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The bifunctional enzyme soluble epoxide hydrolase (sEH) is found in all regions of
the brain. It has two different catalytic activities, each assigned to one of its terminal
domains: the C-terminal domain presents hydrolase activity, whereas the N-terminal
domain exhibits phosphatase activity. The enzyme’s C-terminal domain has been linked
to cardiovascular protective and anti-inflammatory effects. Cholesterol-related disorders
have been associated with sEH, which plays an important role in the metabolism of
cholesterol precursors. The role of sEH’s phosphatase activity has been so far poorly
investigated in the context of the central nervous system physiology. Given that brain
cholesterol disturbances play a role in the onset of Alzheimer’s disease (AD) as well as
of other neurodegenerative diseases, understanding the functions of this enzyme could
provide pivotal information on the pathophysiology of these conditions. Moreover, the
sEH phosphatase domain could represent an underexplored target for drug design and
therapeutic strategies to improve symptoms related to neurodegenerative diseases. This
review discusses the function of sEH in mammals and its protein structure and catalytic
activities. Particular attention was given to the distribution and expression of sEH in the
human brain, deepening into the enzyme’s phosphatase activity and its participation in
brain cholesterol synthesis. Finally, this review focused on the metabolism of cholesterol
and its association with AD.

Keywords: soluble epoxide hydrolase, N-terminal domain, phosphatase activity, brain cholesterol metabolism,
Alzheimer’s disease

INTRODUCTION

Cholesterol metabolism in the brain is independent of peripheral tissues due to the blood-brain
barrier (BBB) that impairs the entrance of the protein-bound lipid into the central nervous system
(CNS). Brain tissues contain large amounts of cholesterol, up to 25% of the body’s cholesterol
content (Dietschy, 2009) whose metabolism and complex homeostasis regulation in the CNS
remain unclear (Zhang and Liu, 2015). Changes in this metabolism are related to neurodegenerative
pathologies, such as Alzheimer’s disease (AD), Parkinson’s disease, and Huntington’s disease, as well
as to age-related cognitive decline (Petrov et al., 2016; Loera-Valencia et al., 2019).

Soluble epoxide hydrolase (sEH), a bifunctional enzyme possessing two different catalytic
activities, is found in all regions of the brain (Sura et al., 2008). The C-terminal domain of its
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polypeptide chain exhibits EH activity, whereas the N-terminal
domain presents phosphatase activity (Morisseau et al., 2012).
The role of sEH’s C-terminal domain has been extensively
investigated (reviewed in Imig, 2013; Morisseau and Hammock,
2013; He et al., 2016), but the role of its N-terminal domain is still
poorly understood (see Table 1). Endogenous substrates for sEH
N-terminal activity appear to be phosphorylated lipids, some of
which are precursors in the cholesterol biosynthesis pathway and
for protein isoprenylation (Enayetallah and Grant, 2006), as well
as lysophosphatidic acids and sphyngosine-1-phosphate (Oguro
et al., 2009; Morisseau et al., 2012). Considering the abundance
of cholesterol in the CNS, it is important to further investigate
the role of sEH in the brain cholesterol pathway.

This review aims to summarize the role of sEH in mammals
and its protein structure and catalytic activities. We also provide
a compilation of sEH distribution and expression in the human
brain and deepen the discussion on the enzyme’s N-terminal
phosphatase activity and its involvement in the synthesis of
cholesterol. Finally, we discuss cholesterol metabolism and its
implication in AD.

SOLUBLE EPOXIDE HYDROLASE

Vertebrate sEHs are members of the EH family ubiquitously
found in nature (Enayetallah et al., 2004; Newman et al.,
2005; Morisseau and Hammock, 2013). EHs open epoxides
to form diols by the addition of a water molecule (Fretland
and Omiecinski, 2000). In mammals, this enzyme is broadly
distributed in different tissues. The subcellular localization of
sEH follows a tissue-specific pattern, by which the protein can
be exclusively located in the cytosol or additionally present in
peroxisomes (Enayetallah et al., 2004; Newman et al., 2005;
Enayetallah and Grant, 2006; Kramer and Proschak, 2017).
Mammals have several EH isoforms, the most known of which are
the microsomal EH (mEH) and sEH (Decker et al., 2009). Two
other EHs have been described, EH3 and EH4, and they represent
a new family of mammalian EHs. EH3 is mostly expressed in the
lung, skin, and upper gastrointestinal tract and features a high
activity for fatty acid-derived epoxides (Decker et al., 2012).

