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Abstract— The wireless network infrastructure is critical for 

many applications, often operating over energy-sensitive 

networks with large communication delays. The store-and-

forward technology used in Delay/Disruption Tolerant 

Networking (DTN) can minimize this problem. However, DTN 

requires efficient energy consumption technology for increasing 

the mobile node lifetime, especially when the connection 

opportunities among nodes change over time. This paper 

proposes an energy-saving technique on store-and-forward 

technology that saves energy by employing a node trajectory 

inference model based on machine learning for communication 

control. Experimental results indicate more than 47% of 

energy-saving on data communication applying the proposed 

trajectory inference model. 

Keywords— DTN; energy saving; trajectory inference model. 

I. INTRODUCTION 

Countless applications require communicating through 
wireless network infrastructures; applications like disaster 
response coordination [1] and vehicle monitoring systems for 
smart cities [2] often operate over sparse, low-quality, and 
energy-sensitive networks getting disconnections/disruptions 
and significant communication delays. Consequently, the 
network can compromise the application services if the 
messages are not properly delivered or the system spends a lot 
of energy working. The store-and-forward technology used in 
Delay/Disruption Tolerant Networking (DTN) [3] can 
minimize the communication problem by grouping and 
storing the application data on each node and forwarding it to 
the next node when access is available. This technology 
allows data transmission where there may be no end-to-end 
connection between source and destination. As a result, DTN, 
also known as opportunistic networking, can deal with 
unusual communication conditions, such as minutes or hours 
of transmission delays, intermittent connectivity, and low 
reliability [4], and can be explored on mobile ad hoc networks. 

Although DTN solves message delivery requirements, 
energy management still is a challenge. The node movement 
in a DTN alters the network topology, constantly changing the 
connection opportunities among nodes [5]. Due to 
transmission range limits and intermittent connectivity 
transmissions, the network suffers long delays and energy 
losses. One fundamental problem in this context is routing 
messages from source to destination with a high delivery rate, 
low latency, low overhead, and low energy consumption since 
end-to-end paths might be absent for the entire message 
lifetime. Since the store-and-forward technology helps but 

does not avoid high energy consumption, for propagating 
messages over the network, nearby nodes must exchange 
information within their transmission range, which is limited 
by the hardware characteristics, reaching short distances. Each 
node consumes energy scanning neighborhood connections to 
receive and transmit data from/to the nearby nodes. 

Dealing with nodes mobility is a promising way to 
increase the chance of knowing the DTN’s nodes encounter 
moments, and this knowledge can be used to save the network 
energy. This work assumes nodes move over predictable 
trajectories and can infer its and neighborhood mobility and 
infer current and future trajectory movements. Thereby, the 
main problem to be solved is how to make each node judge 
the sleeping condition and the wake-up time according to the 
historical mobility of DTN’s nodes. We propose a technique 
for saving energy on DTNs by using machine learning for 
inferring the trajectory of mobile nodes. The technique saves 
energy by controlling the activation and deactivation of the 
communication mechanisms. 

This work is organized as follows. Section II presents the 
related work. Section III comprises the proposed approach 
with a detailed description of the models used for node 
trajectory inference. Section IV details the experimental setup 
and obtained results. Finally, the main conclusions are 
clarified in Section V. 

II. RELATED WORK 

Borah et al. [6] suggest an energy-aware routing protocol 
for OppNets; the next best hop selection of a message relies 
on the node residual energy and its location based on delivery 
probability. Chunyue et al. [7] propose the EASE routing 
algorithm, combined with an asynchronous sleeping 
mechanism, making each node judge the sleeping condition 
and the wake-up time according to the historical encounter 
information and the node movement status. De Vit et al. [8] 
proposed a method of classifying trajectories that, together 
with the fixed schedules of bus tables, seeks to determine the 
times of meetings between mobile nodes. Our work differs 
from these works demonstrating that energy-saving 
approaches applied to DTN regarding (i) the protocol used to 
route messages through the network nodes and (ii) the 
knowledge of the position of nodes for efficient message 
delivery. This section shows how our work relates to other 
scientific approaches considering these two aspects. 

