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A B S T R A C T

With the widespread of electronics nowadays, Single Event Effects (SEEs) have become a significant concern, not
only for critical applications like aerospace and military but also for the automotive industry and medical in-
struments, where reliability is always at a premium. This concern is notable in environments containing
ElectroMagnetic (EM) and ionizing radiations, whose interactions with the matter may change the state of
memory elements and thus, degrading system reliability. Technology scaling down increases the probability that
the strike of a charged particle or a power bus fluctuation due to conducted EM interference affects more than
one cell; therefore, resulting in a Multiple Cell Upset (MCU). Single Error Correction–Double Error Detection
(SEC-DED) codes are among the most applied techniques to provide reliability to memory systems. However,
standard implementations of SEC-DED codes are not suitable anymore to provide information reliability because
they cannot satisfactorily handle a considerable number of bit-flips per coded word, i.e., MCU occurrence. In this
context, this paper proposes the extended Matrix Region Selection Code (eMRSC), an improved version of MRSC,
which extends the original 16-bit code previously published to a new MRSC version of 32 data bits. Additionally,
it is proposed a new scheme of data matrix regions for reducing the number of generated redundant bits. The
proposed codes were compared to well-known codes, presenting outperforms in all experiments. The synthesis
analysis showed that the proposed codes are not only reliable, but they also result in low implementation cost
(i.e., low area, coding/decoding delay and power overheads).

1. Introduction

Single Event Effect (SEE) is a vital concern for the reliability of
electronic systems devoted to critical applications due to the continued
scaling down of CMOS technology. This concern is even more notable in
environments containing electromagnetic radiation [1], which may
change the state of memory elements, degrading the system reliability
[2]. The technology scaling down also increases the probability that the
strike of a charged particle affects more than one cell in the neigh-
borhood; thus, resulting in Multiple Cell Upsets (MCU) [3]. Many
sources, such as direct ionization or nuclear recoil after the passage of a
high-energy ion, can induce MCUs [4,5]. Unfortunately, these effects
cannot be avoided by the implementation of packaging and shielding
solutions, as showed in [1], and their occurrences increase drastically as
the technology shrinks [6].

Error Correcting Codes (ECCs) are among the most applied techni-
ques to provide reliability to memory systems. Additionally, Single

Error Correction-Double Error Detection (SEC-DED) are ECCs applied to
avoid data corruption due mainly to their efficiency and simple im-
plementation [7,8]. However, a standard implementation of an SEC-
DED code is not suitable to provide high information reliability. Some
researchers proposed the use of the interleaving technique (also named
scrambling) combined with the SEC-DED codes to deal with MCUs [9].
This combined approach distributes an MCU occurrence into different
logical words, making the ECC circuit perceive the MCU as single errors
that can be corrected by SEC-DED codes. However, this combined
method does not perform well for MCU occurrence in a Ternary Content
Addressable Memory (TCAM) because of the tight physical coupling in
the hardware structures of both the cell and comparing circuits [10],
requiring more efficient and complex ECCs.

Satoh et al. [11] presented the geometric effect of MCUs induced by
neutrons in Dynamic Random-Access Memories (DRAMs). The results
showed that the Soft Error Rate of the DRAM decreases as the distance
between storage nodes increases. More recently, Rao et al. [12]
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analyzed the possible patterns for multiple errors in Static Random-
Access Memories (SRAMs), concluding that the majority of the MCUs
occurred in adjacent cells.

Matrix Region Selection Code (MRSC) is a Two-Dimensional (2-D)
code that can correct multiple patterns of MCUs. This code, which was
proposed in [13], presents lower area overhead and higher efficiency to
correct MCUs than other ECCs commonly found in the literature. MRSC
sorts the data bit matrix into regions, allowing correcting bit errors by
analyzing the redundancy bit syndromes.

This paper presents the extended MRSC (eMRSC), an improved
version of MRSC, which extends the original 16-bit code proposed in
[13] into a new MRSC version of 32 data bits. We implemented eMRSC
in two code formats: one with lower increase of redundancy and an-
other one with higher correction capability. Also, we propose a new
scheme of data matrix regions that reduces the number of generated
redundant bits. This new code is an alternative solution that generates a
tradeoff between area and power overheads and reliability degree.

This work is structured as follows. Section 2 describes the related
work used as fundamentals of the proposed approach. Sections 3 and 4
describe the fundamentals of MRSC and details the encoder and de-
coder algorithms of the proposed eMRSC. Section 5 exemplifies some
cases of using eMRSC to correct data and redundancy errors. Sections 6
to 8 describe the experiments used to evaluate the proposed eMRSC.
These experiments deal with parameters such as error correction effi-
ciency, reliability estimation, and synthesis analysis. Finally, Section 9
draws the main conclusion of this work.

2. Related work

Since the beginning of the outer space exploration, the ECC study
has played an essential role in given reliability to computational sys-
tems of critical application. These codes were initially applied to the
communications systems, providing reliable data transmission between
the ground station and satellite. In the early 70s, the Mariner mission
used Reed-Muller code to send images captured from Mars surface to
Earth [14]. At that time, Reed-Muller code represented a tremendous
improvement on the reliability of electronic systems, with the capacity
to correct MCUs occurrence [15].

In 1994, Vargas and Nicolaidis [16] developed a 2-D memory
structure that combines current checking with parity. After that, the
study and development of 2-D ECCs became a trend due to its efficiency
to deal with SEU and reduced cost compared to other codes. However,
the correction procedure is more time consuming, requiring reading all
memory content. More recently, in 2007, Argyrides et al. [17] proposed
Matrix that combines Hamming code and parity to perform a 2-D
scheme for correcting some patterns of MCUs. When compared to Reed-
Muller, Matrix has limited capacity to detect and correct errors, but the
Matrix encoding and decoding circuits consume much less energy and
area, with much less delay and reduced reliability for larger block sizes.