In humans, the bifunctional enzyme is located intracellularly,
both in the cytosol and in peroxisomes (Newman et al., 2005),
with a broad distribution in all tissues (Enayetallah et al., 2004;
Sura et al., 2008). A function for sEH was first described in the
metabolism of xenobiotic compounds by the kidney and the liver
(Decker et al., 2009). While the detoxifying role of hepatic and
renal sEH has been carefully addressed (Imig and Hammock,
2009; Imig, 2013), much less is known about the role of the
sEH in the brain.

DISTRIBUTION AND EXPRESSION OF
sEH IN THE BRAIN

In the human CNS, the sEH is distributed in all regions of the
brain, mostly in neuronal cell bodies, as well as in astrocytes and
oligodendrocytes. It also occurs in a relatively high abundance

in the ependymal cells of the choroid plexus and in the smooth
muscle of brain arterioles (Sura et al., 2008). In the brain of
mice, immunoreactivity for sEH was found only in neurons of
the central amygdala, which also contained mEH. Rather than
in neurons, in other CNS regions, sEH was located in astrocytes
(Marowsky et al., 2009; Harris and Hammock, 2013). Neurons
in the nucleus, which represent an important output of the
amygdala, express a number of neuropeptides, the release of
which are thought to recruit BKCa channels for calcium signaling,
in most neuronal secretory cells (Cassell and Gray, 1989).
Epoxyeicosatrienoic acids (EETs) and/or dihydroxyeicosatrienoic
acids (DHETs) could play a role on neuropeptide release because
of their well-known actions on BKCa channels. Accordingly, it has
been shown that 14,15-EET has a role in the release of oxytocin
and vasopressin (Negro-Vilar et al., 1985), somatostatin (Junier
et al., 1990), and β-endorphin and Met-enkephalin (Terashvili
et al., 2008). Altogether, it is possible that the exclusive neuronal
presence of sEH in the central amygdala might have a function in
the release of neuropeptides.

Blockage of sEH activity, either through pharmacological
inhibition or genetic deletion, revealed its neuroprotective
effects. In sEH knockout mice, decreased infarct volumes,
elevated brain-derived neurotrophic factor (BDNF) expression,
and increased production of astrocyte-derived BDNF were
reported, all favoring astrocyte viability and protecting neurons
from ischemic injury (Yuan et al., 2016). sEH activity affects
basal synaptic transmission and synaptic plasticity. Furthermore,
its inhibition improves neuronal synaptic neurotransmission
mediated by an increase of postsynaptic glutamatergic receptors
and long-term potentiation, which is boosted via extracellular
signal-regulated kinase (ERK) phosphorylation (Wu et al., 2015),
suggesting that inhibition of sEH could modulate learning and
memory formation. sEH inhibitors have thus been proposed as
potential therapeutic agents for the prevention and treatment of
injuries to the CNS.