A. Message Routing Protocols 

The routing protocols used in DTNs are mainly based on 
the mobility of the nodes aware and store-carry-forward 
mechanisms. The Epidemic protocol operates similarly to the 978-1-6654-2559-9 / 21 / $ 31,00 © 2021 IEEE 
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spread of an infectious disease. Nodes that adopt this protocol 
disregard the content of the message they carry, transmitting 
the message blindly to all other nodes that do not yet have a 
copy of this message until the message reaches its destination. 
Spray and Wait is a two-phase epidemic protocol with a 
limited number of copies of each message sent. The authors 
of the PRoPHET protocol propose a probabilistic routing 
protocol for DTN networks, improving routing performance 
by doing probabilistic routing [9]. Derakhshanfard and Soltani 
[10] present a bitmap-based approach for designing a tree to 
send packets without any additional and pointless routes upon 
receiving a request to send a message to a specified node; 
because each packet has its unique and not time-consuming 
path. Wu et al. [11] introduced a way of building social circles 
based on the node clustering phenomena in DTN. Considering 
that the forwarding capability of nodes is significantly 
different, they proposed a spray strategy based on social 
circles to improve the spray-and-wait routing algorithm. 

Since people or vehicles can transport a node, it is crucial 
to managing the energy costs for sending/receiving messages 
and probe connections from other nodes within its 
transmission range. Unlike the related research presented here, 
our contribution is to demonstrate that exploring mobility is a 
promising way to save energy in a DTN. The probing 
connections close to the nodes within their transmission range 
are major factors of energy consumption among nodes [12]. A 
node that can predict its mobility and neighbors can infer 
current and future trajectories, enabling to explore techniques 
to reduce energy consumption. Besides, different routing 
algorithms can implement our proposal without changing its 
operating characteristics. 

B. Node Trajectory Inference 

Several criteria must be considered to understand the 
principles for inference of node trajectory [13]. The 
Manhattan mobility, Random Waypoint, and Random Walk 
models introduce a “memoryless” pattern with no dependence 
between current and future movements; thus, they are not 
suitable for modeling DTNs mobility problems. In literature, 
we found different traces based on the mobility of humans, 
animals, and vehicles to model real scenarios. Our work uses 
traces from the real-world bus scenario [14]. 

III. PROPOSED APPROACH 

For saving energy on the store-and-forward mechanism of 
DTNs, we propose a technique that blends node trajectory 
prediction and the node meeting knowledge. With the meeting 
knowledge, the solution controls the activation and 
deactivation of communication mechanisms avoiding 
unsuccessful scanning phases. The prediction method uses a 
machine learning technique to build decision trees capable of 
classifying node trajectories and predicting node positions for 
a meeting map, referred to here as ConnectivityMap. 

The machine learning process requires high computational 
power, which is performed by a central computer not over 
network nodes. Assuming we are dealing with a fleet of buses, 
each vehicle, at the beginning of its daily work, leaves the 
garage with the first version of the ConnectivityMap. This map 
is updated throughout the day as the traffic conditions escape 
from the previously learned behavior - an accident on a high-
traffic vehicle that interrupts traffic. Also, at each period, 
when passing through a specific station, a node can receive a 
new and updated ConnectivityMap, keeping the map updated. 

To explain how our approach works, the following 
sections detail the energy-saving and inference models. 

A. Energy Saving Model 

A node in a DTN operates at least three states for saving 
energy during its lifetime. Fig. 1 shows a Finite State Machine 
(FSM) for a DTN node operation regarding communication 
and energy management. From the initial Scanning state, two 
other states can be reached. If the node found another one in 
its range of connectivity, it goes to the Communicating state, 
remaining there while having data to transmit and/or receive. 
When the communication finishes, the node goes to the 
Sleeping state, a low energy consumption state, until reaching 
a timeout defined by the sleep time. When the node wakes up, 
it goes back to the Scanning state and restarts scanning for 
neighboring nodes during a predefined period defined as scan 
time. If the scanning procedure fails during the scan time, the 
node goes to sleep again to reduce its energy consumption. 

 
Fig. 1. FSM of energy consumption for a node in a DTN. 