In 2011, Reviriego et al. [18] proposed an ECC technique that uses
SEC-DED code and parity. This ECC forms a 2-D structure, which is
similar to the Matrix code with more redundant bits. Their code im-
proves the Mean Time To Failure (MTTF) of a memory substantially,
but with reduced reliability for large block sizes. Their work did not
provide details on MCU detection and correction efficiency of the
proposed method.

In 2014, Guo et al. [19] proposed the Decimal Matrix Code (DMC),
which uses decimal sum with parity to form a 2-D ECC scheme. DMC is
a low-cost code, making it a sound ECC for applications with limited
energy resources. The DMC algorithm provides reduced reliability since
it can detect and correct only specific types of MCUs.

Liu et al. [2] proposed in 2016 the Extended Orthogonal Latin
Square (EOLS) codes, which are 32-bit adaptations of the original Or-
thogonal Latin Square (OLS) codes [20]. The original OLS codes can
only be applied for a perfect square number of data bits (i.e., 16, 64 and
256). Liu et al. developed two versions of OLS codes: (i) one with a

reduced number of redundancy bits and lower correction capability
that consumes less area and dissipates less power, and (ii) another
higher-cost version with a higher number of redundancy bits and more
correction capability.

In 2017, Klockmann et al. [21] employed finite fields to develop a 3-
bit burst error code, which corrects from one to three adjacent errors
and two nearly adjacent errors. This code has low redundancy overhead
and a decoding process with low complexity. In the same year, Silva
et al. [13] described MRSC, which is a new 2-D scheme of ECC that
provides high reliability with lower synthesis cost when compared to
other 2-D ECCs. MRSC splits the data bits into regions (groups of data
bits) and uses redundancy bits to find and correct the region with er-
rors. This code was designed for adjacent errors, while the occurrence
of non-adjacent errors reduces the code correction efficiency.

Silva et al. [22] presented in 2018 the CLC code, which uses ex-
tended Hamming and parity to compose a 2-D structure for providing
high reliability to the information stored in memory arrays. The authors
developed three CLC structures by changing the applied extended
Hamming, which in turn affected the number of redundancy bits and
error coverage. The obtained results indicate that each one of the
proposed structures has its benefits, allowing more application flex-
ibility. CLC has as main drawback the high redundancy increase for the
proposed structures.

Li et al. [23] developed in 2018 two schemes to correct multiple
bits, one based on the interleaving of Single Error Correction-Double
Adjacent Error Correction Code (SEC-DAED), and another one is an
optimized version of a 4-bit burst error. The synthesis results of the
proposed codes showed that, despite the low increase of redundancy, a
significant overhead was achieved in the decoder area. In the same
year, Li et al. [24] proposed a scheme that interleaves a simple x-bit
burst error code, increasing the error correction capability significantly,
with lower or little increase of redundancy, when compared with the
original code. The codes achieved a small increase in delay, although
this is an acceptable increase for some applications.

Related works show that, in the last 25 years, researchers have been
looking for 2-D ECC formats aiming at efficiency and efficacy. eMRSC is
an MRSC code extension that achieves this desired efficacy with low
implementation cost.

3. Fundamentals of MRSC

The original Matrix Region Selection Code (MRSC) proposed in [13]
uses parity and check bits to encode a 16-bit data in a 32-bit codeword.
Fig. 1 shows the basic structure of the original MRSC code.

The 32-bit codeword of MRSC includes four sets of bits: (i) 16 data
bits divided into A, B, C and D groups of four bits each; (ii) four diag-
onal bits (Di1, Di2, Di3, Di4); (iii) four parity bits (P1, P2, P3, P4); and (iv)
eight check bits (XA13, XA24, XB13, XB24, XC13, XC24, XD13, XD24). Fig. 2
shows that MRSC splits the data bits matrix into three regions (R1, R2,
and R3).

The MRSC correction procedure consists in analyzing the syndromes
of the redundancy bits and choosing one of the regions to be corrected.
MRSC is suitable to correct adjacent error due to the following features:
(i) the appliance of the Di bits allows detecting some particular error
patterns such as two errors in the same column; and (ii) the code region

Fig. 1. MRSC structure - 16-bit data [13].

F. Silva, et al. Microelectronics Reliability 106 (2020) 113582

2



strategy that allows the correction of aggressive MCUs occurring in the
same region (e.g., five errors).

Moreover, the strategy of having regions on MRSC also optimizes
the use of the check bits, as they are used to cover all data regions. Since
adjacent errors are the most common error case in memory devices, it is
expected that multiple errors occur in the same region. Thus, the check
bits will correct only one region. The check bits matrix must have the
same dimensions of the MRSC regions to perform the correction prop-
erly.

4. Extended Matrix Region Selection Code (eMRSC)

eMRSC(m,r,n) extends the basic MRSC code from 16 to 32 data bits,
including three fields: (i) the amount of data bits being encoded (m), (ii)
the number of regions for this code (r), and (iii) the total number of bits
generated (n). This paper describes the algorithm of eMRSC(32,3,64)
and eMRSC(32,7,56), which are two versions of eMRSC with 32-bit
data that deal with three and seven regions, respectively.

The eMRSC code is designed to deal only with error patterns that are
encapsulated within the region format defined by the 3-tuple (m, n, r).
Therefore, the designer has to consider in the eMRSC code selection, not
only the number of errors, but also the error pattern to be covered.

It is important to emphasize that we planned to implement MRSC
and eMRSC in specific memories, built to arrange the codeword in the
spatial distributions exemplified in this work; i.e., 4 rows and 16/14
columns (considering parity bits) adjacent to each other. Using com-
mercial memories require inserting a coding/decoding wrapping circuit
in the input/output of the memory for remapping the memory ad-
dresses according to the code format, while performing more than one
read/write access (typically four) to each read/write memory access.

4.1. eMRSC(32,3,64) encoding process

eMRSC(32,3,64) uses similar encoding logic as presented in [13],
although this code codifies a 32-bit data word to a 64-bit codeword.
Fig. 3 shows the structure of the eMRSC(32,3,64) codeword.

eMRSC(32,3,64) duplicates the data and redundancy bits of the
basic MRSC. Eqs. (1) to (4) describe how the check bits (XA, XB, XC and
XD) are calculated using XOR (⊕) operations between data columns
indexed by v= {1, 2, 3, 4} and w= {5, 6, 7, 8} (e.g., XA15 = A1 ⊕ A5).

