ex-
ample. This example assumes the synthesis of a 2-bit 2-stage adder, an example simple
enough for the reader to follow through all steps of the expansion.

The starting point for synthesis is the Verilog RTL description. Listing 5.3 depicts
the example RTL. The description must contain a clock port named c1k. This clock is used
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to infer rise-sensitive flops that translate to sequential components. Optionally, an active-low
reset port named reset can be used to infer full-buffer components.

Listing 5.3: Input RTL example.

module adder(a, b, out, clk);
input wire [1:0] a, b;
output reg [1:0] out;
input wire clk;

always @(posedge clk)
out <= a + b;
endmodule // adder

The RTL code is synthesised using Genus with a nought period clock constraint
and retiming. The script used for this synthesis is listed in Appendix A. The output of the
single-rail synthesis is the netlist depicted in Listing 5.4. It instantiates the components by
name. Note the number of dff instances, there should be enough to have only a two-bit
register. However, Genus retiming engine considered advantageous to break one of the
flops in two to balance logic between the pipeline stages (see the code lines starting with dff
retime_).

Listing 5.4: Single-rail netlist example, reordered for clarity.

module adder(a, b, out, clk);
input [1:0] a, b;
input clk;
output [1:0] out;
wire [1:0] a, b;
wire clk;
wire [1:0] out;
wire n 0, n1, n2, n3, n 4, n5;
xor2 g176__4296(.a (a[0]), .b (b[0]), .y (n_3));
nand2 g178__1474(.a (a[0]), .b (b[0]), .y (n_1));
dff out_reg_O0_(.ck (clk), .d (n_3), .q (out[0]));
dff retime_s1_2_reg(.ck (clk), .d (n_1), .q (n_4));
inv g179(.a (a[1]), .y (n_0));
xor2 g177__3772(.a (n_0), .b (b[1]), .y (n_2));
dff retime_s1_1_reg(.ck (clk), .d (n_2), .q (n_5));
xor2 g172_8780(.a (n_4), .b (n_5), .y (out[1]));
endmodule

From the single-rail netlist, the DRExpander program constructs a virtual netlist.
Appendix B lists the Haskell source code for this program. DRExpander parses the Verilog
netlist, replaces every wire in the netlist by instances of the drwire interface. Buses of wires,
such as a, b and out are broken in multiple drwire instances.

DRExpander is also responsible for recreating the module ports. Each port of the
single-rail netlist is expanded to three ports suffixed by _t, _f and _ack, which are respec-
tively the true, false and acknowledgement wires of the channel. The DRExpander connects
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these ports to the internal wires of the respective drwire instance. This provides a consistent
interface for the asynchronous module to connect with the external world.

If the single-rail netlist does not include a reset port, the DRExpander creates one
and connects it to all sequential components in the virtual netlist. This is important to reset
half-buffer registers. Remember that half-buffer registers are modelled as D-flip-fops with no
reset. On the single-rail netlist, the dff instances do not contain a reset pin. However, their
expanded module requires a reset to function properly.

Finally, the virtual netlist contains a clock port c1k that connects to all its sequential
components. This is the pseudo-clock signal, used to guide the synthesis during the se-
qguential pseudo-synchronous SDDS-NCL flow. This signal is not implemented in the final
circuit, it is only present to guide EDA tools to perform the QDI synthesis correcily.

Listing 5.5: Virtual netlist example, edited for clarity.

0 NOoO oA WD =

W W W NN MNDMNMDMNDDMNDNDNDDNDDODDND 222 d A a
N = O © 00 NO O~ WN - O O© 0o NO” OO~ wNhN = o o

module adder

(a_t, a_f, a_ack,
b t, b f, b_ack,
out_t, out_f, out_ack,

clk, reset);
input [1:0] a_t, a_f;
output [1:0] a_ack;
input [1:0]
output [1:0] b_ack;
output [1:0] out_t, out_f;
input [1:0]

input

// Instances of drwire for internal channels

drwire
drwire
drwire
drwire
drwire
drwire
drwire
drwire
drwire
drwire
drwire
drwire

// Connections between external ports and drwire channels

clk,

n_0 (
n_1 (
n_2 (
n_3 (
n_4 (
n_5 (
a0 (
a1 (
b 0 (

(

0

1

b

o

_t, b_f;

ut_ack;

reset;

assign a_0.t = a_t[0];
assign a_0.f = a_f[0];
assign a_ack[0] = a_0.ack;

assign

a 1.t

a_t[1];
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assign a_1.f = a_f[1];
assign a_ack[1] = a_1.ack;
assign b_0.t b _t[0];
assign b_0.f = b_f[0];
assign b_ack[0] = b_0.ack;
assign b_1.t = b_t[1];
assigh b_1.f = b_f[1];

assign b_ack[1] = b_1.ack;
assign out_t[0] = out_0.t;
assign out_f[0] = out_0.f;
assign out_0.ack = out_ack[0];

assign out_t[1] out_1.t;
assign out_f[1] out_1.f;
assign out_1.ack = out_ack[1];

// Component Instances

xor2 g176_ 4296 (.a(a_0), .b(b_0), .y(n_3))
nand2 g178__1474 (.a(a_0), .b(b_0), .y(n_1)
dff out_reg_0_ (.reset(reset), .ck(clk), .d
dff retime_s1_2 reg (.reset(reset), .ck(clk
inv g179 (.a(a_1), .y(n_0));

xor2 g177__3772 (.a(n_0), .b(b_1), .y(n_2)
dff retime_s1_1_reg (.reset(reset), .ck(cl
xor2 g172_ 8780 (.a(n_4), .b(n_5), .y(out_

endmodule // adder

), -d(n_2), .q(n_5));
)) s

- x —

5.5 The HBCN Construction and the Cycle Time Constraining

The Pulsar flow provides a tool that computes the pseudo-synchronous constraints
used during the sequential pseudo-synchronous synthesis. This tool computes the HBCN
model that is instrumental to automatically produce the constraints to use during the QDI
synthesis flow.

The HBCN model is calculated from a structural graph extracted from the single-rail
netlist. The structural graph is a directed graph that describes the single-rail netlist timing
paths. In this graph, vertices represent sequential components or ports, and each edge in
the graph represents a channel connecting two registers. Since combinational components
are transparent to the handshaking process, they are abstracted in this representation. Each
vertex has a name, identifying the component it represents. There are three types of ver-
tices: (i) Port, as the name implies, used to identify ports; (ii) NullReg, used to identify
half-buffer components; and (iii) DataReg, used to identify full-buffer components. The struc-
tural graph adjacency list is exported to a file during single-rail synthesis. Each line of this
file represents a vertex containing its type, name and a list of successor vertices names.
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Recalling Section 4.3, an HBCN has a formal representation and a marked graph
representation. Using the HBCN formal representation, each register or port corresponds to
a transition pair; each channel is a relation between two transition pairs; and each channel
has a initial state. The rules governing the relationship between the HBCN formal represen-
tation and its characteristic marked graph is covered in Definition 4.3.1.

Since the expansion process is well-defined, it is possible to use the structural
graph to construct the HBCN. To this end, it suffices to traverse the structural graph, con-
structing the HBCN based on the expansion of the components represented by the vertices.
For each Port vertex a single transition pair is created, which models the (ideal) environ-
ment'. Each NullReg vertex represents a half-buffer register, which is modelled by a tran-
sition pair. Each DataReg vertex represents a full-buffer component. These comprise three
registers in sequence. This is modelled with a sequence of three transitions pairs connected
by two channels, one channel initialising to req,,s and the others initialising to reqga:,. For
each edge, a channel is created from the last transition pair corresponding to the source
vertex to the first transition pair corresponding to the target vertex.

To understand this process, it is possible to rely on a simple example. The RTL
for the example circuit is depicted in Listing 5.6. This is a simple circuit, a 3-stage full-buffer
loop, an xor gate and a half-buffer output register. The virtual netlist for this circuit is depicted
in Listing 5.7. This was generated using Genus and the DRExpander program, as discussed
in the previous Section. The associated structural graph is depicted in Listing 5.8. This was
automatically generated by a TCL script running within Genus at the end of the single-rail
synthesis. The TCL script code is depicted in Appendix A.

Listing 5.6: RTL for the simple loop example circuit.

module xorexp(in, out, clk, reset);
input wire in;
output reg out;
input wire clk, reset;
reg r;

always @(posedge clk or negedge reset)

if (lreset)

r <= 0;
else

r <= in*r;

always @(posedge clk)
out <= r;
endmodule // xorexp

Here, it is possible to notice the relationship between a virtual netlist and the as-
sociated structural graph. In the virtual netlist, the channel from the in port connects to the

' An ideal environment provides a input token immediately upon request by any circuit input, and immediately
consumes every token produced at any circuit output.
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Listing 5.7: Virtual netlist for the simple loop example circuit.

module xorexp(in_t, in_f, in_ack, out_t, out_f, out_ack, clk, reset);
input clk, reset;
input in_t, in_f;
output in_ack;
input out_t, out_f;
output out_ack;
drwire in ();
drwire n_0

(
drwire out ();
drwire r ();
assigh in.t = in_t;
assign in.f = in_f;

assign in_ack = in.ack;

assignh out.t ut_t;

assign out. f ut_f;

assign out_ack = out.ack;

dffr r_reg (.rb(reset), .ck(clk), .d

xor2 g19_ 8780 (.a(r), .b(in), .y(

dff out_reg (.reset(reset), .ck(cl
endmodule // xorexp

=0
=0

xor2 combinational component, the output channel of which connects to the r_reg full-buffer
sequential component. This path is covered by in first line of the structural graph, where the
in port is declared and r_reg is assigned as its successor. r_reg is a full-buffer sequen-
tial component. The output channel feeds both the out_reg half-buffer register and the xor2
combinational component. The xor2 component in turn feeds back the r_reg forming a loop.
This is expressed in the third line of the structural graph, where out_reg is declared as a
full-buffer sequential component and lists out_reg and r_reg itself as its successors. The
fourth line declares out_reg as a half-buffer register and lists the output port out as its sole
successor. Finally, the last line declares the output port out. Since it is an output port, this
is a leaf node in the graph. Accordingly, its successor list is empty.

Listing 5.8: Structural graph for the simple loop example circuit.

Port "port:xorexp/in" ["inst:xorexp/r_reg"]
DataReg "inst:xorexp/r_reg" ["inst:xorexp/out_reg","inst:xorexp/r_reg"]
NullReg "inst:xorexp/out_reg" ["port:xorexp/out"]

Port "port:xorexp/out" []

Figure 5.9 depicts the HBCN constructed from this structural graph. This HBCN
explicitly shows the 3-stage full-buffer component forming a loop, the input and output tran-
sition pairs and the half-buffer register transition pair between the loop and the output. Each
channel is represented by four places and the marking indicates the initial state of the chan-
nels. A merge between two channels, such as the one occurring inside the xor2 component,
is captured by the arrival of multiple channels to the same transition pair. This occurs e.g.
between in, r_reg/sout and r_reg. A fork happens when a channel feeds multiple compo-
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nents, which is captured in the HBCN as multiple channels leaving a transition pair. This is
depicted between r_reg/sout, out_reg and r_reg.

out' out_reg' .

®
RN
C I\

out out_reg

")

e%'

Figure 5.9: The HBCN extracted from the structural graph depicted in Listing 5.8.

After constructing the HBCN, it is possible to apply the linear programming (LP)
technique presented in Section 4.5 to compute the pseudo-clock and timing exceptions. It
is desirable to use the pseudo-clock to constrain the delays of combinational components
in the circuit. However, the full-buffer component contains two internal channels comprising
no logic. These internal channels can be individually constrained to a minimal delay value.
This minimal delay is parameterisable and depends on the target technology, but it must be
enough to cover the delay of a C-element and a NOR gate. The constraining of these paths
to a minimal delay affects the computation of the pseudo-clock. As discussed in Section 4.5,
if these take part in a critical cycle, they can allow the pseudo-clock constraint to assume a
more relaxed value.

The process of computing the timing constraints is handled by the hbcnConstrainer
program. The Haskell source code for this program is listed in Appendix C. This program
computes the HBCN from the structural graph. It uses the HBCN to define the system of
arrival equations constraining the cycle time to a specified target cycle time constraint. The
program invokes the GLPK [Fre12] LP solver to solve the system of arrival equations. From
the solution provided by GLPK, it produces a Synopsys design constraints (SDC) file. This
SDC file contains the pseudo-clock constraint used during the synthesis of the virtual netlist.
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Listing 5.9 depicts the SDC file that constrains the example circuit to a cycle time
of 2ns. This file was generated automatically by the hbcnConstrainer program from the
structural graph in Listing 5.8 The first three lines define the pseudo-clock constraint. The
remaining lines constrain the internal channels of the full-buffer components. The program
was parameterised to constrain these paths to 100 ps.

Listing 5.9: SDC file to constrain the simple loop example cycle time to 2 ns.

create_clock —period 0.500 [get_port {clk}]

set_input_delay —clock {clk} 0 [all_inputs]

set_output_delay —clock {clk} 0 [all_outputs]

# Forward Delay from inst:xorexp/r_reg to inst:xorexp/r_reg/sin

set_max_delay —from [get_pin —of_objects {inst:xorexp/r_reg/t} —filter
{is_clock_pin==true}] —to [get_pin —of_objects {inst:xorexp/r_reg/sin/t}
—filter {(is_clock_pin==false) && (direction==in)}] 0.100

set_max_delay —from [get_pin —of objects {inst:xorexp/r_reg/f} —filter
{is_clock_pin==true}] —to [get_pin —of_objects {inst:xorexp/r_reg/sin/f}
—filter {(is_clock_pin==false) && (direction==in)}] 0.100

set_max_delay —from [get_pin —of_objects {inst:xorexp/r_reg/t} —filter
{is_clock_pin==true}] —to [get_pin —of_objects {inst:xorexp/r_reg/sin/f}
—filter {(is_clock_pin==false) && (direction==in)}] 0.100

set_max_delay —from [get_pin —of_objects {inst:xorexp/r_reg/f} —filter
{is_clock_pin==true}] —to [get_pin —of_objects {inst:xorexp/r_reg/sin/t}
—filter {(is_clock_pin==false) && (direction==in)}] 0.100

# Forward Delay from inst:xorexp/r_reg/sin to inst:xorexp/r_reg/sout

set_max_delay —from [get_pin —of_objects {inst:xorexp/r_reg/sin/t} —filter
{is_clock_pin==true}] —to [get_pin —of_objects {inst:xorexp/r_reg/sout/t}
—filter {(is_clock_pin==false) && (direction==in)}] 0.100

set_max_delay —from [get_pin —of_objects {inst:xorexp/r_reg/sin/f} —filter
{is_clock_pin==true}] —to [get_pin —of_objects {inst:xorexp/r_reg/sout/f}
—filter {(is_clock_pin==false) && (direction==in)}] 0.100

set_max_delay —from [get_pin —of_objects {inst:xorexp/r_reg/sin/t} —filter
{is_clock_pin==true}] —to [get_pin —of_objects {inst:xorexp/r_reg/sout/f}
—filter {(is_clock_pin==false) && (direction==in)}] 0.100

set_max_delay —from [get_pin —of_objects {inst:xorexp/r_reg/sin/f} —filter
{is_clock_pin==true}] —to [get_pin —of_objects {inst:xorexp/r_reg/sout/t}
—filter {(is_clock_pin==false) && (direction==in)}] 0.100

# Backward Delay from inst:xorexp/r_reg/sin to inst:xorexp/r_reg

set_max_delay —from [get_pin —of_objects {inst:xorexp/r_reg/sin/t} —filter
{is_clock_pin==true}] —to [get_pin —of_objects {inst:xorexp/r_reg/t} —filter
{(is_clock_pin==false) && (direction==in)}] 0.100

set_max_delay —from [get_pin —of_objects {inst:xorexp/r_reg/sin/f} —filter
{is_clock_pin==true}] —to [get_pin —of_objects {inst:xorexp/r_reg/f} —filter
{(is_clock_pin==false) && (direction==in)}] 0.100

set_max_delay —from [get_pin —of_objects {inst:xorexp/r_reg/sin/t} —filter
{is_clock_pin==true}] —to [get_pin —of_objects {inst:xorexp/r_reg/f} —filter
{(is_clock_pin==false) && (direction==in)}] 0.100
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set_max_delay —from [get_pin —of_objects {inst:xorexp/r_reg/sin/f} —filter
{is_clock_pin==true}] —to [get_pin —of_objects {inst:xorexp/r_reg/t} —filter
{(is_clock_pin==false) && (direction==in)}] 0.100

# Backward Delay from inst:xorexp/r_reg/sout to inst:xorexp/r_reg/sin

set_max_delay —from [get_pin —of_objects {inst:xorexp/r_reg/sout/t} —filter
{is_clock_pin==true}] —to [get_pin —of_objects {inst:xorexp/r_reg/sin/t}
—filter {(is_clock_pin==false) && (direction==in)}] 0.100

set_max_delay —from [get_pin —of_objects {inst:xorexp/r_reg/sout/f} —filter
{is_clock_pin==true}] —to [get_pin —of_objects {inst:xorexp/r_reg/sin/f}
—filter {(is_clock_pin==false) && (direction==in)}] 0.100

set_max_delay —from [get_pin —of_objects {inst:xorexp/r_reg/sout/t} —filter
{is_clock_pin==true}] —to [get_pin —of_objects {inst:xorexp/r_reg/sin/f}
—filter {(is_clock_pin==false) && (direction==in)}] 0.100

set_max_delay —from [get_pin —of_objects {inst:xorexp/r_reg/sout/f} —filter
{is_clock_pin==true}] —to [get_pin —of_objects {inst:xorexp/r_reg/sin/t}
—filter {(is_clock_pin==false) && (direction==in)}] 0.100

The hbcnConstrainer program can optionally generate timing exceptions for paths
with free slack, allowing more relaxed timing constraints on paths containing free slack.
The previous example was generated with the option to generate these timing exceptions
disabled. Listing 5.10 depicted the SDC generated by hbcnConstrainer to constraint the
same circuit to the cycle time of 2 ns with the option to relax the paths with free slack enabled.
Notice that the pseudo-clock constraint does not change when enabling this option. Here,
the maximum delay of each propagation path containing free slack is set by a set_max_delay
timing exception. In this particular case, only the propagation paths internal to the full-buffer
components have free slack. This is not very useful, but in more complex circuits this free
slack could relax some logic stages.

Listing 5.10: SDC file to constrain the simple loop example cycle time to 2ns.

create_clock —period 0.500 [get_port {clk}]

set_input_delay —clock {clk} 0 [all_inputs]

set_output_delay —clock {clk} 0 [all_outputs]

# forward delay from inst:xorexp/r_reg to inst:xorexp/r_reg/sin

set_max_delay —from [get_pin —of_objects {inst:xorexp/r_reg/t} —filter
{is_clock_pin==true}] —to [get_pin —of_objects {inst:xorexp/r_reg/sin/t}
—filter {(is_clock_pin==false) && (direction==in)}] 0.600

set_max_delay —from [get_pin —of objects {inst:xorexp/r_reg/f} —filter
{is_clock_pin==true}] —to [get_pin —of_objects {inst:xorexp/r_reg/sin/f}
—filter {(is_clock_pin==false) && (direction==in)}] 0.600

set_max_delay —from [get_pin —of_objects {inst:xorexp/r_reg/t} —filter
{is_clock_pin==true}] —to [get_pin —of_objects {inst:xorexp/r_reg/sin/f}
—filter {(is_clock_pin==false) && (direction==in)}] 0.600

set_max_delay —from [get_pin —of_objects {inst:xorexp/r_reg/f} —filter
{is_clock_pin==true}] —to [get_pin —of_objects {inst:xorexp/r_reg/sin/t}
—filter {(is_clock_pin==false) && (direction==in)}] 0.600

# forward delay from inst:xorexp/r_reg/sin to inst:xorexp/r_reg/sout
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set_max_delay —from [get_pin —of_objects {inst:xorexp/r_reg/sin/t} —filter
{is_clock_pin==true}] —to [get_pin —of_objects {inst:xorexp/r_reg/sout/t}
—filter {(is_clock_pin==false) && (direction==in)}] 0.900

set_max_delay —from [get_pin —of_objects {inst:xorexp/r_reg/sin/f} —filter
{is_clock_pin==true}] —to [get_pin —of_objects {inst:xorexp/r_reg/sout/f}
—filter {(is_clock_pin==false) && (direction==in)}] 0.900

set_max_delay —from [get_pin —of_objects {inst:xorexp/r_reg/sin/t} —filter
{is_clock_pin==true}] —to [get_pin —of_objects {inst:xorexp/r_reg/sout/f}
—filter {(is_clock_pin==false) && (direction==in)}] 0.900

set_max_delay —from [get_pin —of_objects {inst:xorexp/r_reg/sin/f} —filter
{is_clock_pin==true}] —to [get_pin —of_objects {inst:xorexp/r_reg/sout/t}
—filter {(is_clock_pin==false) && (direction==in)}] 0.900

# backward delay from inst:xorexp/r_reg/sin to inst:xorexp/r_reg

set_max_delay —from [get_pin —of_objects {inst:xorexp/r_reg/sin/t} —filter
{is_clock_pin==true}] —to [get_pin —of_objects {inst:xorexp/r_reg/t} —filter
{(is_clock_pin==false) && (direction==in)}] 0.400

set_max_delay —from [get_pin —of_objects {inst:xorexp/r_reg/sin/f} —filter
{is_clock_pin==true}] —to [get_pin —of_objects {inst:xorexp/r_reg/f} —filter
{(is_clock_pin==false) && (direction==in)}] 0.400

set_max_delay —from [get_pin —of_objects {inst:xorexp/r_reg/sin/t} —filter
{is_clock_pin==true}] —to [get_pin —of_objects {inst:xorexp/r_reg/f} —filter
{(is_clock_pin==false) && (direction==in)}] 0.400

set_max_delay —from [get_pin —of_objects {inst:xorexp/r_reg/sin/f} —filter
{is_clock_pin==true}] —to [get_pin —of_objects {inst:xorexp/r_reg/t} —filter
{(is_clock_pin==false) && (direction==in)}] 0.400

# backward delay from inst:xorexp/r_reg/sout to inst:xorexp/r_reg/sin

set_max_delay —from [get_pin —of_objects {inst:xorexp/r_reg/sout/t} —filter
{is_clock_pin==true}] —to [get_pin —of_objects {inst:xorexp/r_reg/sin/t}
—filter {(is_clock_pin==false) && (direction==in)}] 0.100

set_max_delay —from [get_pin —of_objects {inst:xorexp/r_reg/sout/f} —filter
{is_clock_pin==true}] —to [get_pin —of_objects {inst:xorexp/r_reg/sin/f}
—filter {(is_clock_pin==false) && (direction==in)}] 0.100

set_max_delay —from [get_pin —of_objects {inst:xorexp/r_reg/sout/t} —filter
{is_clock_pin==true}] —to [get_pin —of_objects {inst:xorexp/r_reg/sin/f}
—filter {(is_clock_pin==false) && (direction==in)}] 0.100

set_max_delay —from [get_pin —of_objects {inst:xorexp/r_reg/sout/f} —filter
{is_clock_pin==true}] —to [get_pin —of_objects {inst:xorexp/r_reg/sin/t}
—filter {(is_clock_pin==false) && (direction==in)}] 0.100

5.6 Completing the Case Study Synthesis

After constructing the virtual netlist, it is then possible to synthesise the virtual
netlist using the pseudo-synchronous SDDS-NCL synthesis flow described in Section 3.3.
This Section continues the synthesis of the example circuit explored in Section 5.4. For
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that, the first step is to compute the constraints using the hbcnConstrainer from the previous
Section. The structural graph of our example circuit is depicted in Listing 5.11

Listing 5.11: Structural graph of virtual netlist depicted in Listing 5.5.

Port "port:adder/a[1]" ["inst:adder/retime_s1_1 _reg"]
Port "port:adder/a[0]" ["inst:adder/out_reg_0_","inst:adder/retime_s1_2_ reg"]
Port "port:adder/b[1]" ["inst:adder/retime_s1_1_reg"]
Port "port:adder/b[0]" ["inst:adder/out_reg _0_","inst:adder/retime_s1_2_ reg"]

NullReg "inst:adder/retime_s1_1_reg"
NullReg "inst:adder/out_reg 0_"
NullReg "inst:adder/retime_s1_2 reg"
Port "port:adder/out[0]" []
Port "port:adder/out[1]" []

["port:adder/out[1]"]

["port:adder/out[0]"]

["port:adder/out[1]"]

The hbcnConstrainer program creates an SDC file that constrains this circuit to a
cycle time of 4 ns. This SDC file is depicted in Listing 5.12. The adder circuit is a very simple
linear pipeline, it contains no free slack when constrained with a pseudo-clock constraint.
Enabling the free slack relaxation options does not affect the produced SDC file.

Listing 5.12: SDC file constraining the cycle time of the pipeline adder to 4 ns.

create_clock —period 1.000 [get_port {clk}]
set_input_delay —clock {clk} 0 [all_inputs]
set_output_delay —clock {clk} 0 [all_outputs]

The produced SDC, along with the virtual netlist depicted in Listing 5.5 are used as
input to the pseudo-synchronous SDDS-NCL synthesis flow. The virtual netlist is the primary
netlist input to the synthesis flow. Another netlist input is the component expansion library.
The SystemVerilog file containing the component expansions and the pseudo-synchronous
synthesis scripts are depicted in Appendix D. The example circuit was synthesised using the
ASCEND-ST65NCL Library [MOPC11], a library of NCL and NCLP gates targeting STMicro
65 nm technology node. The resulting netlist is depicted in Listing 5.13. This netlist was
reordered and commented to highlight its equivalence to the virtual netlist.