The FSM shows the energy management strongly depends 
on sleep time and scan time settings generating a tradeoff. 
With a high sleep time, the sleeping node may lose several 
opportunities to find other nodes. Nevertheless, with a short 
sleep time, the node remains much time spending an enormous 
amount of energy scanning for possible communications, 
which is a typical characteristic of node behavior in a DTN; 
i.e., a node spent more time disconnected and looking for 
connections than connected and transferring information. The 
Sleeping state must be avoided to guarantee connections in all 
meeting opportunities, resulting in substantial energy 
consumption. The challenge is to set the sleep time and the 
scan time in a way the node wakes up in time to meet other 
nodes, maximizing the communication opportunities. Our 
approach explores the node trajectory inference to maximize 
communication opportunities saving energy, represented by 
the Inferring state on the FSM of Fig. 2. 

 
Fig. 2. FSM of energy-saving by node trajectory inference for a node 

operating in a DTN. 

Our solution inserts the Inferring state before going to the 
Sleeping state, responsible for estimating future connections 
based on the ConnectivityMap. Once the previous 
communication finishes, the Inferring state allows a node to 
estimate if the next possible connection is timely distant or 
near. With this solution, each time the node goes to Inferring 
state and needs to wait for a distant connection, the sleep time 
is set to a value close to the meeting inferred time. If the 
connection is inferred to be near, the scan time is set, and the 
node goes to the Scanning state. This inference-based 
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technique can control the time adjust tradeoff, making the 
DTN store-and-forward technology energy efficient. 

Sleep time knowledge is the main reason for reducing 
energy consumption without losing connections. While the 
classical approach does not have mechanisms to estimate the 
sleep time, this one can produce estimation for keeping 
communication circuits off. The success of the proposed 
method depends on the quality of the connectivity inference 
algorithm that relies on aspects like the number of nodes, node 
movement pattern, time spent learning the node movement. A 
loss of a meeting or an unsuccessful scanning happens when 
the connectivity inference algorithm sets a greater or lesser 
sleep time than the time required, respectively. 

B. Inference Model 

To design the connectivity inference algorithm, we 
assume the network of nodes corresponds to an asynchronous 
and distributed system ∏ = {p1, ..., pN | 1 < N} with N mobile 
nodes, without a global clock, and the nodes communicate 
through message exchange using radio broadcast for a finite 
communication range. The hardware architecture we propose 
for a mobile node contains the following components: (i) 
processing unit; (ii) memory; (iii) input/output devices 
responsible for data traffic; (iv) radio for sending/receiving 
messages; (v) sensors and actuators for communicating with 
the external environment; and a Positioning System (PS). The 
PS module allows the node to obtain and notify information 
about its mobility, represented by Cartesian positions added 
with time tags. The software architecture considers the DTN 
protocol stack, which is a layered model. Each layer is 
responsible for a group of tasks, providing a well-defined set 
of services for the upper-layer protocol. 

The communication model regards radio messages with a 
limited transmission range and no signal loss. The bundle 
layer, implemented by the bundle protocol, handles 
intermittent connectivity (storing a message and carrying this 
message until a contact takes place). A message m, sent by a 
node pi, is only received by a node pk that is within its 
transmission range when pk can identify the signal power of 
m. The Trajectory Inference Module (TIM – part of our 
software architecture) is responsible for the functionality of 
the connectivity inference algorithm. Fig. 3 illustrates this 
algorithm that receives the coordinates with their respective 
time tag of the nodes (readMobilityTrace) and calculates the 
connections among the nodes, using this information to 
manage the node energy efficiently. We highlight the time 
reference of a node pi used to compute connectivity from the 
node pi perspective and not for a global time notion. 

Each instance of the algorithm executes two tasks: (i) 
makingConnectivityMap (Task0), which is a static task 
performed at the beginning of the simulation, and (ii) 
inferringStateOperation (Task1), which is a dynamic task 
performed during the simulation. 

Task0 generates decision trees (ConnectivityMap), often 
used when high precision and low complexity execution are 
required [15], and produces the connectivity map of a given 
node. The task starts reading the mobility trace of the node 
(line 1). Then, the algorithm creates a map (connectivityMap) 
containing all intervals of time a given node is in a 
connectivity range of other nodes (lines 2-10). This procedure 
considers the 2D positioning of all nodes for each time 
(simulation step) and signal strength. To build Task0, we used 
data mining techniques for discovering patterns from the 

massive amounts of data; and used these patterns for 
predicting the values of dependent variables by identifying 
regularities and building generalizations in attributes of the 
dataset [16]. Decision trees were obtained through training 
using the J48 algorithm, an open-source implementation of the 
C4.5 algorithm available on Waikato Environment for 
Knowledge Analysis (WEKA) [16] – a machine learning tool. 

