
0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3034400,
IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXXXXX 2020 1

LPC: An Error Correction Code for Mitigating
Faults in 3D Memories

David C. C. Freitas, David F. M. Mota, César Marcon, Jarbas A. N. Silveira, João C. M. Mota

Abstract—The radiation sensitivity of memory cells increases dramatically as CMOS manufacture technology scales down;

therefore, the reliability of memories has become a challenge. 3D technology has gained attention for having several advantages

compared to the 2D counterpart, such as high integration density, high performance, low power, and high communication speed.

Although several studies are targeting 3D memories, the effects on reliability using this technology have received little attention.

This work introduces Line Product Code (LPC), a modified product code-based Error Correction Code (ECC) that uses both

Hamming and parity in both rows and columns to implement reliable 3D memories. We implemented two lightweight LPC-based

decoding algorithms in interleaved (LPCa-I) and non-interleaved (LPCa) versions, which allowed us to analyze LPC through a set

of simulation cases that considers four severity levels of error incidence. The experimental results showed the effectiveness of

the LPC-based algorithms, reaching correction rates of up 2.3 times higher compared to other Hamming-based algorithms.

Index Terms—Error Correction Codes, Fault Tolerance, Radiation Effect, 3D Memories.

—————————— ——————————

1 INTRODUCTION

HE market demand for complex applications boosts re-
searches on CMOS manufacturing technologies that

carried a significant reduction in the transistor size [1]. In
turn, the transistor scaling down contributes to the in-
crease of temporary faults in electronic elements, such as
memories, whose content modification may cause a wrong
execution of programs that may not be tolerated in some
cases [2]. These faults have been studied for over 40 years
[3]-[6] and are classified as Single-Event Upset (SEU), Mul-
tiple-Cell Upsets (MCU), and Multiple-Bit Upsets (MBU).
SEU occurs in a single cell while an MCU arises in more
than one cell; finally, an MBU happens when an MCU oc-
curs in the same logical word [7].

There are several techniques for mitigating these faults
in electronic devices, such as improving the process tech-
nology, using hardened memory cell, Triple Modular Re-
dundancy (TMR) or Error Correction Code (ECC). To min-
imize faults, Silicon on Insulator (SoI) technology uses a
thin layer of silicon on top of the insulator during the chip
manufacturing process. In the hardened memory cell ap-
proach, some circuits are replaced by their hardened ver-
sions, which are less susceptible to faults but consuming
more area and implying more latency. The TMR technique
uses three identical implementations of the same logic
function, and the outputs are connected to a voter that de-
cides mostly the correct result [8]. Lastly, the ECC basic
concept is to have an encoding and decoding algorithm for
restoring the correct value of the information placed in a
memory cell or transmission channel [9].

The evolution of manufacturing technology reaches sig-
nificant reductions in Two-Dimensional (2D) memories,

increasing the challenges to reach reliable circuits [1]. Re-
cently, Three-Dimensional (3D) integration technology,
which enables multi-layer stacking, has attracted attention
– Section 3 gives some recent works targeting reliability on
3D devices. The advantages of 3D technology include high
integration density, high performance, low power dissipa-
tion, and high on-chip communication speed [10]-[17]. Sec-
tion 2 describes another advantage of the 3D integration
technologies - stacking several dies on top of each other
suggests that incident particles must penetrate multiple
layers of material before reaching transistors on the inner
layers. Thus, stacked dies can block some particles before
reaching deeper layers of the 3D chip, changing the Soft
Error Rate (SER) at different 3D chip dies [2]. This stacking
effect on SER is one of the essential points that this paper
regards to evaluate the ECCs capacity.

This work also addresses the problem of chip warming;
especially for 3D memories placed on the top of the active
logic, the bottom layer of the memory is the most exposed
to heat dissipation, making the bottom layer in 3D memory
hotter than the top ones. Heat is another source of transient
errors, and the heat profile in 3D memory provides vary-
ing degrees of reliability for each layer. From a heat per-
spective, the upper dies are less susceptible to errors, form-
ing a different SER distribution in 3D memory [13]. Be-
sides, the performance benefits and thermal impact of the
stacked 3D microarchitecture have been studied recently,
but the reliability implications and the MBU patterns when
using 3D technology have received little attention.

The novelty of this work is to propose the Line Product
Code (LPC), a new product-type ECC, to increase the cor-
rection rate and reliability of 3D memories. LPC is a lighter
ECC that does not employ the redundancy overhead of the
straightforward product codes, providing a decoding algo-
rithm elaborated to achieve a high error correction rate.
Section 4 details the LPC organization and two lightweight

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

T

————————————————

 David Freitas, David Mota, Jarbas Silveira and João Mota are with the
Federal University of Ceará, Fortaleza, CE, Brazil. E-mail: {davidciarli-
nifreitas, davidfmmota, jarbassilveira}@gmail.com, mota@gtel.ufc.br.

 César Marcon is with the Pontifical Catholic University of Rio Grande
do Sul, Porto Alegre, RS, Brazil. E-mail: cesar.marcon@pucrs.br.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on August 31,2021 at 11:47:44 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3034400,
IEEE Transactions on Computers

2 IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXXXXX 2020

decoding algorithms based on LPC - LPCa and LPCa-I,
which are non-interleaved and interleaved versions. Be-
sides, we described two other ECC configurations used in
the analysis of this work. Section 5 explains how the organ-
ization of LPC is mapped on a physical memory. Section 6
presents the experimental results with the test sequence
and an MBU generation algorithm, which is suitable to
represent faults on 3D memories. Section 7 demonstrates
that the LPCa-based algorithms achieve high error correc-
tion rates and are suitable for use in applications where re-
liability is a critical requirement, such as in space applica-
tions. Besides, Section 7 includes the results and discus-
sions based on code correctability, reliability, and compu-
tational cost.

2 SOFT ERROR RATE ANALYSIS ON 3D MEMORIES

Due to the physical structure of 3D technologies, the up-
per layers protect the lower ones from high energy parti-
cles. Zhang and Li [2] analyze SERs for 3D-ICs based on
the effect of alpha particles emitted from the decay of radi-
oactive impurities in the interconnect metallization and
package material. The authors state that the flux of alpha
particles generated from the Integrated Circuit (IC) plastic
packaging material is almost ten times greater than that of
the metallization layers, and the metallization layers block
more than 30% of these particles before reaching an active
layer; besides, only 0.4% of the particles can reach the ac-
tive layer of a second die from the top. Thus, the lower lay-
ers of a 3D memory have lower error rates than the higher
ones, which is an advantageous feature of 3D technologies
[12][13][17][18].

n

n-1

n-2

4

5

1

2

3

In
n

er
m

o
st

la

ye
r

La
y

er

SER 101

La
y

er

SER 101

n

n-1

n-2

4

5

1

2

3

(a) (b)

In
n

er
m

o
st

la

ye
r

La
y

er

SER 101

n

n-1

n-2

4

5

1

2

3

La
y

er

SER 101

n

n-1

n-2

4

5

1

2

3

(c) (d)
Figure 1. SER distribution cases across stacked dies in 3D-memory (based
on [13]).