sEH Protein Structure
The human sEH is a 62.5-kDa enzyme, product of the EPXH2
gene, located on chromosome 8. This gene (45 kb) contains
19 exons encoding a protein of 555 amino acid residues
(Morisseau and Hammock, 2013) and encodes a two-domain,
bifunctional enzyme as result of a gene fusion event (Beetham
et al., 1995). In mammals, sEH is a homodimer composed of
two globular monomers, where each monomer comprises two
distinct structural domains, the N- and C-terminal regions,
separated by a short proline-rich linker (Newman et al., 2005).
The dimer shows an “antiparallel” organization of the monomers,
in such a way that the C-terminal region of one monomer
faces the N-terminal region of the other. The structural features
of sEH are depicted in Figure 1. The C-terminal domain (EC
3.3.2.10),∼35 kDa, exhibits EH activity, which opens an epoxide
ring to form the corresponding diol. On the other hand, the
N-terminal domain (EC 3.1.3.76), ∼25 kDa, has phosphatase
activity toward lipid phosphates, such as isoprenoid phosphates,
lysophosphatidic acids, and sphingosine-1-phosphate (Harris
and Hammock, 2013; Morisseau and Hammock, 2013; Morisseau
et al., 2013). The domain-swapped architecture of sEH aids
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FIGURE 1 | Soluble epoxide hydrolase (sEH): structure and known physiological roles. (A) Structure of sEH’s monomer, with the N- and C-terminal domains
separated by a proline-rich linker. The SNP R287Q, located in the C-terminal domain, results in a lower hydrolase activity. (B) Overall structure of the dimeric form of
the human sEH, showing the two monomers and their respective domains N- and C-termini, which are globular regions with alpha and beta structures connected by
a proline-rich linker. The amino terminal domain displays a phosphatase activity, whereas the carboxy terminal domain carries a hydrolase activity. (C) The sEH’s
phosphatase activity is involved in brain cholesterol metabolism. Higher brain cholesterol content may increase the levels of amyloid precursor protein (APP), thus
contributing to the pathogenesis of Alzheimer’s disease (AD). (D) The sEH activity performs the hydration of epoxide groups of all six regioisomers of neuroprotective
epoxyeicosatrienoic acids (EET), forming the corresponding inactive dihydrodiols.

in the enzyme’s stability and enables exchange of two distinct
unrelated substrates (Argiriadi et al., 1999). The combined
phosphatase and EH domains in this bifunctional enzyme reflects
a positive selective advantage of a gene fusion event between
ancient members of two distinct superfamilies of dehalogenases.
Single-domain EHs are found in plants, invertebrates, and fungi
and show homology to prokaryotic haloalkane dehalogenase
(Beetham et al., 1995; Harris et al., 2008). The activity of
the N-terminal domain of the first “fused” enzymes was only
vestigial (Beetham et al., 1995) and evolved through mutations
to the present phosphatase domain of vertebrate sEH, whose
enzyme activity was discovered only in 2003 (Cronin et al.,
2003; Newman et al., 2005). Orthologs of the vertebrate
sEH phosphatase domain were described in the genome of

Caenorhabditis elegans as well as in Archea and Bacteria (Harris
et al., 2008; Harris and Hammock, 2013).

CATALYTIC ACTIVITIES OF sEH

Epoxide Hydrolase
The sEH C-terminal EH domain metabolizes all four
regioisomers of EET, which are lipid autacoids derived
from arachidonic acid by the action of cytochrome P450
epoxygenases. sEH introduces a water molecule into epoxide
ring to form the corresponding DHET (Figure 1), thereby
diminishing or eliminating the biological effects of EET
(Yu et al., 2000).
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TABLE 1 | Summary of studies investigating the roles of the carboxy- and the amino terminal domains of the soluble epoxide hydrolase enzyme.

Soluble epoxide hydrolase Effects Experimental models References

C-terminal domain
(hydrolase activity)

Expression of human sEH domain alone reduces cholesterol levels. Cell culture of HepG2 cell line
and sEH-knockout mice

EnayetAllah et al., 2008

C-terminal inhibitor promotes neuroprotective effects, such as
attenuation of oxidative stress, apoptosis, protein aggregation, and
endoplasmic reticulum stress.

C57BL/6J mice MPTP-induced
neurotoxicity

Huang et al., 2018

sEH inhibition protects neurons and suppresses cytokine
production and microglial migration into the hippocampus.

Male C57BL/6 mice global
cerebral ischemia-induced

Taguchi et al., 2016

C-terminal inhibition promotes antidepressant effect, increase of
hippocampal BDNF expression, and neurogenesis.

Male C57BL/6 mice Wu et al., 2017

Inhibition of C-domain increases the memory response, reduces
oxidative stress, minimizes inflammation, and decreases the level of
the amyloid precursor protein in the brain.