Listing 5.13: Sequential SDDS-NCL Netlist, edited for clarity.

module adder (a_t, a_f, a_ack, b_t, b_f, b_ack,
out_t, out f, out _ack, clk, reset);
input wire [1:0] a_t, a_f, b_t, b_f, out_ack;
input wire clk, reset;
output wire [1:0] a_ack, b_ack, out_t, out_f;
wire ni, n1f, n1t, n2f, n2t, n3, n3f, n4;
wire n4f, ndt, n5 n5f, nb5t, n6, n7, n8;
wire n9, n 10, n_14;

// backward propagation logic
assign b_ack[0] = a_ack[0];
assign b_ack[1] = a_ack[1];
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HS65 GS IVX9 g43 (.A (out ack[0]), .Z
HS65 GS IVX9 g44 (.A (out ack[1]), .Z
SY_INCLP2W110F2X9 g104 (.A (n_5),

// xor2 g176__4296 & nand2 g178 1474 (logic sharing)

ST_NCLAO220F4X9 g2 (.A (a_f[0]), .B (b_t[0]), .C (a_t[0]),
.D (b_f[0]), .Q (n_14));

ST_NCL2W110F2X4 g97 (.A (a_t[0]), .B (b_t[0]), .Q (n_1_f));

ST_NCL1W110F2X9 ¢g93(.A (n_1), .B (n_14), .Q (n_1_t));

ST_NCL2W110F2X4 g99(.A (a_f[0]), .B (b_f[0]), .Q (n_1));

ST_NCL1W110F2X9 ¢g94 (.A (n_1_f), .B (n_1), .Q (n_3_f));

// dff out_reg 0_

ST_RNCL2W110F2X9 out_reg_0__f(.RN (reset), .G (clk), .A
.B (n_10), .Q (out_f[0]));

ST_RNCL2W110F2X9 out_reg_0__t(.RN (reset), .G (clk), .A
.B (n_10), .Q (out_t[0]));

ST_INCL1W110F2X9 g110(.A (out_t[0]), .B (out_f[0]), .Q

// dff retime_s1_2 reg

ST_RNCL2W110F2X9 retime_s1_2_reg_f(.RN (reset), .G (cl
.B (n_9), .Q (n_4_f
ST_RNCL2W110F2X9 retime_s1_2_reg_t(.RN (reset), .G (cl
.B (n_9), .Q (n_4_t
ST_INCL1W110F2X9 g111(.A (n_4_t), .B (n_4_f), .Q (n_4));
// inv g179 & xor2 g177 3772
ST_NCLAO220F4X7 g78(.A (b_f[1]), .B (a_f[1]), .C (a_t[1]),
.D (b_t[1]), .Q (n_2_t));
ST_NCLAO220F4X7 g79(.A (b_f[1]), .B (a_t[1]), .C (a_f[1]),
D (b_t[1]), .Q (n_2_f));
// dff retime_s1_1_reg
ST_RNCL2W110F2X9 retime_s1_1_reg_f(.RN (reset), .G (cl
.B (n_9), .Q (n_5_f
ST_RNCL2W110F2X9 retime_s1_1_reg_t(.RN (reset), .G (cl
.B (n_9), .Q (n_56_t
ST_NCL1W110F2X9 g113(.A (n_5_f), .B (n_5_t), .Q (a_ack
// xor2 gi172 8780
SY_INCL2W110F2X9 g107(.A (n_4_f), .B (n_5_f), .Q (n_8)
SY_INCL2W110F2X9 g108(.A (n_4_t), .B (n_5_t), .Q (n_7)
ST_INCLP1W110F2X4 g106(.A (n_8), .B (n_7), .Q (out_f[1
SY_INCL2W110F2X9 g109(.A (n_4_f), .B (n_5_t), .Q (n_6)
SY_INCL2W110F2X9 g112(.A (n_4_t), .B (n_5_f), .Q (n_3)
ST_INCLP1W110F2X4 g105(.A (n_3), .B (n_6), .Q (out_tJ[1

59 endmodule // adder

.Q (a_ack[0]));

(n_3_f),



101

6. EXPERIMENTS AND RESULTS

The Pulsar flow was initially validated by synthesising and simulating a set of multi-
ply and accumulate (MAC) units under a range of timing constraints. MACs were chosen as
example circuits due to their logic complexity and non-linear pipeline structure. Non-linear
pipelines are good case studies for evaluating the HBCN timing constraining capabilities, be-
cause they present non-trivial maximum cycle times. The accumulator of a MAC comprises
a circular buffer. This buffer can be implemented with different number of pipeline stages.
Four different MAC architectures were thus designed:

» A 3-stage MAC, comprising a 3-stage accumulator.
» A 4-stage MAC, comprising a 4-stage accumulator.
» A 5-stage MAC, comprising a 5-stage accumulator.

» A 6-stage MAC, comprising a 6-stage accumulator.

These MACs present the same interface and behaviour, they multiply two 16-bit numbers
from the input and add the 32-bit result in an accumulation loop. The new accumulator
value is presented to the output after every computation cycle. This allow using the same
testbench for simulating all MACs.

MACs were synthesised using the Pulsar flow from RTL descriptions. The RTL
for the 3-stage MAC is depicted in Listing 6.1. Both inputs and outputs are buffered with
half-buffer registers. Here, the accumulator loop has the minimal number of stages required
to correctly operate. Listing 6.2 presents the RTL for the 4-stage MAC. Here, a result
half-buffer register is introduced between the input and output registers. This additional
register also takes part in the accumulator loop. The RTL for 5-stage and 6-stage MACs are
respectively depicted in Listing 6.3 and in Listing 6.4. Each of these respectively include a
second and a third result registers in the pipeline. Notice that on the RTL description most
pipeline stages are empty. The retiming engine takes care of distributing the logic among
the empty pipeline stages during single-rail synthesis.

Single-rail synthesis was performed using the Cadence Genus 18.1 tool with retim-
ing enabled. The optimisation effort was set to extreme and the circuit was synthesised with
a nought clock period constraint. Genus was also configured to optimise the total negative
slack. These settings were used to minimise the logical depth of each pipeline stage. The
single-rail synthesis of the RTL descriptions resulted in virtual netlists with the characteris-
tics summarised in Table 6.1. Here, the worst virtual delays indicate the complexity of the
virtual function composition for the longest path in the circuit.
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Listing 6.1: RTL code for the 3-stage MAC.

module mac #(WIDTH=32)
(input logic [(WIDTH/2) —1:0] a, b,

input logic clk, reset,
output logic [WIDTH—1:0] out);
logic [(WIDTH/2) —1:0] reg_a,;
logic [(WIDTH/2) —1:0] reg_b;
logic [WIDTH-1:0] result;
logic [WIDTH—-1:0] acc;
assign result = (reg_a =« reg_b) + acc;

always @(posedge clk) begin

reg_a <= a;
reg_ b <= b;
out <= result;

end

always @(posedge clk or negedge reset)

19 if (!reset)

20 acc <= '0;

21 else

22 acc <= result;
23 endmodule // mac

N = =
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Listing 6.2: RTL code for the 4-stage MAC.

module mac #(WIDTH=32)

(input logic [(WIDTH/2) —1:0] a, b,
input logic clk, reset,
output logic [WIDTH-1:0] out);
logic [(WIDTH/2) —1:0] reg_a;
logic [(WIDTH/2) —1:0] reg_b;
logic [WIDTH-1:0] result;
logic [WIDTH—1:0] acc;

always @(posedge clk) begin

reg_a <= aj;
reg_b <= b;

result <= (reg_a » reg_b) + acc;

out <= result;
end

always @(posedge clk or negedge reset)

if (lreset)

acc <= '0;
else

acc <= result;

22 endmodule // mac
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Listing 6.3: RTL code for the 5-stage MAC.

module mac #(WIDTH=32)

(input logic [(WIDTH/2) —1:0] a, b,

input logic

output logic [WIDTH-1:0]
logic [(WIDTH/2) —1:0]
logic [(WIDTH/2) —1:0]
logic [WIDTH-1:0]

logic [WIDTH-1:0]

always @(posedge clk) begin

reg_a <= a;
reg_b <= b;

clk, reset,
out);
reg_a;
reg_b;
result[2];
acc;

result[0] <= (reg_a =+ reg_b) + acc;

result[1] <= result[0];

out <= result[1];
end

always @(posedge clk or negedge reset)

if (lreset)
acc <= '0;
else

acc <= result[1];
endmodule // mac

Listing 6.4: RTL for the 6-stage MAC

module mac #(WIDTH=32)

(input logic [(WIDTH/2) -1:0] a, b,

input logic

output logic [WIDTH-1:0]
logic [(WIDTH/2) —1:0]
logic [(WIDTH/2) —1:0]
logic [WIDTH-1:0]

logic [WIDTH-1:0]

always @(posedge clk) begin

reg_a <= a;
reg_ b <= b;

clk, reset,
out);
reg_a;
reg_b;
result[3];
acc;

result[0] <= (reg_a = reg_b) + acc;

result[1] <= result[0];
result[2] <= result[1];

out <= result[2];
end

always @(posedge clk or negedge reset)

if (lreset)
acc <= '0;
else

acc <= result[2];

24 endmodule // mac

103
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Component Count

Circuit Worst Virtual Delay Combinational Sequential Total
3-stage MAC 335ps 2094 206 2300
4-stage MAC 205 ps 2088 267 2355
5-stage MAC 150 ps 2121 344 2465
6-stage MAC 130 ps 2086 442 2508

Table 6.1: Characteristics of the virtual netlists for each MAC version.

The final pseudo-synchronous SDDS-NCL netlists were implemented with NCL and
NCLP gates from the ASCEnD [MOPC11] library for STMicroelectronics 65nm technology
node. This library is characterised at three PVT corners:

» The worst corner has slow transistors operating under 0.9V and 125°C.
» The nominal corner has typical transistors operating under 1.0V and 25 °C.

» The best corner has fast transistors operating under 1.1V and —40 °C.

Dual-rail synthesis was performed using the worst corner. As discussed in Section 3.2, the
synthesis is performed with a library that models settable and resettable C-Elements as
pseudo-flops. The pseudo-flop model introduces a small error on the delay model, and a
clock uncertainty of 5 ps was used to compensate for this error. Each circuit was synthesised
under a range of target cycle time constraints, from 2ns to 6ns in steps of 250ps. The
minimal delay was set to 200 ps during the cycle time constraint computation. Synthesis
were performed using Genus with the effort set to high. Physical-aware optimisation was
performed with the effort set to extreme. After running the Fix X-netlist algorithm, physical-
aware optimisation was performed on each set of gates iteratively, until the timing was met or
a maximum number of 10 iterations was reached. For each synthesis the following dataset
is collected:

» The worst pseudo-synchronous timing slack — a zero or positive value here guarantees
that the cycle time constraint is met.

» The gate area — this is the area occupied by the gates selected during the synthesis.

 The resulting pseudo-synchronous SDDS-NCL netlist — which implements the circuit.

Each resulting pseudo-synchronous SDDS-NCL netlist was delay-annotated us-
ing the three corners of the sign-off library. The sign-off library models the settable and
resettable C-elements as pseudo-latches. As discussed in Section 3.2, this library allows
annotating the timing arcs with the delays extracted from the characterisation. Thus, the
annotated delays are not affected by the error introduced by the pseudo-flop model. Each
delay-annotated netlists was simulated with a testbench that emulates an ideal environment.
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An ideal environment has no delay of itself, it feeds tokens into the pipeline as soon as an
acknowledgement is received and it also acknowledges the reception of tokens instanta-
neously, thus isolating the circuit from external delays. Under these conditions, for each
corner it was possible measuring:

» The output cycle time — this is the time between the reception of two data tokens at the
pipeline output.

» The input cycle time — this is the time between the insertion of two successive data
tokens in the pipeline input.

» The latency, — this is the time between a the insertion of a data token at the input and
the reception of a corresponding data token with the result at the output.

» The averaged switching activity of the circuit — this is used in conjunction with the circuit
netlist and the sign-off library as input for static power analysis (SPA).

Timing measurements are subject to data-dependent delay variations, as discussed in Sec-
tion 4.1. These values are presented here as an average. The standard deviation of the
measured data points is presented as a range around the former average.

Results for the 3-stage MAC are depicted in Figure 6.1. They show the timing ex-
tracted through simulation and the data collected from synthesis reports. The worst pseudo-
synchronous timing slack for this circuit is depicted in Figure 6.1d. It presents negative slack
values for cycle time constraints under 5 ns. According to the models, a negative slack value
indicates that it is not possible to guarantee that the cycle time constraint is met. This is
made evident in the results of the 4-stage MAC, depicted in Figure 6.2. Here, the first neg-
ative slack value is observed on the cycle time constraint of 3ns. At the same point, it is
possible to observe a violation of the cycle time constraint for the worst corner in the timing
results collected from the simulations in Figure 6.2a and 6.2b. Another interesting aspect
observable when comparing the results from the 3-stage MAC and the 4-stage MAC is how
distributing logic among an extra pipeline allows achieving a faster cycle time. This is con-
sistently observable in their worst virtual delay, worst timing slacks, input and output cycle
times. This increase in performance however comes at the cost of an increase in area and
power. Taking this approach of distributing the logic amount pipeline stages, results for the
5-stage and 6-stage MACs are respectively depicted in Figure 6.3 and Figure 6.4.

As it is possible to observe in Figure 6.4a, the cycle time observed in simulation
is consistently below the cycle time constraint. This indicates that these circuits might be
over-constrained. A possible solution is to enable the generation of timing exceptions that
relax the timing constraints on free slack. The results for the 6-stage MAC synthesised with
the relaxed timing constraints is presented in Figure 6.5. Here, observe that the measured
cycle time matches more closely the cycle time constraint. This leaded to a reduction in
power and area, while still matching the target cycle time.
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Figure 6.1: Results for the 3-stage MAC.
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Figure 6.4: Results for the 6-stage MAC.
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7. CONCLUSION AND FUTURE WORK

This Dissertation has presented Pulsar, a innovative synthesis flow for QDI circuits.
Pulsar leverages commercial EDA tools for the design capture, dual-rail expansion, technol-
ogy mapping and optimisation of QDI circuits. It also enables the sign-off of target cycle
times for QDI circuits using commercial EDA tools. This is a major breakthrough for QDI
designers, as they can now safely bound worst case performance metrics for their target
applications. Moreover, the flow enables designers to naturally trade performance, power
and area optimisations, whenever there is slack in timing budgets.

The use of commercial EDA tools facilitates its adoption and integration in indus-
trial flows. First, Pulsar uses an RTL-like description for design capture, a description form
familiar to most designers. In this aspect, Pulsar is very similar to Uncle [RST12], whereas
both synthesise single-rail netlists that are latter expanded to a QDI circuit. The approach
proposed here allows the use of commercial tools optimisation and retiming algorithms for
logic, data-path, state machine synthesis. However, RTL descriptions are not fully ade-
quate for capturing the behaviour of asynchronous circuits. They often rely on the global
clock signal to synchronise the merging of data flows, making it not suitable to capture the
inter-dependencies of data flows in the circuit. A common and well established approach is
to use descriptions based on Hoare communicating sequential processes (CSP) [Hoa85].
For instance, Concurrent Hardware Processes (CHP) [MM11], based on CSP, is used for
design capture in Beerel et al. Proteus [BDL11], Manohar ACT [Man19] and others. An-
other classical CSP-based language is Balsa [EB02], which has its own synthesis tool, but
it is also used as a language on Teak [BTE09]. Another interesting approach is the use
of functional programming languages, this is explored for synchronous circuits on works
such as Lava [BCSS99, Gil11], CAasH (pronounced Clash) [BKK*10] and Chisel [BVR*12].
Also, the current design capture and dual-rail expansion technique is limited to deterministic
pipelines, which limits the application of Pulsar to more complex circuits. Future work com-
prises exploring alternative design capture methodologies that better capture the behaviour
of a broader range of asynchronous circuits.

The use of standard EDA also tools helps integrating QDI circuits in existing de-
sign flows. This makes Pulsar attractive for designing globally asynchronous locally syn-
chronous (GALS) circuits. A GALS configuration consists of synchronous circuits interfacing
with an asynchronous circuit. A GALS circuit uses an asynchronous circuit to overcome the
limitations of clock distribution on synchronous circuits. It enables different modules in a
circuit to operate with different clocks with possible distinct frequencies and/or phases. An
asynchronous circuit acts as a interconnection between different circuit modules. For opti-
mal performance, such an asynchronous circuit must withstand the throughput of the syn-
chronous modules. A synchronous circuit throughput is dictated by its clock frequency. The
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HBCN and the cycle time constraining methodology presented in this Dissertation enables
the construction of QDI circuits with bounded throughput, thus enabling the construction of
interconnection circuits for GALS design, which are capable of handling the required design
throughput.

The cycle time constraining technique presented here uses a pseudo-clock to con-
strain the cycle time. This assumes that the logic of every pipeline stage has the same
delay. This assumption is only true if the pipeline is well balanced, as it disregards the logic
complexity of individual pipeline stages. Furthermore, it also disregards the delay disparity
between forward and backward propagation paths. In this work, empty propagation paths
internal to the full-buffer component expansion are attributed a fixed minimal delay. Future
work will target the automatic identification of pipeline disparities and constraining of each
propagation path in accordance to their respective logic complexity.

Another aspect of the Pulsar flow where further optimisations are expected to be
beneficial is the dual-rail expansion. Currently the dual-rail expansion relies on EDA tools
ability to optimise combinations of virtual functions. However, commercial EDA tools do
not recognise optimisation opportunities inherent to the use of DI codes. For instance, DI
codes expressed in binary contain a large amount of invalid binary combinations, which
can used as "don’t-cares" during logic optimisation and technology mapping. Fant [FB96]
has demonstrated that when composing image functions, which are analogous to the virtual
functions defined in this work, minterms containing these invalid codes do arise. This opens
opportunities for exploring alternative dual-rail expansion and optimisations and technology
mapping techniques that take advantage of specific characteristics of DI codes. Another
optimisation that could be explored during the dual-rail expansion and technology mapping
is relaxation [LM09]. This technique allows producing faster and smaller QDI circuits by en-
abling parts of the circuit to violate the indication principle locally, while globally maintaining
strong indication. Future work will explore the construction of an alternative dual-rail expan-
sion technique and possibly a technology mapper to allow these and other optimisations.

The physical synthesis, albeit possible with the current flow requires further ex-
ploration. This is especially interesting when it comes to the introduction of adversarial
paths [KKMO09] that hinder the indication principle. Currently, this is verified through simula-
tion. However, a formal methodology for detecting these paths is highly desirable. Such a
methodology would possibly not only detect potential hazards, but could also enable avoid-
ing them entirely, by using e.g. relative timing constraints [MS16].

Simulation and formal verification is another aspect that requires further attention.
Currently, the behaviour of the synthesised circuit is not captured in the simulation of the
RTL description. Also, the current flow does not allow equivalence checking between the
input RTL description, the virtual netlist and the final synthesised netlist. Solutions to allow
equivalence checking and high-level simulation shall be addressed in further work.
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APPENDIX A — THE SINGLE-RAIL SYNTHESIS SCRIPTS

Listing A.1: circuits/design/syn_rtl.tcl
set DESIGN $::env (DESIGN)

set_db syn_global_effort high

set_db syn_opt_effort extreme

set_db retime_effort_level high

set_db tns_opto true

source ../../scripts/analysis.tcl

read _libs ../../tech/nand2.lib

read_hdl —sv rtl_$ {DESIGN}.sv

elaborate

set_db [current_design] .retime true
create_clock —period 0 [get_port clk]
set_input_delay —clock clk 0 [all_inputs]
set_output_delay —clock clk 0 [all_outputs]

set_db iopt_force_constant_removal true
set_db remove_assigns true

syn_generic

syn_map

ungroup -—all
syn_opt
syn_opt —incremental

set_db write_vlog_wor_wand false
update_names —restricted { [ ] } —system_verilog

report_gates > rtl_gates.rpt

report_timing > rtl_timing.rpt

write_hdl > ${DESIGN} .v

export_graph ${DESIGN}.graph

shell drexpander ${DESIGN}.v > ncl_${DESIGN}.v

Listing A.2: scripts/analysis.tcl

proc export_graph {file_name} {
variable graph
variable regs_data
variable regs_null
variable in_ports
variable out_ports
variable fp
set fp [open $file_name w]
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set regs_data [concat [get_db [all::all_seqs] —if {.base_cell ==
[get_db [all::all_seqs] —if {.base_cell == dffs}]]

set regs_null [concat [get_db [all::all_seqs] —if {.base_cell ==
[get_db [all::all_seqs] —if {.base_cell == dffen}]]

set in_ports [get_db [all_inputs —no_clock] —if {.name != reset}

set out_ports [get_db [all_outputs]]

foreach {i} $in_ports {

foreach {o} [get_db [get_fanout —endpoints $i] —if {.obj_type

lappend graph($i) [vdirname $0]
}

foreach {o} [get_db [get_fanout —endpoints $i] —if {.obj_type

lappend graph($i) $o

foreach {i} [all::all_seqs —output_pins] {
foreach {o} [get_db [get_fanout —endpoints $i] —if {.obj_type
lappend graph ([vdirname $i]) [vdirname $0]

}

foreach {o} [get_db [get_fanout —endpoints $i] —if {.obj_type

lappend graph ([vdirname $i]) $o

foreach {i} ${in_ports} {

variable adjacent

if [info exists graph($i)] {
set adjacent $graph($i)

} else {
set adjacent [list]

}

puts $fp [format {Port "%s" [%s]} ${i}
{"%s"} $x}] {,}]]

foreach {i} ${out_ports} {

variable adjacent

if [info exists graph($i)] {
set adjacent $graph($i)

} else {
set adjacent [list]

}

puts $fp [format {Port "%s" [%s]} ${i}
{"%s"} $x}] {,}]]

[join [Imap x ${adjacent} {format

[join [Imap x ${adjacent} {format

dffr}]

dff}]

]

pin}]

port}]

pin}]

port}]

{

{

{

{
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foreach {i} ${regs_data} {
variable adjacent
if [info exists graph($i)] {
set adjacent $graph($i)
} else {
set adjacent [list]

}

puts $fp [format {DataReg "%s" [%s]} ${i} [join

{"%s"} $x}1 {,}]]

foreach {i} ${regs_null} {
variable adjacent
if [info exists graph($i)] {
set adjacent $graph($i)
} else {
set adjacent [list]

}

puts $fp [format {NullReg "%s" [%s]} ${i} [join

{"%s"} $x}1 {,}]]

close $fp

unset —nocomplain graph
unset —nocomplain regs_data
unset —nocomplain regs_null
unset —nocomplain in_ports
unset —nocomplain out_ports

Local Variables:
tc/-indent—level: 2
indent—tabs—mode: nil
End:
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[Imap x ${adjacent} {format

[Imap x ${adjacent} {format

Listing A.3: tech/nand2.lib — The component library Liberty file.
library (PULSAR NAND2) {

delay_model : table_lookup;

/+ unit attributes +/
time_unit : "1ns";

voltage_unit : "1V";
current_unit : "1mA";

pulling_resistance_unit : "1kohm";

leakage_power_unit : "1pW";
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capacitive_load_unit (1.0, pf);

/+ operation conditions =/

nom_process .
nom_temperature : 25;
nom_voltage 1.2,

operating_conditions(typical) {
process : 1;
temperature : 25;
voltage : 1.2;
tree_type : balanced_tree

}

default_operating_conditions : typical;

/+ threshold definitions +/

slew_lower_threshold_pct_fall : 30.0;
slew_upper_threshold_pct_fall : 70.0;
slew_lower_threshold_pct_rise : 30.0;
slew_upper_threshold_pct_rise : 70.0;
input_threshold_pct_fall : 50.0;
input_threshold_pct_rise : 50.0;
output_threshold_pct_fall . 50.0;
output_threshold_pct_rise : 50.0;
slew_derate_from_library : 0.5;

/+ default attributes »/
default_leakage_power_density : 0.0;
default_cell_leakage_power : 0.0;
default_fanout_load : 1.0;
default_output_pin_cap : 0.0;
default_inout_pin_cap : 0.00158;
default_input_pin_cap : 0.00158;
default_max_transition : 1.02;

cell (nor2) {

area : 31.0;
pin(a) {
direction : input;
capacitance : 0.002;
}
pin(b) {
direction : input;
capacitance : 0.002;
}

pin(y) {
direction : output;

capacitance : 0.0;



123

59 function : "!(a|b)";

60 timing () {

61 related_pin : "a";

62 timing_sense : negative_unate;
63 cell_rise(scalar) {

64 values ("0.01");

65 }

66 rise_transition(scalar) {
67 values ("0.0");

68 }

69 cell_fall(scalar) {

70 values ("0.02");

71 }

72 fall_transition (scalar) {
73 values ("0.0");

74 }

75 }

76 timing () {

77 related_pin : "b";

78 timing_sense : negative_unate;
79 cell_rise (scalar) {

80 values ("0.01");

81 }

82 rise_transition(scalar) {
83 values ("0.0");

84 }

85 cell_fall(scalar) {

86 values ("0.02");

87 }

88 fall_transition (scalar) {
89 values ("0.0");

90 }

91 }

92 }

93 }

94

95 cell (nand2) {
96 area : 31.0;
97 pin(a) {

98 direction : input;
99 capacitance : 0.002;
100 }

101 pin(b) {

102 direction : input;
103 capacitance : 0.002;
104 }

105 pin(y) {
106 direction : output;
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capacitance : 0.0;

function : "l(asb)";
timing () {
related_pin : "a";

timing_sense : negative_unate;
cell_rise(scalar) {
values ("0.02");

1

rise_transition (scalar) {
values ("0.0");

}

cell_fall(scalar) {
values ("0.01");

1

fall_transition (scalar) {
values ("0.0");

}

}

timing () {
related_pin : "b";
timing_sense : negative_unate;
cell_rise (scalar) {
values ("0.02");
}
rise_transition (scalar) {
values ("0.0");
}
cell_fall(scalar) {
values ("0.01");
}
fall_transition (scalar) {
values ("0.0");

}

cell (inv) {
area : 1.0;
pin(a) {
direction : input;
capacitance : 0.001;
}

pin(y) {
direction : output;

capacitance : 0.0;
function : "la";

timing () {
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related_pin : "a";

timing_sense : negative_unate;

cell_rise(scalar) {
values ("0.0");

}

rise_transition (scalar) {
values ("0.0");

}

cell_fall (scalar) {
values ("0.0");

}

fall _transition (scalar) {
values ("0.0");

}

(buff) {

area : 1.0;
pin(a) {

}

direction : input;
capacitance : 0.001;

pin(y) {

}

cell

direction : output;
capacitance : 0.0;
function

timing () {

a;

related_pin : "a";

timing_sense : positive_unate;

cell_rise(scalar) {
values ("0.0");

}

rise_transition (scalar) {
values ("0.0");

}

cell_fall(scalar) {
values ("0.0");

}

fall_transition (scalar) {
values ("0.0");

}

(xor2) {

125
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203 area : 38.0;
204 pin(a) {

205 direction : input;

206 capacitance : 0.002;

207 }

208 pin(b) {

209 direction : input;

210 capacitance : 0.002;

211 }

212 pin(y) {

213 direction : output;

214 capacitance : 0.0;

215 function : "a"b";

216 timing () {

217 related_pin : "a";

218 timing_sense : positive_unate;
219 cell_rise(scalar) {

220 values ("0.015");

221 }

222 rise_transition(scalar) {
223 values ("0.0");

224 }

225 cell_fall(scalar) {

226 values ("0.015");

227 }

228 fall_transition (scalar) {
229 values ("0.0");

230 }

231 }

232 timing () {

233 related_pin : "b";

234 timing_sense : positive_unate;
235 cell _rise(scalar) {

236 values ("0.015");

237 }

238 rise_transition(scalar) {
239 values ("0.0");

240 }

241 cell_fall (scalar) {

242 values ("0.015");

243 }

244 fall_transition (scalar) {
245 values ("0.0");

246 }

247 }

248 timing () {

249 related_pin : "a";

250 timing_sense : negative_unate;
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}

cell_rise(scalar) {
values ("0.015");

}

rise_transition (scalar) {
values ("0.0");

}

cell_fall(scalar) {
values ("0.015");

}

fall_transition (scalar) {
values ("0.0");

}

timing () {

}

related_pin : "b";

timing_sense : negative_unate;

cell_rise(scalar) {
values ("0.015");

}

rise_transition (scalar) {
values ("0.0");

}

cell_fall(scalar) {
values ("0.015");

}

fall_transition (scalar) {
values ("0.0");

}
}
}
}
cell (dff) {
area : 32.0;
pin(d) {
direction : input;
capacitance : 0.001;
timing () {
related_pin : "ck";

timing_type : setup_rising;
rise_constraint(scalar) {
values ("0.0");

}

fall _constraint(scalar) {
values ("0.0");