Additionally, high temperature is another source of
transient errors, and the stacked architecture causes a heat-
ing problem since the lower layers of memory are less ex-
posed to the heat dissipation, making them warmer more
than the upper layers; thus, the heat profile in 3D memory
provides different degrees of reliability for each layer.
From a heat perspective, this makes the lower dies more
susceptible to errors, forming an unequal distribution of
SER through the 3D layers [13][18].

Han, Chung, and Yang [13] used both the effect of radi-
ation and heat to produce a model of equations to estimate
SER among the layer levels of a 3D-IC. Figure 1 depicts
four test cases created by the authors using these equa-
tions: (a) SER of the uppermost layer is 10× higher than the
other layers. This case is based on the analysis introduced
in [2], which only considers the effect of alpha particles
strike on the top layer, (b) SER is 5× higher than the others
since the flux of alpha particles is reduced, (c) SER of the
first and second layers are respectively 10× and 5× higher
than the other layers, and (d) SER of the uppermost and
lowermost layers are 10× higher than the others. This case
regards the strike of alpha particles and the heat dissipa-
tion from an active layer bellow the stacked memories.

3 STATE-OF-THE-ART

There are some works that investigate reliability issues
on 3D devices. For instance, Bagatin et al. [14] investigated
the sensitivity of 3D NAND flash memories to wide-en-
ergy spectrum neutrons. The effects of neutron exposure
were studied in terms of threshold voltage shifts and raw
bit error rates; they extrapolated the neutron failure rates
obtained in the accelerated tests to field conditions at sea
level and aircraft altitudes. Kim and Yang [18] proposed a
reliability structure for reducing faults on the bits, which
considers asymmetric SERs per layer in a 3D die-stacked
memory using a deep neural network. Their experimental
results demonstrate that the proposed method improves
fault tolerance regardless of the model type.

The works [1] and [15] also focus on 3D NAND flash
memories. Bagatin et al. [1] investigated the effects of
heavy-ion irradiation on 3D memory cells; threshold volt-
age distributions are studies before and after exposure, as
a function of the irradiation angle. The same authors inves-
tigated in [15] the effects of total ionizing dose on 3D mem-
ories irradiated with gamma rays.

Finally, we describe three works that analyze ECCs tar-
geting 3D memories. Han, Chung, and Yang [13] proposed
a novel ECC organization scheme for 3D memories to se-
cure reliable operations under SER profiles. The proposed
scheme does not require additional redundant arrays. In-
stead, it employs unused spare columns of relatively relia-
ble layer memories to store additional check-bits of less re-
liable layer memories. Chang, Huang, and Li [17] pro-
posed an area and reliability-efficient ECC scheme for 3D
RAMs, taking advantage of the shielding effect. Han and
Yang [12] introduced a 3D memory scheme to ensure reli-
able operations by enhancing the ECC capacity of upper
layer memories. Experimental results show that the pro-
posed method can tolerate more than three times the bit

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on August 31,2021 at 11:47:44 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3034400,
IEEE Transactions on Computers

D. FREITAS ET AL.: LPC: AN ERROR CORRECTION CODE FOR MITIGATING FAULTS IN 3D MEMORIES 3

error rate than the conventional method. These three pa-
pers introduce new ECC configurations in 3D components,
but there is no standard in how to present the results. Our
work focuses on the presentation through three metrics:
ECC correctability, hardware cost analysis, and system re-
liability. Besides, this work introduces a methodology to
generate synthetic upsets considering radiation and heat
effects on 3D devices.

4 HAMMING AND MODIFIED LINE PRODUCT CODE

(LPC) FOUNDATIONS

R. Hamming [19] proposed a linear block code for error
correction, whose generic structure is shown in Figure 2.

... ...

k r
nHam(n, k)

Figure 2. Representation of a generic Hamming code Ham(𝑛, 𝑘); 𝑛 is the

total number of bits, 𝑘 is the number of data bits, and 𝑟 is the redundancy.

The Hamming code is denoted as Ham(𝑛, 𝑘), where 𝑛,
𝑘 and 𝑟 are the numbers of bits of the codeword, data and
redundancy, respectively. Equations 1, 2 and 3 describe the
relations among 𝑛, 𝑟 and 𝑘 [19].

𝑛 = 𝑟 + 𝑘 (1)

𝑟 = log2(𝑛 + 1) (2)

𝑘 = 2𝑟 − 𝑟 − 1 (3)

Extended Hamming is a Hamming code having one
more parity bit that increases the code capacity to detect
double errors and correct a single error, i.e., an SEC-DED
code [20]. The parity bit can be either 0 or 1, depending on
the parity type (i.e., even or odd). This work uses even par-
ity so that the total of 1s in the codeword, including the
added parity bit, is even [21]. Also, we employ Ham(8, 4)
(𝑛=8, 𝑘=4, and 𝑟=4), as the basic Hamming format to pro-
duce the other codes used in this work.

Figure 3 displays that given the two linear codes
𝐶1(𝑛1, 𝑘1) and 𝐶2(𝑛2, 𝑘2), then the modified product code is
the combination of both codes (𝑛1𝑛2, 𝑘1𝑘2) without checks
on check bits, which is denoted by 𝐶1𝐶2. The data is written
in a matrix 𝑘1𝑘2. Each one of the 𝑘2 rows is encoded using
code 𝐶1, forming 𝑛1 columns. Each one of the 𝑘1 columns
is encoded using code 𝐶2, performing a matrix with 𝑛1𝑛2 −
(𝑛1 − 𝑘1) × (𝑛2 − 𝑘2) bits.

Row
checkbits

k1

n1

k2

n2

Data

Column checkbits

Figure 3. 𝐶1𝐶2 product code with 𝑘1𝑘2 data bits and (𝑛1−𝑘1)𝑘2 ×
(𝑛2−𝑘2)𝑘1 check bits in rows and columns.

The linearity of the modified product code is the same
as that of the product code, which allows coding to begin
with 𝐶1 followed by 𝐶2, or vice versa [22]-[24]. The Mini-
mum Distance (𝑀𝐷) between two codes of the same length
informs the number of positions in which the codes differ.
Since 𝐶1 and 𝐶2 have 𝑀𝐷𝑠 defined as 𝑑1 and 𝑑2, respec-
tively, Equation 4 shows how to compute the 𝑀𝐷 of the
modified product code 𝐶1𝐶2. Using 𝑀𝐷 as a metric, we can
define mathematically the minimum of errors that can be
corrected (𝐸𝐶𝑎𝑝) or detected (𝐸𝐷𝑎𝑝) in any position of the
code with a 100% confidence [22]. Equations 5 and 6 com-
pute the maximum number of errors in any position that
this code can, at least, correct 𝐸𝐶𝑎𝑝 or detect 𝐸𝐷𝑎𝑝 [22], re-
spectively. Note that the modified product code can correct
more than 𝐸𝐶𝑎𝑝, depending on the placement of the errors.