= ⊕XA A Avw v w (1)

= ⊕XB B Bvw v w (2)

= ⊕XC C Cvw v w (3)

= ⊕XD D Dvw v w (4)

Eq. (5) describes the Di bits calculation, which uses x = {1, 2, 3, 4,
5, 6, 7, 8} and y= {2, 1, 4, 3, 6, 5, 8, 7} to select the data columns (e.g.,

Di1 = A1 ⊕ B2 ⊕ C1 ⊕ D2, Di3 = A3 ⊕ B4 ⊕ C3 ⊕ D4).

= ⊕ ⊕ ⊕Di A B C Dx x y x y (5)

Eq. (6) computes the parity bits P according to the data columns
indexed by x = {1, 2, 3, 4, 5, 6, 7, 8} (e.g., P1 = A1 ⊕ B1 ⊕ C1 ⊕ D1).

= ⊕ ⊕ ⊕P A B C Dx x x x x (6)

4.2. eMRSC(32,3,64) decoding process

The eMRSC(32,3,64) decoding encompasses four steps: (I)
Calculation of the syndromes of the redundancy bits; (II) Verification of
the error decoding conditions; (III) Selection of the region; and (IV)
Correction of errors.

Eqs. (7) to (9) show how Step I computes the syndrome bits ap-
plying XOR operations between the original values of the redundancy
bits (Di, P and X) and the recalculation of the same bits after the oc-
currence of errors (RDi, RP and RX).

= ⊕SDi Di RDi (7)

= ⊕SP P RP (8)

= ⊕SX X RX (9)

Fig. 4 illustrates the flows, blocks, and operations employed by the
decoder to compute SDi, SP and SX. Note that there are two types of SX
matrices applied to eMRSC(32,3,64) that depend on the selected region.

Step II consists of analyzing the two the following conditions: (i)
Both SDi and SP syndrome vectors must have at least one value equal to
one, or (ii) More than one value of the syndromes of the check bits SX
must be equal to one.

This analysis determines whether MRSC proceeds with the error
correction process. If one of these two conditions is satisfied, the coding
algorithm understands that errors were detected and proceeds to the
region selection step. In the event of none of the conditions are met, the
coding algorithm ignores the correction process and delivers the data
bits.

Fig. 5 illustrates the three possible regions containing data errors
that Step III can select. eMRSC(32,3,64) comprises the same number of
regions of the basic MRSC [13], but with larger dimensions (each one is
composed by a 4 × 4 matrix of bits). The size of the region has a sig-
nificant impact on the correction capability of the eMRSC algorithm. A

)c()b()a(

Fig. 2. MRSC regions of data bits [13].

Fig. 3. Structure of the eMRSC(32,3,64) codeword.
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Fig. 4. SDi, SP and Sx calculations during the decoding process.
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larger region increases the chance of MCU occurrences being con-
centrated in a single region, facilitating the error detection. Only one
region is selected to be corrected by the X field, and this is done by
analyzing the results of SP and SDi, through comparison of which region
has the higher number of errors detected.

We considered MCU patterns with only adjacent errors to build the
region used in the eMRSC codes. However, when a more aggressive
MCU pattern happens (i.e., an error pattern whose a single region
cannot encompass all bit-flips), then, eMRSC is not able to correct the
data in the codeword. Section 6 details the MCU patterns employed
here.

Table 1 contains the equations applied to select the region of the
eMRSC(32,3,64) code containing errors. Note that the symbol + stands
for the decimal sum of bits.

Once selected the region containing data errors, the correction al-
gorithm performs XOR operation between the data region selected and
the SX matrix of the region selected.

Fig. 6 presents the four steps of the eMRSC(32,3,64) decoding al-
gorithm, emphasizing the information flow and the basic operations
performed in each step, in order to facilitate the understanding of how
regions are selected, as well as the error correction is performed.

4.3. eMRSC(32,7,56) encoding process

eMRSC(32,7,56) is a compact version of the MRSC code for a 32-bit
data, which was developed aiming to reduce the redundancy impact;
i.e., eMRSC(32,7,56) has 8 bits less than eMRSC(32,3,64), meaning a
redundancy reduction by a factor of 25%. We attained this reduction
dividing the data matrix into more regions; i.e., eMRSC(32,7,56) em-
ploys seven regions, resulting in four regions more than
eMRSC(32,3,64). Fig. 7 shows the codeword for eMRSC(32,7,56).

Although eMRSC(32,7,56) provides a significant reduction of the

redundancy bits, the eMRSC(32,7,56) encoder does not present sub-
stantial changes in the codeword encoding. For example, bits Di and P
of are calculated using the same Eqs. (5) and (6) applied in the
eMRSC(32,3,64) encoder. However, this new code requires some ad-
justment to compress the X bits from 16 to 8 bits. Eqs. (10) to (13)
display how the X matrix of eMRSC(32,7,56) is determined using the
indexes v = {1, 2}, w = {3, 4}, x = {5, 6} and y = {7, 8}; e.g.,
XA1357 = A1 ⊕ A3 ⊕ A5 ⊕ A7.