Male Sprague-Dawley rats
streptozotocin-induced
Alzheimer’s disease-like

Pardeshi et al., 2019

Inhibition of C-terminal domain enhanced neuronal synaptic
neurotransmission in the PFC associated with enhanced
postsynaptic glutamatergic receptor and long-term potentiation
(LTP) via extracellular signal-regulated kinase (ERK) phosphorylation.

Brain slices of C57BL/6 mice Wu et al., 2015

N-terminal domain
(phosphatase activity)

Negatively regulates eNOS activity and NO production Cell culture of bovine aortic
endothelial cells and
sEH-knockout mice

Hou et al., 2011, 2015

Expression of human sEH phosphatase domain alone increases
cholesterol levels.

Cell culture of HepG2 cell line
and sEH-knockout mice

EnayetAllah et al., 2008

Arg287Gln variant is linked to increased levels of plasma cholesterol
and of triglycerides in patients with familial hypercholesterolemia.

Human blood plasma Sato et al., 2004

Studies with potent selective inhibitors, such
as 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea,
N-[1-(1-Oxopropyl)-4-piperidinyl]-N′-[4-(trifluoromethoxy)ph
enyl] urea (TPPU), or 12-[[(tricyclo [3.3.1.13,7] dec-1-
ylamino) carbonyl] amino]-dodecanoic acid (AUDA),
have indicated that inhibition of sEH activity promotes
anti-inflammatory, antihypertensive, neuroprotective,
and cardioprotective effects (Shen and Hammock, 2012).
These beneficial effects correlated to an increase of the
circulating levels of EET, which contribute to halt the
progression of hypertension, cardiovascular pathologies,
hypercholesterolemia, and of inflammatory diseases
(Thomson et al., 2012).

Phosphatase Activity
The physiological role and the endogenous substrate(s)
of the sEH phosphatase activity are still elusive. Studies
performed in vitro indicated that sEH phosphatase activity
hydrolyzes lipid phosphates, like isoprenoid phosphates,
which are precursors of cholesterol biosynthesis and protein
isoprenylation (Enayetallah and Grant, 2006). Morisseau and
collaborators (Morisseau et al., 2012) have demonstrated that
lysophosphatidic acids (LPAs) are excellent substrates for sEH
phosphatase activity. LPAs bind to various nuclear receptors and
regulate cell survival, apoptosis, motility, shape, differentiation,
gene transcription, and malignant transformation (Sciorra
and Morris, 2002; Lin et al., 2010). Moreover, LPA inhibits
pre-adipocyte differentiation, thus limiting adipogenesis
through interaction with PPARγ (Morris et al., 2009). This
nuclear receptor plays an essential role in regulating lipid and
glucose homeostasis.

Several groups have shown that fatty acid epoxide substrates
and diol products of sEH activate peroxisome proliferator-
activated receptors (PPARs) (Oguro et al., 2009; Iyer et al.,
2011). The exact role of sEH in modulating PPARs is currently
unknown, albeit the significance of PPARs in lipid metabolism
and metabolic disorders is well-documented (Lee et al., 2003;
Cho et al., 2008).

Soluble epoxide hydrolase also plays a pivotal role in the
regulation of endothelial nitric oxide (NO) synthase (eNOS)
activity and NO-mediated endothelial cell functions (Hou et al.,
2011). Endothelium-derived NO is a crucial regulator of vascular
homeostasis (Schulz et al., 2008). NO bioavailability is tightly
controlled by NOS activity. The phosphatase activity of sEH
downregulates activated eNOS signaling and NO production.
Inhibition of sEH phosphatase activity was shown to increase
NO production and prolong the phosphorylation of eNOS (Hou
et al., 2011; Hou et al., 2015). In the nervous system, NO has
both physiological and pathological functions. For example, NO
contributes to long-term potentiation (LTP), playing a role in
learning and memory processes (Schuman and Madison, 1991).
NO enhances the expression of cAMP response element binding
protein (CREB) to mediate the response to BDNF (Riccio et al.,
2006). NO also mediates glutamate-NMDA receptor (NMDAr)
signaling in neurons (Jafari et al., 2018; Wu and Tymianski, 2018).