𝑀𝐷 = 𝑑1 + 𝑑2 − 1 (4)

𝐸𝐶𝑎𝑝 =
𝑀𝐷 − 1

2
 (5)

𝐸𝐷𝑎𝑝 = 𝑀𝐷 − 1 (6)

LPC is a modified product code-based ECC, which uses
Extended Hamming code. Figure 4 exemplifies LPC in a
(48, 16) code format, wherein a 16-bit word (represented by
bits 𝐷0-𝐷15) is encoded into 48 bits distributed as follows:
(i) 16 data bits - 𝐷, (ii) 12 row-check bits - 𝐶𝑅, (ii) 4 row-
parity bits - 𝑃𝑅, (iii) 12 column-check bits - 𝐶𝐶, and (iv) 4
column-parity bits - 𝑃𝐶.

D0

D4

D8

D12

CR0

CR4

CR8

PR0D1

D5

D9

D13

CR1

CR5

CR9

PR1

D2

D6

D10

D14

CR2

CR6

CR10

PR2

D3

D7

D11

D15

CR3

CR7

CR11 PR3

CC0

CC4

CC8

PC0

CC1

CC5

CC9

PC1

CC2

CC6

CC10

PC2

CC3

CC7

CC11

PC3
Figure 4. LPC structure encompassing five regions of bits: data (𝐷), row-

check (𝐶𝑅), column-check (𝐶𝐶), row-parity (𝑃𝑅), and column-parity (𝑃𝐶).

The bits organization of LPC makes 𝑑1 = 𝑑2 = 4; conse-
quently, applying Equations 4, 5 and 6, LPC has 𝑀𝐷 = 7
and at least 𝐸𝐶𝑎𝑝 = 3 or 𝐸𝐷𝑎𝑝 = 6. Nevertheless, depend-
ing on the position of the errors, applying elaborated de-
coding algorithms, LPC can correct until seven bitflips into
the data field and until 20 bitflips regarding data and con-
trol bits (see examples and comments on Figure 5), only
using Hamming and some logical rules.

D0

D4

D8

D12

CR0

CR4

CR8

PR0D1

D5

D9

D13

CR1

CR5

CR9

PR1

D2

D6

D10

D14

CR2

CR6

CR10

PR2

D3

D7

D11

D15

CR3

CR7

CR11 PR3

CC0

CC4

CC8

PC0

CC1

CC5

CC9

PC1

CC2

CC6

CC10

PC2

CC3

CC7

CC11

PC3

D0

D4

D8

D12

CR0

CR4

CR8

PR0D1

D5
D9

D13

CR1

CR5

CR9

PR1

D2

D6

D10
D14

CR2

CR6

CR10

PR2

D3

D7

D11

D15

CR3

CR7

CR11 PR3

CC0

CC4

CC8

PC0

CC1
CC5

CC9

PC1

CC2

CC6

CC10

PC2

CC3

CC7

CC11

PC3

a) b)

Figure 5. Examples of LPC correction capability. (a) All data bits are cor-

rected by computing the syndromes and applying Hamming on the last three
rows; then, recalculate the syndromes of all columns and apply Hamming in

all columns to correct the remaining four errors. (b) Discard all row check

and parity bits and apply Hamming on the columns; next, recompute the
check and parity bits of the rows.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on August 31,2021 at 11:47:44 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3034400,
IEEE Transactions on Computers

4 IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXXXXX 2020

Let 𝑞 be a bit position index, then Equations 7 to 9 and
10 to 12 compute, using XOR (⊕) operations, the recalcu-
lated check bits of rows (𝑟𝐶𝑅) and columns (𝑟𝐶𝐶), respec-
tively. Additionally, Equations 13 and 14 compute the re-
calculated parity bits of rows (𝑟𝑃𝑅𝑞) and columns (𝑟𝑃𝐶),
respectively.

𝑟𝐶𝑅3𝑞 = 𝐷4q ⊕ 𝐷4q+1 ⊕ 𝐷4q+3 ∀ 0 ≤ 𝑞 ≤ 3 (7)

𝑟𝐶𝑅3𝑞+1 = 𝐷4𝑞 ⊕ 𝐷4q+2 ⊕ 𝐷4q+3 ∀ 0 ≤ 𝑞 ≤ 3 (8)

𝑟𝐶𝑅3𝑞+2 = 𝐷4𝑞+1 ⊕ 𝐷4q+2 ⊕ 𝐷4q+3 ∀ 0 ≤ 𝑞 ≤ 3 (9)

𝑟𝐶𝐶𝑞 = 𝐷𝑞 ⊕ 𝐷𝑞+4 ⊕ 𝐷𝑞+12 ∀ 0 ≤ 𝑞 ≤ 3 (10)

𝑟𝐶𝐶𝑞+4 = 𝐷𝑞 ⊕ 𝐷𝑞 ⊕ 𝐷𝑞+4 ∀ 0 ≤ 𝑞 ≤ 3 (11)

𝑟𝐶𝐶𝑞+8 = 𝐷𝑞+4 ⊕ 𝐷𝑞+8 ⊕ 𝐷𝑞+12 ∀ 0 ≤ 𝑞 ≤ 3 (12)

𝑟𝑃𝑅𝑞 = 𝐷4𝑞 ⊕ 𝐷4𝑞+1 ⊕ 𝐷4𝑞+2 ⊕ 𝐷4𝑞+3 ⊕

 𝐶𝑅3𝑞 ⊕ 𝐶𝑅3𝑞+1 ⊕ 𝐶R3𝑞+2
∀ 0 ≤ 𝑞 ≤ 3 (13)

𝑟𝑃𝐶𝑞 = 𝐷𝑞 ⊕ 𝐷𝑞+4 ⊕ 𝐷𝑞+8 ⊕ 𝐷𝑞+12 ⊕

 𝐶𝐶𝑞 ⊕ 𝐶𝐶𝑞+4 ⊕ 𝐶𝐶𝑞+8
∀ 0 ≤ 𝑞 ≤ 3 (14)

LPC allows verifying and correcting data errors using

the syndromes of each row and column, which are com-
puted by Equations 15 to 18.

𝑠𝐶𝑅𝑞 = (𝐶𝑅3𝑞 ⊕ 𝑟𝐶𝑅3𝑞) OR

 (𝐶𝑅3𝑞+1 ⊕ 𝑟𝐶𝑅3𝑞+1) OR

 (𝐶𝑅3𝑞+2 ⊕ 𝑟𝐶𝑅3𝑞+2)

∀ 0 ≤ 𝑞 ≤ 3 (15)

𝑠𝑃𝑅𝑞 = 𝑃𝑅𝑞 ⊕ 𝑟𝑃𝑅𝑞 ∀ 0 ≤ 𝑞 ≤ 3 (16)

𝑠𝐶𝐶𝑞 = (𝐶𝐶𝑞 ⊕ 𝑟𝐶𝐶𝑞) OR

 (𝐶𝐶𝑞+7 ⊕ 𝑟𝐶𝐶𝑞+7) OR

 (𝐶𝐶𝑞+14 ⊕ 𝑟𝐶𝐶𝑞+14)

∀ 0 ≤ 𝑞 ≤ 3 (17)

𝑠𝑃𝐶𝑞 = 𝑃𝐶𝑞 ⊕ 𝑟𝑃𝐶𝑞 ∀ 0 ≤ 𝑞 ≤ 3 (18)

4.1 LPC-based Decoding Algorithm

The decoding algorithm can explore full code potential-
ities or implement a more lightweight version to reduce
synthesis costs. This work introduces LPCa and LPCa-I,
two LPC-based decoding algorithms in non-interleaved
and interleaved versions, respectively. Both LPC-based al-
gorithms have the same correction method that explores
double and single error knowledge to perform a heuristic
technique that reaches high error correction rates, without
increasing a lot the implementation cost of the decoding
algorithm. LPCa and LPCa-I differ only on the codeword
organization into the target memory.