= ⊕ ⊕ ⊕XA A A A Avwxy v w x y (10)

= ⊕ ⊕ ⊕XB B B B Bvwxy v w x y (11)

= ⊕ ⊕ ⊕XC C C C Cvwxy v w x y (12)

= ⊕ ⊕ ⊕XD D D D Dvwxy v w x y (13)

4.4. eMRSC(32,7,56) decoding process

The eMRSC(32,7,56) decoding is also performed in four steps, with
Steps I and II being the same already discussed in Section 4.2.
eMRSC(32,7,56) employs seven data regions, each region containing a
4 × 2 matrix of bits. Fig. 8(a) and (b) displays the seven regions for this
code. Compared to MRSC [13], eMRSC(32,7,56) has more regions, al-
though these regions have the same sizes. Also, eMRSC(32,7,56) has a
codifying model that employs two overlapped sets of regions
Reg1 = {R1, R2, R3, R4} and Reg2 = {R5, R6, R7}.

eMRSC(32,7,56) implements this overlapped model of regions be-
cause its algorithm requires selecting a unique region to be corrected.
Considering the occurrence of only adjacent errors for MCU events,
eMRSC(32,7,56) decoding algorithm requires that the errors have to be
only in a single region. However, when there are errors in two regions
of the set Reg1, the algorithm tries to find a single region in the set Reg2.
For instance, supposing errors on data cells B4 and B5, belonging to
regions R2 and R3, respectively; thus, the algorithm selects region R6

that includes both cells.
The region selection (Step III) of eMRSC(32,7,56) is more complex

than eMRSC(32,3,64); it is performed in one or two sub-steps that re-
quire to analyze SP and SDi. The first sub-step employs the Inequations
described in Table 2, which allows finding the region with more errors
of the Reg1.

Table 2 is not complete; there are some cases where all Inequations
returns false, meaning that none of these regions has to be selected.

Fig. 5. Data regions of eMRSC(32,3,64).
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Fig. 6. Decoding steps for eMRSC(32,3,64).

Fig. 7. Structure of the eMRSC(32,7,56) codeword.
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These are the cases where the eMRSC(32,7,56) decoding algorithm
employs the Equations of Table 3 to find into the set of regions Reg2 the
one that encompasses all the data errors. It is essential to point out that
the regions of set Reg2 are only selected if errors were detected. eMRSC
is an appropriate code only to correct SEUs or MCUs containing errors
in adjacent cells; this premise does not allow the existence of errors in
two or more non-adjacent regions. Also, when an error pattern is in two
adjacent regions, our proposed code defines a new region (the over-
lapped region) that contains the adjacent cells of both adjacent regions,
and choose the first accepted condition.

Fig. 9(a) shows the SX matrix used to correct regions R1 to R4 – the
regions selected with Table 2, and Fig. 9(b) shows the SXmatrix used to
correct regions R5 to R7 – the regions selected with Table 3.

5. Examples of error correction using eMRSC

This section presents some examples of the MRSC operation em-
ploying 32-bit data containing the following sequence: “10001000
11111111 10101010 00000000”. Fig. 10 presents the codewords for
eMRSC(32,3,64) and eMRSC(32,7,56) when codifying this sequence.

Fig. 11 shows the first error correction example containing two bit-
flip error (two bits in red of the two leftmost columns of the first line of
the codeword matrix) in the eMRSC(32,3,64) codeword. Fig. 11 also
shows the decoding results together with the selected region.

The numbers in bold are the results of the syndromes; the red
numbers associated with SDi, SP and SX syndromes are the recalculated
bits considering the error bits. Note that the condition for region R1

correction is satisfied; therefore, R1 can be corrected by the SX matrix.
Fig. 12 displays the second error correction example that contains

four bit-flips. eMRSC(32,3,64) is still able to correct more aggressive
error patterns, like the one presented here, due to its large data region
that allows the detection of MCU patterns that occur in the same region.
Note that eMRSC(32,7,56) has lower correction capability precluding to
correct this same error pattern.

Fig. 13 illustrates the third error correction example, which con-
siders an error of two bit-flip occurring in an eMRSC(32,7,56) code-
word.

(a) (b)

Fig. 8. Data regions of eMRSC(32,7,56).

Table 2
Criteria employed in the eMRSC(32,7,56) decoding for selecting regions be-
longing to the set Reg1.

Region Criterion to selection

R1 ∑ += SDi SPi i i1
2 > ∑ += SDi SPi i i3

4 , ∑ += SDi SPi i i5
6 , ∑ += SDi SPi i i7

8

R2 ∑ += SDi SPi i i3
4 > ∑ += SDi SPi i i1

2 , ∑ += SDi SPi i i5
6 , ∑ += SDi SPi i i7

8

R3 ∑ += SDi SPi i i5
6 > ∑ += SDi SPi i i3

4 , ∑ += SDi SPi i i3
4 , ∑ += SDi SPi i i7

8

R4 ∑ += SDi SPi i i7
8 > ∑ += SDi SPi i i1

2 , ∑ += SDi SPi i i3
4 , ∑ += SDi SPi i i5

6

Table 3
Criteria employed in the eMRSC(32,7,56) decoding for selecting regions
belonging to the set Reg2.

Region Criterion to selection

R5 ∑ += SDi SPi i i1
2 = ∑ += SDi SPi i i3

4

R6 ∑ += SDi SPi i i1
2 ≠ ∑ += SDi SPi i i3

4 AND

∑ += SDi SPi i i3
4 = ∑ += SDi SPi i i5

6

R7 ∑ += SDi SPi i i1
2 ≠ ∑ += SDi SPi i i3

4 AND

∑ += SDi SPi i i3
4 ≠ ∑ += SDi SPi i i5

6 AND

∑ += SDi SPi i i5
6 = ∑ += SDi SPi i i7

8

SXA1357 SXA2468

SXB1357 SXB2468

SXC1357 SXC2468

1357 2468

SXA1357SXA2468

SXB1357SXB2468

SXC1357SXC2468

13572468

(a) Regions R1, R2, R3 and R4 (b) Regions R5, R6 and R7

Fig. 9. SX matrices for correcting regions of eMRSC(32,7,56).
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Fig. 10. eMRSC(32,3,64) and eMRSC(32,7,56) codewords.
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Fig. 11. eMRSC(32,3,64) correcting a two bit-flip error.
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Fig. 12. eMRSC(32,3,64) correcting a four bit-flip error.
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eMRSC(32,7,56) requires to verify if there is any draw situation
between two adjacent regions of the set Reg1 before identifying the
region containing more detected errors. This verification procedure
must occur because there are three draws solved by applying the
Equations of Table 3. In this case, the decoding algorithm selects the
region R5. Subsequently, the data region is corrected with the SX ma-
trix.