}

timing () {
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299 related_pin : "ck";

300 timing_type : hold_rising;
301 rise_constraint(scalar) {
302 values ("0.0");

303 }

304 fall _constraint(scalar) {
305 values ("0.0");

306 }

307 }

308 }

309 pin(ck) {

310 direction : input;

311 clock : true;

312 capacitance : 0.001;

313 }

314 ff(1Q,IQN) {

315 clocked _on : "ck";

316 next_state : "d";

317 }

318 pin(q) {

319 direction : output;

320 capacitance : 0.0;

321 function : "IQ";

322 timing () {

323 related_pin : "ck";

324 timing_type : rising_edge;
325 timing_sense : non_unate;
326 cell_rise(scalar) {

327 values ("0.01");

328 }

329 rise_transition(scalar) {
330 values ("0.0");

331 }

332 cell_fall(scalar) {

333 values ("0.01");

334 }

335 fall_transition (scalar) {
336 values ("0.0");

337 }

338 }

339 }

340 }

341

342 cell (dffr) {

343 area : 64.0;

344 pin(d) {

345 direction : input;
346 capacitance : 0.001;
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timing () {
related_pin : "ck";
timing_type : setup_rising;
rise_constraint(scalar) {
values ("0.0");
}
fall_constraint(scalar) {
values ("0.0");
}

}

timing () {
related_pin : "ck";
timing_type : hold_rising;
rise_constraint(scalar) {
values ("0.0");
}
fall_constraint(scalar) {
values ("0.0");

}

}

pin(ck) {
direction : input;
clock : true;
capacitance : 0.001;

}

pin(rb) {
direction : input;
capacitance : 0.001;
timing () {
related_pin : "ck";

timing_type : setup_rising;
rise_constraint(scalar) {
values ("0.0");
}
fall_constraint(scalar) {
values ("0.0");
}

}

timing () {
related_pin : "ck";
timing_type : hold_rising;
rise_constraint(scalar) {
values ("0.0");
}
fall_constraint(scalar) {
values ("0.0");

}
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395 }

396 }

397 ff(1Q,IQN) {

398 clocked on : "ck";

399 next_state : "d";

400 clear : "(!rb)";

401 }

402 pin(q) {

403 direction : output;

404 capacitance : 0.0;

405 function : "IQ";

406 timing () {

407 related_pin : "ck";

408 timing_type : rising_edge;
409 timing_sense : non_unate;
410 cell_rise(scalar) {

411 values ("0.01");

412 }

413 rise_transition(scalar) {
414 values ("0.0");

415 }

416 cell_fall(scalar) {

417 values ("0.01");

418 }

419 fall_transition (scalar) {
420 values ("0.0");

421 }

422 }

423 timing () {

424 related_pin : "rb";

425 timing_type : clear;

426 timing_sense : positive_unate;
427 cell_fall(scalar) {

428 values ("0.01");

429 }

430 fall_transition (scalar) {
431 values ("0.0");

432 }

433 }

434 }

435 }

436

437 cell (dffs) {

438 area : 64.0;

439 pin(d) {

440 direction : input;
441 capacitance : 0.001;
442 timing () {
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related_pin : "ck";
timing_type : setup_rising;
rise_constraint(scalar) {
values ("0.0");

}

fall_constraint(scalar) {
values ("0.0");

}

timing () {

related_pin : "ck";
timing_type : hold_rising;
rise_constraint(scalar) {
values ("0.0");

}

fall_constraint(scalar) {
values ("0.0");

}

pin(ck) {
direction : input;
clock : true;
capacitance : 0.001;

pin(sb) {
direction : input;
capacitance : 0.001;
timing () {
related_pin : "ck";

timing_type : setup_rising;
rise_constraint(scalar) {
values ("0.0");

}

fall_constraint(scalar) {
values ("0.0");

}

timing () {

related_pin : "ck";
timing_type : hold_rising;
rise_constraint(scalar) {
values ("0.0");

}

fall_constraint(scalar) {
values ("0.0");

}
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491 }

492 ff(1Q,IQN) {

493 clocked on : "ck";

494 next state : "d";

495 preset : "(!sb)";

496 }

497 pin(q) {

498 direction : output;

499 capacitance : 0.0;

500 function : "IQ";

501 timing () {

502 related_pin : "ck";

503 timing_type : rising_edge;
504 timing_sense : non_unate;
505 cell_rise(scalar) {

506 values ("0.01");

507 }

508 rise_transition(scalar) {
509 values ("0.0");

510 }

511 cell_fall(scalar) {

512 values ("0.01");

513 }

514 fall_transition (scalar) {
515 values ("0.0");

516 }

517 }

518 timing () {

519 related_pin : "sb";

520 timing_type : preset;
521 timing_sense : negative_unate;
522 cell_rise(scalar) {

523 values ("0.01");

524 }

525 rise_transition(scalar) {
526 values ("0.0");

527 }

528 cell_fall(scalar) {

529 values ("0.01");

530 }

531 fall_transition (scalar) {
532 values ("0.0");

533 }

534 }

535 }

536 }

537 }
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APPENDIX B — THE DUAL-RAIL EXPANDER

Listing B.1: expander.hs — Haskell source code for the dual-rail expander.

import Control .Monad. Reader
import DRExpander
import Options. Applicative

import Data.Monoid

prgOptions :: Parser PrgOptions
prgOptions = PrgOptions
<$> some (argument str (metavar "FILES"
<> help "Input File Name"))
<+> strOption (long "reset"
<> short 'r’
<> value "reset"
<> help "Reset port name")
<»> strOption (long "clock"
<> short ’'c’
<> value "clk"
<> help "Clock port name")

main :: 10 ()
main = do
let opts = info (prgOptions <=**> helper)

( fullDesc
<> progDesc "Prepares a netlist for dual-rail expansion”
<> header "drexpand — Pulsar’s dual-rail expansor")
options <— execParser opts
runReaderT prgMain options

prgMain :: ReaderT PrgOptions 10 ()

prgMain = do
env <— ask
modules <— processVerilogFiles $ verilogFiles env
[iftIO . putStr . unlines $ show <$> modules

Listing B.2: src/DRExpander.hs — Haskell source code for the dual-rail expander

{—# LANGUAGE FlexibleContexts #-}
{—# LANGUAGE OverloadedLists #-)}
module DRExpander where

import Control.Monad.l10. Class
import Control .Monad. Reader
import Data.BitVec
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import Data. Set (Set)
import qualified Data.Set as Set
import qualified Language. Verilog as Verilog
data Wire Wire String

| Bus Integer Integer String
deriving (Eq, Ord)

data PrgOptions = PrgOptions

{ verilogFiles :: [FilePath]
, resetName :: String
, CclkName ;1 String

} deriving (Show)

bitBlastWire :: Wire — [Wire]

bitBlastWire (Bus x y name) = map (Wire . expandBusWireName name) [x’..y’] where
X' = min x y
y’ = max X y
bitBlastWire x = [x]
expandBusWireName :: String — Integer —> String
expandBusWireName name idx = name ++ "_" ++ show idx
readVerilogFile :: (MonadlO m) => FilePath —> m [Verilog.Module]
readVerilogFile path = do
s <— liftlO $ readFile path
return $ Verilog.parseFile [] path s
readVerilogFiles :: (MonadlO m) => [FilePath] —> m [Verilog.Module]
readVerilogFiles = fmap concat . mapM readVerilogFile
vlogModulelnputs :: Verilog.Module —> Set Wire
vlogModulelnputs (Verilog.Module _ _ items) = Set.fromList $ concatMap go items
where
go (Verilog.Input Nothing xs) = map Wire xs

go (Verilog.Input (Just (Verilog.Number x, Verilog.Number y)) xs) = map
(Bus x’ y’) xs where
y’ = value y
x’ = value x

go _ = []

vlogModuleOutputs :: Verilog.Module —> Set Wire

vlogModuleOutputs (Verilog.Module _ _ items) = Set.fromList $ concatMap go items
where
go (Verilog.Output Nothing xs) = map Wire xs

go (Verilog.Output (Just (Verilog.Number x, Verilog.Number y)) xs) = map
(Bus x’ y’) xs where
y' = value y
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54 x’ = value x

55 go _ =[]

56

57 vlogModuleWires :: Verilog.Module —> Set Wire

58 vlogModuleWires (Verilog.Module _ _ items) = Set.fromList $ concatMap go items

59 where

60 go (Verilog.Wire Nothing xs) = map (Wire . fst) xs

61 go (Verilog.Wire (Just (Verilog.Number x, Verilog.Number y)) xs) = map (Bus
X' y’) xs’ where

62 y’ = value y

63 x’ = value x

64 xs' = map fst xs

65 go _ =[]

66

67 vlogModulelntWires :: Verilog.Module —> Set Wire
68 vlogModulelntWires mod = wires Set.\\ Set.union inputs outputs
69 where

70 wires = vlogModuleWires mod

71 inputs = vlogModulelnputs mod
72 outputs = vlogModuleOutputs mod
73

74 vliogModuleAllWires :: Verilog.Module —> Set Wire
75 vlogModuleAllWires mod = Set.unions [wires, inputs, outputs]
76 where

77 wires = vlogModuleWires mod

78 inputs = vlogModulelnputs mod
79 outputs = vlogModuleOutputs mod
80

81 vlogModuleWithoutWires :: Verilog.Module — Verilog.Module
82 vlogModuleWithoutWires (Verilog.Module name _ items) =

83 Verilog.Module name [] $ filter p items where

84 p (Verilog.Input _ _) = False

85 p (Verilog.Output _ _) = False
86 p (Verilog.Wire _ _) = False
87 p _ = True
88

89 vlogDRWirelnstance :: Wire — [Verilog.Moduleltem]

90 vlogDRWirelnstance (Wire name) = [Verilog.Instance "drwire" [] name []]
91 vliogDRWirelnstance bus = concatMap viogDRWirelnstance $ bitBlastWire bus
92

93 vlogDRWirePort :: Verilog.ldentifier —> [Verilog.ldentifier]

94 vliogDRWirePort name = map (name ++) ["_t", "_f", "_ack"]

95

96 vlogDRWirelnputinst :: Wire — [Verilog.Moduleltem]

97 vlogDRWirelnputinst (Wire name) =

98 [Verilog.Input Nothing $ map (name ++) ["_t", "_f"]

99 ,Verilog .Output Nothing [name ++ "_ack"]

100 ,Verilog .Assign (Verilog.LHS $ name ++ ".t") (Verilog.ldent $ name ++ "_t")
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,Verilog.Assign (Verilog.LHS $ name ++

,Verilog .Assign (Verilog.LHS $ name ++ "_ack")

"_aCk")]
viogDRWirelnputlnst (Bus x y name) =

.f") (Verilog.ldent $ name ++

ll—fll)
(Verilog.ldent $ name ++

[Verilog.Input range $ map (name ++) ["_t", "_f"]

,Verilog.Output range [name ++
concatMap go values

where

range = Just (Verilog.Number $ frominteger x,
y)

values = [x’..y’] [Integer]

X’ = min x y

y’ = max x y

go Integer —> [Verilog.Moduleltem]

go i =
let name’ = expandBusWireName name i

[Verilog.Assign (Verilog.LHS $ name’ ++ ".t")
Verilog .Number $ frominteger i)
,Verilog.Assign (Verilog.LHS $ name’ ++ ".f")
Verilog .Number $ frominteger i)
,Verilog . Assign (Verilog.LHSBit (name ++ "_ack")
(Verilog.ldent $ name’ ++ ".ack")]

++ |l_tll)

++ ll_fll)

frominteger i))

vlogDRWireQutputinst

vlogDRWireOutputinst (Wire name) =
[Verilog.
,Verilog . Output Nothing [name ++
,Verilog.Assign (Verilog.LHS $ name ++
,Verilog .Assign (Verilog.LHS $ name ++
,Verilog .Assign (Verilog.LHS $ name ++

".ack")]
vlogDRWireOutputinst (Bus x y name) =

"_ack"]

[Verilog.Output range $ map (name ++) |
_ack"]] ++

,Verilog.Input range [name ++
concatMap go values

where

range = Just (Verilog.Number $ frominteger x,
y)

values = [x’..y’] [Integer]

X’ = min X y

y' = max x y

go Integer —> [Verilog.Moduleltem]

go i =
let name’ = expandBusWireName name i

[Verilog .Assign (Verilog.LHSBIit (name ++

frominteger

1))

.tll)
. fll)
"_aCk")

(Verilog.ldent $ name’ ++

_ack"]] ++

Verilog .Number $ frominteger

in

(Verilog . ldentBit (name

(Verilog.ldentBit (name

(Verilog .Number $

Wire — [Verilog.Moduleltem]

Input Nothing $ map (name ++) ["_t", "_f"]

(Verilog.ldent $ name ++ "_t")
(Verilog.ldent $ name ++ "_f")
(Verilog.ldent $ name ++

"ot ]

Verilog .Number $ frominteger

in

" t") (Verilog.Number $
n .tll)
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,Verilog.Assign (Verilog.LHSBit (name ++ "_f") (Verilog.Number $
frominteger i)) (Verilog.ldent $ name’ ++ ".f")

,Verilog . Assign (Verilog.LHS (name’ ++ ".ack") ) (Verilog.ldentBit
(name ++ "_ack") . Verilog.Number $ frominteger i)]

fixDffReset :: (MonadReader PrgOptions m) => Verilog.Moduleltem —> m
Verilog . Moduleltem
fixDffReset inst@ (Verilog.Instance mname parms name portmap)
| mname == "dff" || mname == "dffen" = do
env <— ask
let resetPin = (Just "reset", Just . Verilog.ldent $ resetName env)
return $ Verilog.Instance mname parms name (resetPin : portmap)
| otherwise = return inst
fixDffReset x = return x

fixInstancesBitBlast :: Verilog.Moduleltem — Verilog.Moduleltem
fixInstancesBitBlast (Verilog.Instance mname parms name portmap) =
Verilog.Instance mname parms name $ map go portmap where
go (x, Just (Verilog.ldentBit name (Verilog.Number idx))) = (x, Just
Verilog.ldent . expandBusWireName name $ value idx)
go z = z
fixInstancesBitBlast x = x

vlioglnputinstance :: [Verilog.ldentifier] — Verilog.Moduleltem
vlioglnputinstance = Verilog.Input Nothing

wireName :: Wire — String

wireName (Wire n) =n

wireName (Bus _ _ n) =n

processModule :: (MonadReader PrgOptions m) => Verilog.Module —> m

Verilog . Module
processModule mod = do
options <— ask
let clkAndResetNames = [clkName options, resetName options]
let clkAndReset = Set.fromList $ map Wire clkAndResetNames
let inputs = vliogModulelnputs mod Set.\\ clkAndReset
let outputs = vlogModuleOutputs mod
let wires = viogModuleAllWires mod Set.\\ clkAndReset
let (Verilog.Module mname _ mitems) = vliogModuleWithoutWires mod
let clkrstinst = vloglnputinstance clkAndResetNames
let drWires = concatMap viogDRWirelnstance $ Set.elems wires
let drinputs = concatMap viogDRWirelnputinst $ Set.elems inputs
let drOutputs = concatMap viogDRWireOutputinst $ Set.elems outputs
let margs = concatMap (vlogDRWirePort . wireName) (Set.elems $ Set.union
inputs outputs) ++ clkAndResetNames
instances <— mapM (fixDffReset . fixInstancesBitBlast) mitems

let insts’ = [clkrstinst] ++ drWires ++ drinputs ++ drOutputs ++ instances
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return $ Verilog.Module mname margs insts

processVerilogFile :: (MonadReader PrgOptions m, MonadlO m) => FilePath —> m
[Verilog .Module]
processVerilogFile path = readVerilogFile path >>= mapM processModule

processVerilogFiles :: (MonadReader PrgOptions m, MonadlO m) => [FilePath] —>m
[Verilog . Module]
processVerilogFiles = fmap concat . mapM processVerilogFile
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APPENDIX C — THE CYCLE TIME CONSTRAINER

Listing C.1: constrainer.hs — Main Haskell source
{—# LANGUAGE FlexibleContexts #-}
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import Control .Monad. Reader

import Data.LinearProgram .GLPK

import Data.Map (Map)

import qualified Data.Map as Map

import Data.Monoid

import HBCN

import Options. Applicative

import Text. Printf

import Text.Regex.TDFA

type LPRet (ReturnCode, Maybe (Double, Map LPVar Double))

data PrgOptions
{ inputFiles

PrgOptions
: [FilePath]

, targetCycleTime

, minimalDelay
, clockName
, outputFile

, pathExceptions

, relaxEnable
, debugSol
} deriving

prgOptions
prgOptions

(Show)

<*> strOption

FilePath

Parser PrgOptions
PrgOptions
<$> some (argument str

(metavar "input"”

<> help "List of Structural Graph Files"))
<*> option auto (long "cycletime"
<> metavar
<> short
<> help "Target Cycle Time Constraint")
<*> option auto (long "mindelay"

<>

<>

<>

<>

(long
<> metavar "portname"
<> short
<> value

value (—1)
help "Minimum Path Delay,
cycle time constraint")

to 10% of
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<> help "Clock port name")
<+*> option str (long "output”
<> metavar "filename"
<> short ’0’
<> value "ncl _constraints.sdc"
<> help "Output SDC File, defaults to
ncl_constraints.sdc")
<+x> flag True False (long "no—path—exceptions™"
<> help "Don’t construct mindelay path
exceptions")
<+> flag False True (long "relax"
<> help "Use free slack to relax timing
constraints™)
<+x> flag False True (long "debug"
<> help "Print LP Variables Solution and
export Ip problem")

main :: 10 ()
main = do
let opts = info (prgOptions <++> helper)
( fullDesc
<> progDesc "Calculates the pseudo—clock constraints for a given
circuit”

<> header "hbcnConstrainer — Pulsar Linear Programming HBCN
constrainer")
options <— execParser opts
runReaderT prgMain options

hbcnFromFiles :: [FilePath] — ReaderT PrgOptions 10 HBCN
hbcnFromFiles files = do

text <— mapM (1iftlO . readFile) files

let structure = map read $ (lines . concat) text

return $ createHBCNFromStructure structure

sdcContent :: (MonadReader PrgOptions m) => LPRet —> m String
sdcContent (Data.LinearProgram .GLPK. Success, Just (_, vars)) = do
opts <— ask
let clkPeriod = vars Map.! PseudoClock
let individual = pathExceptions opts
return $ printf "create_clock —period %.3f [get_port {%s}]\n" clkPeriod
(clockName opts) ++
printf "set_input_delay —clock {%s} 0 [all_inputs]\n" (clockName opts) ++
printf "set_output_delay —clock {%s} 0 [all_outputs]\n" (clockName opts) ++
if individual then
concatMap maxDelay (filter (\(_, v) — (v > clkPeriod + 0.001) || (v <
clkPeriod — 0.001)) $ Map.tolList vars)
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else []
where
maxDelay (FwDelay src dst, val)
| (src =~ "port:") && (dst =~ "port:") =

printf "# Forward Delay from %s to %s\n" src dst ++
printf "set_max_delay —from {%s} —to {%s} %.3f\n" (trueRail src)
(trueRail dst) val ++
printf "set_max_delay —from {%s} —to {%s} %.3f\n" (falseRail src)
(falseRail dst) val ++
printf "set_max_delay —from {%s} —to {%s} %.3f\n" (trueRail src)
(falseRail dst) val ++
printf "set_max_delay —from {%s} —to {%s} %.3f\n" (falseRail src)
(trueRail dst) val
| src =~ "port:" =
printf "# Forward Delay from %s to %s\n" src dst ++
printf "set_max_delay —from {%s} —to [get_pin —of_objects {%s} —filter
{(is_clock_pin==false) && (direction==in)}] %.3f\n" (trueRail src)
(trueRail dst) val ++
printf "set_max_delay —from {%s} —to [get_pin —of_objects {%s} —filter
{(is_clock_pin==false) && (direction==in)}] %.3f\n" (falseRail src)
(falseRail dst) val ++
printf "set_max_delay —from {%s} —to [get_pin —of_objects {%s} —filter
{(is_clock_pin==false) && (direction==in)}] %.3f\n" (trueRail src)
(falseRail dst) val ++
printf "set_max_delay —from {%s} —to [get_pin —of_objects {%s} —filter
{(is_clock_pin==false) && (direction==in)}] %.3f\n" (falseRail src)
(trueRail dst) val
| otherwise =
printf "# Forward Delay from %s to %s\n" src dst ++
printf "set _max_delay —from [get_pin —of_objects {%s} —filter
{is_clock_pin==true}] —to [get_pin —of_objects {%s} —filter
{(is_clock_pin==false) && (direction==in)}] %.3f\n" (trueRail src)
(trueRail dst) val ++
printf "set_max_delay —from [get_pin —of_objects {%s} —filter
{is_clock_pin==true}] —to [get_pin —of_objects {%s} —filter
{(is_clock_pin==false) && (direction==in)}] %.3f\n" (falseRail src)
(falseRail dst) val ++
printf "set_max_delay —from [get_pin —of_objects {%s} —filter
{is_clock_pin==true}] —to [get_pin —of_objects {%s} —filter
{(is_clock_pin==false) && (direction==in)}] %.3f\n" (trueRail src)
(falseRail dst) val ++
printf "set _max_delay —from [get_pin —of_objects {%s} —filter
{is_clock_pin==true}] —to [get_pin —of_objects {%s} —filter
{(is_clock_pin==false) && (direction==in)}] %.3f\n" (falseRail src)
(trueRail dst) val
maxDelay (BwDelay src dst, val)
| (src =~ "port:") && (dst =~ "port:") =
printf "# Backward Delay from %s to %s\n" src dst ++
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printf "set_max_delay —from {%s} —to {%s} %.3f\n" (ackRail src)
(ackRail dst) val
| src =~ "port:" =
printf "# Backward Delay from %s to %s\n" src dst ++
printf "set_max_delay —from {%s} —to [get_pin —of_objects {%s} —filter
{(is_clock_pin==false) && (direction==in)}] %.3f\n" (ackRail src)
(trueRail dst) val ++
printf "set_max_delay —from {%s} —to [get_pin —of_objects {%s} —filter
{(is_clock_pin==false) && (direction==in)}] %.3f\n" (ackRail src)
(falseRail dst) val
| dst =~ "port:" =
printf "# Backward Delay from %s to %s\n" src dst ++
printf "set _max_delay —from [get_pin —of_objects {%s} —filter
{is_clock_pin==true}] —to {%s} %.3f\n" (trueRail src) (ackRail dst)
val ++
printf "set_max_delay —from [get_pin —of_objects {%s} —filter
{is_clock_pin==true}] —to {%s} %.3f\n" (falseRail src) (ackRail dst)
val
| otherwise =
printf "# Backward Delay from %s to %s\n" src dst ++
printf "set_max_delay —from [get_pin —of_objects {%s} —filter
{is_clock_pin==true}] —to [get_pin —of_objects {%s} —filter
{(is_clock_pin==false) && (direction==in)}] %.3f\n" (trueRail src)
(trueRail dst) val ++
printf "set _max_delay —from [get_pin —of_objects {%s} —filter
{is_clock_pin==true}] —to [get_pin —of_objects {%s} —filter
{(is_clock_pin==false) && (direction==in)}] %.3f\n" (falseRail src)
(falseRail dst) val ++
printf "set _max_delay —from [get_pin —of_objects {%s} —filter
{is_clock_pin==true}] —to [get_pin —of_objects {%s} —filter
{(is_clock_pin==false) && (direction==in)}] %.3f\n" (trueRail src)
(falseRail dst) val ++
printf "set_max_delay —from [get_pin —of_objects {%s} —filter
{is_clock_pin==true}] —to [get_pin —of_objects {%s} —filter
{(is_clock_pin==false) && (direction==in)}] %.3f\n" (falseRail src)
(trueRail dst) val
maxDelay _ = []
separateBus :: String — (String, String, String)
separateBus = (=~ "\\[[0 —9]+\\]")

ackRail s = let (n, b, _) = separateBus s in
n ++ "_ack" ++ b
trueRail s
| s =~ "port:" = let (n, b, _) = separateBus s in

n++ " _t" ++ b
| otherwise = s ++ "/t"
falseRail s
| s =~ "port:" = let (n, b, )
n++ " f" ++ b

separateBus s in
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| otherwise = s ++ "/f"

sdcContent err = errorWithoutStackTrace . printf "Could not solve LP: %s" §
show err

printSolution :: (MonadlO m) => LPRet —> m ()

printSolution (Data.LinearProgram.GLPK.Success, Just (_, vars)) = liftlO §
mapM_  print $ Map.toList vars

printSolution err = errorWithoutStackTrace . printf "Could not solve LP: %s" §
show err

IpObjective :: LPRet —> Double

IpObjective (Data.LinearProgram.GLPK. Success, dJust (o, _)) = o

IpObjective err = errorWithoutStackTrace . printf "Could not solve LP: %s" $
show err

prgMain :: ReaderT PrgOptions 10 ()
prgMain = do
opts <— ask
hbcn <— hbcnFromFiles $ inputFiles opts
let cycleTime = targetCycleTime opts
let relax = relaxEnable opts
let minDelay = case minimalDelay opts of
X | x <0 —> cycleTime/10
| otherwise —> x
let Ip = constraintCycleTime hbcn cycleTime minDelay relax
result <— 1iftlO $ glpSolveVars simplexDefaults Ip
sdc <— sdcContent result
when (debugSol opts) $ do
let Ipfile = outputFile opts ++
printSolution result
[iftlIO $ writeLP Ipfile Ip
[iftlO $ if IpObjective result > 0.0005 then do
printf "Writing constraints to %s\n" (outputFile opts)
writeFile (outputFile opts) sdc
else
errorWithoutStackTrace "Deadlock Found in the Design, not writing
constraints file"

.p

Listing C.2: src/Data/HBCN.hs

module HBCN
( module HBCN. Timing
, module HBCN. Internal
) where

import HBCN. Internal
import HBCN. Timing
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Listing C.3: src/Data/HBCN/Internal.hs — Structural graph to HBCN

module HBCN. Internal where

import
import

data StructuralElement

data Transition

|
|
deriving

Algebra.Graph.Labelled
Data.Semigroup

as SG

Port String [String]
DataReg String [String]
NullReg String [String]

DataTrans {nhodeName

NullTrans {nodeName

data Place Unconnected

Place {hasToken
MindelayPlace {hasToken
(Show, Read, Eq, Ord)

|
|
deriving

type HBCN = Graph Place Transition

instance Semigroup Place where

Unconnected <> a = a
a<>_=a

instance Monoid Place where

mempty = Unconnected
mappend = (SG.<>)

createHBCNFromStructure

createHBCNFromStructure = edges .

|
deriving (Show, Read, Eq, Ord)

Bool}

String}
String}

Bool}

(Show, Read, Eq, Ord)

[ StructuralElement] —> HBCN

go (Port src dst) = concatMap
(\x —> [(Place False, DataTrans
,(Place False, NullTrans
,(Place False, DataTrans
,(Place True, NullTrans
go (NullReg src dst) = concatMap
(\x —> [(Place False, DataTrans
,(Place False, NullTrans
,(Place False, DataTrans
,(Place True, NullTrans
go (DataReg src dst) =
let
sout = src ++ "/sout"
sin = src ++ "/sin"

in — /nput Slave

src,
Src,
X,
X,

src,
src,
X,
X,

DataTrans
NullTrans
NullTrans
DataTrans

DataTrans
NullTrans
NullTrans
DataTrans

concatMap go where
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concatMap (\x — [(Place