Figure 6 displays that the LPC-based algorithms start
recalculating the check and parity bits to compute the syn-
dromes of all columns and rows. Next, the algorithms cal-
culate 𝑆𝐸𝑟, 𝐷𝐸𝑟, 𝑆𝐸𝑐, and 𝐷𝐸𝑐, which are the single and
double errors, both in rows and columns, respectively.

DEr = 0
DEc

Finish

Start

SEr, DEr, SEc, DEc
computation

n DEr
DEc=0

y

n

Check bits and
parity recalculation

sCCq, sPCq, sCRq,
sPRq calculation

SEc SEry n

y y

DEr=0
DEc=0

DEr
DEc

n

Remark: Apply Ham means correct only single errors using Hamming in a word

Invert DE intersection bits

Corresponding check and
parity bits recalculation

Apply Ham
on columns

Apply Ham
on rows

Apply Ham
on columns

Apply Ham
on rows

Figure 6. Main flow of the LPC-based algorithms.

Table 1 shows the types of errors associated with each
pair of syndromes (check and parity bits) for any row or
column. Double errors are detected when the check bit
syndrome is true, but the parity syndrome does not point
out an error.

TABLE 1
Error Type Regarding Syndromes of Rows and Columns

[𝒔𝑪𝑹𝒒, 𝒔𝑷𝑹𝒒] or [𝒔𝑪𝑪𝒒, 𝒔𝑷𝑪𝒒] Error type

[0, 0] No error

[0, 1] Error in the parity bit

[1, 0] Double error

[1, 1] Single error

Based on Table 1, Equations 19 and 20 compute 𝑆𝐸𝑟𝑞

and 𝑆𝐸𝑐𝑞, and Equations 21 and 22 compute 𝐷𝐸𝑟𝑞 and
𝐷𝐸𝑐𝑞, both for each q-row and q-column, respectively.

𝑆𝐸𝑟𝑞 = ([𝑠𝐶𝑅𝑞 , 𝑠𝑃𝑅𝑞] = [1,1]) ? 1 ∶ 0 ∀ 0 ≤ 𝑞 ≤ 3 (19)

𝑆𝐸𝑐𝑞 = ([𝑠𝐶𝐶𝑞 , 𝑠𝑃𝐶𝑞] = [1,1]) ? 1 ∶ 0 ∀ 0 ≤ 𝑞 ≤ 3 (20)

𝐷𝐸𝑟𝑞 = ([𝑠𝐶𝑅𝑞 , 𝑠𝑃𝑅𝑞] = [1,0]) ? 1 ∶ 0 ∀ 0 ≤ 𝑞 ≤ 3 (21)

𝐷𝐸𝑐𝑞 = ([𝑠𝐶𝐶𝑞 , 𝑠𝑃𝐶𝑞] = [1,0]) ? 1 ∶ 0 ∀ 0 ≤ 𝑞 ≤ 3 (22)

𝑆𝐸𝑟 and 𝑆𝐸𝑐, and 𝐷𝐸𝑟 and 𝐷𝐸𝑐 contain the sum of single
and double errors, both on rows and columns, being com-
puted by Equations 23, 24, 25 and 26, respectively.

𝑆𝐸𝑟 = ∑ 𝑆𝐸𝑟𝑞

3

𝑞=0

 ∀ 0 ≤ 𝑞 ≤ 3 (23)

𝑆𝐸𝑐 = ∑ 𝑆𝐸𝑐𝑞

3

𝑞=0

 ∀ 0 ≤ 𝑞 ≤ 3 (24)

𝐷𝐸𝑟 = ∑ 𝐷𝐸𝑟𝑞

3

𝑞=0

 ∀ 0 ≤ 𝑞 ≤ 3 (25)

𝐷𝐸𝑐 = ∑ 𝐷𝐸𝑐𝑞

3

𝑞=0

 ∀ 0 ≤ 𝑞 ≤ 3 (26)

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on August 31,2021 at 11:47:44 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3034400,
IEEE Transactions on Computers

D. FREITAS ET AL.: LPC: AN ERROR CORRECTION CODE FOR MITIGATING FAULTS IN 3D MEMORIES 5

Figure 7 displays the composition of 𝑆𝐸𝑟, 𝑆𝐸𝑐, 𝐷𝐸𝑟, and
𝐷𝐸𝑐 from the syndromes and the recalculated check bits
and parity of the rows and columns graphically.

D0

D4

D8

D12

CR0

CR4

CR8

PR0D1

D5

D9

D13

CR1

CR5

CR9

PR1

D2

D6

D10

D14

CR2

CR6

CR10

PR2

D3

D7

D11

D15

CR3

CR7

CR11 PR3

CC0

CC4

CC8

PC0

CC1

CC5

CC9

PC1

CC2

CC6

CC10

PC2

CC3

CC7

CC11

PC3

sCR2

sCR1

sCR0

sCR3

sPR0

sPR1

sPR2

sPR3

sCC0

sPC0

sCC1

sPC1

sCC2

sPC2

sCC3

sPC3

DEr0

DEr1

DEr2

DEr3

DEc0 DEc1 DEc2 DEc3 DEc

DEr

SEr0

SEr1

SEr2

SEr3

SEr

SEc0 SEc1 SEc2 SEc3 SEc

Recalculated check
and parity bits

Column
syndromes

Row
syndromes

Double and single
errors of the columns

Double and
single errors
of the rows

Figure 7. Graphical representation of 𝑆𝐸𝑟, 𝑆𝐸𝑐, 𝐷𝐸𝑟, and 𝐷𝐸𝑐 compositions.

Next, LPCa selects the correction procedure according
to 𝐷𝐸𝑟 and 𝐷𝐸𝑐. If 𝐷𝐸𝑟 = 0 and 𝐷𝐸𝑐 = 0, LPCa decodes the
codeword applying Hamming to rows or columns de-
pending on where most errors occurred; if most errors oc-
curred on the rows (𝑆𝐸𝑟 > 𝑆𝐸𝑐), the algorithm corrects sin-
gle errors using Hamming on the rows and use Hamming
on the columns, in the opposite situation. This decision is
performed because it increases the probability of correct-
ing more errors. Figure 8 exemplifies a situation where the
variables point out two single errors on columns (𝑆𝐸𝑐 = 2)
and four single errors on rows (𝑆𝐸𝑟 = 4), but none double
errors. Therefore, the decoding algorithm applies Ham-
ming on the rows. This procedure enables us to correct all
errors. Note that if the decoding algorithm decided to ap-
ply Hamming on the columns, it would correct a false error
in the second column.