Fig. 14 displays the last error correction example that uses
eMRSC(32,7,56). If the errors happen in the redundancy bits, both
eMRSC encodings can deliver the correct information in the presence of
two bit-flips; i.e., the less complex MCU patterns. Errors in the re-
dundancy bits break Step II of the decoding process.

6. Efficacy of the Error Correction Code

We performed an error correction experiment to evaluate the effi-
cacy of eMRSC(32,3,64) and eMRSC(32,7,56) compared to four other
well-known ECCs: Matrix(32,60), OLS(32,55), OLS(32,68) and
DMC(32,68). All codes were developed for 32-bit data and im-
plemented in MATLAB. The experiment encompasses eight scenarios
inserting from one to eight errors into the codewords. The error pat-
terns for scenarios with two or more errors employ only distance be-
tween bit-flips equal to one, which is the most probable distance to
happen in memories operating in critical environments [11,25]. The
term “distance 1” defines that the experiments do not accept patterns
with two or more disjoint sets of errors; i.e., the test set only includes
patterns containing a single grouping of errors, regardless of the
number of errors in this grouping. Fig. 15(a) and (b) illustrates sets of
acceptable and not acceptable error patterns, respectively.

The efficacy of the eMRSC codes is in the correction of errors that
are grouped within the limited region defined for each eMRSC format;
i.e., a 4 × 4 region for the eMRSC(32,3,64) code and a 2 × 8 region for

the eMRSC(32,7,56) code. We choose only adjacent errors to address
the patterns with a higher probability of occurrence. However, eMRSC
is not able to correct all occurrences of non-adjacent errors, even if the
occurrence is in the same region since the code is sensitive to the po-
sitioning and quantity of errors. The error correction experiment in-
volves the following steps: (i) Generation of the 32-data bits (D-32); (ii)
Encoding of D-32 with the ECC selected to be analyzed; thus, creating a
codeword (C-32); (iii) Selection of an error scenario and insertion of
errors into C-32, producing codewords with errors on data or re-
dundancy bits (E-32). The error pattern generation takes into account
the works [11,25]; (iv) Decoding E-32 to generate the decoded data
(DD-32); (v) Register the corrected or uncorrected error by comparing
the DD-32 to D-32.

Fig. 16 presents the experimental results of the correction capability
of all ECCs for all error scenarios.

For each error scenario, we produced all possible combinations of
adjacent errors. All ECCs except DMC(32,68) and Matrix(32,60)
reached 100% of correction rate for all error patterns with two errors;
however, only OLS(32,68) maintained this rate with 3-error scenarios.
The experimental results exhibit that eMRSC(32,3,64) presents the
highest correction rates from four to eight errors. The reason for these
high rates is the large size of the regions containing errors. The cor-
rection rates of eMRSC(32,3,64) are above 65% in all error scenarios;
consequently, this code provides high reliability for memory banks.
Besides, only in the 3-error scenario eMRSC(32,3,64) was surpassed.

From three to five errors, OLS(32,68) achieved better correction
results than eMRSC(32,7,56). However, even though OLS(32,68) gen-
erates more redundancy bits, this code loses efficiency faster than
eMRSC(32,7,56) - note that for six or more errors, eMRSC(32,7,56)
presents better performance. The slopes of the curves representing the
correction rates of eMRSC(32,3,64) and eMRSC(32,7,56) show that
these ECCs are the ones less affected by the increase of errors.

Matrix(32,60), DMC(32,68) and OLS(32,55) are the codes with the
lower capability of error correction. The last one presents a shorter
version of OLS(32,68), losing efficacy abruptly for three or more bit-
flips. The second one corrects multiple errors only for a specific set of
error pattern. Finally, besides losing efficacy abruptly, Matrix(32,60)
cannot correct more than three errors.
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Fig. 13. eMRSC(32,7,56) correcting a two bit-flip error.
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Fig. 14. eMRSC(32,7,56) with two bit-flip error in the redundancy bits.
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7. Reliability and MTTF estimations

This section evaluates the reliability and MTTF of a memory using
eMRSC(32,3,64), eMRSC(32,7,56), Matrix(32,60), OLS(32,68), OLS
(32,55) and DMC(32,68). These experiments were inspired by the
MTTF analysis presented in [17], although the experiments consider
that each MCU is the result of a single event that affected adjacent cells.

Let w and c be the data and redundancy bits of each codeword, λ the
error rate of a single bit, and t the time parameter (in days) associated
to λ; then, Eq. (15) computes pEM(t), which is the probability of having
codeword errors at time t. Note that λ is a rate that depends on several
aspects as the memory technology and the environment in which the
memory is inserted (typical value of λ is 10−5 upsets/bit/day) [17].

= − − +pEM t e( ) 1 w c λt( ) (15)

Let i be the number of errors; then, Eq. (16) estimates pEi(t), which is
the probability of occurring i errors in a given codeword of (w + c) bits
at time t.

=
+

× − ×− − + −( )pE t w c
i e e( ) (1 )i

λt λ w c i t( )
(16)

Let pCMi be the probability of i errors be correct by the evaluated
ECC; then, (pEi(t) × pCMi) is the probability of correcting codewords
with i errors. Let Me be the maximum number of errors that can arise
(our experiments considers Me = 8); then, the expression
∑ ×

=
pE t pCM( )i

Me
i i1 defines the probability of error occurrence on a

codeword that can be corrected by the evaluated ECC at time t. Besides,
(1 – pEM(t)) is the probability of not having errors in a memory over
time t. Subsequently, Eq. (17) estimates r(t), which is the reliability of a
codeword at time t. Note that pCMi is extracted from the Efficacy of
Error Correction experiment (Section 6); i.e., the values shown in
Fig. 16.

∑= − + ×
=

r t pEM t pE t pCM( ) 1 ( ) ( )
i

Me

i i
1 (17)

Let M be the number of codewords containing a memory; then, Eq.
(18) calculates R(t), which is the memory device reliability at time t,
through the product of the reliabilities of all codewords.