To date, different molecules with inhibitory effect toward
the phosphatase activity of sEH have been described, even
though most lack a potent and selective chemical action. Kramer
and collaborators reported (Kramer et al., 2019) in 2019 the
synthesis of the first in vivo inhibitor of both the human
and rat sEH phosphatase domains, 4-(4-(3,4-dichlorophenyl)-
5-phenyloxazol-2-yl) butanoic acid (SWE101), with an IC50
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0.058 µM against the human enzyme. SWE101 showed adequate
pharmacokinetic properties in rats, allowing studies on the
pathophysiological relevance of phosphatase activity of sEH and
revealing its role on the hydrolysis of lysophosphatidic acids
(Kramer and Proschak, 2017; Kramer et al., 2019).

sEH PHOSPHATASE ACTIVITY AND
SYNTHESIS OF CHOLESTEROL

Epidemiological studies have associated sEH polymorphisms
with various human diseases, many of which are related to
cardiovascular disorders and familial hypercholesterolemia
(Sato et al., 2004). The R287Q variant was described as an
emerging risk factor for atherosclerosis. This polymorphism
correlated positively with subclinical atherosclerosis and
coronary artery calcification (Fornage et al., 2004; Wei
et al., 2007). The R287Q variant is also linked to increased
levels of plasma cholesterol and triglycerides in patients
with familial hypercholesterolemia (Sato et al., 2004). This
sEH variant displays a higher isoprenoid phosphatase
activity in vitro (Enayetallah and Grant, 2006). Another
variant, sEH K55R, leads to an increased sEH activity
in vivo and was correlated with coronary heart disease (Lee
et al., 2006). The single-nucleotide polymorphisms (SNPs)
cited above occur in two different exons of the EPHX2
gene. The former, located in the eighth exon, results
in a change of the amino acid (arginine to glutamine)
in position 287 in the C-terminal domain and a lower
hydrolase activity. The latter SNP resides in the second
exon, encoding an amino acid substitution (lysine to
arginine) in the N-terminal domain of the polypeptide
chain and causes an increase of the hydrolase activity
(Przybyla-Zawislak et al., 2003).

Soluble epoxide hydrolase-knockout mice have lower
cholesterol levels as well as several of its precursors, besides
reduced plasma steroid concentration. This was accompanied
by a general decrease in serum lipids (EnayetAllah et al., 2008;
Luria et al., 2009). Studies with recombinant HepG2 cells
expressing either the phosphatase domain or the hydrolase
domain alone have demonstrated the independent and opposite
roles of the two sEH enzymatic activities. The C-terminal
activity lowered the cell’s cholesterol level while the N-terminal
activity was found to increase it (EnayetAllah et al., 2008).
Treatment of wild-type mice with a hydrolase inhibitor resulted
in higher cholesterol levels, thus mimicking the effect of
expressing the phosphatase domain alone in HepG2 cells
(EnayetAllah et al., 2008).

Besides its direct catalytic activity on so far unidentified
substrate(s), sEH further affects cholesterol metabolism
by modulating the expression of the rate-limiting enzyme
in cholesterol synthesis, HMG CoA reductase, via the
activation of AMPK and inhibition of SREBP1/2 (Mangels
et al., 2016). Moreover, sEH deletion also affected the
basal and insulin-induced expressions of low-density
lipoprotein (LDL) receptor and of fatty acid synthase
(Mangels et al., 2016).

Altogether, these results suggest a potential role of sEH in
regulating cholesterol biosynthesis and metabolism.

BRAIN CHOLESTEROL METABOLISM

Cholesterol is an essential molecule for the neuronal physiology
during early development as well as in the adult life, and its levels
must be precisely maintained to allow for its correct function.
Both neurons and glial cells produce enough cholesterol for their
survival. Cholesterol is necessary for the growth of axons and
dendrites during organogenesis, nerve regeneration, remodeling,
and neuronal repair (Boyles et al., 1989; de Chaves et al., 1997;
Mahley and Rall, 2000). Additional amounts are required for
the formation of mature synapses, and synaptogenesis might be
limited by the availability of cholesterol (Mauch et al., 2001).