0
0
0
0

1
0

1

11
1
0
1

0
1

1

1
0
0
1
0

1

0
0

1

0
0
0
0

1
1

1 1
0
0
0
0

1
0
0
1

0
1
1
1

0
0
0
0

1
1
1

1

1
1
1
1

0

0

1

1

1

1

0

0

0
0
0
0

0 0 0 0 0

0

1
1
1
1

4

0 1 1 0 2

DEr SEr

DEc

SEc
Figure 8. Example of a scenario whose original data contained only 0s, but

four bits were flipped. Although there is a triple error in the second column,

the variables of the decoding algorithm detect it as a single error.

If 𝐷𝐸𝑟 ≥ 1 and 𝐷𝐸𝑐 ≥ 1, LPCa starts by checking if there
is an intersection of rows and columns where a double er-
ror occurs and inverts this bit. Next, LPCa corrects rows or
columns, depending on the comparison 𝑆𝐸𝑐 ≥ 𝑆𝐸𝑟; a sim-
ilar procedure that occurs in the case of 𝐷𝐸𝑟 = 0 and 𝐷𝐸𝑐 =
0. One the one hand, the inversion of a 𝐷𝐸 intersection bit
is a technique that allows correcting error scenarios where
a single Hamming approach cannot act, thus increasing the
code correction capacity. On the other hand, this technique
requires recomputing the check and parity bits of the cor-

responding column or row after the bit inversion; conse-
quently, increasing the implementation cost of the decod-
ing algorithm.

Figure 9 exemplifies a scenario with two double errors
and two single errors in both rows and columns. The first
row and first column have a double error intersection, im-
plying the inversion of bit 𝐷0 (see Figure 7). Additionally,
there is a double error intersection in bit 𝐷10; however,
LPCa only corrects the first occurrence of double errors the
algorithm finds from left to right and from top to bottom
of the code. Consequently, 𝐷10 is not inverted, precluding
some correction of errors through Hamming. Next, LPCa
correct bits 𝐷1, 𝐷4 and 𝐷11 through Hamming on columns
because of 𝑆𝐸𝑐 = 𝑆𝐸𝑟. After applying LPCa, the data field
remains with two errors on bits 𝐷4 and 𝐷11 since Hamming
cannot correct the double error in the third column.

1
1
0
0

0
0

0

01
0
0
0

1
1

1

1
0
0
1
1

1

1
1

0

0
0
1
0

1
0

1 1
0
1
1
0

1
0
1
1

1
0
0
0

1
1
1
1

1
1
1

1

0
1
0
1

1

0

1

1

1

0

1

1

1
0
1
0

1 0 1 0 2

2

0
1
0
1

2

0 1 0 0 2

DEr SEr

DEc

SEc

0
0
0
0

0
0
0
0

0
0
1
1

0
0
0
0

Data field after applying LPCa

Figure 9. Example of a scenario whose original data contained only 0s, but

six bits were flipped, performing two double errors and two single errors in

both rows and columns. Within the dashed rectangle appears the data area
after the decoding algorithm is applied.

The cases (𝐷𝐸𝑟 ≥ 1 and 𝐷𝐸𝑐 = 0) and (𝐷𝐸𝑟 = 0 and
𝐷𝐸𝑐 ≥ 1) are symmetric; the only difference is that the first
case applies Hamming on columns, and the second one ap-
plies Hamming on rows. For both cases, LPCa does not
check 𝑆𝐸𝑟 and 𝑆𝐸𝑐; it assumes that rows or columns with-
out double error can correct more possibilities. Due to the
symmetry of these cases, we only show in Figure 10 an ex-
ample of the case 𝐷𝐸𝑟 ≥ 1 and 𝐷𝐸𝑐 = 0. This example of
error scenario makes LPCa decide for applying Hamming
on columns, which allows correcting all single errors.

1
0
0
0

0
0

0

01
0
0
0

1
0

0

0
0
0
1
0

1

1
0

0

0
0
1
0

0
0

0 0
1
1
0
1

1
1
0
1

0
1
1
1

0
1
1
1

1
0
1

0

0
0
0
0

1

1

1

1

1

1

1

1

1
0
1
0

0 0 0 0 0

2

0
0
0
0

0

1 1 1 1 4

DEr SEr

DEc

SEc
Figure 10. Example of a scenario whose original data contained only 0s, but

four bits were flipped, performing two double errors on rows and four single

errors in columns.

Note that if LPCa exploited all double error occurrences
instead of only the first one, the scenario of Figure 9 would

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on August 31,2021 at 11:47:44 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3034400,
IEEE Transactions on Computers

6 IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXXXXX 2020

be decoded without errors, but the limitation of applying
the inversion only on the first double error incidence was
made because we decided to implement a lightweight
LPC-based decoding algorithm; consequently, with lower
costs of implementation. Even so, Section 6 shows that
LPCa reached an outstanding performance.

4.2 LPC Format Considerations

Several works aim to achieve high reliability by apply-
ing ECCs to memories with different technologies and or-
ganizations. A set of these works employs ECCs with low
redundancy overhead (i.e., the ratio of the number of data
bits versus the number of redundancy bits) to correct spo-
radic errors [25]-[29]. This type of ECC provides a low er-
ror correction rate, being suitable for environments that are
not susceptible to faults and non-critical applications.
However, critical applications running in environments
that are more susceptible to faults demand more robust
ECCs implemented with a more considerable redundancy
overhead to achieve high error correction rates [30]-[33].
LPC belongs to this last class of ECCs, designed to increase
significantly the ability to correct and detect errors.

LPC is an ECC based on the format of a product code
composed of extended Hamming codes, without using the
check bits of the check bits; therefore, multiple data bit
sizes/redundancy can respect this general format. This
work implements LPC with 16-bit data for two reasons ex-
plained next.

One of the reasons is choosing the best tradeoff between
cost and correction/detection capacity. Ham(4, 1) is the
smallest extended Hamming code, which codifies a single
data bit using three redundancy bits (2 check bits and one
parity bit), implying a high redundancy overhead. The sec-
ond smallest extended Hamming encoding is Ham(8, 4) -
the one employed here, where 4 data bits are encoded with
four redundancy bits (3 check bits and one parity bit). The
higher the number of data bits, the smaller the proportion
of redundancy bits. However, the Hamming code only
guarantees the correction of a single data bit; therefore, the
higher the number of data bits, the smaller the relation be-
tween correctable bits and codeword size, which reduces
the decoding efficacy. Thus, the 16-bit data is a natural con-
sequence of the Ham(8, 4) spatially distributed as a prod-
uct code.

Another reason is associated with reading and writing
memory access latencies, as well as energy efficiency. Both
are related to the applicability of the LPC encoding/decod-
ing to existing processors and commercial memories. Alt-
hough still exists 8-bit processors used for specific applica-
tions, they are in disuse. 16-bit processors and memories
are still a reality for many embedded systems. For the case
of a 16-bit processor/memory, the proposed LPC requires
three memory accesses for each processor operation. If
LPC had a larger data format, energy consumption and la-
tency would be much higher, once more justifying the
choice for LPC’s 16-bit data format.