=R t r t( ) ( )M (18)

Eq. (19) describes the MTTF of a memory device protected by an
ECC is estimated by the integration of the reliability function over time
t.

∫=
∞

MTTF R t dt( )
0 (19)

We developed this experiment in MATLAB applying for memories
with M × (w + c) format, where (w + c) is the codeword size of each
ECC and M is the number of codewords the memory encompasses.
Figs. 17 to 19 present R(t) considering M = 1, 8 and 16 over 8000 days

(nearly 22 years).
Figs. 17 to 19 display that eMRSC(32,3,64), eMRSC(32,7,56) and

OLS(32,68) are the most reliable codes, mainly because they present
higher correction rates. The numbers also show that by the day 2001,
OLS (32,68) shows slightly more reliability than the two eMRSC codes.
However, eMRSC(32,3,64) has fewer redundancy bits and displays
greater error correction capability for more aggressive MCUs, making
eMRSC(32,3,64) the most reliable code after the day 2501 of the ex-
periment.

Table 4 presents the MTTF results attained with the integration of
the curves of Figs. 17 to 19. These results indicate that eMRSC(32,3,64)
is the most reliable code to be applied in all memory configurations
evaluated. Note that OLS(32,68) surpassed eMRSC(32,7,56) by 5.2%
and 11.6% for the two greatest memory configurations. DMC(32,68)
presented the lowest MTTF results for all scenarios, with the difference
from the eMRSC(32,3,64) code being 60.7%,108.5% and 278,4%.

8. Synthesis analysis

This section presents and discusses the synthesis results of
MRSC(32,3,64), MRSC(32,7,56), OLS(32,55) and OLS(32,68). Besides,
we defined and shown the Correction per Total Cost (CTC) evaluation
parameter of these codes, which allows getting a relative evaluation of
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Fig. 17. Reliability estimated for five ECCs, considering several codeword sizes,
M = 1, and λ = 10−5 upsets/bit/day.
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Fig. 18. Reliability estimated for five ECCs, considering several codeword sizes,
M = 8, and λ = 10−5 upsets/bit/day.
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Fig. 19. Reliability estimated for five ECCs, considering several codeword sizes,
M = 16, and λ = 10−5 upsets/bit/day.

Table 4
MTTF of memory with M = 1, 8 and 16, and λ = 10−5 upsets/bit/day.

ECC M = 1 M = 8 M = 16

eMRSC(32,3,64) 7171 4159 2992
eMRSC(32,7,56) 6640 3272 2404
OLS(32,68) 6562 3442 2678
OLS(32,55) 5736 2393 1770
Matrix(32,60) 4990 1880 1360
DMC(32,68) 4459 1190 789

F. Silva, et al. Microelectronics Reliability 106 (2020) 113582

7



how much cost the code to get such reliability. We did not include in
this section Matrix(32,60) and DMC(32,68) since the reliability results
have shown that these codes are not suitable for dealing with MCUs,
which is a primary focus of this work.

8.1. Synthesis of the encoders and decoders

The ECCs selected for this experiment were implemented in Verilog
and synthesized with Cadence's G.E.N.U.S for 65 nm CMOS technology.
Tables 5 and 6 present the synthesis results for the encoder and decoder
designs.

Table 5 shows that the encoder synthesis costs of the OLS model are
higher than the equivalent costs of the eMRSC model for all analyzed
formats; except, only, in the comparison between power dissipation of
OLS(32,55) and eMRSC(32,3,64).

Considering each ECC model separately, it is clear that the extra
redundancy bits rise the area and power costs of the OLS model. On the
other hand, the same effect is not shown in the eMRSC model, where
the encoding circuit of eMRSC(32,7,56) consumes a little more area
than the equivalent circuit of eMRSC(32,3,64); this additional area
consumption is due to the complexity of eMRSC(32,7,56) in working
with more error assessment regions. Finally, it is possible to note that
the effect of redundancy on the encoder delay is negligible for both the
OLS and the eMRSC models.

Table 6 illustrates that the decoder synthesis of eMRSC(32,3,64)
achieved higher values than eMRSC(32,7,56) but without a meaningful
difference. On the one hand, eMRSC(32,7,56) has fewer redundancy
bits, reducing the total cost; on the other hand, the logic to correct
errors is more complex than the first eMRSC, which increases the cost.
When compared to the OLS model, the eMRSC model has fewer costs of
area consumption and power dissipation on the decoder synthesis.
Additionally, the decoder synthesis depicts the delays of both OLS codes
are smaller than the delays of the eMRSC codes, which is explained by
the fact that the detection and correction process of OLS is more
straightforward than eMRSC. OLS uses majority logic to evaluate each
bit and determine the correct value. Although this approach can be
slightly faster, this method has a high implementation cost.

8.2. Correction per Total Cost (CTC) analysis

We applied a metric proposed in [17] to evaluate the tradeoff be-
tween reliability and synthesis cost of eMRSC(32,3,64),
eMRSC(32,7,56), OLS(32,68) and OLS(32,55), considering the results
acquired in the Error Correction Experiment (Section 6) and Synthesis
Analysis (Section 8.1).

Eq. (20) describes that the Circuit Cost of a particular circuit im-
plementation is calculated by multiplying all the synthesis parameters

of this circuit. Note that we use the same weight for all parameters since
we are not considering specific design requirements here.

= × ×Circuit Cost circuit Area Power De ay( ) l (20)

Eq. (21) presents the definition of the ECC Cost that takes into ac-
count the Encoder and Decoder circuits.

= +ECC Cost Circuit Cost Encoder Circuit Cost Decoder( ) ( ) (21)

The metric Correction per Total Cost (CTC) divides the correction
rate achieved in each error scenario (Fig. 16) by the ECC Cost. Eq. (22)
describes the computation of the CTC metric, and Fig. 20 illustrates the
application of CTC for each ECC and number of errors.