,constraintCycleTime) where

[(MindelayPlace
,(MindelayPlace
,(MindelayPlace
,(MindelayPlace
— Data stage
,(MindelayPlace
,(MindelayPlace
,(MindelayPlace
,(MindelayPlace

— Qutput slave

DataTrans
NullTrans
NullTrans
DataTrans

DataTrans
NullTrans
NullTrans
DataTrans
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False, DataTrans src,
True, NullTrans src,
False, DataTrans sin,
False, NullTrans sin,
True, DataTrans sin,
False, NullTrans sin,
False, DataTrans sout,
False, NullTrans sout,
( False, DataTrans
,(Place False, NullTrans
,(Place False, DataTrans
,(Place True, NullTrans

sout,
sout,

X
X

DataTrans
NullTrans
, NullTrans
, DataTrans

Listing C.4: src/Data/HBCN/Timing.hs — HBCN cycle time constrainer

{—# LANGUAGE FlexibleContexts #-}
module HBCN. Timing
(LPVar (..)
, TimingLP

import Algebra.Graph. Labelled
import Control .Monad
import Data.LinearProgram
import HBCN. Internal
import Prelude hiding (Num (..))
data LPVar = Arrival Transition
| FwDelay String String
| BwDelay String String
| FwSlack String String
| BwSlack String String
| PseudoClock
deriving (Show, Read, Eq, Ord)
type TimingLP = LP LPVar Double
arrivalTimeEq cycleTime minDelay relax (place, src, dst) = do
let src’ = Arrival src
let dst’ = Arrival dst
let ct = if hasToken place then cycleTime else 0
let slack = case (src, dst) of
(DataTrans s, DataTrans d) —> FwSlack s d
(NullTrans s, NullTrans d) —> FwSlack s d
(DataTrans s, NullTrans d) —> BwSlack s d
(NullTrans s, DataTrans d) —> BwSlack s d
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let delay = case (src, dst) of
(DataTrans s, DataTrans d) — FwDelay
(NullTrans s, NullTrans d) — FwDelay
(DataTrans s, NullTrans d) — BwDelay
(NullTrans s, DataTrans d) — BwDelay
setVarBounds delay $ LBound minDelay
setVarBounds slack $ LBound 0
setVarBounds src’ $ LBound 0
setVarBounds dst’ $ LBound 0
if relax
then do
linCombination [(1, src’), (=1, dst’), (1, delay)] ‘equalTo’ ct
case place of

nw 0 n ou
O O O O

MindelayPlace _ —> linCombination [(1, delay), (-1, slack)] ‘equalTo"’
minDelay
_ — linCombination [(1, delay)] ‘equal‘ linCombination [(1,
PseudoClock), (1, slack)]
else do

linCombination [(1, src’), (=1, dst’), (1, delay), (1, slack)] ‘equalTo‘ ct
case place of

MindelayPlace _ —> linCombination [(1, delay)] ‘equalTo‘ minDelay

_ — linCombination [(1, delay)] ‘equal‘ linCombination [(1, PseudoClock)]

constraintCycleTime :: HBCN —> Double —> Double —> Bool —> TimingLP
constraintCycleTime hbcn cycleTime minDelay relax = execLPM $ do
setDirection Max
setObjective $ linCombination [(1, PseudoClock)]
setVarBounds PseudoClock $ LBound minDelay
mapM_ (arrivalTimeEq cycleTime minDelay relax) $ edgelist hbcn
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APPENDIX D — THE PSEUDO-SYNCHRONOUS SYNTHESIS SCRIPTS

Listing D.1: circuits/design/syn_st65.tcl

source ../../scripts/fixnetlist.tcl
set PERIOD $::env (PERIOD)

set DESIGN $::env (DESIGN)
set OUTDIR output/${PERIOD}

file mkdir ${OUTDIR}

shell hbcnConstrainer ${DESIGN}.graph —-m 0.2 —t ${PERIOD} —o
${OUTDIR}/ ncl_constraints.sdc

set_db auto_super_thread true
set_db syn_global_effort high
#set_db leakage_power_effort medium
set_db syn_opt_effort extreme
set_db tns_opto true

set_db auto_partition true

set_db avoid_tied_inputs true

read_mmmc st65_mmmec.tcl

set_db lef_library {

. /tech/COREB5GPSVT_soc.lef

. /tech/PRHS65_soc.lef
./tech/cmos065_7m4x0y2z_AP_Worst.lef
. /tech/ASCEND_NCLP65GPSVT.lef

. /tech/ASCEND_NCL65GPSVT lef

~ T~~~ ~

source ../../tech/st65.tcl

read_hdl —sv ../../tech/drexpansion.sv
read_hdl —sv ncl_${DESIGN}.v

elaborate ${DESIGN}

init_design

set insts [all::all_seqs]

if {[llength $insts] > 0} {
set_size_only $insts true

set_db iopt_ultra_optimization true
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set_dont_use [nclp_cell_list] true

syn_generic
syn_map

syn_opt

syn_opt —physical

syn_opt —incremental —physical
fix_xnetlist

opt_sdds 10

prepare_for_physical

set_db write_vlog_wor_wand false
report_timing —nworst 1000 > ${OUTDIR}/timing.rpt

report_gates > ${OUTDIR}/ gates.rpt
report_power > ${OUTDIR}/power.rpt

write_hdl > ${OUTDIR}/logical.v

write_snapshot —innovus —outdir ${OUTDIR}/snapshot —tag logical

set_analysis_view —setup worst_latch_view

write_sdf > ${OUTDIR}/worst.sdf

set_analysis_view —setup nominal_latch_view
write_sdf > ${OUTDIR}/ nominal.sdf

set_analysis_view —setup best_latch_view

write_sdf > ${OUTDIR}/best.sdf

Listing D.2: scripts/fixnetlist.tcl

proc get_adjacent_nodes {node}
variable ret
set ret [list]

{

foreach {a} [get_db —if {.obj_type == pin} \
[get_fanout —max_pin_depth 1 $node]] {
if [get _db [vdirname $a] .is_combinational] {

0O NOoO Ok~ N =

lappend ret $a

return $ret

proc get_instance_of_pin {pin}
return [vdirname $pin]

{
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proc get_inst_cell_name {inst} {
return [vbasename [get_db $inst

dib_cell]]

proc replace_inst_gate {inst gate} {

change_link —instances $inst

proc get_barriers_output {} {

return [all::all_seqs

proc is_nclp {instance} {

global nclp_cell

—lib_cell [lindex [vfind /

—output_pins]

—lib_cell $gate] 0]

return [info exists nclp_cell ([get_inst_cell_name ${instance}])]

proc is_ncl {instance} {

global ncl_cell

return [info exists ncl_cell([get_inst_cell_name ${instance}])]

proc ncl_cell_list {}
global ncl_cell

{

return [array names ncl_cell]

proc nclp_cell_list {} {

global nclp_cell

return [array names nclp_cell]

proc orphan_cell_list
global orphan_cell

{} {

return [array names orphan_cell]

proc get_domain_pins {rtzpinsvar
global rtz_startpoints
global rto_startpoints

upvar 1 $rtzpinsvar
upvar 1 $rtopinsvar

variable rtzpins
variable rtopins
variable visited

rtzpinslist
rtopinslist

rtopinsvar} {
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if {I]

set rtz_startpoints [concat [vfind / —port «] [all::all_seqs

info exists rtz_startpoints]

if [info exists rtz_startpoints] {
foreach {pin} $rtz_startpoints {
foreach {a} [get_adjacent_nodes $pin] {

incr rtzpins(%a)

if [info exists rto_startpoints] {
foreach {pin} $rto_startpoints {
foreach {a} [get_adjacent_nodes $pin] {

incr rtopins(%a)

variable done
set done 0O

while

{!$done} {

set done 1
#breath first RTZ pins processing

foreach {a}

if

{![info exists visited ($a)]
if [is_inverting_output $a]
#inversion found

{

[array names rtzpins] {

ITinfo exists rto_startpoints]} {

I$visited ($a)} {

foreach {b} [get_adjacent_nodes $a] {

incr rtopins ($b)
}
} else {
#no domain inversion

foreach {b} [get_adjacent_nodes $a] {

incr rtzpins ($b)

}
!
incr visited (%a)
set done 0

# breath first RTO pins processing

foreach {a}

if

{![info exists visited(%a)]
if [is_inverting_output $a]

{

[array names rtopins] {

I$visited ($a)} {

—output_pins]]
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#inversion found

foreach {b}

[get_adjacent_nodes $a] {

incr rtzpins ($b)

}

} else {
#no domain
foreach {b}

inversion
[get_adjacent_nodes $a] {

incr rtopins ($b)

}

incr visited (%a)

set done 0O

unset —nocomplain rtopinslist
unset —nocomplain rtopinslist

set rtopinslist [Isort —unique [array names rtopins]]
set rtzpinslist [Isort —unique [array names rtzpins]]

unset —nocomplain rtzpins
unset —nocomplain rtopins
unset —nocomplain visited

return 1

proc get_domain_instances {rtzinstsvar rtoinstsvar}
upvar 1 $rtzinstsvar rtzinsts
upvar 1 $rtoinstsvar rtoinsts

variable rtop
variable rtzp

get_domain_pins rtzp rtop

# get instance names from pin names

set rtzinsts [list]
foreach {a} ${rtzp}
lappend rtzinsts

}

{

[get_instance_of_pin $a]

set rtzinsts [Isort —unique $rtzinsts]

set rtoinsts [list]
foreach {a} ${rtop}
lappend rtoinsts

{

[get_instance_of_pin $a]

{

151



161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

152

}

set rtoinsts [lsort —unique $rtoinsts]

unset —nocomplain rtzpins
unset —nocomplain rtopins

return 1

proc fix_xnetlist {} {
variable riz
variable rto
variable count
global equivalent_cell

set count O
get_domain_instances rtz rto

foreach {i} $rto {
if {[Isearch —sorted $rtz $i] >= 0} {
return —code error "${i} is in both RTO and RTZ domains"

foreach {i} $rtz {
if {[is_nclp $i]} {
variable In
variable nin
set In [get_inst_cell_name $i]
set nin $equivalent_cell ($In)
puts "Replacing ${i} from ${In} to ${nin}"
replace_inst_gate $i $nin
incr count

foreach {i} $rto {
if {[is_ncl $i]} {
variable In
variable nin
set In [get_inst_cell_name $i]
set nin $equivalent_cell ($In)
puts "Replacing ${i} from ${In} to ${nin}"
replace_inst_gate $i $nin
incr count
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return $count

proc check_sdds_consistency {} {

variable rtz
variable rto
variable ret

get_domain_instances rtz rto
set ret 1

foreach {i} $rto {
if {[Isearch —sorted $rtz $i] >= 0} {
puts "${i} is in both RTO and RTZ domains"
set ret O

foreach {i} $rtz {
if {[is_nclp $i]} {
puts "${i} is a NCLP cell in the RTZ domain"
set ret O

foreach {i} $rto {
if {[is_ncl $i]} {
puts "${i} is a NCL cell in the RTO domain"
set ret O

return $ret

proc opt_rtz {} {

puts "Optimising RTZ Gates"

set_dont_use [ncl_cell_list] false
set_dont_touch [ncl_cell_list] false
set_dont_use [nclp_cell_list] true
set_dont_touch [nclp_cell_list] true

syn_opt —incremental —physical

set_dont_use [nclp_cell_list] false
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257 set_dont_touch [nclp_cell_list] false
258

259 return [fix_xnetlist]

260 }

261

262 proc opt_rto {} {

263

264 puts "Optimising RTO Gates"

265

266 set_dont_use [ncl_cell_list] true
267 set_dont_touch [ncl_cell_list] true
268 set_dont_use [nclp_cell_list] false
269 set_dont_touch [nclp_cell_list] false
270 syn_opt —incremental —physical

271

272 set_dont_use [ncl_cell_list] false
273 set_dont_touch [ncl_cell_list] false
274

275 return [fix_xnetlist]

276 )

277

278 proc opt_sdds {maxit} {
279 variable it

280

281 set it O

282 phys_opt_rto

283 phys_opt_rtz

284

285 while {$it < $maxit} {

286 puts "SDDS Optimisation iteration ${it}"
287 incr it

288

289 if [opt_rto] {

290 phys_opt_rtz

291 }

292

293 if [opt_rtz] {

294 phys_opt_rto

295 }

296

297 if {[get_db [current_design] .slack] >= 0} {
298 break

299 }

300 }

301

302 return $it

303 }

304



305 proc phys_opt_rtz {} {

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352

puts "Physically Optimising RTZ Gates"

set_dont_touch [all::all_insts] false

set sequential_insts [all::all_seqs]

if {[llength $sequential_insts] > 0} {
set_size_only true $sequential_insts

set_dont_use [ncl_cell_list] false
set_dont_touch [ncl_cell_list] false
set_dont_use [nclp_cell_list] true
set_dont_touch [nclp_cell_list] true

foreach {i} [all::all_insts] {
if [is_ncl $i] {
set_size_only $i true

syn_opt —physical

set_dont_use [nclp_cell_list] false
set_dont_touch [nclp_cell_list] false

set_dont_touch [all::all_insts] false

set sequential_insts [all::all_seqs]

if {[llength $sequential_insts] > 0} {
set_size_only true $sequential_insts

return [fix_xnetlist]

proc phys_opt_rto {} {

puts "Physically Optimising RTO Gates"

set_dont_touch [all::all_insts] false

set sequential_insts [all::all_seqs]

if {[llength $sequential_insts] > 0} {
set_size_only true $sequential_insts

set_dont_use [ncl_cell_list] true
set_dont_touch [ncl_cell_list] true
set_dont_use [nclp_cell_list] false
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set_dont_touch [nclp_cell_list] false
foreach {i} [all::all_insts] {

if [is_nclp $i] {
set_size_only $i true

syn_opt —physical

set_dont_use [ncl_cell_list] false
set_dont_touch [ncl_cell_list] false
set_dont_touch [all::all_insts] false

set sequential_insts [all::all_seqs]
if {[llength $sequential_insts] > 0} {
set_size_only true $sequential_insts

return [fix_xnetlist]

proc phys_opt_sdds {maxit} {
variable done
variable it

set done 0
set it O

while {!$done && $it < $maxit} {
puts "SDDS Physical Optimisation iteration ${it}"
set done 1
incr it

if [phys_opt_rto] {
set done 0

if [phys_opt_rtz] {
set done 0

return $it

proc prepare_for_physical {} {
set_dont_touch [all::all_insts] false
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set sequential_in

sts [all::all_seqs]

if {[llength $sequential_insts] > 0} {

set_size_only t

rue $sequential_insts

set_dont_touch [nclp_cell_list] true
set_dont_use [nclp_cell_list] true
set_dont_touch [ncl_cell_list] false
set_dont_use [ncl_cell_list] false
foreach {i} [all::all_insts] {
if [is_ncl $i] {
set_size_only $i true

return 1

#forces optimisation to not use constants
set_db iopt_force_constant_removal true

# Local Variables:
# mode: tcl
# tcl—indent—level:

# indent—tabs—mode:

# End:

## library_sets
create_library_set
—timing { ../..

../ ../tech/ASCEND_NCL65GPSVT_SS_0.90V_125C_letiflop.lib \
../ ../tech/ASCEND_NCLP65GPSVT_SS_0.90V_125C.lib }

create_library_set
—timing { ../..

../../tech/ASCEND_NCL65GPSVT_TT_1.00V_25C_letiflop.lib \
../ ../tech/ASCEND_NCLP65GPSVT_TT_1.00V_25C.lib }

create_library_set
—timing { ../..

../ ../tech/ASCEND_NCL65GPSVT_FF_1.10V_m40C_letiflop.lib \
../ ../tech/ASCEND_NCLP65GPSVT_FF_1.10V_m40C.lib }

create_library_set

2
nil

Listing D.3: circuits/design/st65_mmmc.tcl

—name worst_flop_libset \
/tech/COREB5GPSVT _wc_0.90V_125C.lib \

—name nominal_flop_libset \
/tech /COREB5GPSVT_nom_1.00V_25C.lib \

—name best_flop_libset \
/tech/CORE65GPSVT bc 1.10V_m40C.lib \

—name worst_latch_libset \
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—timing {

. /tech/COREB65GPSVT_wc_0.90V_125C.lib \
../ ../tech/ASCEND_NCL65GPSVT_SS_0.90V_125C_letilatch.lib \
../ ../tech/ASCEND_NCLP65GPSVT_SS_0.90V_125C.lib }

create_library_set —name nominal_latch_libset \

—timing {

.

. /tech/CORE65GPSVT_nom_1.00V_25C.lib \
../ ../tech/ASCEND_NCL65GPSVT_TT_1.00V_25C_letilatch.lib \
../ ../tech/ASCEND_NCLP65GPSVT_TT_1.00V_25C.lib }

create_library_set —name best_latch_libset \

—timing {

## opcond

VAR

/tech /COREB5GPSVT_bc_1.10V_m40C.lib \
../ ../tech/ASCEND_NCL65GPSVT_FF_1.10V_m40C_letilatch.lib \
../ ../tech/ASCEND_NCLP65GPSVT_FF_1.10V_m40C.lib }

create_opcond —name worst_opcond —process 1.2 —voltage 0.9 —temperature 125.0

create_opcond —name nominal_opcond —process 1.0 —voltage 1.0 —temperature 25.0

create_opcond —name best opcond —process 0.8 —voltage 1.1 —temperature —40.0

## timing_condition

create_timing_condition —name worst_flop_timing_cond \
—opcond worst_opcond \
—library_sets { worst_flop_libset }

create_timing_condition —name nominal_flop_timing_cond \
—opcond nominal_opcond \
—library_sets { nominal_flop_libset }

create_timing_condition —name best_ flop_timing_cond \
—opcond best_opcond \
—library_sets { best_flop_libset }

create_timing_condition —name worst_latch_timing_cond \
—opcond worst_opcond \
—library_sets { worst_latch_libset }

create_timing_condition —name nominal_latch_timing_cond \
—opcond nominal_opcond \
—library_sets { nominal_latch_libset }

create_timing_condition —name best_latch_timing_cond \
—opcond best_opcond \
—library_sets { best_latch_libset }

## rc_corner

create_rc_corner —name worst _rc_corner \
—temperature 125.0 \
./ ../tech/cmos065_7m4x0y2z_AP_Worst.captable

—cap_table
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create_rc_corner
—temperature
—cap_table

create_rc_corner
—temperature

—cap_table

## delay_corner

159

—name nominal_rc_corner \
25.0 \

./ ../tech/cmos065_7m4x0y2z_AP_Worst.captable

—name best _rc_corner \
—-40.0 \

./ ../tech/cmos065_7m4x0y2z_AP_Best.captable

create_delay_corner —name worst_flop_delay_corner \
—timing_condition worst_flop_timing_cond \
—rc_corner worst_rc_corner

create_delay_corner —name nominal_flop_delay_corner \
—timing_condition nominal_flop_timing_cond \
—rc_corner nominal_rc_corner

create_delay_corner —name best_flop_delay_corner \
—timing_condition best_flop_timing_cond \
—rc_corner best rc_corner

create_delay_corner —name worst_latch_delay_corner \
—timing_condition worst_latch_timing_cond \
—rc_corner worst_rc_corner

create_delay_corner —name nominal_latch_delay_corner \
—timing_condition nominal_latch_timing_cond \
—rc_corner nominal_rc_corner

create_delay_corner —name best_latch_delay_corner \
—timing_condition best_latch_timing_cond \
—rc_corner best rc_corner

## constraint_mode

create_constraint__

—sdc_files {

## analysis_view

mode —name default _constraints \
constraints.sdc }

create_analysis_view —name worst_flop_view \
—constraint_mode default_constraints \
—delay_corner worst_flop_delay_corner

create_analysis_view —name nominal_flop_view \
—constraint_mode default_constraints \
—delay_corner nominal_flop_delay_corner

create_analysis_view —name best_flop_view \
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114 —constraint_mode default_constraints \
115 —delay_corner best_flop_delay_corner

116

117 create_analysis_view —name worst_latch_view \
118 —constraint_mode default_constraints \
119 —delay_corner worst_latch_delay_corner
120

121 create_analysis_view —name nominal_latch_view \
122 —constraint_mode default _constraints \
123 —delay_corner nominal_latch_delay_corner
124

125 create_analysis_view —name best_latch_view \
126 —constraint_mode default_constraints \
127 —delay_corner best_latch_delay_corner
128

129 ## set _analysis_view
130 set_analysis_view —setup { worst_flop_view }

Listing D.4: circuits/design/constraints.sdc

1 set_load_unit —picofarads 1

2

3 source ${OUTDIR}/ ncl_constraints.sdc

4

5 set_load 0.005 [all_outputs]

6 set_input_transition 0.1 [all_inputs]

7

8 set_ideal_network [get_port clk]

9 set_clock_uncertainty 0.02 [get_clocks]
Listing D.5: tech/drexpansion.sv — The component Library elements

1 interface drwire();

2 wor t, f;

3 wand ack;

4

5 modport in (input t, f,

6 output ack);

7 modport out (input ack,

8 output t, f);

9 endinterface // drwire

10

11 module dff

12 (drwire.in d,

13 drwire.out q,

14 input wire ck,

15 input wire reset);

16 wire q_t, q_f, ack_in;

—_
~



18 SY RNCL2W110OF2X9 f (.A(d.f), .B(ack_in), .Q(q_f),
19 SY_RNCL2W110F2X9 t (.A(d.t), .B(ack_in), .Q(q_t),

20

21 assign ack_in = ~(q.ack);
22 assign d.ack = g_t | q_f;
23 assign q.t = g_t;

24 assign q.f = g_f;

25 endmodule // dff

26

27 module dffs_slave

28 (drwire.in d,

29 drwire.out q,

30 input wire ck,

31 input wire reset);

32

33 wire ack_in, set, int_t, int_f;
34

35 ST _SNCL2W110F2X9 t (.A(d.t), .B(ack_in), .Q(int_t), .S(set),

36 SY_RNCL2W110F2X9 f (.A(d.f), .B(ack_in), .Q(int_f),

37

38 assignh set = ~reset;

39 assign ack_in = ~(qg.ack);

40 assign gq.t = int_t;

41 assign q.f = int_f;

42 assignh d.ack = int_t | int_f;
43 endmodule // dffs _slave

44

45 module dffs
46 (drwire.in d,

47 drwire .out q,

48 input wire ck,

49 input wire sb);

50 wire int t, int_f, ack_in;
51

52 drwire out();

53 drwire in();

54

55 SY _RNCL2W110F2X9 t (.A(d.t), .B(ack_in), .Q(int_t), .RN(sb),
56 SY _RNCL2W110F2X9 f (.A(d.f), .B(ack_in), .Q(int_f), .RN(sb),

57

58 dff sout (.d(out), .q(q), .reset(sb), .ck(ck));
59 dffs_slave sin (.d(in), .q(out), .reset(sb),
60

61 assign in.t = int_t;

62 assign in.f = int_f;

63 assign ack_in = ~(in.ack);

64 assignh d.ack = int_t | int_f;

65 endmodule // dffr

.ck(ck));

.G(ck));
.RN(reset), .G(ck));
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66
67 module dffr_slave
68 (drwire.in d,

69 drwire.out q,

70 input wire ck,

71 input wire reset);

72

73 wire ack_in, set, int_t, int_f;
74

75 SY RNCL2W110F2X9 t (.A(d.t), .B(ack_ in), .Q(int_t), .RN(reset), .G(ck));
76 ST SNCL2W110F2X9 f (.A(d.f), .B(ack_ in), .Q(int_f), .S(set), .G(ck));
77

78 assign set = ~reset;

79 assign ack_in = ~(q.ack);

80 assigh gq.t = int_t;

81 assign q.f = int_f;

82 assign d.ack = int_t | int_f;
83 endmodule; // dffr_slave

84

85 module dffr
86 (drwire.in d,

87 drwire.out q,

88 input wire ck,

89 input wire rb);

90 wire int t, int_f, ack_in;
91

92 drwire out();

93 drwire in();

94

95 SY_RNCL2W110F2X9 t (.A(d.t), .B(ack_in), .Q(int_t), .BN(rb), .G(ck));
96 SY_RNCL2W110F2X9 f (.A(d.f), .B(ack_in), .Q(int_f), .BN(rb), .G(ck));
97

98 dff sout (.d(out), .q(q), .reset(rb), .ck(ck));

99 dffr_slave sin (.d(in), .q(out), .reset(rb), .ck(ck));
100

101 assign in.t = int_t;

102 assign in.f = int_f;

103 assign ack_in = ~(in.ack);

104 assign d.ack = int_t | int_f;

105 endmodule // dffr

106

107 module nand2
108 (drwire.in a,
109 drwire.in b,

110 drwire.out y);
111
112 assign y.t = a.f & b.f |

113 a.f &b.t |
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115
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119
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125
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130
131
132
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138
139
140
141
142
143
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145
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147
148
149
150
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assign
assign
assign

endmodule // nand2

QO

y.f =
a.ack
b.ack =

module nor?2

(drwire
drwire
drwire

assign

assign
assign
assign
endmodule

.in a,
.in b,
.out y);

]
W

y.f

y.t = a.

a.ack =
b.ack =
// nor2

module xor2

(drwire
drwire
drwire

assign

assign

assign
assign
endmodule

.in a,
.in b,
.out y);

1]
QO

y.t

Il
W

y.f

a.ack =
b.ack =
// xor2

module buff

(drwire
drwire

assign
assign
assign
endmodule

.in a,
.out y);

y.t =
y.f =
a.ack =
// buff

a
a

module inv

(drwire
drwire

.in a,
.out y);

.t & b.f;

.t & b.t;

y.ack;
y.ack;

.t & b.t |
.t & b.f |
.f & b.t;

f & b.f;
y.ack;
y.ack;