5 LPC MAPPING ON MEMORY

The LPC described in this work was implemented to be

used in 16-bit memories, the size of memory used in the
experimental results section. However, the coding model
defined by LPC can be applied to memories with different
manufacturing technologies, sizes, formats, and protocols,
as it implements a coding layer that can be adapted to dif-
ferent types of reading and writing procedures in memory.
For example, a logical organization of 32-bit memory
words can be implemented employing LPC with two 16-
bit data codes (i.e., 2×48 bits). Considering this example,
the processor would only have one access for writing or
reading, and the subsequent level implemented by an en-
coder/decoder adjusts the physical memory requirements.
In this same example, assuming a physical memory with
32-bit words, three writes/readings to/from physical
memory is needed to access the 96 bits required by the two
LPC codewords. In this case, the encoder/decoder is re-
sponsible for converting the physical and logical words.

Figure 11 illustrates the encoding and decoding
schemes considering various types of memories with spe-
cific reading and writing drivers to clarify the synthesized
modules. It is important to note that while the ECC en-
coder and decoder modules are only dependent on the
processor address/data size and ECC algorithms, the
driver modules are memory configuration dependents.

mWordW

mWord0

. . .

mWordW

mWord0

ECC dependent Memory dependent

Synthesized
modules

Processor Data
(16 bits)

Address
Memory0

. . .

Decoder
driverW

Decoder
driver0Decoder

. . .

Encoder
driver0

Encoder
driverW

Encoder

MemoryW

ECC
encoder
module

ECC
decoder
module

Address
ECC r/w

controler

Processor dependent
16-bit data example

Data (16 bits)

codeword

codeword

Data (16 bits)

Figure 11. LPC encoding/decoding flow describing the modules that depend

on the processor, ECC, and memory characteristics.

Additionally, the 3D fault model makes room for the
codeword to be addressed in multiple layers; this is be-
cause different paths have different rates of error inci-
dences. Thus, the distribution of a word in more than one
memory layer increases the probability of having fewer er-
rors within the codeword and, consequently, more decod-
ing success. Another opportunity is to use LPC in layers
more susceptible to faults, such as the upper and lower
memory layer, and use less robust ECCs (therefore, with a
lower associated cost) in layers less susceptible to bitflips.

Finally, we point out that LPC can even be used as the
standard for memories that require a high degree of relia-
bility and employ ECC on-die [34][35], as in this case, the
ECC becomes transparent to the memory controller. Im-
plementing an on-die ECC allows the complete knowledge
of the physical organization of the memory bits; this
knowledge makes it possible to apply codes that imple-
ment, for example, interleaving techniques, further in-
creasing the ability to correct bitflips concentrated in a
memory neighborhood.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on August 31,2021 at 11:47:44 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3034400,
IEEE Transactions on Computers

D. FREITAS ET AL.: LPC: AN ERROR CORRECTION CODE FOR MITIGATING FAULTS IN 3D MEMORIES 7

6 EXPERIMENTAL SETUP AND METHODOLOGY

In the experimental setup, we choose to evaluate the po-
tentials of LPCa with 16-bit memory, and we compared
LPCa with Extended Hamming-based ECCs; both codes
were implemented with interleaved (LPCa-I and
4×Ham(8,4)-I) and non-interleaved (LPCa and
4×Ham(8,4)) versions. Note that bit interleaving is a miti-
gation technique that makes an MBU appears as multiple
single bit upsets in different codewords [36]. This tech-
nique is 100% efficacious when the physical MBU is lesser
or equal than the interleaving scheme.

Figure 12 describes the methodology employed to ob-
tain and evaluate the experimental results, covering a flow
with the four main activities.

ECC mapping

Activity 3

Activity 1 Activity 2

4

4

4
4

Error patterns

64

Activity 4
Simulation

64

Simulation results

3D Memory scenarios

4

4

1

LPC-I, 4×Ham(8,4),
LPC, 4×Ham(8,4)-I

Error generator

Severity levels
(1 , 0.75, 0.5, 0.25)

Test cases Memory mapping

4

Repeat
β times

3D Memory
(16-bit word)

LPC-I, Ham(8,4),
LPC, Ham(8,4)-I

Figure 12. Methodology applied to the work containing the four main activ-

ities used in the experimental results.

Activity 1 represents the proposed ECC configurations
with and without interleaving when placed in consecutive
16-bit memory words, as shown in Figure 13; all codes of
Figure 13 cover exactly 16 data bits.

D0 D1 D2 D3 C0 C1 C2 P0 D4 D5 D6 D7 C3 C4 C5 P1

D8 D9 D10 D11 C6 C7 C8 P2 D12 D13 D14 D15 C9 C10 C11 P3

mi

mi+1
(a) 4×Ham(8,4)

D0 D1 D2 D3

C0 C1 C2 P0

D4 D5 D6 D7

C3 C4 C5 P1

D8 D9 D10 D11

C6 C7 C8 P2

D12 D13 D14 D15

C9 C10 C11 P3

mi

mi+1

(b) 4×Ham(8,4)-I

D0 D4 D8 D12

CR0 CR4 CR8 PR0

D1 D5 D9 D13

CR1 CR5 CR9 PR1

D2 D6 D10 D14

CR2 CR6 CR10 PR2

D3 D7 D11 D15

CR3 CR7 CR11 PR3

CC0 CC4 CC8 PC0CC1 CC5 CC9 PC1CC2 CC6 CC10 PC2CC3 CC7 CC11 PC3

mi

mi+1

mi+2

(c) LPCa

D0

D5

D10

D15 D1

CR9 D4

D9

D14

D3CR0 CR6

CC1 CC5

CR1

CR7

CR10

D8CC9 CR2

CC11 D6

D11

CR8 D12

D2

D7

PC3

PR0

PR1

PR2

PR3

CC3 CC0 CR3CC2 CC6 CC7 CC4 CR4 CC10 CC8CR11CR5 PC1D13 PC0 PC2

mi

mi+1

mi+2

(d) LPCa-I

Figure 13. Memory organization of the ECCs after the encoding process (mi
is the ith memory position): (a) 4×Ham(8,4), (b) 4×Ham(8,4)-I (Hamming

with interleaving), (c) LPCa, and (d) LPCa-I (LPCa with interleaving).

Figure 13a describes 4×Ham(8,4) - a configuration of

four Ham(8,4) encoded into four 8-bit words. Figure 13b
displays 4×Ham(8,4)-I - a configuration of four 8-bit inter-
leaved words. Figure 13c describes the LPCa distribution
in three consecutive 16-bit memory positions. Finally, Fig-
ure 13d illustrates the LPCa-I in an interleaved distribu-
tion, which was performed by an in-house tool that
mapped the related bits in memory over a distance higher
than a cell. The configurations 4×Ham(8,4) and
4×Ham(8,4)-I are implemented with k=4 and n=8; thus,
only two memory addresses are required to encode 16-bit
data. LPCa and LPCa-I, in turn, have k=16 and n=48, re-
quiring three memory addresses to write 16-bit data.

The 3D experimental memory was implemented in four
dies, each one containing six memory addresses with 16-
bit words, achieving a die with 84 bits, as shown in Figure
14. We chose this reduced memory size to minimize the
number of simulations performed without losing the gen-
eralization of the 3D error model.