=CTC Correction Rate
ECC Cost (22)

Fig. 20 displays that the eMRSC codes have the best tradeoff be-
tween correction rate and synthesis cost. Note also that the
eMRSC(32,7,56) and eMRSC(32,7,56) trade positions during the ana-
lysis: from 1 to 3 errors, eMRSC(32,7,56) presents better CTC results,
whereas from 4 to 8 errors, eMRSC(32,3,64) yields better ones. Note
also that the eMRSC(32,7,56) and eMRSC(32,7,56) codes change po-
sition according to the number of errors analyzed: from 1 to 3 errors,
eMRSC(32,7,56) reaches higher values of CTC, and from 4 errors,
eMRSC(32,7,56) is surpassed by eMRSC(32,3,64). In more detail, the
eMRSC(32,3,64) correction rates surpass eMRSC(32,7,56) by a con-
siderable margin from 4 to 8 errors (more than 32%), which impacted
the results in the CTC analysis. Although OLS(32,68) has correction
rates higher than eMRSC(32,7,56), the synthesis cost of the former is
much higher than the second one; consequently, the CTC results of both
OLS codes never reach the CTC results of the eMRSC codes.

Further analysis of the CTC can be applied to observe the tradeoff of
the ECCs considering a unique design requirement; i.e., area con-
sumption, power dissipation and delay. Fig. 21(a) to (c) presents the
results of CTC regarding Eq. (20) composed by only area, power or
delay, respectively. Fig. 21(a) and (b) showed that both eMRSC pre-
sented the best tradeoff considering the total cost of area and power for
all the error scenarios. However, Fig. 21(c) depicts that due to the delay
of the eMRSC codes being higher than the OLS codes, only from 5 to 8
errors the eMRSC(32,3,64) surpass the OLS code.

9. Conclusions

This paper presented the expansion of Matrix Region Selection Code
(MRSC) [13] from 16 to 32-bit data, which allows the development of
two versions of MRSC: eMRSC(32,3,64) and eMRSC(32,7,56). These
codes present data bit regions with different sizes, which result in al-
ternative solutions to balance reliability versus area, power and delay
overheads. Consequently, eMRSC becomes a more flexible solution to
respond to the needs of different application requirements.

The proposed ECCs were compared with well-known codes found in
the literature, presenting outstanding results in all experiments. In
terms of error correction and reliability analysis, eMRSC(32,3,64)

Table 5
Encoder synthesis results.

ECC Area (μm2) Power (mW) Delay (ns)

eMRSC(32,3,64) 947 0.311 0.20
eMRSC(32,7,56) 972 0.283 0.21
OLS(32,68) 1536 0.388 0.33
OLS(32,55) 1131 0.301 0.33

Table 6
Decoder synthesis results.

ECC Area (μm2) Power (mW) Delay (ns)

eMRSC(32,3,64) 1709 0.374 1.54
eMRSC(32,7,56) 1623 0.304 1.49
OLS(32,68) 3944 0.708 0.96
OLS(32,55) 2541 0.486 0.91
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Fig. 20. CTC results.

F. Silva, et al. Microelectronics Reliability 106 (2020) 113582

8



presented the best results, achieving more than 60% of correction errors
in all scenarios and MTTF results nearly 10% better than the most ro-
bust version of OLS – OLS(32,68). Moreover, the synthesis analysis
showed that the proposed codes are not only reliable but also of low
implementation cost (i.e., low area, coding/decoding delay and power
overheads).

The CTC analysis describes that the codes employing the eMRSC
model present the best tradeoff between error correction and synthesis
cost. Additionally, the CTC analysis considering area, power and delay
separately shows that the eMRSC codes present the better tradeoff in
area consumption and power dissipation. Therefore, both eMRSC codes
proved to be ECC suitable options to be applied in critical applications
that suffer from MCU occurrence.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgements

This study was financed in part by the Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) –
Finance Code 001.

References

[1] P. Hazucha, C. Svensson, Impact of CMOS technology scaling on the atmospheric
neutron soft error rate, IEEE Trans. Nucl. Sci. 47 (6) (2000) 2586–2594 Dec.

[2] S. Liu, Y. Xiao, G. Mao, Extend orthogonal Latin square codes for 32-bit data pro-
tection in memory applications, Microelectron. Reliab. 63 (2016) 278–283. Aug.

[3] D. Radaelli, H. Puchner, S. Wong, S. Daniel, Investigation of multibit upsets in a 150
nm technology SRAM device, IEEE Trans. Nucl. Sci. 52 (6) (Dec. 2005) 2433–2437.

[4] R. Hentschke, F. Marques, F. Lima, L. Carro, A. Susin, R. Reis, Analyzing area and
performance penalty of protecting different digital modules with hamming code
and triple modular redundancy, Proceedings of Symposium on Integrated Circuits
and Systems Design (SBCCI), 2002, pp. 95–100.

[5] M. Nicolaidis, Soft Errors in Modern Electronic Systems, Springer Science &
Business Media, Nov, 2012 (318 pp.).

[6] E. Ibe, H. Taniguchi, Y. Yahagi, K. Shimbo, T. Toba, Impact of scaling on neutron-
induced soft error in SRAMs from a 250 nm to a 22 nm design rule, IEEE Trans.
Electron Devices 57 (7) (2010) 1527–1538 Jul.

[7] P. Ferreyra, C. Marques, R. Ferreyra, J. Gaspar, Failure map functions and

accelerated mean time to failure tests: new approaches for improving the reliability
estimation in systems exposed to single event upsets, IEEE Trans. Nucl. Sci. 52 (1)
(2005) 494–500 Feb.

[8] V. Gherman, S. Evain, F. Auzanneau, Y. Bonhomme, Programmable extended SEC-
DED codes for memory errors, Proceedings of IEEE VLSI Test Symposium (VTS),
2011, pp. 140–145.

[9] S. Baeg, S. Wen, R. Wong, SRAM interleaving distance selection with a soft error
failure model, IEEE Trans. Nucl. Sci. 56 (4) (Aug. 2009) 2111–2118.