4 & b.of |
.f & b.t;

f & b.f |
.t & b.t;

y.ack;
y.ack;
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assigh y.t = a.f;
assign y.f = a.t;
assign a.ack = y.ack;

endmodule // inv

set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set

Listing D.6: tech/st65.tcl

equivalent_cell (ST_NCL1W1110F3X2) ST_NCLP3W1110F3X2
equivalent_cell (ST_NCLP3W1110F3X2) ST_NCL1W1110F3X2
equivalent_cell (ST_NCL1W1110F3X4) ST_NCLP3W1110F3X4
equivalent_cell (ST_NCLP3W1110F3X4) ST_NCL1W1110F3X4
equivalent_cell (ST_NCL1W1110F3X7) ST_NCLP3W1110F3X7
equivalent_cell (ST_NCLP3W1110F3X7) ST_NCL1W1110F3X7
equivalent_cell (ST_NCL1W1110F3X9) ST_NCLP3W1110F3X9
equivalent_cell (ST_NCLP3W1110F3X9) ST_NCL1W1110F3X9
equivalent_cell (ST_NCL1W1110F3X13) ST_NCLP3W1110F3X13
equivalent_cell (ST_NCLP3W1110F3X13) ST_NCL1W1110F3X13
equivalent_cell (ST_NCL1W1110F3X18) ST_NCLP3W1110F3X18
equivalent_cell (ST_NCLP3W1110F3X18) ST_NCL1W1110F3X18
equivalent_cell (ST_INCL3W1110F3X2) ST_INCLP1W1110F3X2
equivalent_cell (ST_INCLP1W1110F3X2) ST_INCL3W1110F3X2
equivalent_cell (ST_INCL3W1110F3X4) ST _INCLP1W1110F3X4
equivalent_cell (ST_INCLP1W1110F3X4) ST_INCL3W1110F3X4
equivalent_cell (ST_INCL3W1110F3X7) ST_INCLP1W1110F3X7
equivalent_cell (ST_INCLP1W1110F3X7) ST_INCL3W1110F3X7
equivalent_cell (ST_INCL3W1110F3X9) ST_INCLP1W1110F3X9
equivalent_cell (ST_INCLP1W1110F3X9) ST _INCL3W1110F3X9
equivalent_cell (ST_INCL3W1110F3X13) ST_INCLP1W1110F3X13
equivalent_cell (ST_INCLP1W1110F3X13) ST_INCL3W1110F3X13
equivalent_cell (ST_INCL3W1110F3X18) ST_INCLP1W1110F3X18
equivalent_cell (ST_INCLP1W1110F3X18) ST_INCL3W1110F3X18
equivalent_cell (ST_INCL3W1110F3X31) ST_INCLP1W1110F3X18
equivalent_cell (ST_INCL4W22110F4X2) ST_INCLP3W22110F4X2
equivalent_cell (ST_INCLP3W22110F4X2) ST_INCL4W22110F4X2
equivalent_cell (ST_INCL4W22110F4X4) ST_INCLP3W22110F4X4
equivalent_cell (ST_INCLP3W22110F4X4) ST_INCL4W22110F4X4
equivalent_cell (ST_INCL4W22110F4X7) ST_INCLP3W22110F4X7
equivalent_cell (ST_INCLP3W22110F4X7) ST_INCL4W22110F4X7
equivalent_cell (ST_INCL4W22110F4X9) ST_INCLP3W22110F4X13
equivalent_cell (ST_INCLP3W22110F4X13) ST_INCL4W22110F4X9
equivalent_cell (ST_INCL3W21110F4X2) ST_INCLP3W21110F4X2
equivalent_cell (ST_INCLP3W21110F4X2) ST_INCL3W21110F4X2
equivalent_cell (ST_INCL3W21110F4X4) ST_INCLP3W21110F4X4
equivalent_cell (ST_INCLP3W21110F4X4) ST_INCL3W21110F4X4
equivalent_cell (ST_INCL3W21110F4X7) ST_INCLP3W21110F4X7
equivalent_cell (ST_INCLP3W21110F4X7) ST_INCL3W21110F4X7
equivalent_cell (ST_INCL3W21110F4X9) ST_INCLP3W21110F4X9
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set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set

equivalent_cell (ST_INCLP3W21110F4X9) ST_INCL3W21110F4X9

equivalent_cell (ST_INCL3W21110F4X13) ST_INCLP3W21110F4X13
equivalent_cell (ST_INCLP3W21110F4X13) ST_INCL3W21110F4X13

(

(

(

equivalent_cell (ST_NCLAO21020F4X2) ST_NCLPAO20210F4X2
equivalent_cell (ST_NCLPAO20210F4X2) ST_NCLAO21020F4X2
equivalent_cell (ST_NCLAO21020F4X4) ST_NCLPAO20210F4X4
equivalent_cell (ST_NCLPAO20210F4X4) ST_NCLAO21020F4X4
equivalent_cell (ST_NCLAO21020F4X7) ST_NCLPAO20210F4X7
equivalent_cell (ST_NCLPAO20210F4X7) ST_NCLAO21020F4X7
equivalent_cell (ST_NCLAO21020F4X9) ST_NCLPAO20210F4X9
equivalent_cell (ST_NCLPAO20210F4X9) ST_NCLAO21020F4X9
equivalent_cell (ST_NCLAO21020F4X13) ST_NCLPAO20210F4X13
equivalent_cell (ST_NCLPAO20210F4X13) ST_NCLAO21020F4X13
equivalent_cell (ST_NCL4W32210F4X2) ST_NCLP5W32210F4X2
equivalent_cell (ST_NCLP5W32210F4X2) ST_NCL4W32210F4X2
equivalent_cell (ST_NCL4W32210F4X4) ST_NCLP5W32210F4X4
equivalent_cell (ST_NCLP5W32210F4X4) ST_NCL4W32210F4X4
equivalent_cell (ST_NCLP5W32210F4X7) ST_NCL4W32210F4X9
equivalent_cell (ST_NCL4W32210F4X9) ST_NCLP5W32210F4X9
equivalent_cell (ST_NCLP5W32210F4X9) ST_NCL4W32210F4X9
equivalent_cell (ST_NCL4W32210F4X13) ST_NCLP5W32210F4X13
equivalent_cell (ST_NCLP5W32210F4X13) ST_NCL4W32210F4X13
equivalent_cell (ST_INCL3W22110F4X2) ST_INCLP4W22110F4X4
equivalent_cell (ST_INCL3W22110F4X4) ST_INCLP4W22110F4X4
equivalent_cell (ST_INCLP4W22110F4X4) ST_INCL3W22110F4X4
equivalent_cell (ST_INCL3W22110F4X7) ST_INCLP4W22110F4X7
equivalent_cell (ST_INCLP4W22110F4X7) ST_INCL3W22110F4X7
equivalent_cell (ST_INCL3W22110F4X9) ST_INCLP4W22110F4X9
equivalent_cell (ST_INCLP4W22110F4X9) ST_INCL3W22110F4X9
equivalent_cell (ST_INCLP4W22110F4X13) ST_INCL3W22110F4X9
equivalent_cell (ST_INCL1W11110F4X2) ST_INCLP4W11110F4X2
equivalent_cell (ST_INCLP4W11110F4X2) ST_INCL1W11110F4X2
equivalent_cell (ST_INCL1W11110F4X4) ST_INCLP4W11110F4X4
equivalent_cell (ST_INCLP4W11110F4X4) ST_INCL1W11110F4X4
equivalent_cell (ST_INCL1W11110F4X7) ST_INCLP4W11110F4X7
equivalent_cell (ST_INCLP4W11110F4X7) ST_INCL1W11110F4X7
equivalent_cell (ST_INCL1W11110F4X9) ST_INCLP4W11110F4X9
equivalent_cell (ST_INCLP4W11110F4X9) ST_INCL1W11110F4X9
equivalent_cell (ST_INCL1W11110F4X13) ST_INCLP4W11110F4X9
equivalent_cell (ST_INCL1W11110F4X18) ST_INCLP4W11110F4X9
equivalent_cell (ST_INCL1W11110F4X31) ST_INCLP4W11110F4X9
equivalent_cell (ST_NCL2W11110F4X2) ST_NCLP3W11110F4X2
equivalent_cell (ST_NCLP3W11110F4X2) ST_NCL2W11110F4X2
equivalent_cell (ST_NCL2W11110F4X4) ST_NCLP3W11110F4X4
equivalent_cell (ST_NCLP3W11110F4X4) ST_NCL2W11110F4X4
equivalent_cell (ST_NCL2W11110F4X7) ST_NCLP3W11110F4X7
equivalent_cell (ST_NCLP3W11110F4X7) ST_NCL2W11110F4X7
equivalent_cell (ST_NCL2W11110F4X9) ST_NCLP3W11110F4X9
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equivalent_cell (ST_NCLP3W11110F4X9) ST_NCL2W11110F4X9
equivalent_cell (ST_NCL2W11110F4X13) ST_NCLP3W11110F4X13
equivalent_cell (ST_NCLP3W11110F4X13) ST_NCL2W11110F4X13
equivalent_cell (ST_NCL5W32210F4X2) ST_NCLP4W32210F4X2
equivalent_cell (ST_NCLP4W32210F4X2) ST_NCL5W32210F4X2
equivalent_cell (ST_NCL5W32210F4X4) ST_NCLP4W32210F4X4
equivalent_cell (ST_NCLP4W32210F4X4) ST_NCL5W32210F4X4
equivalent_cell (ST_NCL5W32210F4X7) ST_NCLP4W32210F4X7
equivalent_cell (ST_NCLP4W32210F4X7) ST_NCL5W32210F4X7
equivalent_cell (ST_NCL5W32210F4X9) ST_NCLP4W32210F4X9
equivalent_cell (ST_NCLP4W32210F4X9) ST_NCL5W32210F4X9
equivalent_cell (ST_NCL5W32210F4X13) ST_NCLP4W32210F4X13
equivalent_cell (ST_NCLP4W32210F4X13) ST_NCL5W32210F4X13
equivalent_cell (ST_NCL3W31110F4X2) ST_NCLP4W31110F4X2
equivalent_cell (ST_NCLP4W31110F4X2) ST_NCL3W31110F4X2
equivalent_cell (ST_NCL3W31110F4X4) ST_NCLP4W31110F4X4
equivalent_cell (ST_NCLP4W31110F4X4) ST_NCL3W31110F4X4
equivalent_cell (ST_NCL3W31110F4X7) ST_NCLP4W31110F4X9
equivalent_cell (ST_NCL3W31110F4X9) ST_NCLP4W31110F4X9
equivalent_cell (ST_NCLP4W31110F4X9) ST_NCL3W31110F4X9
equivalent_cell (ST_NCL3W31110F4X13) ST_NCLP4W31110F4X13
equivalent_cell (ST_NCLP4W31110F4X13) ST_NCL3W31110F4X13
equivalent_cell (ST_INCL4AW11110F4X2) ST_INCLP1W11110F4X2
equivalent_cell (ST_INCLP1W11110F4X2) ST_INCL4W11110F4X2
equivalent_cell (ST_INCL4AW11110F4X4) ST_INCLP1W11110F4X4
equivalent_cell (ST_INCLP1W11110F4X4) ST_INCL4W11110F4X4
equivalent_cell (ST_INCL4AW11110F4X7) ST_INCLP1W11110F4X7
equivalent_cell (ST_INCLP1W11110F4X7) ST_INCL4W11110F4X7
equivalent_cell (ST_INCL4AW11110F4X9) ST_INCLP1W11110F4X9
equivalent_cell (ST_INCLP1W11110F4X9) ST_INCL4W11110F4X9
equivalent_cell (ST_INCLP1W11110F4X13) ST_INCL4W11110F4X9
equivalent_cell (ST_INCLP1W11110F4X18) ST_INCL4W11110F4X9
equivalent_cell (ST_NCL3W2110F3X2) ST_NCLP2W2110F3X2
equivalent_cell (ST_NCLP2W2110F3X2) ST_NCL3W2110F3X2
equivalent_cell (ST_NCL3W2110F3X4) ST_NCLP2W2110F3X4
equivalent_cell (ST_NCLP2W2110F3X4) ST_NCL3W2110F3X4
equivalent_cell (ST_NCL3W2110F3X7) ST_NCLP2W2110F3X7
equivalent_cell (ST_NCLP2W2110F3X7) ST_NCL3W2110F3X7
equivalent_cell (ST_NCL3W2110F3X9) ST_NCLP2W2110F3X9
equivalent_cell (ST_NCLP2W2110F3X9) ST_NCL3W2110F3X9
equivalent_cell (ST_NCL3W2110F3X13) ST_NCLP2W2110F3X13
equivalent_cell (ST_NCLP2W2110F3X13) ST_NCL3W2110F3X13
equivalent_cell (ST_NCL3W2110F3X18) ST_NCLP2W2110F3X18
equivalent_cell (ST_NCLP2W2110F3X18) ST_NCL3W2110F3X18
equivalent_cell (ST_NCL2W2110F3X2) ST_NCLP3W2110F3X2
equivalent_cell (ST_NCLP3W2110F3X2) ST_NCL2W2110F3X2
equivalent_cell (ST_NCL2W2110F3X4) ST_NCLP3W2110F3X4
equivalent_cell (ST_NCLP3W2110F3X4) ST_NCL2W2110F3X4
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equivalent_cell (ST_NCL2W2110F3X7) ST_NCLP3W2110F3X7
equivalent_cell (ST_NCLP3W2110F3X7) ST_NCL2W2110F3X7
equivalent_cell (ST_NCL2W2110F3X9) ST_NCLP3W2110F3X9
equivalent_cell (ST_NCLP3W2110F3X9) ST_NCL2W2110F3X9
equivalent_cell (ST_NCL2W2110F3X13) ST_NCLP3W2110F3X13
equivalent_cell (ST_NCLP3W2110F3X13) ST_NCL2W2110F3X13
equivalent_cell (ST_NCLP3W2110F3X18) ST_NCL2W2110F3X13
equivalent_cell (ST_INCLIW110F2X2) SY_INCLP2W110F2X2
equivalent_cell (SY_INCLP2W110F2X2) ST_INCL1W110F2X4
equivalent_cell (ST_INCL1W110F2X4) ST_INCLP2W110F2X4
equivalent_cell (ST_INCLP2W110F2X4) ST_INCL1W110F2X4
equivalent_cell (SY_INCLP2W110F2X4) ST_INCL1W110F2X7
equivalent_cell (ST_INCLIW110F2X7) ST_INCLP2W110F2X7
equivalent_cell (ST_INCLP2W110F2X7) ST_INCL1W110F2X7
equivalent_cell (SY_INCLP2W110F2X7) ST_INCL1W110F2X9
equivalent_cell (ST_INCL1W110F2X9) SY_INCLP2W110F2X9
equivalent_cell (SY_INCLP2W110F2X9) ST_INCL1W110F2X13
equivalent_cell (ST_INCLIW110F2X13) ST_INCLP2W110F2X13
equivalent_cell (ST_INCLP2W110F2X13) ST_INCL1W110F2X13
equivalent_cell (SY_INCLP2W110F2X13) ST_INCL1W110F2X18
equivalent_cell (ST_INCLIW110F2X18) ST_INCLP2W110F2X18
equivalent_cell (ST_INCLP2W110F2X18) ST_INCL1W110F2X18
equivalent_cell (SY_INCLP2W110F2X18) ST_INCL1W110F2X18
equivalent_cell (ST_INCLP2W110F2X22) ST_INCL1W110F2X18
equivalent_cell (ST_INCLP2W110F2X31) ST_INCL1W110F2X18
equivalent_cell (ST_INCL3W2110F3X2) ST_INCLP2W2110F3X2
equivalent_cell (ST_INCLP2W2110F3X2) ST_INCL3W2110F3X2
equivalent_cell (ST_INCL3W2110F3X4) ST_INCLP2W2110F3X4
equivalent_cell (ST_INCLP2W2110F3X4) ST_INCL3W2110F3X4
equivalent_cell (ST_INCL3W2110F3X7) ST_INCLP2W2110F3X7
equivalent_cell (ST_INCLP2W2110F3X7) ST_INCL3W2110F3X7
equivalent_cell (ST_INCL3W2110F3X9) ST_INCLP2W2110F3X9
equivalent_cell (ST_INCLP2W2110F3X9) ST_INCL3W2110F3X9
equivalent_cell (ST_INCL3W2110F3X13)
(
(
(
(
(
(
(
(
(
(
(
(
(
(

equivalent_cell (ST_NCL2W110F2X2) ST_NCLP1W110F2X2
equivalent_cell (ST_NCLP1W110F2X2) ST_NCL2W110F2X2
equivalent_cell (SY_NCL2W110F2X2) ST_NCLP1W110F2X4
equivalent_cell (ST_NCL2W110F2X4) ST_NCLP1W110F2X4
equivalent_cell (ST_NCLP1W110F2X4) ST_NCL2W110F2X4
equivalent_cell (SY_NCL2W110F2X4) ST_NCLP1W110F2X7
equivalent_cell (ST_NCL2W110F2X7) ST_NCLP1W110F2X7
equivalent_cell (ST_NCLP1W110F2X7) ST_NCL2W110F2X7
equivalent_cell (ST_NCL2W110F2X9) ST_NCLP1W110F2X9

ST_INCLP2W2110F3X18
equivalent_cell (ST_INCL3W2110F3X18) ST_INCLP2W2110F3X18
equivalent_cell (ST_INCLP2W2110F3X18) ST_INCL3W2110F3X18
equivalent_cell (ST_INCLP2W2110F3X22) ST_INCL3W2110F3X31
equivalent_cell (ST_INCLP2W2110F3X27) ST_INCL3W2110F3X31
equivalent_cell (ST_INCL3W2110F3X31) ST_INCLP2W2110F3X27
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equivalent_cell (ST_NCLP1W110F2X9) ST_NCL2W110F2X9
equivalent_cell (SY_NCL2W110F2X9) ST_NCLP1W110F2X13
equivalent_cell (ST_NCL2W110F2X13) ST_NCLP1W110F2X13
equivalent_cell (ST_NCLP1W110F2X13) ST_NCL2W110F2X13
equivalent_cell (SY_NCL2W110F2X13) ST_NCLP1W110F2X18
equivalent_cell (ST_NCLP1W110F2X18) SY_NCL2W110F2X18
equivalent_cell (SY_NCL2W110F2X18) ST_NCLP1W110F2X18
equivalent_cell (ST_NCL4W11110F4X2) ST_NCLP1W11110F4X2
equivalent_cell (ST_NCLP1W11110F4X2) ST_NCL4W11110F4X2
equivalent_cell (ST_NCL4W11110F4X4) ST_NCLP1W11110F4X4
equivalent_cell (ST_NCLP1W11110F4X4) ST_NCL4W11110F4X4
equivalent_cell (ST_NCL4W11110F4X7) ST_NCLP1W11110F4X7
equivalent_cell (ST_NCLP1W11110F4X7) ST_NCL4W11110F4X7
equivalent_cell (ST_NCL4W11110F4X9) ST_NCLP1W11110F4X13
equivalent_cell (ST_NCL4W11110F4X13) ST_NCLP1W11110F4X13
equivalent_cell (ST_NCLP1W11110F4X13) ST_NCL4W11110F4X13
equivalent_cell (ST_NCLP1W11110F4X18) ST_NCL4W11110F4X13
equivalent_cell (ST_INCL5W22110F4X2) ST_INCLP2W22110F4X2
equivalent_cell (ST_INCLP2W22110F4X2) ST_INCL5W22110F4X2
equivalent_cell (ST_INCL5W22110F4X4) ST_INCLP2W22110F4X4
equivalent_cell (ST_INCLP2W22110F4X4) ST_INCL5W22110F4X4
equivalent_cell (ST_INCL5W22110F4X7) ST_INCLP2W22110F4X7
equivalent_cell (ST_INCLP2W22110F4X7) ST_INCL5W22110F4X7
equivalent_cell (ST_INCL5W22110F4X9) ST_INCLP2W22110F4X9
equivalent_cell (ST_INCLP2W22110F4X9) ST_INCL5W22110F4X9
equivalent_cell (ST_INCL5W22110F4X13) ST_INCLP2W22110F4X13
equivalent_cell (ST_INCLP2W22110F4X13) ST_INCL5W22110F4X13
equivalent_cell (ST_INCL5W22110F4X18) ST_INCLP2W22110F4X18
equivalent_cell (ST_INCLP2W22110F4X18) ST_INCL5W22110F4X18
equivalent_cell (ST_INCL5W22110F4X22) ST_INCLP2W22110F4X18
equivalent_cell (ST_INCL2W22110F4X2) ST_INCLP5W22110F4X2
equivalent_cell (ST_INCLP5W22110F4X2) ST_INCL2W22110F4X2
equivalent_cell (ST_INCL2W22110F4X4) ST_INCLP5W22110F4X4
equivalent_cell (ST_INCLP5W22110F4X4) ST_INCL2W22110F4X4
equivalent_cell (ST_INCL2W22110F4X7) ST_INCLP5W22110F4X7
equivalent_cell (ST_INCLP5W22110F4X7) ST_INCL2W22110F4X7
equivalent_cell (ST_INCL2W22110F4X9) ST_INCLP5W22110F4X9
equivalent_cell (ST_INCLP5W22110F4X9) ST_INCL2W22110F4X9
equivalent_cell (ST_INCL2W22110F4X13) ST_INCLP5W22110F4X13
equivalent_cell (ST_INCLP5W22110F4X13) ST_INCL2W22110F4X13
equivalent_cell (ST_INCL2W22110F4X18) ST_INCLP5W22110F4X13
equivalent_cell (ST_INCL2W22110F4X31) ST_INCLP5W22110F4X13
equivalent_cell (ST_INCL5W32210F4X2) ST_INCLP4W32210F4X2
equivalent_cell (ST_INCLP4W32210F4X2) ST_INCL5W32210F4X2
equivalent_cell (ST_INCL5W32210F4X4) ST_INCLP4W32210F4X4
equivalent_cell (ST_INCLP4W32210F4X4) ST_INCL5W32210F4X4
equivalent_cell (ST_INCL5W32210F4X7) ST_INCLP4W32210F4X7
equivalent_cell (ST_INCLP4W32210F4X7) ST_INCL5W32210F4X7
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233 set equivalent_cell (ST_INCLP4W32210F4X9) ST_INCL5W32210F4X7
234 set equivalent_cell (ST_INCLP4W32210F4X13) ST_INCL5W32210F4X7
235 set equivalent_cell (ST_NCLAO220F4X2) ST_NCLPOA220F4X4

236 set equivalent_cell (ST_NCLAO220F4X4) ST_NCLPOA220F4X4

237 set equivalent_cell (ST_NCLPOA220F4X4) ST_NCLAO220F4X4

238 set equivalent_cell (ST_NCLAO220F4X7) ST_NCLPOA220F4X7

239 set equivalent_cell (ST_NCLPOA220F4X7) ST_NCLAO220F4X7

240 set equivalent_cell (ST_NCLAO220F4X9) ST_NCLPOA220F4X9

241 set equivalent_cell (ST_NCLPOA220F4X9) ST_NCLAO220F4X9

242 set equivalent_cell (ST_NCLAO220F4X13) ST_NCLPOA220F4X13
243 set equivalent_cell (ST_NCLPOA220F4X13) ST_NCLAO220F4X13
244 set equivalent_cell (ST_INCL4AW21110F4X2) ST_INCLP2W21110F4X2
245 set equivalent_cell (ST_INCLP2W21110F4X2) ST_INCL4W21110F4X2
246 set equivalent_cell (ST_INCL4W21110F4X4) ST_INCLP2W21110F4X4
247 set equivalent_cell (ST_INCLP2W21110F4X4) ST_INCL4W21110F4X4
248 set equivalent_cell (ST_INCL4W21110F4X7) ST_INCLP2W21110F4X7
249 set equivalent_cell (ST_INCLP2W21110F4X7) ST_INCL4W21110F4X7
250 set equivalent_cell (ST_INCL4AW21110F4X9) ST_INCLP2W21110F4X9
251 set equivalent_cell (ST_INCLP2W21110F4X9) ST_INCL4W21110F4X9
252 set equivalent_cell (ST_INCL4AW21110F4X13) ST_INCLP2W21110F4X9
253 set equivalent_cell (ST_NCL4W22110F4X2) ST_NCLP3W22110F4X2
254 set equivalent_cell (ST_NCLP3W22110F4X2) ST_NCL4W22110F4X2
255 set equivalent_cell (ST_NCLP3W22110F4X4) ST_NCL4W22110F4X7
256 set equivalent_cell (ST_NCL4W22110F4X7) ST_NCLP3W22110F4X4
257 set equivalent_cell (ST_NCL4W22110F4X9) ST_NCLP3W22110F4X13
258 set equivalent_cell (ST_NCL4W22110F4X13) ST_NCLP3W22110F4X13
259 set equivalent_cell (ST_NCLP3W22110F4X13) ST_NCL4W22110F4X13
260 set equivalent_cell (ST_INCL3W31110F4X2) ST_INCLP4W31110F4X2
261 set equivalent_cell (ST_INCLP4W31110F4X2) ST _INCL3W31110F4X2
262 set equivalent_cell (ST_INCL3W31110F4X4) ST_INCLP4W31110F4X4
263 set equivalent_cell (ST_INCLP4W31110F4X4) ST_INCL3W31110F4X4
264 set equivalent_cell (ST_INCL3W31110F4X7) ST_INCLP4W31110F4X7
265 set equivalent_cell (ST_INCLP4W31110F4X7) ST_INCL3W31110F4X7
266 set equivalent_cell (ST_INCL3W31110F4X9) ST_INCLP4W31110F4X9
267 set equivalent_cell (ST_INCLP4W31110F4X9) ST_INCL3W31110F4X9
268 set equivalent_cell (ST_INCL3W31110F4X13) ST_INCLP4W31110F4X9
269 set equivalent_cell (ST_INCL3W31110F4X18) ST_INCLP4W31110F4X9
270 set equivalent_cell (ST_INCL3W31110F4X31) ST_INCLP4W31110F4X9
271 set equivalent_cell (ST_NCL2W22110F4X2) ST_NCLP5W22110F4X2
272 set equivalent_cell (ST_NCLP5W22110F4X2) ST _NCL2W22110F4X2
273 set equivalent_cell (ST_NCL2W22110F4X4) ST_NCLP5W22110F4X4
274 set equivalent_cell (ST_NCLP5W22110F4X4) ST_NCL2W22110F4X4
275 set equivalent_cell (ST_NCL2W22110F4X7) ST_NCLP5W22110F4X7
276 set equivalent_cell (ST_NCLP5W22110F4X7) ST_NCL2W22110F4X7
277 set equivalent_cell (ST_NCL2W22110F4X9) ST_NCLP5W22110F4X9
278 set equivalent_cell (ST_NCLP5W22110F4X9) ST_NCL2W22110F4X9
279 set equivalent_cell (ST_NCL2W22110F4X13) ST_NCLP5W22110F4X13
280 set equivalent_cell (ST_NCLP5W22110F4X13) ST_NCL2W22110F4X13
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281 set equivalent_cell (ST_INCL2W11110F4X2) ST_INCLP3W11110F4X2
282 set equivalent_cell (ST_INCLP3W11110F4X2) ST_INCL2W11110F4X2
283 set equivalent_cell (ST_INCL2ZW11110F4X4) ST_INCLP3W11110F4X4
284 set equivalent_cell (ST_INCLP3W11110F4X4) ST_INCL2W11110F4X4
285 set equivalent_cell (ST_INCL2W11110F4X7) ST_INCLP3W11110F4X9
286 set equivalent_cell (ST_INCLP3W11110F4X9) ST_INCL2W11110F4X13
287 set equivalent_cell (ST_INCL2ZW11110F4X13) ST_INCLP3W11110F4X9
288 set equivalent_cell (ST_NCL3W1110F3X2) ST_NCLP1W1110F3X2
289 set equivalent_cell (ST_NCLP1W1110F3X2) ST_NCL3W1110F3X2
290 set equivalent_cell (ST_NCL3W1110F3X4) ST_NCLP1W1110F3X4
291 set equivalent_cell (ST_NCLP1W1110F3X4) ST_NCL3W1110F3X4
292 set equivalent_cell (ST_NCL3W1110F3X7) ST_NCLP1W1110F3X7
293 set equivalent_cell (ST_NCLP1W1110F3X7) ST_NCL3W1110F3X7
294 set equivalent_cell (ST_NCL3W1110F3X9) ST_NCLP1W1110F3X9
295 set equivalent_cell (ST_NCLP1W1110F3X9) ST_NCL3W1110F3X9
296 set equivalent_cell (ST_NCL3W1110F3X13) ST_NCLP1W1110F3X13
297 set equivalent_cell (ST_NCLP1W1110F3X13) ST_NCL3W1110F3X13
298 set equivalent_cell (ST_NCL3W1110F3X18) ST _NCLP1W1110F3X18
299 set equivalent_cell (ST_NCLP1W1110F3X18) ST_NCL3W1110F3X18
300 set equivalent_cell (ST_NCL3W22110F4X2) ST_NCLP4W22110F4X2
301 set equivalent_cell (ST_NCLP4W22110F4X2) ST_NCL3W22110F4X2
302 set equivalent_cell (ST_NCL3W22110F4X4) ST_NCLP4W22110F4X4
303 set equivalent_cell (ST_NCLP4W22110F4X4) ST_NCL3W22110F4X4
304 set equivalent_cell (ST_NCL3W22110F4X7) ST_NCLP4W22110F4X7
305 set equivalent_cell (ST_NCLP4W22110F4X7) ST_NCL3W22110F4X7
306 set equivalent_cell (ST_NCL3W22110F4X9) ST_NCLP4W22110F4X13
307 set equivalent_cell (ST_NCL3W22110F4X13) ST_NCLP4W22110F4X13
308 set equivalent_cell (ST_NCLP4W22110F4X13) ST_NCL3W22110F4X13
309 set equivalent_cell (ST_NCL3W21110F4X2) ST _NCLP3W21110F4X2
310 set equivalent_cell (ST_NCLP3W21110F4X2) ST_NCL3W21110F4X2
311 set equivalent_cell (ST_NCL3W21110F4X4) ST_NCLP3W21110F4X4
312 set equivalent_cell (ST_NCLP3W21110F4X4) ST_NCL3W21110F4X4
313 set equivalent_cell (ST_NCL3W21110F4X7) ST_NCLP3W21110F4X7
314 set equivalent_cell (ST_NCLP3W21110F4X7) ST_NCL3W21110F4X7
315 set equivalent_cell (ST_NCLP3W21110F4X9) ST_NCL3W21110F4X13
316 set equivalent_cell (ST_NCL3W21110F4X13) ST_NCLP3W21110F4X13
317 set equivalent_cell (ST_NCLP3W21110F4X13) ST_NCL3W21110F4X13
318 set equivalent_cell (ST_NCL2W1110F3X2) ST_NCLP2W1110F3X2
319 set equivalent_cell (ST_NCLP2W1110F3X2) ST_NCL2W1110F3X2
320 set equivalent_cell (ST_NCL2W1110F3X4) ST_NCLP2W1110F3X4