16 bits
Die 1

Die 3
Die 4

Die 2

Figure 14. Experimental 3D memory, including four dies, each one with six
memory addresses of 16-bit words.

Activity 2 represents the error pattern generation con-
taining four levels of severity, which were created to rep-
resent how much energy the alpha particles have or how
much the heat is affecting the memory layers. The higher
the level, the greater the percentage of errors to be gener-
ated in the randomly selected layer, and consequently, the
higher the number of errors propagated to neighboring
layers.

Several works [37]-[39] show that the incidence of errors
due to radiation or heat occurs within a neighborhood. For
example, in the region of a radiation event, more than one
neighboring cell may have its content changed. In this
work, we proposed a fault model that considers a region
composed of a cell considered the center of the event, all
the neighboring cells of this event, making up an inner rec-
tangle, and all the neighboring cells of the inner rectangle,
making up the outer rectangle. Figure 15 illustrates that the
error pattern is inserted in a region consisting in a refer-
ence cell (in red), which is virtually surrounded by an inner
rectangle of cells (in green) that is wrapped by an outer rec-
tangle of cells (in blue); thus, an error pattern can comprise
from one to 25 error cells.

Figure 15. Incidence error cell (in red), inner-rectangle cells encompassing

the incidence error cell (in green), and outer-rectangle cells around the inner
one (in blue).

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on August 31,2021 at 11:47:44 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3034400,
IEEE Transactions on Computers

8 IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXXXXX 2020

This work follows the assumptions for the error pattern
generation based on the neighborhood models [37]-[39]:

a) The radiation event changes the bit selected as a center of the

error region called incidence error cell;

b) The inner rectangle surrounding the incidence error bit can

have up to 8 random bitflips called ib (inner bitflips);

c) The outer rectangle that surrounds the inner rectangle can

have up to 16 random bitflips called ob (outer bitflips);

d) To avoid an exhaustive analysis of 1 to 25 errors, we decided

to use four levels of severity (ls) with values 1, 0.75, 0.50, and

0.25, representing the probability of error generation; ls is

used as a multiplicative factor to produce the error pattern;

e) The total number of errors in a pattern (#e) is given by the

equation #e = 1 + ib + ob, with ib = 8 × ls and ob = 16 × ls.

For example, if ls = 0.75, ib = 6, ob = 12 and #e = 19.

The levels of severity affect only the incidence die, pro-
ducing an error pattern; the error mapping in the remain-
ing dies depends on the selected Test case (Figure 1), which
is performed in Activity 3.

Activity 3 is the error and ECC mapping in the 3D ex-
perimental memory, which starts fulfilling all memory
with a selected ECC. The six memory addresses of each die
allows fitting two LPCa, two LPCa-I, three 4×Ham(8,4) or
three 4×Ham(8,4)-I, per die; therefore, the entire 3D
memory allows mapping eight LPCa-based ECCs or 12
4×Hamming-based ECCs. Next, the error mapping algo-
rithm fills errors in the dies of the 3D memory.

The error mapping algorithm starts randomly selecting
one of the four test cases shown in Figure 1, which allows
defining the model of error propagation among the dies
and the die of the initial error incidence. Test cases (a)-(c)
use only die 1 to map the initial error incidence, whereas
test case (d) has two initial error incidences, one for die 1
and another one for die 4. Next, the algorithm randomly
generates the initial cell of error incidence in the selected
die, which can be one of the 96 memory cells; this cell is the
center of the error pattern produced in Activity 2.

The next step of the algorithm defines how many errors
are propagated to the neighbor dies and their random po-
sition relative to the cells of the initial error pattern. As pre-
viously described, the number of errors propagated de-
pends on the radiation decay or heat effects among the
dies. The error cells in the neighbor dies, respect the limits
defined by the mask of the initial error pattern, can be non-
adjacent, and use at least the same position of the initial
error incidence (the center of the error pattern – cell in red).
Besides, test case (d) propagates error patterns from dies 1
and 4, allowing for the composition of error patterns in the
central dies.

Figure 16 exemplifies an error pattern and its propaga-
tion among the dies in the test case (c). Figure 16a depicts
that the error pattern covers 19 errors in the first die, 7 in
the inner-rectangle, and 11 in the outer-rectangle, besides
the initial error incidence. Figure 16b and Figure 16c show
that 6 and 2 errors were propagated to the die 2 and 3, re-
spectively, while no error reached die 4 (Figure 16d). The
propagation to neighboring dies follows randomly the er-
ror positions generated in the incidence layer, and with an
error rate decay that respects the models defined in the test
case of Figure 1 that is being used in the experiment.

Die 1

Die 3
Die 4

Die 2
Die 3

Die 4

Die 2

(a) (b)

Die 4
Die 3

Die 4

(c) (d)

Figure 16. Example of an error pattern generated in die 1 and propagated to

the other dies of the 3D memory.

According to the ECC mapped, Activity 4 uses in-house
simulation software to analyze the error correction capa-
bility in each die of the 3D memory. We repeated β times
the simulations of each one of the 48 experiments to have
a certain degree of confidence and representativeness due
to the number of random elements. In the experiments, we
used β equal to 30 thousand, which allows reaching more
than 99.9% confidence degree.

7 EXPERIMENTAL RESULTS AND DISCUSSIONS

This section presents and discusses the error correction
results achieved when applied the methodology described
in Section 6, and analyzes the implementation costs and re-
liability of LPCa, LPCa-I, 4×Ham(8,4), and 4×Ham(8,4)-I.

7.1 Error Corrected Analysis

Figure 17 displays the average error correction rates of
the four ECCs evaluated in each die, relative to four error
severity levels and the four test cases described in Figure
1. The 3D error model makes die 1 (for all test cases) and
die 4 (in the test case (d)) to receive the highest incidence
of errors; consequently, the error correction capabilities of
each ECC are better observed in these dies. Moreover, in
the test case (c), the incidence of errors falls by only 50% in
the second die; therefore, it also allows the observation of
high variation among the correction capacities of each
ECC. Only die 3 has little error correction need, as it is pro-
tected against alpha particles by two dies, and the heating
from the lower die does not propagate errors significantly.

We focus the error correction analysis on die 1 because
it is the die with the highest error incidence. In general,
LPCa-I and LPCa have the highest correction capacity, fol-
lowed by 4×Ham(8,4)-I, and with the lowest error correc-
tion rates, comes 4×Ham(8,4). LPCa-I obtained the highest
rates of error correction in all cases; besides, LPCa has sim-
ilar values than 4×Ham(8,4)-I only when the severity error
level is 1.0, varying at most 2.63%. Additionally, the ag-
gressiveness of error level 1, does not allow any code to
achieve an error correction rate greater than 30% for test
cases (a), (b), and (c).

The error correction capacity of LPCa-I is up to 2.3 times
higher compared to 4×Ham(8,4) when regarding die 1 and
all error severity levels, on average; but the error correction
rate is reduced to 1.4 times higher when this same analysis
is performed between LPCa-I and 4×Ham(8,4)-I.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on August 31,2021 at 11:47:44 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3034400,
IEEE Transactions on Computers

D. FREITAS ET AL.: LPC: AN ERROR CORRECTION CODE FOR MITIGATING FAULTS IN 3D MEMORIES 9

As die 3 is the most protected die against faults, all
codes reach high error correction rates, on average, LPCa-
I, LPCa, 4×Ham(8,4)-I and 4×Ham(8,4) reach 99.8%, 99.3%,
97.9% and 86.5% of error correction rates, respectively.