[10] S. Baeg, S. Wen, R. Wong, Minimizing soft errors in TCAM devices: a probabilistic
approach to determining scrubbing intervals, IEEE Trans. Circuits Syst. Regul. Pap.
57 (4) (2010) 814–822. Apr.

[11] S. Satoh, Y. Tosaka, A. Wender, Geometric effect of multiple-bit soft errors induced
by cosmic ray neutrons on DRAM’s, IEEE Electron Device Lett. 21 (6) (Jun. 2000)
310–312.

[12] P. Rao, M. Ebrahimi, R. Seyyedi, M. Tahoori, Protecting SRAM-based FPGAs against
multiple bit upsets using erasure codes, Proceedings of ACM/EDAC/IEEE Design
Automation Conference (DAC), 2014, pp. 1–6.

[13] F. Silva, W. Freitas, J. Silveira, O. Lima, F. Vargas, C. Marcon, An efficient, low-cost
ECC approach for critical-application memories, Proceedings of Symposium on
Integrated Circuits and Systems Design (SBCCI), 2017, pp. 198–203.

[14] B. Varghese, S. Sreelal, P. Vinod, A. Krishnan, Multiple bit error correction for high
data rate aerospace applications, Proceedings of IEEE Conference on Information
Communication Technologies (ICT), 2013, pp. 1086–1090.

[15] E. Weiss, Generalized Reed-Muller codes, Inf. Control. 5 (3) (1962) 213–222 Sep.
[16] F. Vargas, M. Nicolaidis, SEU-tolerant SRAM design based on current monitoring,

Proceedings of IEEE International Symposium on Fault Tolerant Computing (FTCS),
1994, pp. 106–115.

[17] C. Argyrides, H. Zarandi, D. Pradhan, Matrix codes: multiple bit upsets tolerant
method for SRAM memories, Proceedings of IEEE International Symposium on
Defect and Fault-Tolerance in VLSI Systems (DFT), 2007, pp. 340–348.

[18] P. Reviriego, C. Argyrides, J. Maestro, D. Pradhan, Improving memory reliability
against soft errors using block parity, IEEE Trans. Nucl. Sci. 58 (3) (2011) 981–986
Jun.

[19] J. Guo, L. Xiao, Z. Mao, Q. Zhao, Enhanced memory reliability against multiple cells
upsets using decimal matrix code, IEEE Trans. Very Large Scale Integr. VLSI Syst. 22
(1) (2014) 127–135 Jan.

[20] M. Hsiao, D. Bossen, R. Chien, Orthogonal Latin square codes, IBM J. Res. Dev. 14
(4) (1970) 390–394 Jul.

[21] A. Klockmann, G. Georgakos, M. Goessel, A new 3-bit burst-error correcting code,
Proceedings of IEEE International Symposium on On-Line Testing and Robust
System Design (IOLTS), 2017, pp. 3–4.

[22] F. Silva, J. Silveira, J. Silveira, C. Marcon, F. Vargas, O. Lima, An extensible code for
correcting multiple cell upset in memory arrays, J. Electron. Test. 34 (4) (2018)
417–433. Aug.

[23] J. Li, L. Xiao, J. Guo, X. Cao, Efficient implementations of multiple bit burst error
correction for memories, Proceedings of IEEE International Conference on Solid-
State and Integrated Circuit Technology (ICSICT), 2018, pp. 1–3.

[24] J. Li, L. Xiao, P. Reviriego, R. Zhang, Efficient implementations of 4-bit burst error
correction for memories, IEEE Trans. Circuits Syst. Express Briefs 65 (2) (Dec. 2018)
2037–2041.

[25] C. Ogden, M. Mascagni, The impact of soft error event topography on the reliability
of computer memories, IEEE Trans. Reliab. 66 (4) (2017) 966–979 Dec.

)c()b()a(

0.000
0.002
0.004
0.006
0.008
0.010
0.012
0.014
0.016
0.018
0.020

1 2 3 4 5 6 7 8

C
T

C
-

A
re

a

Errors

eMRSC(32,3,64) eMRSC(32,7,56) OLS(32,55) OLS(32,68)

0
20
40
60
80

100
120
140
160
180
200

1 2 3 4 5 6 7 8

C
T

C
 -

P
o

w
e

r

Errors

eMRSC(32,3,64) eMRSC(32,7,56) OLS(32,55) OLS(32,68)

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8

C
T

C
 -

D
e

la
y

Errors

eMRSC(32,3,64) eMRSC(32,7,56) OLS(32,55) OLS(32,68)

Fig. 21. Error coverage per total (a) Area consumption, (b) Power dissipation and (c) Delay.

F. Silva, et al. Microelectronics Reliability 106 (2020) 113582

9

http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0005
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0005
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0010
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0010
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0015
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0015
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0020
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0020
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0020
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0020
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0025
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0025
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0030
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0030
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0030
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0035
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0035
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0035
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0035
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0040
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0040
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0040
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0045
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0045
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0050
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0050
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0050
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0055
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0055
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0055
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0060
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0060
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0060
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0065
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0065
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0065
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0070
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0070
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0070
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0075
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0080
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0080
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0080
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0085
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0085
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0085
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0090
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0090
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0090
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0095
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0095
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0095
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0100
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0100
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0105
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0105
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0105
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0110
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0110
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0110
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0115
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0115
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0115
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0120
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0120
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0120
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0125
http://refhub.elsevier.com/S0026-2714(19)30283-5/rf0125

	Extended Matrix Region Selection Code: An ECC for adjacent Multiple Cell Upset in memory arrays
	Introduction
	Related work
	Fundamentals of MRSC
	Extended Matrix Region Selection Code (eMRSC)
	eMRSC(32,3,64) encoding process
	eMRSC(32,3,64) decoding process
	eMRSC(32,7,56) encoding process
	eMRSC(32,7,56) decoding process

	Examples of error correction using eMRSC
	Efficacy of the Error Correction Code
	Reliability and MTTF estimations
	Synthesis analysis
	Synthesis of the encoders and decoders
	Correction per Total Cost (CTC) analysis

	Conclusions
	mk:H1_16
	Acknowledgements
	References