321 set equivalent_cell (ST_NCLP2W1110F3X4) ST_NCL2W1110F3X4
322 set equivalent_cell (ST_NCL2W1110F3X7) ST_NCLP2W1110F3X7
323 set equivalent_cell (ST_NCLP2W1110F3X7) ST_NCL2W1110F3X7
324 set equivalent_cell (ST_NCL2W1110F3X9) ST_NCLP2W1110F3X9
325 set equivalent_cell (ST_NCLP2W1110F3X9) ST_NCL2W1110F3X9
326 set equivalent_cell (ST_NCL2W1110F3X13) ST_NCLP2W1110F3X9
327 set equivalent_cell (ST_NCL1W11110F4X2) ST_NCLP4W11110F4X2
328 set equivalent_cell (ST_NCLP4W11110F4X2) ST_NCL1W11110F4X2
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equivalent_cell (ST_NCL1W11110F4X4) ST_NCLP4W11110F4X4
equivalent_cell (ST_NCLP4W11110F4X4) ST_NCL1W11110F4X4
equivalent_cell (ST_NCL1W11110F4X7) ST_NCLP4W11110F4X7
equivalent_cell (ST_NCLP4W11110F4X7) ST_NCL1W11110F4X7
equivalent_cell (ST_NCL1W11110F4X9) ST_NCLP4W11110F4X9
equivalent_cell (ST_NCLP4W11110F4X9) ST_NCL1W11110F4X9
equivalent_cell (ST_NCL1W11110F4X13) ST_NCLP4W11110F4X13
equivalent_cell (ST_NCLP4W11110F4X13) ST_NCL1W11110F4X13
equivalent_cell (ST_NCL1W11110F4X18) ST_NCLP4W11110F4X13
equivalent_cell (ST_NCL3W32110F4X2) ST_NCLP5W32110F4X2
equivalent_cell (ST_NCLP5W32110F4X2) ST_NCL3W32110F4X2
equivalent_cell (ST_NCL3W32110F4X4) ST_NCLP5W32110F4X4
equivalent_cell (ST_NCLP5W32110F4X4) ST_NCL3W32110F4X4
equivalent_cell (ST_NCL3W32110F4X7) ST_NCLP5W32110F4X7
equivalent_cell (ST_NCLP5W32110F4X7) ST_NCL3W32110F4X7
equivalent_cell (ST_NCL3W32110F4X9) ST_NCLP5W32110F4X9
equivalent_cell (ST_NCLP5W32110F4X9) ST_NCL3W32110F4X9
equivalent_cell (ST_NCL3W32110F4X13) ST_NCLP5W32110F4X13
equivalent_cell (ST_NCLP5W32110F4X13) ST_NCL3W32110F4X13
equivalent_cell (ST_INCL4W23210F4X2) ST_INCLP5W23210F4X2
equivalent_cell (ST_INCLP5W23210F4X2) ST_INCL4W23210F4X2
equivalent_cell (ST_INCL4AW23210F4X4) ST_INCLP5W23210F4X7
equivalent_cell (ST_INCL4W23210F4X7) ST_INCLP5W23210F4X7
equivalent_cell (ST_INCLP5W23210F4X7) ST_INCL4W23210F4X7
equivalent_cell (ST_INCL4W23210F4X9) ST_INCLP5W23210F4X7
equivalent_cell (ST_INCL4W23210F4X13) ST_INCLP5W23210F4X7
equivalent_cell (ST_INCL3W32110F4X2) ST_INCLP5W32110F4X2
equivalent_cell (ST_INCLP5W32110F4X2) ST_INCL3W32110F4X2
equivalent_cell (ST_INCL3W32110F4X4) ST_INCLP5W32110F4X4
equivalent_cell (ST_INCLP5W32110F4X4) ST_INCL3W32110F4X4
equivalent_cell (ST_INCL3W32110F4X7) ST_INCLP5W32110F4X7
equivalent_cell (ST_INCLP5W32110F4X7) ST_INCL3W32110F4X7
equivalent_cell (ST_INCL3W32110F4X9) ST_INCLP5W32110F4X9
equivalent_cell (ST_INCLP5W32110F4X9) ST_INCL3W32110F4X9
equivalent_cell (ST_INCL3W32110F4X18) ST_INCLP5W32110F4X9
equivalent_cell (ST_INCL3W32110F4X22) ST_INCLP5W32110F4X9
equivalent_cell (ST_INCL3W32110F4X31) ST_INCLP5W32110F4X9
equivalent_cell (ST_INCLAO220F4X2) ST_INCLPOA220F4X2
equivalent_cell (ST_INCLPOA220F4X2) ST_INCLAO220F4X2
equivalent_cell (ST_INCLAO220F4X4) ST_INCLPOA220F4X4
equivalent_cell (ST_INCLPOA220F4X4) ST_INCLAO220F4X4
equivalent_cell (ST_INCLAO220F4X7) ST_INCLPOA220F4X7
equivalent_cell (ST_INCLPOA220F4X7) ST_INCLAO220F4X7
equivalent_cell (ST_INCLAO220F4X9) ST_INCLPOA220F4X9
equivalent_cell (ST_INCLPOA220F4X9) ST_INCLAO220F4X9
equivalent_cell (ST_INCLAO220F4X13) ST_INCLPOA220F4X13
equivalent_cell (ST_INCLPOA220F4X13) ST_INCLAO220F4X13
equivalent_cell (ST_INCLAO220F4X18) ST_INCLPOA220F4X13
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equivalent_cell (ST_INCLP1W110F2X2) SY_INCL2W110F2X2
equivalent_cell (SY_INCL2ZW110F2X2) ST_INCLP1W110F2X4
equivalent_cell (ST_INCL2ZW110F2X4) ST_INCLP1W110F2X4
equivalent_cell (ST_INCLP1W110F2X4) ST_INCL2W110F2X4
equivalent_cell (SY_INCL2ZW110F2X4) ST_INCLP1W110F2X4
equivalent_cell (ST_INCL2ZW110F2X7) ST_INCLP1W110F2X9
equivalent_cell (SY_INCL2ZW110F2X7) ST_INCLP1W110F2X9
equivalent_cell (ST_INCLP1W110F2X9) SY_INCL2W110F2X9
equivalent_cell (SY_INCL2W110F2X9) ST_INCLP1W110F2X13
equivalent_cell (ST_INCL2ZW110F2X13) ST_INCLP1W110F2X13
equivalent_cell (ST_INCLP1W110F2X13) ST_INCL2W110F2X13
equivalent_cell (SY_INCL2W110F2X13) ST_INCLP1W110F2X18
equivalent_cell (ST_INCL2W110F2X18) ST_INCLP1W110F2X18
equivalent_cell (ST_INCLP1W110F2X18) ST_INCL2W110F2X18
equivalent_cell (SY_INCL2W110F2X18) ST_INCLP1W110F2X18
equivalent_cell (ST_INCL2ZW110F2X22) ST_INCLP1W110F2X27
equivalent_cell (ST_INCLP1W110F2X27) ST_INCL2W110F2X31
equivalent_cell (ST_INCL2W110F2X31) ST_INCLP1W110F2X27
equivalent_cell (ST_NCLP5W23210F4X2) ST_NCL4W23210F4X4
equivalent_cell (ST_NCL4W23210F4X4) ST_NCLP5W23210F4X4
equivalent_cell (ST_NCLP5W23210F4X4) ST_NCL4W23210F4X4
equivalent_cell (ST_NCL4W23210F4X7) ST_NCLP5W23210F4X7
equivalent_cell (ST_NCLP5W23210F4X7) ST_NCL4W23210F4X7
equivalent_cell (ST_NCL4W23210F4X9) ST_NCLP5W23210F4X9
equivalent_cell (ST_NCLP5W23210F4X9) ST_NCL4W23210F4X9
equivalent_cell (ST_NCL4W23210F4X13) ST_NCLP5W23210F4X13
equivalent_cell (ST_NCLP5W23210F4X13) ST_NCL4W23210F4X13
equivalent_cell (ST_INCL4AW31110F4X2) ST_INCLP3W31110F4X2
equivalent_cell (ST_INCLP3W31110F4X2) ST_INCL4W31110F4X2
equivalent_cell (ST_INCL4W31110F4X4) ST_INCLP3W31110F4X7
equivalent_cell (ST_INCL4AW31110F4X7) ST_INCLP3W31110F4X7
equivalent_cell (ST_INCLP3W31110F4X7) ST_INCL4W31110F4X7
equivalent_cell (ST_INCL4AW31110F4X9) ST_INCLP3W31110F4X9
equivalent_cell (ST_INCLP3W31110F4X9) ST_INCL4W31110F4X9
equivalent_cell (ST_INCL4W31110F4X13) ST_INCLP3W31110F4X13
equivalent_cell (ST_INCLP3W31110F4X13) ST_INCL4W31110F4X13
equivalent_cell (ST_INCL4W31110F4X18) ST_INCLP3W31110F4X18
equivalent_cell (ST_INCLP3W31110F4X18) ST_INCL4W31110F4X18
equivalent_cell (ST_INCL4W31110F4X22) ST_INCLP3W31110F4X18
equivalent_cell (ST_INCL2W21110F4X2) ST_INCLP4W21110F4X2
equivalent_cell (ST_INCLP4W21110F4X2) ST_INCL2W21110F4X2
equivalent_cell (ST_INCL2W21110F4X4) ST_INCLP4W21110F4X4
equivalent_cell (ST_INCLP4W21110F4X4) ST_INCL2W21110F4X4
equivalent_cell (ST_INCL2W21110F4X7) ST_INCLP4W21110F4X9
equivalent_cell (ST_INCL2W21110F4X9) ST_INCLP4W21110F4X9
equivalent_cell (ST_INCLP4W21110F4X9) ST_INCL2W21110F4X9
equivalent_cell (ST_INCL2W21110F4X13) ST_INCLP4W21110F4X13
equivalent_cell (ST_INCLP4W21110F4X13) ST_INCL2W21110F4X13
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equivalent_cell (ST_INCL2W1110F3X2) ST_INCLP2W1110F3X2
equivalent_cell (ST_INCLP2W1110F3X2) ST_INCL2W1110F3X2
equivalent_cell (ST_INCL2ZW1110F3X4) ST_INCLP2W1110F3X4
equivalent_cell (ST_INCLP2W1110F3X4) ST_INCL2W1110F3X4
equivalent_cell (ST_INCL2ZW1110F3X7) ST_INCLP2W1110F3X7
equivalent_cell (ST_INCLP2W1110F3X7) ST_INCL2W1110F3X7
equivalent_cell (ST_INCL2ZW1110F3X9) ST _INCLP2W1110F3X9
equivalent_cell (ST_INCLP2W1110F3X9) ST_INCL2W1110F3X9
equivalent_cell (ST_INCL2W1110F3X13) ST_INCLP2W1110F3X13
equivalent_cell (ST_INCLP2W1110F3X13) ST_INCL2W1110F3X13
equivalent_cell (ST_INCL2W1110F3X18) ST_INCLP2W1110F3X18
equivalent_cell (ST_INCLP2W1110F3X18) ST_INCL2W1110F3X18
equivalent_cell (ST_INCLP2W1110F3X22) ST_INCL2W1110F3X18
equivalent_cell (ST_INCL4W32210F4X2) ST_INCLP5W32210F4X2
equivalent_cell (ST_INCLP5W32210F4X2) ST_INCL4W32210F4X2
equivalent_cell (ST_INCL4W32210F4X4) ST_INCLP5W32210F4X4
equivalent_cell (ST_INCLP5W32210F4X4) ST_INCL4W32210F4X4
equivalent_cell (ST_INCL4W32210F4X7) ST_INCLP5W32210F4X7
equivalent_cell (ST_INCLP5W32210F4X7) ST_INCL4W32210F4X7
equivalent_cell (ST_INCL4W32210F4X9) ST_INCLP5W32210F4X9
equivalent_cell (ST_INCLP5W32210F4X9) ST_INCL4W32210F4X9

equivalent_cell (ST_INCL4W32210F4X13) ST_INCLP5W32210F4X13
equivalent_cell (ST_INCLP5SW32210F4X13) ST_INCL4W32210F4X13