Cholesterol synthesis and metabolism in the brain fully rely
on de novo synthesis. The BBB, which prevents cholesterol
uptake from the circulation, and the blood-cerebrospinal fluid
(CSF) barrier (plasma is ultrafiltrated to be part of the CSF) are
two natural barriers that prevent mixing of plasma and brain
cholesterol (Gamba et al., 2019; Genaro-Mattos et al., 2019).

Similar to peripheral cholesterol synthesis, brain cholesterol is
synthesized from acetyl-CoA in a complex biosynthetic pathway
catalyzed by at least 20 enzymes, including the rate-limiting
HMG-CoA reductase (Gamba et al., 2019). In glial cells, brain
cholesterol is converted mainly into 24-hydroxycholesterol (24-
OHC) or oxidized into 27-hydroxycholesterol (27-OHC). The
latter regulates cholesterol transport in neurons by acting on a
nuclear transcription factor that controls the expression of ApoE
and ABCA1/ABCG1 (Czuba et al., 2017). Such oxysterols are
important to maintain brain cholesterol homeostasis.

The expression levels of cholesterol 24-hydroxylase, a
cytochrome P450 enzyme (CYP46A1), is about 100-fold higher
in the brain than in the liver. This enzyme catalyzes the
conversion of CNS cholesterol to 24-OHC, an oxidized catabolite
denominated oxysterol. Most of the oxysterol flows out from
the brain into the blood through the BBB, powered by the
concentration gradient, while a small amount flows into the CSF
(Lütjohann et al., 1996; Björkhem et al., 2018). In contrast, the
catabolic pathway of cholesterol via oxidation in the liver has as
final products the bile acids (Lund et al., 2003).

To evaluate the importance of the 24-hydroxylation pathway
in cholesterol turnover, Lund and collaborators (Lund et al., 2003)
conducted studies in cholesterol 24-hydroxylase knockout mice
(CYP46A1_/_), showing that de novo cholesterol synthesis in the
liver remained stable, whereas that in the brain was decreased by
40%. These data indicated that de novo cholesterol synthesis and
the levels of 24-OHC are strongly linked, and that at least 40%
of cholesterol turnover in the brain depends on cholesterol 24-
hydroxylase. Thus, this enzyme constitutes an important tissue-
specific pathway for cholesterol renewal in the brain.

24-hydroxycholesterol plasma levels, unlike other oxysterols,
show an age-dependent correlation: in the first decade of life,
the ratio between 24-OHC and cholesterol is about five times
higher than it is in the sixth decade. Moreover, there is also a
correlation between 24-OHC levels in the plasma and the CSF,
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indicating that 24-OHC efflux from the brain into the circulation
is significant and necessary for cerebral cholesterol homeostasis
(Lütjohann et al., 1996).

A direct correlation between a decrease in plasma cholesterol
concentration and in HMG-CoA reductase was shown by
EnayetAllah et al. (2008) in sEH-knockout male mice. Moreover,
HepG2 cell lines subjected to inhibition of the sEH domain
showed higher cholesterol levels. Altogether, these data suggest
an involvement of sEH phosphatase domain in cholesterol
metabolism. Thus, it is plausible to suggest that in the brain,
a similar mechanism occurs, with the N-terminal domain of
sEH regulating cholesterol metabolism, implying that higher
levels of its phosphatase activity could potentially increase brain
cholesterol concentrations.

ALZHEIMER’S DISEASE AND
CHOLESTEROL METABOLISM

Alzheimer’s disease is the most common neurodegenerative
disorder worldwide and also the major cause of dementia in the
elderly. Despite extensive research, no cure for this pathology
has been found. Classical hallmarks for AD include extracellular
senile plaques formed by the deposition of β-amyloid peptide
(Aβ), excessive phosphorylation of the tau protein, and formation
of intracellular neurofibrillary tangles—all these processes
leading to loss of synapses, neuronal death, and proliferation of
astrocytes (Masters et al., 2015).

Hypercholesterolemia is an important risk factor for AD and
other neurodegenerative diseases. Plasma cholesterol levels are at
least 10% higher in AD patients (Popp et al., 2013), and those
patients with higher levels of total cholesterol seem to have a
faster decline in cognitive abilities than the ones with normal
cholesterol levels (Helzner et al., 2009).