Task0: makingConnectivityMap of nodei ∈ ∏ 

1. readMobilityTraces(nodei) 

2. for all 1 ≤ k ≤ N | nodek ∈ ∏ { 

3.  if k ≠ i { 

4.   readMobilityTraces(nodek) 

5.   for each time slice { 

6.    if nodei(X,Y) in connectivity range of nodek(X,Y) 

7.     connectivityMapi(time) 

8.   } 

9.  } 

10. } 

 

Task1: inferringStateOperation of nodei ∈ ∏ 

1. at each transition to the Inferring state { 

2.  timeToNextConnection � connectivityMapi(time) 

3.  if timeToNextConnection < predefinedThresholdTime { 

4.   scan time � predefinedScanningTime 

5.   go to Scanning state 

6.  } 

7.  else { 

8.   sleep time � timeToNextConnection – predefinedScanningTime 

9.   reduce energy consumption of nodei 

10.   go to Sleeping state 

11. }  
Fig. 3. Connectivity inference algorithm. 

To construct our model and training set, we use the 
following information: X and Y axes coordinates; length, 
calculated from the sum of the distance formed between all 
pairs of consecutive trajectories points pn and pn-1; X and Y 
axes lower values; X and Y axes greater values; X and Y axes 
difference; travel duration time; displacement, calculated 
from the distance between the first and last trajectory points; 
average speed between all trajectory pairs points; average 
acceleration between two speeds, calculated for all trajectory 
points; mean slope between all points; and medium change 
direction between all points. 

Task1 is performed each time a node goes to the Inferring 
state. The algorithm computes the time inferred for the 
meeting, stored in the variable timeToNextConnection (line 
2), using the connectivityMap. The algorithm compares this 
value with a predefined threshold 
(predefinedThresholdTime), whose definition depends on the 
quality of the prediction method (lines 3-11). Hence, for small 
timeToNextConnection values, the node goes to the Scanning 
state to search for a new connection; else, the node goes to the 
Sleeping state, allowing saving energy. 

IV. EXPERIMENTAL RESULTS 

This section is twofold organized. We start presenting how 
the experiments were organized. Next, we present the results. 

A. Experiment Settings 

We used the ONE simulator [18] to evaluate the impact of 
saving energy through the node trajectory inference in a DTN. 
Envision a smart city scenario; we evaluated the efficacy of 
the proposed algorithm in saving energy of nodes placed in 
vehicles with predefined routes. For this purpose, we use the 
CRAWDAD dataset originated from the bus fleet movement 
of Seattle city (Washington, USA) [14]. Although the scenario 
is controlled, as the bus routes are tightly defined and 
schedules are slightly defined, the traffic of the city is 
unknown, generating a high variability degree in the 
communication range among buses. This variability is what 
the connectivity inference algorithm needs to capture. 
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The ConnectivityMap is previously built and loaded on 
each node at the beginning of the simulation. Despite the 
ConnectivetyMap can change and be reloaded during the node 
lifetime, over the simulation running, no update is done. 

The raw data of the bus dataset refers to date and time, bus 
and route identifications, and the XY coordinates of the buses. 
Following the instructions in [18], to use the simulator, date 
and time were converted to seconds, and time events sort all 
lines. The sampling interval (time difference between two-
time events) was one second for the entire file, which was 
obtained by interpolating the original values of the dataset. 
Additionally, all trajectories were divided into trajectory 
segments multiple of 100 seconds (i.e., 100, 200, 300, ...), up 
to the total value of the trajectory itself. 

The connectivity maps, containing all intervals of possible 
inter-node communications, are built regarding the node 
connectivity range. The dataset collection range is between 
Oct. 30 and Dec. 2 of 2001 - 33 days. The bus system consists 
of more than 1200 vehicles, covering an area of 5100 square 
kilometers. We used the interval until Nov. 23 and the 
remaining interval for experimentation and simulation. 