equivalent_cell (ST_NCLP2W110F2X2) ST_NCL1W110F2X2
equivalent_cell (SY_NCLP2W110F2X2) ST_NCL1W110F2X4
equivalent_cell (ST_NCL1W110F2X4) ST_NCLP2W110F2X4
equivalent_cell (ST_NCLP2W110F2X4) ST_NCL1W110F2X4
equivalent_cell (SY_NCLP2W110F2X4) ST_NCL1W110F2X7
equivalent_cell (ST_NCL1W110F2X7) ST_NCLP2W110F2X7
equivalent_cell (ST_NCLP2W110F2X7) ST_NCL1W110F2X7
equivalent_cell (ST_NCL1W110F2X9) ST_NCLP2W110F2X9
equivalent_cell (ST_NCLP2W110F2X9) ST_NCL1W110F2X9
equivalent_cell (SY_NCLP2W110F2X9) ST_NCL1W110F2X13
equivalent_cell (ST_NCL1W110F2X13) ST_NCLP2W110F2X13
equivalent_cell (ST_NCLP2W110F2X13) ST_NCL1W110F2X13
equivalent_cell (SY_NCLP2W110F2X13) ST_NCL1W110F2X13
equivalent_cell (SY_NCLP2W110F2X18) ST_NCL1W110F2X13
equivalent_cell (ST_NCL2W21110F4X2) ST_NCLP4W21110F4X4
equivalent_cell (ST_NCL2W21110F4X4) ST_NCLP4W21110F4X4
equivalent_cell (ST_NCLP4W21110F4X4) ST_NCL2W21110F4X4
equivalent_cell (ST_NCL2W21110F4X7) ST_NCLP4W21110F4X7
equivalent_cell (ST_NCLP4W21110F4X7) ST_NCL2W21110F4X7
equivalent_cell (ST_NCL2W21110F4X9) ST_NCLP4W21110F4X9
equivalent_cell (ST_NCLP4W21110F4X9) ST_NCL2W21110F4X9
equivalent_cell (ST_NCL2W21110F4X13) ST_NCLP4W21110F4X13
equivalent_cell (ST_NCLP4W21110F4X13) ST_NCL2W21110F4X13
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equivalent_cell (ST_INCLOA220F4X2) ST_INCLPAO220F4X2
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equivalent_cell (ST_INCLPAO220F4X2) ST_INCLOA220F4X2
equivalent_cell (ST_INCLOA220F4X4) ST_INCLPAO220F4X4
equivalent_cell (ST_INCLPAO220F4X4) ST_INCLOA220F4X4
equivalent_cell (ST_INCLOA220F4X7) ST_INCLPAO220F4X7
equivalent_cell (ST_INCLPAO220F4X7) ST_INCLOA220F4X7
equivalent_cell (ST_INCLOA220F4X9) ST_INCLPAO220F4X9
equivalent_cell (ST_INCLPAO220F4X9) ST_INCLOA220F4X9
equivalent_cell (ST_INCLOA220F4X13) ST_INCLPAO220F4X13
equivalent_cell (ST_INCLPAO220F4X13) ST_INCLOA220F4X13
equivalent_cell (ST_INCLOA220F4X18) ST_INCLPAO220F4X13
equivalent_cell (ST_INCL1W1110F3X2) ST_INCLP3W1110F3X2
equivalent_cell (ST_INCLP3W1110F3X2) ST_INCL1W1110F3X2
equivalent_cell (ST_INCLIW1110F3X4) ST_INCLP3W1110F3X4
equivalent_cell (ST_INCLP3W1110F3X4) ST_INCL1W1110F3X4
equivalent_cell (ST_INCLIW1110F3X7) ST_INCLP3W1110F3X7
equivalent_cell (ST_INCLP3W1110F3X7) ST_INCL1W1110F3X7
equivalent_cell (ST_INCL1W1110F3X9) ST_INCLP3W1110F3X9
equivalent_cell (ST_INCLP3W1110F3X9) ST_INCL1W1110F3X9
equivalent_cell (ST_INCL1W1110F3X13) ST_INCLP3W1110F3X13
equivalent_cell (ST_INCLP3W1110F3X13) ST_INCL1W1110F3X13
equivalent_cell (ST_INCL1W1110F3X18) ST_INCLP3W1110F3X18
equivalent_cell (ST_INCLP3W1110F3X18) ST_INCL1W1110F3X18
equivalent_cell (ST_INCL1W1110OF3X31) ST_INCLP3W1110F3X31
equivalent_cell (ST_INCLP3W1110F3X31) ST_INCL1W1110F3X31
equivalent_cell (ST_NCL5W22110F4X2) ST_NCLP2W22110F4X2
equivalent_cell (ST_NCLP2W22110F4X2) ST_NCL5W22110F4X2
equivalent_cell (ST_NCL5W22110F4X4) ST_NCLP2W22110F4X4
equivalent_cell (ST_NCLP2W22110F4X4) ST_NCL5W22110F4X4
equivalent_cell (ST_NCL5W22110F4X7) ST_NCLP2W22110F4X7
equivalent_cell (ST_NCLP2W22110F4X7) ST_NCL5W22110F4X7
equivalent_cell (ST_NCL5W22110F4X9) ST_NCLP2W22110F4X9
equivalent_cell (ST_NCLP2W22110F4X9) ST_NCL5W22110F4X9
equivalent_cell (ST_NCLOA220F4X2) ST_NCLPAO220F4X2
equivalent_cell (ST_NCLPAO220F4X2) ST_NCLOA220F4X2
equivalent_cell (ST_NCLOA220F4X4) ST_NCLPAO220F4X4
equivalent_cell (ST_NCLPAO220F4X4) ST_NCLOA220F4X4
equivalent_cell (ST_NCLOA220F4X7) ST_NCLPAO220F4X7
equivalent_cell (ST_NCLPAO220F4X7) ST_NCLOA220F4X7
equivalent_cell (ST_NCLOA220F4X9) ST_NCLPAO220F4X9
equivalent_cell (ST_NCLPAO220F4X9) ST_NCLOA220F4X9
equivalent_cell (ST_INCL3W11110F4X2) ST_INCLP2W11110F4X2
equivalent_cell (ST_INCLP2W11110F4X2) ST_INCL3W11110F4X2
equivalent_cell (ST_INCL3W11110F4X4) ST_INCLP2W11110F4X4
equivalent_cell (ST_INCLP2W11110F4X4) ST_INCL3W11110F4X4
equivalent_cell (ST_INCL3W11110F4X7) ST_INCLP2W11110F4X7
equivalent_cell (ST_INCLP2W11110F4X7) ST_INCL3W11110F4X7
equivalent_cell (ST_INCL3W11110F4X9) ST_INCLP2W11110F4X9
equivalent_cell (ST_INCLP2W11110F4X9) ST_INCL3W11110F4X9
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521 set equivalent_cell (ST_INCLP2W11110F4X13) ST_INCL3W11110F4X9
522 set equivalent_cell (ST_NCL3W11110F4X2) ST_NCLP2W11110F4X2
523 set equivalent_cell (ST_NCLP2W11110F4X2) ST_NCL3W11110F4X2
524 set equivalent_cell (ST_NCL3W11110F4X4) ST_NCLP2W11110F4X4
525 set equivalent_cell (ST_NCLP2W11110F4X4) ST_NCL3W11110F4X4
526 set equivalent_cell (ST_NCL3W11110F4X7) ST_NCLP2W11110F4X7
527 set equivalent_cell (ST_NCLP2W11110F4X7) ST_NCL3W11110F4X7
528 set equivalent_cell (ST_NCL3W11110F4X9) ST_NCLP2W11110F4X9
529 set equivalent_cell (ST_NCLP2W11110F4X9) ST_NCL3W11110F4X9
530 set equivalent_cell (ST_NCL3W11110F4X13) ST_NCLP2W11110F4X13
531 set equivalent_cell (ST_NCLP2W11110F4X13) ST_NCL3W11110F4X13
532 set equivalent_cell (ST_NCL4W21110F4X2) ST_NCLP2W21110F4X2
533 set equivalent_cell (ST_NCLP2W21110F4X2) ST_NCL4W21110F4X2
534 set equivalent_cell (ST_NCL4W21110F4X4) ST_NCLP2W21110F4X4
535 set equivalent_cell (ST_NCLP2W21110F4X4) ST_NCL4W21110F4X4
536 set equivalent_cell (ST_NCL4W21110F4X7) ST_NCLP2W21110F4X7
537 set equivalent_cell (ST_NCLP2W21110F4X7) ST_NCL4W21110F4X7
538 set equivalent_cell (ST_NCL4W21110F4X9) ST _NCLP2W21110F4X9
539 set equivalent_cell (ST_NCLP2W21110F4X9) ST_NCL4W21110F4X9
540 set equivalent_cell (ST_NCL4W21110F4X13) ST_NCLP2W21110F4X13
541 set equivalent_cell (ST_NCLP2W21110F4X13) ST_NCL4W21110F4X13
542 set equivalent_cell (ST_NCL4W31110F4X2) ST_NCLP3W31110F4X2
543 set equivalent_cell (ST_NCLP3W31110F4X2) ST_NCL4W31110F4X2
544 set equivalent_cell (ST_NCL4W31110F4X4) ST_NCLP3W31110F4X4
545 set equivalent_cell (ST_NCLP3W31110F4X4) ST_NCL4W31110F4X4
546 set equivalent_cell (ST_NCL4W31110F4X7) ST_NCLP3W31110F4X7
547 set equivalent_cell (ST_NCLP3W31110F4X7) ST_NCL4W31110F4X7
548 set equivalent_cell (ST_NCL4W31110F4X9) ST_NCLP3W31110F4X9
549 set equivalent_cell (ST_NCLP3W31110F4X9) ST_NCL4W31110F4X9
550 set equivalent_cell (ST_NCL4W31110F4X13) ST_NCLP3W31110F4X9
551 set equivalent_cell (ST_INCL5W32110F4X2) ST_INCLP3W32110F4X2
552 set equivalent_cell (ST_INCLP3W32110F4X2) ST_INCL5W32110F4X2
553 set equivalent_cell (ST_INCL5W32110F4X4) ST_INCLP3W32110F4X4
554 set equivalent_cell (ST_INCLP3W32110F4X4) ST_INCL5W32110F4X4
555 set equivalent_cell (ST_INCL5W32110F4X7) ST_INCLP3W32110F4X7
556 set equivalent_cell (ST_INCLP3W32110F4X7) ST_INCL5W32110F4X7
557 set equivalent_cell (ST_INCL5W32110F4X9) ST_INCLP3W32110F4X9
558 set equivalent_cell (ST_INCLP3W32110F4X9) ST_INCL5W32110F4X9
559 set equivalent_cell (ST_INCL5SW32110F4X13) ST_INCLP3W32110F4X13
560 set equivalent_cell (ST_INCLP3W32110F4X13) ST_INCL5W32110F4X13
561 set equivalent_cell (ST_INCL5W32110F4X18) ST_INCLP3W32110F4X18
562 set equivalent_cell (ST_INCLP3W32110F4X18) ST_INCL5W32110F4X18
563 set equivalent_cell (ST_INCL5SW32110F4X22) ST_INCLP3W32110F4X18
564 set equivalent_cell (ST_INCL2W2110F3X2) ST_INCLP3W2110F3X2
565 set equivalent_cell (ST_INCLP3W2110F3X2) ST_INCL2W2110F3X2
566 set equivalent_cell (ST_INCLP3W2110F3X4) ST_INCL2W2110F3X7
567 set equivalent_cell (ST_INCL2W2110F3X7) ST_INCLP3W2110F3X7
568 set equivalent_cell (ST_INCLP3W2110F3X7) ST_INCL2W2110F3X7
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equivalent_cell (ST_INCL2W2110F3X9) ST_INCLP3W2110F3X9
equivalent_cell (ST_INCLP3W2110F3X9) ST_INCL2W2110F3X9
equivalent_cell (ST_INCL2W2110F3X13) ST_INCLP3W2110F3X13
equivalent_cell (ST_INCLP3W2110F3X13) ST_INCL2W2110F3X13
equivalent_cell (ST_INCL2W2110F3X18) ST_INCLP3W2110F3X18
equivalent_cell (ST_INCLP3W2110F3X18) ST_INCL2W2110F3X18
equivalent_cell (ST_INCL2W2110F3X22) ST_INCLP3W2110F3X27
equivalent_cell (ST_INCLP3W2110F3X27) ST_INCL2W2110OF3X31
equivalent_cell (ST_INCL2W2110F3X31) ST_INCLP3W2110F3X27
equivalent_cell (ST_NCL5W32110F4X2) ST_NCLP3W32110F4X2
equivalent_cell (ST_NCLP3W32110F4X2) ST_NCL5W32110F4X2
equivalent_cell (ST_NCL5W32110F4X4) ST_NCLP3W32110F4X7
equivalent_cell (ST_NCL5W32110F4X7) ST_NCLP3W32110F4X7
equivalent_cell (ST_NCLP3W32110F4X7) ST_NCL5W32110F4X7
equivalent_cell (ST_NCL5W32110F4X9) ST_NCLP3W32110F4X9
equivalent_cell (ST_NCLP3W32110F4X9) ST_NCL5W32110F4X9
equivalent_cell (ST_NCL5W32110F4X13) ST_NCLP3W32110F4X9
nclp_cell (ST_NCLPOA220F4X9)
nclp_cell (ST_NCLP2W1110F3X2)
nclp_cell (ST_INCLP2W1110F3X2)
nclp_cell (ST_INCLP2W2110F3X2)
nclp_cell (ST_INCLP4W22110F4X4)
nclp_cell (ST_NCLP5W32210F4X9)
nclp_cell (SY_NCLP2W110F2X18)
nclp_cell (ST_NCLPAO20210F4X9)
nclp_cell (ST_NCLP2W1110F3X9)
nclp_cell (ST_INCLP5W32110F4X7)
nclp_cell (ST_NCLP4W11110F4X9)
nclp_cell (ST_INCLP1W11110F4X4)
nclp_cell (ST_INCLP4W11110F4X9)
nclp_cell (ST_NCLP1W1110F3X2)
nclp_cell (ST_INCLP2W21110F4X4)
nclp_cell (ST_NCLP4W11110F4X7)
nclp_cell (ST_INCLP1W1110F3X18)
nclp_cell (ST_NCLP4W11110F4X4)
nclp_cell (ST_INCLP2W11110F4X7)
nclp_cell (ST_INCLP2W110F2X31)
nclp_cell (ST_INCLP2W22110F4X18)
nclp_cell (ST_INCLP1W110F2X18)
nclp_cell (ST_NCLP2W2110F3X4)
nclp_cell (ST_INCLP4W21110F4X9)
nclp_cell (ST_INCLP1W1110F3X13)
nclp_cell (SY_INCLP2W110F2X2)
nclp_cell (ST_INCLP3W22110F4X13)
nclp_cell (ST_INCLP2W1110F3X4)
nclp_cell (ST_INCLP3W1110F3X31)
nclp_cell (ST_INCLP3W21110F4X2)
nclp_cell (ST_NCLP3W21110F4X2)
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nclp_cell (ST_INCLP5W32110F4X4)
nclp_cell (ST_INCLP1W11110F4X9)
nclp_cell (ST_INCLP2W11110F4X9)
nclp_cell (ST_NCLPAO20210F4X7)
nclp_cell (ST_INCLP3W1110F3X2)
nclp_cell (ST_INCLP2W21110F4X7)
nclp_cell (ST_INCLP3W2110F3X13)
nclp_cell (ST_INCLP5W22110F4X7)
nclp_cell (ST_NCLP1W110F2X7)
nclp_cell (ST_NCLP3W1110F3X9)
nclp_cell (ST_INCLPAO220F4X13)
nclp_cell (ST_INCLP1W110F2X13)
nclp_cell (ST_NCLP4W21110F4X9)
nclp_cell (ST_NCLP2W21110F4X9)
nclp_cell (ST_NCLP2W110F2X9)
nclp_cell (ST_NCLP2W2110F3X9)
nclp_cell (ST_NCLP2W22110F4X7)
nclp_cell (ST_INCLP2W110F2X7)
nclp_cell (ST_NCLP2W21110F4X2)
nclp_cell (ST_NCLP3W31110F4X7)
nclp_cell (ST_NCLP3W31110F4X9)
nclp_cell (ST_INCLP4W32210F4X4)
nclp_cell (ST_INCLP5W22110F4X9)
nclp_cell (ST_INCLP5W32210F4X4)
nclp_cell (ST_INCLP1W110F2X27)
nclp_cell (ST_NCLP1W1110F3X13)
nclp_cell (ST_NCLP3W2110F3X18)
nclp_cell (ST_NCLP2W22110F4X2)
nclp_cell (ST_INCLP3W2110F3X27)
nclp_cell (ST_NCLP5W32210F4X2)
nclp_cell (ST_INCLP5W32210F4X2)
nclp_cell (ST_INCLP5W22110F4X4)
nclp_cell (ST_INCLP4W32210F4X9)
nclp_cell (ST_INCLP4W11110F4X7)
nclp_cell (ST_NCLP5W23210F4X7)
nclp_cell (ST_NCLP2W21110F4X7)
nclp_cell (ST_NCLP1W110F2X13)
nclp_cell (ST_INCLP3W1110F3X9)
nclp_cell (ST_INCLPAO220F4X9)
nclp_cell (ST_NCLP2W21110F4X4)
nclp_cell (ST_NCLP5W22110F4X9)
nclp_cell (ST_INCLP3W11110F4X4)
nclp_cell (ST_INCLP3W21110F4X9)
nclp_cell (ST_INCLP4W31110F4X2)
nclp_cell (ST_INCLP3W22110F4X4)
nclp_cell (ST_INCLP5W22110F4X13)
nclp_cell (ST_NCLP1W110F2X9)
nclp_cell (ST_INCLP3W32110F4X18)
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nclp_cell (ST_INCLP3W32110F4X4)
nclp_cell (ST_NCLPOA220F4X13)
nclp_cell (ST_INCLP4W31110F4X9)
nclp_cell (ST_INCLP4W21110F4X13)
nclp_cell (ST_NCLP1W110F2X2)
nclp_cell (ST_NCLP4W21110F4X4)
nclp_cell (ST_NCLP5W22110F4X4)
nclp_cell (ST_NCLP2W1110F3X4)
nclp_cell (ST_NCLPAO220F4X2)
nclp_cell (ST_INCLP3W1110F3X7)
nclp_cell (ST_NCLP3W32110F4X7)
nclp_cell (ST_NCLP3W1110F3X4)
nclp_cell (ST_INCLP5W22110F4X2)
nclp_cell (ST_NCLP5W32110F4X13)
nclp_cell (ST_NCLP1W11110F4X2)
nclp_cell (ST_NCLP3W11110F4X2)
nclp_cell (ST_NCLP3W11110F4X4)
nclp_cell (ST_NCLP4W31110F4X13)
nclp_cell (ST_INCLP2W21110F4X2)
nclp_cell (ST_INCLP2W2110F3X27)
nclp_cell (ST_INCLP5W23210F4X7)
nclp_cell (ST_NCLP5W32210F4X13)
nclp_cell (SY_INCLP2W110F2X18)
nclp_cell (ST_NCLP5W32110F4X7)
nclp_cell (ST_INCLP3W1110F3X18)
nclp_cell (ST_INCLP2W11110F4X4)
nclp_cell (ST_INCLP3W21110F4X4)
nclp_cell (ST_INCLP4W22110F4X13)
nclp_cell (ST_NCLP1W110F2X18)
nclp_cell (ST_INCLPOA220F4X7)
nclp_cell (ST_INCLP3W32110F4X2)
nclp_cell (ST_NCLP2W110F2X7)
nclp_cell (ST_NCLP2W2110F3X7)
nclp_cell (ST_NCLP3W32110F4X9)
nclp_cell (ST_INCLP1W110F2X9)
nclp_cell (ST_INCLP3W32110F4X7)
nclp_cell (ST_INCLP1W110F2X4)
nclp_cell (ST_INCLP1W11110F4X7)
nclp_cell (ST_INCLP2W110F2X22)
nclp_cell (ST_INCLP1W1110F3X4)
nclp_cell (ST_INCLP4W11110F4X2)
nclp_cell (ST_INCLP3W11110F4X2)
nclp_cell (ST_NCLP2W110F2X4)
nclp_cell (ST_NCLP4W21110F4X13)
nclp_cell (ST_NCLP4W32210F4X2)
nclp_cell (ST_NCLP3W1110F3X13)
nclp_cell (SY_NCLP2W110F2X4)
nclp_cell (ST_NCLP2W1110F3X7)
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nclp_cell (ST_NCLP1W1110F3X7)
nclp_cell (ST_NCLP4W22110F4X7)
nclp_cell (ST_INCLP2W2110F3X18)
nclp_cell (ST_NCLPAO220F4X4)
nclp_cell (ST_NCLP4W32210F4X7)
nclp_cell (ST_INCLP5W32210F4X13)
nclp_cell (ST_INCLP3W21110F4X13)
nclp_cell (ST_INCLP3W31110F4X2)
nclp_cell (ST_NCLP5W23210F4X13)
nclp_cell (ST_INCLPOA220F4X9)
nclp_cell (ST_INCLP1W1110F3X7)
nclp_cell (ST_NCLP4W22110F4X2)
nclp_cell (ST_NCLP5W23210F4X9)
nclp_cell (ST_INCLPAO220F4X4)
nclp_cell (ST_NCLP3W31110F4X4)
nclp_cell (ST_INCLP2W11110F4X13)
nclp_cell (ST_INCLP5W32210F4X9)
nclp_cell (ST_NCLP1W11110F4X7)
nclp_cell (ST_NCLP4W11110F4X13)
nclp_cell (SY_INCLP2W110F2X13)
nclp_cell (ST_INCLPAO220F4X2)
nclp_cell (ST_NCLP2W11110F4X9)
nclp_cell (ST_NCLP3W22110F4X4)
nclp_cell (ST_NCLP4W31110F4X4)
nclp_cell (ST_INCLP4W21110F4X4)
nclp_cell (ST_NCLP3W1110F3X7)
nclp_cell (ST_INCLPAO220F4X7)
nclp_cell (ST_NCLP4W22110F4X13)
nclp_cell (ST_NCLP2W110F2X13)
nclp_cell (ST_INCLP3W2110F3X2)
nclp_cell (ST_INCLP2W1110F3X9)
nclp_cell (ST_INCLP4W22110F4X7)
nclp_cell (ST_INCLP4W32210F4X2)
nclp_cell (ST_NCLP3W2110F3X9)
nclp_cell (ST_INCLP4W32210F4X7)
nclp_cell (ST_NCLP3W21110F4X7)
nclp_cell (ST_INCLP2W1110F3X13)
nclp_cell (ST_NCLP4W31110F4X9)
nclp_cell (ST_INCLP2W22110F4X9)
nclp_cell (SY_INCLP2W110F2X9)
nclp_cell (ST_INCLP1W1110F3X9)
nclp_cell (ST_NCLP1W110F2X4)
nclp_cell (ST_NCLPOA220F4X4)
nclp_cell (ST_INCLP1W11110F4X18)
nclp_cell (ST_INCLPOA220F4X13)
nclp_cell (ST_INCLP2W22110F4X13)
nclp_cell (ST_NCLP1W11110F4X4)
nclp_cell (ST_NCLP1W1110F3X18)
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nclp_cell (ST_INCLPOA220F4X4)
nclp_cell (ST_NCLPAO20210F4X2)
nclp_cell (ST_NCLP2W22110F4X4)
nclp_cell (ST_NCLP3W11110F4X9)
nclp_cell (ST_NCLP3W21110F4X13)
nclp_cell (ST_INCLP2W110F2X18)
nclp_cell (ST_NCLP5W32110F4X9)
nclp_cell (ST_INCLP5W32110F4X9)
nclp_cell (ST_INCLP3W2110F3X18)
nclp_cell (ST_NCLP5W22110F4X2)
nclp_cell (ST_INCLP3W22110F4X2)
nclp_cell (ST_NCLP4W32210F4X13)
nclp_cell (ST_INCLP2W22110F4X2)
nclp_cell (ST_NCLPAO220F4X7)
nclp_cell (ST_NCLP2W11110F4X13)
nclp_cell (ST_INCLP3W31110F4X7)
nclp_cell (ST_NCLP3W11110F4X13)
nclp_cell (ST_NCLP3W22110F4X13)
nclp_cell (ST_NCLPOA220F4X7)
nclp_cell (SY_INCLP2W110F2X4)
nclp_cell (ST_NCLP1W11110F4X18)
nclp_cell (ST_NCLP2W2110F3X13)
nclp_cell (ST_NCLP1W1110F3X4)
nclp_cell (ST_NCLP2W110F2X2)
nclp_cell (ST_INCLP1W11110F4X13)
nclp_cell (ST_INCLP3W22110F4X7)
nclp_cell (ST_NCLP1W1110F3X9)
nclp_cell (ST_INCLP4W31110F4X7)
nclp_cell (ST_NCLP5W23210F4X2)
nclp_cell (ST_INCLP2W1110F3X22)
nclp_cell (ST_INCLP2W2110F3X9)
nclp_cell (ST_INCLP4W11110F4X4)
nclp_cell (ST_INCLP3W31110F4X9)
nclp_cell (ST_NCLP5W23210F4X4)
nclp_cell (ST_INCLP5W23210F4X2)
nclp_cell (ST_INCLP2W2110F3X7)
nclp_cell (ST_NCLP4W11110F4X2)
nclp_cell (ST_NCLP2W11110F4X2)
nclp_cell (ST_INCLP3W32110F4X9)
nclp_cell (ST_INCLP3W31110F4X18)
nclp_cell (ST_NCLP4W21110F4X7)
nclp_cell (ST_NCLP4W32210F4X9)
nclp_cell (ST_INCLP2W1110F3X7)
nclp_cell (ST_INCLP1W110F2X2)
nclp_cell (ST_NCLP5W32210F4X4)
nclp_cell (ST_NCLPAO220F4X9)
nclp_cell (ST_INCLP2W110F2X4)
nclp_cell (ST_NCLP5W32210F4X7)
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incr

nclp_cell (ST_NCLP2W22110F4X9)
nclp_cell (ST_INCLP3W11110F4X9)
nclp_cell (ST_NCLP3W1110F3X18)
nclp_cell (SY_INCLP2W110F2X7)
nclp_cell (ST_NCLP3W21110F4X4
nclp_cell (ST_NCLP5W32110F4X2
nclp_cell (ST_NCLP3W32110F4X2
nclp_cell (ST_NCLP5W32110F4X4
nclp_cell (ST_NCLP3W11110F4X7
nclp_cell (ST_NCLP3W2110F3X13
nclp_cell (ST_NCLP3W2110F3X4)
nclp_cell (ST_INCLP3W32110F4X13)
nclp_cell (ST_INCLP1W1110F3X2)
nclp_cell (ST_NCLP4W31110F4X2)
nclp_cell (ST_INCLP3W31110F4X13)
nclp_cell (ST_NCLPAO20210F4X4)
nclp_cell (ST_INCLP2W110F2X13)
nclp_cell (ST_INCLP3W1110F3X4)
nclp_cell (ST_INCLP3W2110F3X4)
nclp_cell (ST_NCLP5W22110F4X7)
nclp_cell (ST_INCLP4W32210F4X13)
nclp_cell (ST_INCLP5W32210F4X7)
nclp_cell (ST_INCLP2W22110F4X4)
nclp_cell (SY_NCLP2W110F2X9)
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nclp_cell (ST_INCLPOA220F4X2)

nclp_cell (ST_NCLP3W1110F3X2)

nclp_cell (ST_NCLP2W11110F4X4)
nclp_cell (ST_NCLPAO20210F4X13)
nclp_cell (SY_NCLP2W110F2X13)

nclp_cell (ST_INCLP2W2110F3X4)
nclp_cell (ST_NCLP3W21110F4X9)
nclp_cell (ST_INCLP5W32110F4X2)
nclp_cell (ST_INCLP3W2110F3X7)
nclp_cell (ST_NCLP4W22110F4X4)
nclp_cell (ST_INCLP3W21110F4X7)
nclp_cell (ST_NCLP1W11110F4X13)
nclp_cell (ST_NCLP2W11110F4X7)
nclp_cell (ST_NCLP2W2110F3X2)

nclp_cell (ST_NCLP3W2110F3X2)

nclp_cell (ST_NCLP3W31110F4X2)
nclp_cell (ST_INCLP4W31110F4X4)
nclp_cell (ST_INCLP1W11110F4X2)
nclp_cell (ST_INCLP2W22110F4X7)
nclp_cell (ST_INCLP4W21110F4X2)
nclp_cell (ST_NCLP3W2110F3X7)

nclp_cell (ST_NCLP5W22110F4X13)
nclp_cell (SY_NCLP2W110F2X2)

nclp_cell (ST_INCLP2W2110F3X22)
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incr
incr
incr
incr
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incr
incr
incr
incr
incr
incr
incr
incr

nclp_cell (ST_INCLP3W1110F3X13)
nclp_cell (ST_INCLP2W21110F4X9)
nclp_cell (ST_NCLP2W21110F4X13)
nclp_cell (ST_INCLP2W11110F4X2)
nclp_cell (ST_INCLP2W1110F3X18)
nclp_cell (ST_NCLP2W2110F3X18)
nclp_cell (ST_INCLP3W2110F3X9)
nclp_cell (ST_NCLP3W22110F4X2)
nclp_cell (ST_NCLP4W32210F4X4)
nclp_cell (ST_INCLP4W22110F4X9)
ncl_cell (ST_INCL3W1110F3X4)
ncl_cell (ST_INCL2W2110F3X31)
ncl_cell (ST_INCL4W23210F4X9)
ncl_cell (ST_NCL2W110F2X13)
ncl_cell (ST_NCL2W1110F3X13)
ncl_cell (ST_NCL3W22110F4X13)
ncl_cell (ST_INCL5W22110F4X4)
ncl_cell (ST_INCL3W11110F4X9)
ncl_cell (ST_INCL1IW110F2X4)
ncl_cell (ST_NCL3W22110F4X2)
ncl_cell (ST_NCL3W31110F4X4)
ncl_cell (ST_INCL2W22110F4X18)
ncl_cell (ST_INCL3W22110F4X9)
ncl_cell (ST_NCLOA220F4X7)
ncl_cell (ST_NCL2W21110F4X9)
ncl_cell (ST_INCL3W11110F4X4)
ncl_cell (ST_NCLAO220F4X4)
ncl_cell (SY_INCL2W110F2X13)
ncl_cell (ST_NCL5W32110F4X7)
ncl_cell (ST_INCL3W1110F3X9)
ncl_cell (SY_NCL2W110F2X2)
ncl_cell (ST_INCL2W1110F3X4)
ncl_cell (ST_NCL4W22110F4X2)
ncl_cell (ST_NCL3W21110F4X2)
ncl_cell (ST_NCL4W23210F4X7)
ncl_cell (ST_INCL4W31110F4X4)
ncl_cell (ST_NCL3W22110F4X9)
ncl_cell (ST_INCL3W32110F4X7)
ncl_cell (ST_INCL5W32110F4X13)
ncl_cell (ST_NCL1W11110F4X2)
ncl_cell (ST_NCL3W1110F3X2)
ncl_cell (ST_NCL3W32110F4X4)
ncl_cell (ST_INCL4W21110F4X9)
ncl_cell (ST_INCL2W1110F3X13)
ncl_cell (ST_INCL4W11110F4X4)
ncl_cell (ST_NCL4W21110F4X13)
ncl_cell (ST_INCL2W22110F4X7)
ncl_cell (ST_INCL5W22110F4X18)
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ncl_cell (ST_INCL2W2110F3X9)
ncl_cell (ST INCL2W22110F4X4)
ncl_cell (ST_NCL1W110F2X2)
ncl_cell (ST_NCL3W22110F4X7)
ncl_cell (ST_NCLOA220F4X4)
ncl_cell (ST_INCL3W22110F4X2)
ncl_cell (ST_NCL3W31110F4X13)
ncl_cell (ST_NCL4W11110F4X2)
ncl_cell (ST_NCL5W32210F4X4)
ncl_cell (ST_INCL5W32210F4X7)
ncl_cell (ST_INCLAW31110F4X13)
ncl_cell (ST_INCLAW31110F4X18)
ncl_cell (ST_NCL3W11110F4X13)
ncl_cell (ST_INCL3W2110F3X18)
ncl_cell (ST_INCL3W2110F3X2)
ncl_cell (ST_INCL2W22110F4X13)
ncl_cell (ST_INCL3W22110F4X4)
ncl_cell (ST_NCL3W2110F3X18)
ncl_cell (ST_NCL2W2110F3X13)
ncl_cell (ST_NCL3W31110F4X9)
ncl_cell (ST_INCLAW32210F4X7)
ncl_cell (SY_NCL2W110F2X13)
ncl_cell (ST_INCLAW23210F4X13)
ncl_cell (ST_INCL2W21110F4X13)
ncl_cell (ST_INCLOA220F4X18)
ncl_cell (ST_INCL3W31110F4X13)
ncl_cell (ST_INCL3W1110F3X13)
ncl_cell (ST_INCL4AW21110F4X2)
ncl_cell (ST INCL2W22110F4X31)
ncl_cell (ST_INCLAW31110F4X7)
ncl_cell (ST_NCLIW1110F3X4)
ncl_cell (ST_NCL5W32110F4X4)
ncl_cell (ST_INCLAO220F4X18)
ncl_cell (ST_NCL2W2110F3X2)
ncl_cell (ST_INCL2W21110F4X4)
ncl_cell (ST_NCL2W2110F3X9)
ncl_cell (ST_INCL2ZW1110F3X2)
ncl_cell (ST_INCLAW32210F4X4)
ncl_cell (ST_NCLAO21020F4X13)
ncl_cell (SY_INCL2W110F2X9)
ncl_cell (ST_INCL3W1110F3X2)
ncl_cell (ST_INCL2W22110F4X9)
ncl_cell (ST_NCL4W21110F4X7)
ncl_cell (ST_INCL3W11110F4X7)
ncl_cell (ST_INCLAW31110F4X22)
ncl_cell (ST_INCL1W11110F4X2)
ncl_cell (ST_INCL2W110F2X22)
ncl_cell (ST_INCL5W22110F4X7)
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ncl_cell (ST_INCL5W32110F4X4)
ncl_cell (ST_NCL2W110F2X4)
ncl_cell (ST_INCL3W22110F4X7)
ncl_cell (ST_INCLOA220F4X9)
ncl_cell (ST_NCL4W31110F4X13)
ncl_cell (ST_INCL3W32110F4X31)
ncl_cell (ST_NCLAW31110F4X4)
ncl_cell (ST_INCL3W21110F4X13)
ncl_cell (ST_NCL4W32210F4X9)
ncl_cell (ST_INCL2W11110F4X13)
ncl_cell (ST_INCL3W32110F4X22)
ncl_cell (ST_NCL2W110F2X7)
ncl_cell (ST_NCL3W1110F3X13)
ncl_cell (SY_INCL2W110F2X7)
ncl_cell (ST_NCL2W11110F4X9)
ncl_cell (ST_INCL3W1110F3X31)
ncl_cell (ST_NCLOA220F4X2)
ncl_cell (ST INCL3W31110F4X7)
ncl_cell (ST_INCL2W22110F4X2)
ncl_cell (ST_NCL5W32210F4X9)
ncl_cell (ST_INCL5W22110F4X2)
ncl_cell (ST_NCL2W21110F4X4)
ncl_cell (ST_NCL3W32110F4X13)
ncl_cell (ST_NCL4W21110F4X9)
ncl_cell (ST_NCL4W31110F4X2)
ncl_cell (ST_NCL1W11110F4X18)
ncl_cell (ST_INCLAO220F4X13)
ncl_cell (ST_INCLOA220F4X4)
ncl_cell (ST_NCL3W2110F3X13)
ncl_cell (ST_INCL4W22110F4X4)
ncl_cell (ST_INCLIW1110F3X2)
ncl_cell (ST_INCLAW32210F4X13)
ncl_cell (ST_NCL3W31110F4X2)
ncl_cell (ST_NCL3W2110F3X9)
ncl_cell (ST_NCL4W22110F4X7)
ncl_cell (ST_NCL5W32210F4X13)
ncl_cell (ST_NCL4W11110F4X9)
ncl_cell (ST_INCL4W22110F4X7)
ncl_cell (ST_NCL5W32110F4X2)
ncl_cell (ST INCL3W21110F4X4)
ncl_cell (ST_NCLAO220F4X2)
ncl_cell (ST_INCL1W1110F3X9)
ncl_cell (ST_INCL5SW22110F4X13)
ncl_cell (ST_INCL3W31110F4X18)
ncl_cell (ST_NCL3W11110F4X7)
ncl_cell (SY_NCL2W110F2X18)
ncl_cell (ST_INCL2W110OF2X13)
ncl_cell (ST_INCL3W2110F3X4)
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1001 incr ncl_cell (ST_INCL3W31110F4X31)
1002 incr ncl_cell (ST_INCL4W32210F4X9)
1003 incr ncl_cell (ST_INCL1W1110F3X18)
1004 incr ncl_cell (ST_INCL1W110F2X13)
1005 incr ncl_cell (ST_NCL1W1110F3X13)
1006 incr ncl_cell (ST_INCL3W2110F3X7)
1007 incr ncl_cell (ST_NCL1W110F2X7)

1008 incr ncl_cell (ST_NCL2W22110F4X7)
1009 incr ncl_cell (ST_NCL2W22110F4X9)
1010 incr ncl_cell (ST_NCL4W11110F4X4)
1011 incr ncl_cell (ST_NCL4W32210F4X4)
1012 incr ncl_cell (ST_INCL3W32110F4X9)
1013 incr ncl_cell (ST_NCL3W31110F4X7)
1014 incr ncl_cell (ST_INCL2W11110F4X4)
1015 incr ncl_cell (ST_NCL3W21110F4X13)
1016 incr ncl_cell (ST_INCL5W32110F4X7)
1017 incr ncl_cell (ST_NCL3W1110F3X18)
1018 incr ncl_cell (ST_NCL1W1110F3X7)
1019 incr ncl_cell (ST_NCLAO21020F4X4)
1020 incr ncl_cell (ST_INCL2ZW110F2X31)
1021 incr ncl_cell (ST_INCL3W21110F4X7)
1022 incr ncl_cell (ST_INCL1W11110F4X4)
1023 incr ncl_cell (ST_INCL2ZW21110F4X9)
1024 incr ncl_cell (ST_INCL2ZW1110F3X9)
1025 incr ncl_cell (ST_INCL5W32210F4X2)
1026 incr ncl_cell (ST_INCLAO220F4X4)

1027 incr ncl_cell (ST_INCLOA220F4X2)

1028 incr ncl_cell (ST_NCL5W32110F4X9)
1029 incr ncl_cell (ST_NCL3W2110F3X2)

1030 incr ncl_cell (ST_INCL3W32110F4X4)
1031 incr ncl_cell (ST_INCL3W2110F3X9)
1032 incr ncl_cell (ST_NCL2W1110F3X7)

1033 incr ncl_cell (ST_INCL1W1110F3X7)
1034 incr ncl_cell (ST_INCL4W23210F4X7)
1035 incr ncl_cell (ST_NCL1W11110F4X7)
1036 incr ncl_cell (ST_NCL2W21110F4X13)
1037 incr ncl_cell (ST_INCL5W22110F4X9)
1038 incr ncl_cell (ST_INCL4W22110F4X9)
1039 incr ncl_cell (ST_NCL4W23210F4X9)
1040 incr ncl_cell (ST_INCL1W110F2X18)
1041 incr ncl_cell (ST_NCL4W32210F4X13)
1042 incr ncl_cell (ST_NCL3W1110F3X7)