Disruptions in cholesterol metabolism are significantly
associated with AD pathogenesis, even though it is uncertain
if these are a cause or a consequence of the disease (Petrov
et al., 2017). The efflux of oxysterols from the brain into the
blood plays a key role in this process (Loera-Valencia et al.,
2019). Genetic polymorphisms in proteins involved in energy
metabolism or lipid transport are known as important risk
factors for the development of this pathology, such as the
presence of the allele ApoE4 of apolipoprotein E (ApoE), the
most abundant apoprotein involved in cholesterol transport in
the CNS (Holtzman et al., 2012). The presence of the ApoE4
allele is considered an important genetic risk factor for both
early- and late-onset AD, accounting for 45–60% of AD patients
(Farrer et al., 1997).

Increased cholesterol levels in the brain appear to contribute to
changes in cell membrane properties consequent to the increased
contents of intracellular and membrane-bound cholesterol (Xue-
shan et al., 2016). The amyloid precursor protein (APP) is an
integral transmembrane protein. When the amount of cholesterol
in the cell membranes rises, it promotes the binding of APP
to lipid rafts and its cleavage to form the β-amyloid peptides
(Figure 1; Beel et al., 2010). There are multiple β-amyloid forms,
such as Aβs monomers, oligomers, and amyloid fibers. Aβs

oligomers are the most toxic and recognized as the primary
cause of cognitive decline in AD patients (Viola and Klein,
2015). Furthermore, high intracellular cholesterol levels increase
the enzymatic activity of secretases involved in the amyloid
metabolic pathway, resulting in a higher generation of Aβ

(Grimm et al., 2008).
The BBB plays an important role in limiting the entry

of plasma components that are potentially neurotoxic, as
well as pathogens and blood cells into the brain. Jiang and
collaborators (Jiang et al., 2012) found that a high-cholesterol
diet (2% cholesterol supplementation for 10 weeks) fed to rabbits
increased the BBB permeability when compared to animals
receiving a normal diet. This increased BBB permeability enables
the peripheral cholesterol to cross this barrier, leading to further
increase of the CNS cholesterol levels (Xue-shan et al., 2016).
Thus, any dysfunction of the BBB can alter significantly the CNS
environment, affecting its functions and structure, and plays a key
role in the development and progression of AD.

Morisseau et al. (2013) discovered a compound, called ebselen,
which inhibits sEH phosphatase activity in a high-throughput
screening enzyme-based assay. Ebselen binds to the N-terminal
domain of sEH and chemically reacts with the enzyme to
quickly and irreversibly block its phosphatase activity (Morisseau
et al., 2013). Noteworthy, Xie et al. (2017) reported in 2017
the potential of ebselen, a strong antioxidant, lipid-soluble,
selenium-containing compound, in the treatment of cognitive
dysfunction and neuropathology in a triple transgenic AD
model in mice. Ebselen decreased the expression of amyloid
precursor protein and β-secretase, reduced the levels of Aβ

in AD neurons, especially the most toxic oligomeric form,
and decreased phosphorylation of tau protein while increasing
glutathione peroxidase and superoxide dismutase activities (Xie
et al., 2017). The beneficial effects of ebselen were attributed solely
to its antioxidant properties. However, these protective effects
could also be, at least in part, related to the inhibition of sEH
phosphatase activity and its consequent impact of lowering brain
cholesterol levels.

CONCLUSION

Throughout the years, human sEH has been poorly studied
in the context of CNS physiology, mainly the role of its
phosphatase domain and its possible influence on brain
cholesterol metabolism. Considering that the disruption in
brain cholesterol is a key player in the onset of AD, as
well as of other neurodegenerative diseases, it is crucial to
deepen our understanding of the role of this enzyme in
the CNS pathophysiology. In that view, sEH phosphatase
domain may represent an underexploited target for drug design
and development of therapeutic strategies to ameliorate the
symptoms or delay the progress of neurodegenerative diseases.
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