This work uses the energy model consumption developed 
by [19], adapted for our case, that classifies the energy 
consumption of the wireless interface in the four states shown 
in Fig. 2: (i) Communicating - the node consumes energy 
while sending or receiving a message; (ii) Scanning - the node 
consumes energy while the network interface searches for 
neighbor nodes; (iii and iv) Inferring and Sleeping - there is 
minimum energy consumption in the communication 
interface during this two states, which is ignored by the energy 
model. Additionally, for simulation purposes, the initial 
energy of the nodes is unlimited. TABLE I summarizes the 
energy consumption in each state. 

TABLE I. ENERGY CONSUMPTION VALUES. 

State Energy consumption (mJ) 

Initial unlimited 

Scanning 4.6 

Communicating 0.4 

Inferring / sleeping 0 

TABLE II summarizes the parameters of the simulated 
environment. The simulation area, number of nodes, and 
simulation time are based on real data extracted from [14]. The 
range values and transmission speed are compatible with 
IEEE 802.11 interfaces used outdoor, considering it can 
transmit up to 50 meters away at a speed of 54 Mbps. 
Additionally, we implemented Epidemic, Spray, and Wait, 
and Prophet routing protocols [9], implying different energy 
consumptions due to the send and receive operations. 

TABLE II. SIMULATION PARAMETERS. 

Parameter Data 

Simulation area [width, height] [54818, 82860] meters 

Number of nodes 1,163 

Simulation time 74,897 seconds 

Node movement Jetcheva et al. [14] 

Transmission range 50 meters 

Transmission speed 6,912 kBps 

Routing protocol Epidemic, Spray and Wait, Prophet [9] 

B. Experiment Results 

When alternating the states of a connection between 
Communicating (receiving or transmitting) and Scanning 
states, and a new connection is created for the node, the 
operation of device discovery performed in the “scan 
response” unit spends the same energy of a transmission. This 
allows computing the cost of connecting and disconnecting 

the network interface and the transition between the two 
states. Besides, the sum of the energies consumed by all 
operations (TABLE I) allows computing the total energy 
consumption for each node and the entire network. 

TABLE III shows the impact of routing algorithms on the 
number of sending and receiving operations for all network 
nodes during the entire simulation. The Epidemic algorithm is 
the most energy consumer since it floods the network with 
messages. The controlled flood of the Spray and Wait 
algorithm saves considerable energy. Meanwhile, the Prophet 
algorithm is listed as intermediate consumption among all. In 
this regard, the energy consumption of the inference model 
obtains the same results as the traditional model because it 
does not affect the send and receive operations. 

TABLE III. NUMBER OF SEND AND RECEIVE OPERATIONS ACCORDING TO 

THE ROUTING ALGORITHM. 

Routing algorithm Send and receive operations 

Epidemic 6,263,994 

Prophet 3,358,023 

Spray and Wait 1,022,653 

 
In send and receive operations, the three evaluated 

algorithms consume the same energy, using or not the 
inferring algorithm because TIM does not interfere in this kind 
of operation. Similarly, our approach does not affect the 
metrics (i) loss of meetings and (ii) number of unsuccessful 
scanning because the connectivity inference algorithm, which 
uses decision trees, always sets an ideal sleep time. 

In the traditional model, a node is continually scanning for 
new connections. It does not happen with the TIM model; this 
is the main difference of our work. TABLE IV highlights that 
considering the total scanning operations for all network 
nodes, the TIM model accounted for 47.51% fewer operations 
than the traditional one. 

TABLE IV. ENERGY CONSUMPTION ON SCANNING OPERATIONS. 

Routing algorithm 
Energy consumption of a single node (mJ) 

Total (%) 

Traditional 352,291.00 100.0 

TIM 184,917.17 52.5 

Difference 167,373.83 47.5 

Fig. 4 summarizes these results showing the total energy 
consumed during the network simulation period for the three 
routing algorithms regarding traditional and TIC models. As 
the energy consumption displayed in Fig. 4 considers 
communicating and scanning operations, it is clear that the 
scanning operations consume the highest network energy and 
that the impact of communicating operations and routing 
algorithms in the network energy consumption is small. 
Additionally, the advantage of the TIC model is highlighted 
when compared to the energy consumed by the traditional 
model. As a result, this experiment shows that the proposed 
trajectory inference-based technique offers a significant 
improvement in energy management efficiency. 