1043 incr ncl_cell (ST_INCL4W23210F4X2)
1044 incr ncl_cell (ST _NCL4W22110F4X9)
1045 incr ncl_cell (ST_INCL4W21110F4X4)
1046 incr ncl_cell (ST_NCL1W1110F3X18)
1047 incr ncl_cell (ST_INCL3W32110F4X2)
1048 incr ncl_cell (ST_INCL2W11110F4X2)
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incr

ncl_cell (ST_NCL4W31110F4X9)
ncl_cell (ST_INCL1W110F2X9)
ncl_cell (ST_NCLAO21020F4X9)
ncl_cell (ST_NCL3W1110F3X4)
ncl_cell (ST_INCL4W21110F4X13)
ncl_cell (ST_INCL1W11110F4X9)
ncl_cell (ST_NCL2W22110F4X2)
ncl_cell (ST_NCL3W21110F4X7)
ncl_cell (ST_INCLAO220F4X2)
ncl_cell (ST_INCL3W32110F4X18)
ncl_cell (ST_INCL1W1110F3X13)
ncl_cell (ST_NCL3W11110F4X9)
ncl_cell (ST_NCL4W32210F4X2)
ncl_cell (ST_NCL4W31110F4X7)
ncl_cell (SY_INCL2W110F2X18)
ncl_cell (ST_INCL5W32110F4X22)
ncl_cell (ST_INCL2W21110F4X7)
ncl_cell (ST_INCL2W1110F3X18)
ncl_cell (ST_INCL3W2110F3X13)
ncl_cell (ST_NCL3W32110F4X7)
ncl_cell (ST_NCL2W110F2X9)
ncl_cell (ST_INCL2W11110F4X7)
ncl_cell (ST_INCLAO220F4X7)
ncl_cell (ST_INCL2ZW1110F3X7)
ncl_cell (ST_INCL5W32110F4X2)
ncl_cell (ST_NCL1W1110F3X9)
ncl_cell (ST_INCL3W21110F4X2)
ncl_cell (ST_NCL3W21110F4X4)
ncl_cell (ST_INCL4W32210F4X2)
ncl_cell (ST_INCL5W32110F4X9)
ncl_cell (ST_NCL3W2110F3X7)
ncl_cell (ST_INCL2W2110F3X13)
ncl_cell (ST_INCLOA220F4X13)
ncl_cell (ST_INCL1W11110F4X18)
ncl_cell (ST_INCLAO220F4X9)
ncl_cell (ST_NCL3W22110F4X4)
ncl_cell (ST_NCLAO220F4X13)
ncl_cell (ST_NCL2W21110F4X7)
ncl_cell (ST_NCL1IW110F2X13)
ncl_cell (ST_INCL1W11110F4X13)
ncl_cell (ST_INCL3W1110F3X18)
ncl_cell (ST_INCL5W32210F4X4)
ncl_cell (ST_NCL3W11110F4X4)
ncl_cell (SY_NCL2W110F2X4)
ncl_cell (ST_INCL5W22110F4X22)
ncl_cell (ST_INCL3W1110F3X7)
ncl_cell (ST_NCLAO21020F4X2)
ncl_cell (SY_INCL2W110F2X2)
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incr
incr
incr
incr
incr
incr
incr
incr
incr
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incr
incr

ncl_cell (ST_INCL3W31110F4X2)
ncl_cell (ST_NCLOA220F4X9)
ncl_cell (ST_INCL4W11110F4X2)
ncl_cell (ST_NCL5W22110F4X9)
ncl_cell (ST_NCL5W32210F4X7)
ncl_cell (ST_NCL2W1110F3X2)
ncl_cell (ST_NCL4W11110F4X13)
ncl_cell (ST_INCL4W21110F4X7)
ncl_cell (ST_INCL4W22110F4X2)
ncl_cell (ST_INCL1W11110F4X31)
ncl_cell (ST_NCL3W1110F3X9)
ncl_cell (ST_INCLIW110F2X2)
ncl_cell (ST_NCLAO220F4X9)
ncl_cell (ST_NCL1W11110F4X9)
ncl_cell (ST_INCL2W2110F3X2)
ncl_cell (ST_INCL2W2110F3X22)
ncl_cell (ST_NCL2W2110F3X4)
ncl_cell (ST_NCL4W21110F4X2)
ncl_cell (ST_NCL4W21110F4X4)
ncl_cell (ST_INCL1W11110F4X7)
ncl_cell (ST_INCL2W110F2X18)
ncl_cell (ST_INCL2W21110F4X2)
ncl_cell (ST_NCL2W110F2X2)
ncl_cell (ST_NCL4W22110F4X13)
ncl_cell (ST_NCL2W2110F3X7)
ncl_cell (ST_NCL3W11110F4X2)
ncl_cell (ST_NCL1W110F2X4)
ncl_cell (ST_NCL1W110F2X9)
ncl_cell (ST_NCL4W23210F4X4)
ncl_cell (ST_NCL3W32110F4X9)
ncl_cell (ST_NCLAO21020F4X7)
ncl_cell (ST_INCL1W1110F3X31)
ncl_cell (SY_NCL2W110F2X9)
ncl_cell (ST_NCL5W22110F4X2)
ncl_cell (ST_INCL1W110F2X7)
ncl_cell (ST_INCL3W21110F4X9)
ncl_cell (ST_INCL3W2110F3X31)
ncl_cell (ST_NCL2W21110F4X2)
ncl_cell (ST_INCL4AW11110F4X7)
ncl_cell (ST_INCL2ZW110F2X7)
ncl_cell (ST_NCL2W11110F4X13)
ncl_cell (ST_NCL2W1110F3X9)
ncl_cell (ST_INCL2W2110F3X18)
ncl_cell (ST_INCL3W31110F4X4)
ncl_cell (ST_INCL5W32110F4X18)
ncl_cell (ST_INCLOA220F4X7)
ncl_cell (ST_INCL4W31110F4X2)
ncl_cell (ST_NCL2W11110F4X2)
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1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192

188

incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr

ncl_cell (ST_NCL2W22110F4X4)
ncl_cell (ST_INCL2W2110F3X7)
ncl_cell (ST_INCL4W11110F4X9)
ncl_cell (ST_NCL3W2110F3X4)

ncl_cell (ST_INCL3W11110F4X2)
ncl_cell (ST_NCL5W22110F4X7)
ncl_cell (SY_INCL2W110F2X4)
ncl_cell (ST_INCL4W31110F4X9)
ncl_cell (ST_INCL3W31110F4X9)
ncl_cell (ST_NCL2W22110F4X13)
ncl_cell (ST_NCL5W32110F4X13)
ncl_cell (ST_NCL2W11110F4X7)
ncl_cell (ST_NCL2W1110F3X4)
ncl_cell (ST_NCL4W11110F4X7)
ncl_cell (ST_NCL1W11110F4X13)
ncl_cell (ST_NCL5W22110F4X4)
ncl_cell (ST_NCL5W32210F4X2)
ncl_cell (ST_INCL2ZW110F2X4)
ncl_cell (ST_INCL4W23210F4X4)
ncl_cell (ST_NCL1W1110F3X2)
ncl_cell (ST_NCLAO220F4X7)

ncl_cell (ST_NCL3W32110F4X2)
ncl_cell (ST_NCL1W11110F4X4)
ncl_cell (ST_INCLIW1110F3X4)
ncl_cell (ST_NCL2W11110F4X4)
ncl_cell (ST_NCL4W23210F4X13)
orphan_cell (ST_INCLPAO20210F4X7)
orphan_cell (ST_INCLPAO20210F4X9)
orphan_cell (ST_INCLPAO20210F4X4)
orphan_cell (ST_INCLP3W31110F4X4)
inverter_cell (ST_INCL1W11110F4X13)
inverter_cell (ST_INCL1W11110F4X18)
inverter_cell (ST_INCL1W11110F4X2)
inverter_cell (ST_INCL1W11110F4X31)
inverter_cell (ST_INCL1W11110F4X4)
inverter_cell (ST_INCL1W11110F4X7)
inverter_cell (ST_INCL1W11110F4X9)
inverter_cell (ST_INCL1W1110F3X13)
inverter_cell (ST_INCL1W1110F3X18)
inverter_cell (ST_INCL1W1110F3X2)
inverter_cell (ST_INCL1W1110F3X31)
inverter_cell (ST_INCLIW1110F3X4)
inverter_cell (ST_INCLIW1110F3X7)
inverter_cell (ST_INCL1W1110F3X9)
inverter_cell (ST_INCL1W110F2X13)
inverter_cell (ST_INCLIW110F2X18)
inverter_cell (ST_INCLIW110F2X2)
inverter_cell (ST_INCL1W110F2X4)
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1193 incr inverter_cell (ST _INCL1W110F2X7)
1194 incr inverter_cell (ST_INCL1W110F2X9)
1195 incr inverter_cell (ST_INCL2ZW11110F4X13)
1196 incr inverter_cell (ST_INCL2W11110F4X2)
1197 incr inverter_cell (ST_INCL2W11110F4X4)
1198 incr inverter_cell (ST_INCL2W11110F4X7)
1199 incr inverter_cell (ST_INCL2W1110F3X13)
1200 incr inverter_cell (ST_INCL2W1110F3X18)
1201 incr inverter_cell (ST_INCL2W1110F3X2)
1202 incr inverter_cell (ST_INCL2W1110F3X4)
1203 incr inverter_cell (ST_INCL2ZW1110F3X7)
1204 incr inverter_cell (ST_INCL2W1110F3X9)
1205 incr inverter_cell (ST_INCL2ZW110F2X13)
1206 incr inverter_cell (ST_INCL2ZW110F2X18)
1207 incr inverter_cell (ST_INCL2ZW110F2X22)
1208 incr inverter_cell (ST_INCL2ZW110F2X31)
1209 incr inverter_cell (ST_INCL2ZW110F2X4)
1210 incr inverter_cell (ST_INCL2ZW110F2X7)
1211 incr inverter_cell (ST_INCL2W21110F4X13)
1212 incr inverter_cell (ST_INCL2W21110F4X2)
1213 incr inverter_cell (ST_INCL2W21110F4X4)
1214 incr inverter_cell (ST_INCL2W21110F4X7)
1215 incr inverter_cell (ST_INCL2W21110F4X9)
1216 incr inverter_cell (ST_INCL2W2110OF3X13)
1217 incr inverter_cell (ST_INCL2W2110OF3X18)
1218 incr inverter_cell (ST_INCL2ZW2110F3X2)
1219 incr inverter_cell (ST_INCL2W2110F3X22)
1220 incr inverter_cell (ST_INCL2W2110F3X31)
1221 incr inverter_cell (ST_INCL2W2110F3X7)
1222 incr inverter_cell (ST_INCL2W2110F3X9)
1223 incr inverter_cell (ST_INCL2W22110F4X13)
1224 incr inverter_cell (ST_INCL2W22110F4X18)
1225 incr inverter_cell (ST_INCL2W22110F4X2)
1226 incr inverter_cell (ST_INCL2W22110F4X31)
1227 incr inverter_cell (ST_INCL2W22110F4X4)
1228 incr inverter_cell (ST_INCL2W22110F4X7
1229 incr inverter_cell (ST_INCL2W22110F4X9
1230 incr inverter_cell (ST_INCL3W11110F4X2
1231 incr inverter_cell (ST_INCL3W11110F4X4
1232 incr inverter_cell (ST_INCL3W11110F4X7
1233 incr inverter_cell (ST_INCL3W11110F4X9
1234 incr inverter_cell (ST_INCL3W1110F3X13
1235 incr inverter_cell (ST_INCL3W1110F3X18
1236 incr inverter_cell (ST_INCL3W1110F3X2)
1237 incr inverter_cell (ST_INCL3W1110F3X31)
1238 incr inverter_cell (ST_INCL3W1110F3X4)
1239 incr inverter_cell (ST_INCL3W1110F3X7)
1240 incr inverter_cell (ST_INCL3W1110F3X9)
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1245
1246
1247
1248
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1253
1254
1255
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1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
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incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr

inverter_cell (ST_INCL3W21110F4X13)
inverter_cell (ST_INCL3W21110F4X2)
inverter_cell (ST_INCL3W21110F4X4)
inverter_cell (ST_INCL3W21110F4X7)
inverter_cell (ST_INCL3W21110F4X9)
inverter_cell (ST_INCL3W2110F3X13)
inverter_cell (ST_INCL3W2110F3X18)
inverter_cell (ST_INCL3W2110F3X2)
inverter_cell (ST_INCL3W2110F3X31)
inverter_cell (ST_INCL3W2110F3X4)
inverter_cell (ST_INCL3W2110F3X7)
inverter_cell (ST_INCL3W2110F3X9)
inverter_cell (ST_INCL3W22110F4X2)
inverter_cell (ST_INCL3W22110F4X4)
inverter_cell (ST_INCL3W22110F4X7)
inverter_cell (ST_INCL3W22110F4X9)
inverter_cell (ST_INCL3W31110F4X13)
inverter_cell (ST_INCL3W31110F4X18)
inverter_cell (ST_INCL3W31110F4X2)
inverter_cell (ST_INCL3W31110F4X31)
inverter_cell (ST_INCL3W31110F4X4)
inverter_cell (ST_INCL3W31110F4X7)
inverter_cell (ST_INCL3W31110F4X9)
inverter_cell (ST_INCL3W32110F4X18)
inverter_cell (ST_INCL3W32110F4X2)
inverter_cell (ST_INCL3W32110F4X22)
inverter_cell (ST_INCL3W32110F4X31)
inverter_cell (ST_INCL3W32110F4X4)
inverter_cell (ST_INCL3W32110F4X7)
inverter_cell (ST_INCL3W32110F4X9)
inverter_cell (ST_INCL4W11110F4X2)
inverter_cell (ST_INCL4W11110F4X4)
inverter_cell (ST_INCL4AW11110F4X7)
inverter_cell (ST_INCL4W11110F4X9)
inverter_cell (ST_INCL4AW21110F4X13)
inverter_cell (ST_INCL4W21110F4X2
inverter_cell (ST_INCL4W21110F4X4
inverter_cell (ST_INCL4W21110F4X7
inverter_cell (ST_INCL4AW21110F4X9
inverter_cell (ST_INCL4W22110F4X2
inverter_cell (ST_INCL4W22110F4X4
inverter_cell (ST_INCL4W22110F4X7
inverter_cell (ST_INCL4W22110F4X9
inverter_cell (ST _INCL4W23210F4X13)
inverter_cell (ST_INCL4W23210F4X2
inverter_cell (ST_INCL4W23210F4X4
inverter_cell (ST_INCL4W23210F4X7
inverter_cell (ST_INCL4W23210F4X9
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1310
1311
1312
1313
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1315
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incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr

inverter_cell (ST_INCL4W31110F4X13)
inverter_cell (ST_INCL4AW31110F4X18)
inverter_cell (ST_INCL4W31110F4X2)
inverter_cell (ST_INCL4W31110F4X22)
inverter_cell (ST_INCL4W31110F4X4)
inverter_cell (ST_INCL4W31110F4X7)
inverter_cell (ST_INCL4W31110F4X9)
inverter_cell (ST_INCL4W32210F4X13)
inverter_cell (ST_INCL4W32210F4X2)
inverter_cell (ST_INCL4W32210F4X4)
inverter_cell (ST_INCL4W32210F4X7)
inverter_cell (ST_INCL4W32210F4X9)
inverter_cell (ST_INCL5W22110F4X13)
inverter_cell (ST_INCL5W22110F4X18)
inverter_cell (ST_INCL5W22110F4X2)
inverter_cell (ST_INCL5W22110F4X22)
inverter_cell (ST_INCL5W22110F4X4)
inverter_cell (ST_INCL5W22110F4X7)
inverter_cell (ST_INCL5W22110F4X9)
inverter_cell (ST_INCL5W32110F4X13)
inverter_cell (ST_INCL5W32110F4X18)
inverter_cell (ST_INCL5W32110F4X2)
inverter_cell (ST_INCL5W32110F4X22)
inverter_cell (ST_INCL5W32110F4X4)
inverter_cell (ST_INCL5W32110F4X7)
inverter_cell (ST_INCL5W32110F4X9)
inverter_cell (ST_INCL5W32210F4X2)
inverter_cell (ST_INCL5W32210F4X4)
inverter_cell (ST_INCL5W32210F4X7)
inverter_cell (ST_INCLAO220F4X13)
inverter_cell (ST_INCLAO220F4X18)
inverter_cell (ST_INCLAO220F4X2)
inverter_cell (ST_INCLAO220F4X4)
inverter_cell (ST_INCLAO220F4X7)
inverter_cell (ST_INCLAO220F4X9)
inverter_cell (ST_INCLOA220F4X13)
inverter_cell (ST_INCLOA220F4X18)
inverter_cell (ST_INCLOA220F4X2)
inverter_cell (ST_INCLOA220F4X4)
inverter_cell (ST_INCLOA220F4X7)
inverter_cell (ST_INCLOA220F4X9)
inverter_cell (SY_INCL2W110F2X13)
inverter_cell (SY_INCL2W110F2X18)
inverter_cell (SY_INCL2ZW110F2X2)
inverter_cell (SY_INCL2ZW110F2X4)
inverter_cell (SY_INCL2ZW110F2X7)
inverter_cell (SY_INCL2W110F2X9)
inverter_cell (ST_INCLP1W11110F4X13)
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incr
incr
incr
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incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr

inverter_cell (ST_INCLP1W11110F4X18)
inverter_cell (ST_INCLP1W11110F4X2)
inverter_cell (ST_INCLP1W11110F4X4)
inverter_cell (ST_INCLP1W11110F4X7)
inverter_cell (ST_INCLP1W11110F4X9)
inverter_cell (ST_INCLP1W1110F3X13)
inverter_cell (ST_INCLP1W1110OF3X18)
inverter_cell (ST_INCLP1W1110F3X2)
inverter_cell (ST_INCLP1W1110F3X4)
inverter_cell (ST_INCLP1W1110F3X7)
inverter_cell (ST_INCLP1W1110F3X9)
inverter_cell (ST_INCLP1W110F2X13)
inverter_cell (ST_INCLP1W110F2X18)
inverter_cell (ST_INCLP1W110F2X2)
inverter_cell (ST_INCLP1W110F2X27)
inverter_cell (ST_INCLP1W110F2X4)
inverter_cell (ST_INCLP1W110F2X9)
inverter_cell (ST_INCLP2W11110F4X13)
inverter_cell (ST_INCLP2W11110F4X2
inverter_cell (ST_INCLP2W11110F4X4
inverter_cell (ST_INCLP2W11110F4X7
inverter_cell (ST_INCLP2W11110F4X9
inverter_cell (ST_INCLP2W1110OF3X13
inverter_cell (ST_INCLP2W1110F3X18

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(
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(

(
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inverter_cell (ST_INCLP2W1110F3X2)
inverter_cell (ST_INCLP2W1110F3X22)
inverter_cell (ST_INCLP2W1110F3X4)
inverter_cell (ST_INCLP2W1110F3X7)
inverter_cell (ST_INCLP2W1110F3X9)
inverter_cell (ST_INCLP2W110F2X13)
inverter_cell (ST_INCLP2W110F2X18)
inverter_cell (ST_INCLP2W110F2X22)
inverter_cell (ST_INCLP2W110F2X31)
inverter_cell (ST_INCLP2W110F2X4)
inverter_cell (ST_INCLP2W110F2X7)
inverter_cell (ST_INCLP2W21110F4X2)
inverter_cell (ST_INCLP2W21110F4X4)
inverter_cell (ST_INCLP2W21110F4X7)
inverter_cell (ST_INCLP2W21110F4X9)
inverter_cell (ST_INCLP2W2110F3X18)
inverter_cell (ST_INCLP2W2110F3X2)
inverter_cell (ST_INCLP2W2110F3X22)
inverter_cell (ST_INCLP2W2110F3X27)
inverter_cell (ST_INCLP2W2110F3X4)
inverter_cell (ST_INCLP2W2110F3X7)
inverter_cell (ST_INCLP2W2110F3X9)
inverter_cell (ST_INCLP2W22110F4X13)
inverter_cell (ST_INCLP2W22110F4X18)
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1390
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1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
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1429
1430
1431
1432

incr
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incr
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incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr

inverter_cell (ST_INCLP2W22110F4X2)
inverter_cell (ST_INCLP2W22110F4X4)
inverter_cell (ST_INCLP2W22110F4X7)
inverter_cell (ST_INCLP2W22110F4X9)
inverter_cell (ST_INCLP3W11110F4X2)
inverter_cell (ST_INCLP3W11110F4X4)
inverter_cell (ST_INCLP3W11110F4X9)
inverter_cell (ST_INCLP3W1110F3X13)
inverter_cell (ST_INCLP3W1110F3X18)
inverter_cell (ST_INCLP3W1110F3X2)
inverter_cell (ST_INCLP3W1110F3X31)
inverter_cell (ST_INCLP3W1110F3X4)
inverter_cell (ST_INCLP3W1110F3X7)
inverter_cell (ST_INCLP3W1110F3X9)
inverter_cell (ST_INCLP3W21110F4X13)
inverter_cell (ST_INCLP3W21110F4X2
inverter_cell (ST_INCLP3W21110F4X4
inverter_cell (ST_INCLP3W21110F4X7
inverter_cell (ST_INCLP3W21110F4X9
inverter_cell (ST_INCLP3W2110F3X13
inverter_cell (ST_INCLP3W2110F3X18
inverter_cell (ST_INCLP3W2110F3X2)
inverter_cell (ST_INCLP3W2110F3X27)
inverter_cell (ST_INCLP3W2110F3X4)
(
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(
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inverter_cell (ST_INCLP3W2110F3X7)

inverter_cell (ST_INCLP3W2110F3X9)

inverter_cell (ST_INCLP3W22110F4X13)
inverter_cell (ST_INCLP3W22110F4X2)
inverter_cell (ST_INCLP3W22110F4X4)
inverter_cell (ST_INCLP3W22110F4X7)
inverter_cell (ST_INCLP3W31110F4X13)
inverter_cell (ST_INCLP3W31110F4X18)
inverter_cell (ST_INCLP3W31110F4X2)
inverter_cell (ST_INCLP3W31110F4X7)
inverter_cell (ST_INCLP3W31110F4X9)
inverter_cell (ST_INCLP3W32110F4X13)
inverter_cell (ST_INCLP3W32110F4X18)
inverter_cell (ST_INCLP3W32110F4X2)
inverter_cell (ST_INCLP3W32110F4X4)
inverter_cell (ST_INCLP3W32110F4X7)
inverter_cell (ST_INCLP3W32110F4X9)
inverter_cell (ST_INCLP4W11110F4X2)
inverter_cell (ST_INCLP4W11110F4X4)
inverter_cell (ST_INCLP4W11110F4X7)
inverter_cell (ST_INCLP4W11110F4X9)
inverter_cell (ST_INCLP4W21110F4X13)
inverter_cell (ST_INCLP4W21110F4X2)
inverter_cell (ST_INCLP4W21110F4X4)
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incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr
incr

inverter_cell (ST_INCLP4W21110F4X9)
inverter_cell (ST_INCLP4W22110F4X13)
inverter_cell (ST_INCLP4W22110F4X4)
inverter_cell (ST_INCLP4W22110F4X7)
inverter_cell (ST_INCLP4W22110F4X9)
inverter_cell (ST_INCLP4W31110F4X2)
inverter_cell (ST_INCLP4W31110F4X4)
inverter_cell (ST_INCLP4W31110F4X7)
inverter_cell (ST_INCLP4W31110F4X9)
inverter_cell (ST_INCLP4W32210F4X13)
inverter_cell (ST_INCLP4W32210F4X2)
inverter_cell (ST_INCLP4W32210F4X4)
inverter_cell (ST_INCLP4W32210F4X7)
inverter_cell (ST_INCLP4W32210F4X9)
inverter_cell (ST_INCLP5W22110F4X13)
inverter_cell (ST_INCLP5W22110F4X2)
inverter_cell (ST_INCLP5W22110F4X4)
inverter_cell (ST_INCLP5W22110F4X7)
inverter_cell (ST_INCLP5W22110F4X9)
inverter_cell (ST_INCLP5W23210F4X2)
inverter_cell (ST_INCLP5W23210F4X7)
inverter_cell (ST_INCLP5W32110F4X2)
inverter_cell (ST_INCLP5W32110F4X4)
inverter_cell (ST_INCLP5W32110F4X7)
inverter_cell (ST_INCLP5W32110F4X9)
inverter_cell (ST_INCLP5W32210F4X13)
inverter_cell (ST_INCLP5W32210F4X2)
inverter_cell (ST_INCLP5W32210F4X4)
inverter_cell (ST_INCLP5W32210F4X7)
inverter_cell (ST_INCLP5W32210F4X9)
inverter_cell (ST_INCLPAO220F4X13)
inverter_cell (ST_INCLPAO220F4X2)
inverter_cell (ST_INCLPAO220OF4X4)
inverter_cell (ST_INCLPAO220F4X7)
inverter_cell (ST_INCLPAO220F4X9)
inverter_cell (ST_INCLPAO20210F4X4)
inverter_cell (ST_INCLPAO20210F4X7)
inverter_cell (ST_INCLPAO20210F4X9)
inverter_cell (ST_INCLPOA220F4X13)
inverter_cell (ST_INCLPOA220F4X2)
inverter_cell (ST_INCLPOA220F4X4)
inverter_cell (ST_INCLPOA220F4X7)
inverter_cell (ST_INCLPOA220F4X9)
inverter_cell (SY_INCLP2W110F2X13)
inverter_cell (SY_INCLP2W110F2X18)
inverter_cell (SY_INCLP2W110F2X2)
inverter_cell (SY_INCLP2W110F2X4)
inverter_cell (SY_INCLP2W110F2X7)
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1481 incr inverter_cell (SY_INCLP2W110F2X9)

1482 incr inverter_cell (HS65 GS IVX106)

1483 incr inverter_cell (HS65_GS_IVX13)

1484 incr inverter_cell (HS65_GS_I1VX142)

1485 incr inverter_cell (HS65_GS_IVX18)

1486 incr inverter_cell (HS65_GS IVX2)

1487 incr inverter_cell (HS65 GS IVX213)

1488 incr inverter_cell (HS65_GS_IVX22)

1489 incr inverter_cell (HS65_GS_IVX27)

1490 incr inverter_cell (HS65_GS_1VX284)

1491 incr inverter_cell (HS65_GS_IVX31)

1492 incr inverter_cell (HS65 _GS IVX35)

1493 incr inverter_cell (HS65 GS _IVX4)

1494 incr inverter_cell (HS65 _GS 1VX40)

1495 incr inverter_cell (HS65_GS_IVX44)

1496 incr inverter_cell (HS65_GS_IVX49)

1497 incr inverter_cell (HS65 GS IVX53)

1498 incr inverter_cell (HS65_GS_IVX62)

1499 incr inverter_cell (HS65 _GS_IVX7)

1500 incr inverter_cell (HS65 _GS_IVX71)

1501 incr inverter_cell (HS65_GS_IVX9)

1502

1503 proc is_inverting_output {pin} {

1504 global inverter_cell

1505 return [info exists inverter_cell ([get_inst_cell_name [vdirname [get_db -—if
{.direction == out} $pin]]])]

1506 }

1507

1508 set_dont_use [vfind COREG5GPSVT —lib_cell «] true

1509 set_dont_use [vfind COREG5GPSVT —lib_cell «BFX«] false

1510 set_dont_use [vfind COREG5GPSVT —lib_cell «IVX+] false

1511 set_dont_use [array names inverter_cell] false

1512 set_dont_use [orphan_cell_list] true
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