 
Fig. 4. Energy consumed during the network simulation regarding 

communicating and scanning operations. 
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We draw a route map based on the actual movement of the 
buses, allowing us to inspect intersections occurring for 
different tracings within the same set. Some sections in the 
traces have only one bus running all the way, while others 
have up to 52 vehicles; all routes have vehicles within these 
limits. Some buses use several different routes throughout 
their shifts, saving resources, including more buses in a 
specific route during intense user interval. This variability 
affects the network behavior because routes with fewer buses 
have more sparse communication opportunities among nodes. 

TIM may provide promising results under sparse 
communication conditions. We choose two of the sparsest 
routes as case studies to evidence this statement: routes 187 
and 773, which are fulfilled by two and four buses, 
respectively. TABLE V shows that the TIM approach 
becomes even more economical in a very sparse network, with 
few nodes and few encounters. While the traditional model 
performs 151,332 scanning operations, TIM performs only 
0.08% of these operations in a network with 2 nodes and 
0.76% of 192,392 scanning operations in a network with 4 
nodes. Therefore, under these conditions, energy savings for 
the entire network are several orders of magnitude greater. 

TABLE V. ENERGY CONSUMPTION FOR A SPARSE NETWORK. 

Number of 

nodes 
Routing algorithm 

Scanning operations 

Total (%) 

2 
Traditional 151332 100.00

TIM 122 0.08

4 
Traditional 192392 100.00

TIM 1468 0.76

Likewise, Fig. 5 illustrates that as the dispersion of the 
network nodes decreases, TIM shows higher values of 
scanning operations, reaching a maximum of 62.87% of the 
operations performed by the traditional model. 

 
Fig. 5. Scanning operations for networks with 9 to 511 nodes. 

Networks containing 2, 4, 9, 15, and 33 nodes represent 
individual routes, and traces of more than one route are 
combined. The network containing 61 nodes, for example, is 
the combination of route number 7 (with 52 buses) with route 
number 240 (with nine buses). There is no correlation between 
the number of nodes in the network and the values obtained 
by TIM because the greater or lesser number of connections 
among nodes affects the scanning operations, and it depends 
on their mobility and dispersion. Consequently, in sparse 
networks, some scanning operations are low; the opposite 
occurs in dense networks. In general, the network nodes must 
maintain continuous communication with the number of 
scanning operations to be the same in both traditional and TIM 
models, which is an unexpected situation in a DTN. 

V. CONCLUSIONS 

This paper represented a method for saving energy by 
inferring the trajectory of nodes in a DTN. Three separate 
algorithms were investigated, all of which yielded promising 
results. When opposed to conventional approaches, we could 
save more than 47 percent of energy in some activities. The 

results show that, regardless of the algorithm used, the node 
trajectory inference can be used to save energy in a DTN, thus 
achieving optimal results. We demonstrated that the node 
behavior was simulated by activating its energy to transmit or 
scan only when needed, such as when another node was 
nearby. In every other circumstance, the node disables these 
activity functions. This technique is analogous to a basic 
principle: an “energy-conscious person” who only triggers his 
device network interface when he discovers a link point. If the 
user cannot find many link points, the system spends a lot of 
time with the interface switched off, saving a lot of energy. 
Finally, this research showed that our strategy saves a large 
amount of energy for a DTN. 

REFERENCES 

[1] B. Goldberg, J. Hall, P. Pham, C. Cho, “Text messages by wireless mesh 

network vs voice by two-way radio in disaster simulations: A crossover 

randomized-controlled trial”, The American Journal of Emergency 

Medicine, v. 48, pp. 148-155, Oct. 2021. 

[2] A. Liu, L. Cao, Y. Han, S. Gao, X. Li, W. Zhao, “Design of a low-power 

road monitoring system for smart cities based on Wireless Sensor 

Network”, Advances in Transportation Studies, v. 53, pp. 183-196, Apr., 

2021. 

[3] S. Das, K. Sinha, N. Mukherjee, B. Sinha, “Delay and Disruption Tolerant 

Networks: A Brief Survey”, Intelligent and Cloud Computing, v. 194, pp. 

297-305, Oct. 2020. 

[4] T. Abdelkader, K. Naik, A. Nayak, N. Goel, V. Srivastava, “A Performance 

Comparison of Delay-tolerant Network Routing Protocols”, IEEE Network, 

v. 30, n. 2, pp. 46-53, 2016. 

[5] J. Rodrigues, “Advances in Delay-tolerant Networks (DTNs): Architecture 

and Enhanced Performance”, Woodhead Publishing Series in Electronic 

and Optical Materials: n. 67, Elsevier Science, 298p., 2014. 

[6] S. Borah, S. Dhurandher, I. Woungang, N. Kandhoul, J. Rodrigues, “An 

Energy-Efficient Location Prediction-Based Forwarding Scheme for 

Opportunistic Networks”, Proceedings of the IEEE International 

Conference on Communications (ICC), pp. 1-6, 2018. 

[7] Z. Chunyue, H. Tian, Y. Dong, B. Zhong, “An energy-saving routing 

algorithm for opportunity networks based on asynchronous sleeping mode”, 

Computers & Electrical Engineering, v. 92, pp. 1-11, Jun. 2021. 

[8] A. De Vit, C. Marcon, R. Nunes, T. Webber, G. Sanchez, R, Rolim, “Energy 

Saving on DTN Using Trajectory Inference Model”, Proceedings of the 

Annual ACM Symposium on Applied Computing (SAC), pp. 1-4, 2018. 

[9] N. V. R. Reddy, C. Sivasankar, N. Divya Jyothi, "A comprehensive survey 

on replication based protocols of delay tolerant networks," International 

Conference on Communication and Signal Processing (ICCSP), pp. 0014-

0018, 2016. 

[10] N. Derakhshanfard, R. Soltani, “Opportunistic routing in wireless networks 

using bitmap-based weighted tree”, Computer Networks, v. 188, pp. 1-8, 

Apr. 2021. 

[11] L. Wu, S. Cao, Y. Chen, J. Cui, Y. Chang, “An adaptive multiple spray-and-

wait routing algorithm based on social circles in delay tolerant networks”, 

Computer Networks, v. 189, pp. 1-15, Apr. 2021. 

[12] N. Banerjee, M. Corner, B. Levine, “Design and Field Experimentation of 

an Energy-Efficient Architecture for DTN Throwboxes”, IEEE/ACM 

Transactions on Networking, v. 18, n. 2, pp. 554-567, Apr. 2010. 

[13] A. Rudenko, L. Palmieri, M. Herman, KM. Kitani, DM. Gavrila, KO. Arras. 

Human motion trajectory prediction: a survey. The International Journal of 

Robotics Research. v. 39(8), pp. 895-935, 2020. 

[14] J. Jetcheva, Y. Hu, S. PalChaudhuri, A. Saha, D. Johnson, “CRAWDAD 

dataset rice/ad_hoc_city (v. 2003‑09‑11)”, available at 

crawdad.org/rice/ad_hoc_city/20030911/, Mar. 2021. 

[15] Wu, Xindong, et al., "Top 10 algorithms in data mining." Knowledge and 

information systems 14.1, pp. 1-37, 2008. 

[16] J. Han, M. Kamber, J. Pei, “Data mining: concepts and techniques”, 3rd ed., 

Elsevier, 703p., 2012. 

[17] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. 

Witten, “The WEKA Data Mining Software: An Update”. SIGKDD 

Explorations, Volume 11, Issue 1, pp. 10-18, 2009. 

[18] A. Keränen, T. Kärkkäinen, M. Pitkänen, F. Ekman, J. Karvo, J. Ott, “The 

One Simulator Javadoc”, available at 

www.netlab.tkk.fi/tutkimus/dtn/theone/javadoc_v141/, Mar. 2021. 

[19] D. Silva, A. Costa, J. Macedo, “Energy Impact Analysis on DTN Routing 

Protocols”, in Proceedings of the ACM Extreme Conference on 

Communication (ExtremeCom), 6p., 2012. 

 

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on August 31,2021 at 11:23:48 UTC from IEEE Xplore.  Restrictions apply. 


		2021-08-09T15:40:34-0400
	Preflight Ticket Signature