7.2 Analysis of the Algorithm Implementation Costs

We performed the implementation cost analysis based
on the redundancy needs to implement LPCa-I, LPCa,
4×Ham(8,4)-I and 4×Ham(8,4), and on the area consump-
tion (in 𝜇m²), power dissipation (in nW) and delay (in ps)
of the encoders and decoders employed on these ECCs.

Let 𝑟 be the number of redundancy bits, and 𝑛 be the
number of codeword bits; then, Equation 25 computes the
redundancy rate 𝑟𝑟, and Table 2 presents the 𝑟𝑟 results for
the three ECC configurations.

𝑟𝑟 =
𝑟

𝑛
 (27)

Both LPCa-based algorithms have the highest 𝑟𝑟 with
about 66% of their bits in the codeword being redundant,
whereas both Hamming-based codes have half of the code-
word being redundant. This higher 𝑟𝑟 naturally conducts
LPCa-based algorithms to higher error correction rate ca-
pacity and higher synthesis costs.

TABLE 2
Redundancy Rate Results

Configuration 𝒓𝒓(%)

LPCa(48, 16) and LPCa(48, 16)-I 66.7

4×Ham(8,4) and 4×Ham(8,4)-I 50.0

Figure 18 allows us to compare the synthesis costs of the

four ECCs proportionally; the values shown are achieved
with Cadence software synthesis RTL Compiler for a 65nm
CMOS technology.

For all analyzed ECCs, the decoder synthesis values are
higher than the encoder ones, which was expected since

most of the calculations performed are made on the de-
coder side. LPCa and LPCa-I have the same synthesis cost,
and both Hamming-based codes have practically equal
synthesis values because the only difference between them
is the interleaving technique. The area consumption and
power dissipation of the LPC-based decoders are about 5×
larger than the corresponding values of Hamming-based
ECCs, whereas the delay of the LPC-based decoders is
about 3.8× higher than the delays of the two other two
ECCs.

Figure 18. Synthesis cost analysis, encompassing area consumption, power

dissipation, and delay of each ECC configuration.

7.3 Reliability Analysis

The reliability analysis of this work is based on the
works of Silva et al. [20] and Argyrides et al. [40]. We as-
sume the following statements that were also assumed by
[40]: (i) transients faults occur with a Poisson distribution,
and (ii) bit faults are statistically independent.

Let 𝑁𝑒 be the maximum number of errors that can arise
during time 𝑡, 𝐹𝐶 be the errors corrected, 𝑀𝐹 be a value
that indicates if memory fails and 𝑖𝐹 be a value indicating

340

2059

17.76

146.38

144

1668

181

455

9.14

26.98

144

433

181

404
9.14

23.19

144

433

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Encoder Decoder Encoder Decoder Encoder Decoder

Area(um²) Power(uW) Delay(ps)

LPCa/LPCa-I 4×Ham(8,4) 4×Ham(8,4)-I

(a) (b)

(c) (d)

Figure 17. Correctability results for LPCa, LPCa-I, 4×Ham(8,4), and 4×Ham(8,4)-I in each die of the 3D memory, considering the four test cases shown in

Figure 1, and four levels of error severity.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1.00 0.75 0.50 0.25 1.00 0.75 0.50 0.25 1.00 0.75 0.50 0.25 1.00 0.75 0.50 0.25

Test case (a) Test case (b) Test case (c) Test case (d)

Er
ro

r
co

rr
e

ct
io

n
 r

at
e

DIE 1 LPCa LPCa-I 4×HAM(8,4) 4×HAM(8,4)-I

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1.00 0.75 0.50 0.25 1.00 0.75 0.50 0.25 1.00 0.75 0.50 0.25 1.00 0.75 0.50 0.25

Test case (a) Test case (b) Test case (c) Test case (d)

Er
ro

r
co

rr
ec

ti
on

 r
at

e

DIE 2 LPCa LPCa-I 4×HAM(8,4) 4×HAM(8,4)-I

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1.00 0.75 0.50 0.25 1.00 0.75 0.50 0.25 1.00 0.75 0.50 0.25 1.00 0.75 0.50 0.25

Test case (a) Test case (b) Test case (c) Test case (d)

Er
ro

r
co

rr
ec

ti
on

 r
at

e

DIE 3 LPCa LPCa-I 4×HAM(8,4) 4×HAM(8,4)-I

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1.00 0.75 0.50 0.25 1.00 0.75 0.50 0.25 1.00 0.75 0.50 0.25 1.00 0.75 0.50 0.25

Test case (a) Test case (b) Test case (c) Test case (d)

E
rr

o
r

co
rr

e
ct

io
n

 r
at

e

DIE 4 LPCa LPCa-I 4×HAM(8,4) 4×HAM(8,4)-I

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on August 31,2021 at 11:47:44 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3034400,
IEEE Transactions on Computers

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXXXXX 2020

𝑖 faults in the memory; then, Equation 2 computes the fault
correction in a word 𝐹𝑐(𝑡) in a given time 𝑡.

𝐹𝑐(𝑡) = ∑(𝑃{𝐹𝐶|𝑖𝐹} × 𝑃{𝑖𝐹|𝑀𝐹})

𝑁𝑒

𝑖=1

 (28)

The probability of having exact 𝑖 upsets in memory
when memory is faulty can be reached by Equation 2.

𝑃{𝑖𝐹|𝑀𝐹} =
𝑃{𝑖𝐹}

𝑃{𝑀𝐹}
 (29)

Let 𝑛 be the number of bits in the codeword and 𝜆 be the
one-bit fault per day; then, 𝑃{𝑖𝐹} is given by Equation 30.

𝑃{𝑖𝐹} = (
𝑛

𝑖
) (1 − 𝑒−𝜆𝑡)

𝑖
𝑒−𝜆(𝑛−𝑖)𝑡 (30)

Equation 31 computes the probability of a memory fail-
ure over time.

𝑃{𝑀𝐹} = 1 − 𝑒−𝜆𝑛𝑡 (31)

Since 𝑃{𝐹𝐶|𝑖𝐹} values are obtained in the previous sec-
tion through the simulation results of the first die pre-
sented in Figure 17a and 𝑀 is the number of words in
memory, then the reliability of a memory 𝑅(𝑡) is the prod-
uct of the reliability of all words, which is computed by
Equation 32.

𝑅(𝑡) = (1 − 𝑃{𝑀𝐹} + ∑ 𝑃{𝑖𝐹} × 𝑃{𝐹𝐶|𝑖𝐹}

𝑁𝑒

𝑖=1

)

𝑀

 (32)

For the sake of simplicity, this paper uses 𝑀 = 1. Addi-
tional information on the equations can be found in [40].

Figure 19 shows the reliability over time 𝑅(𝑡) of LPCa,
LPCa-I, 4×Ham(8,4), and 4×Ham(8,4)-I regarding the error
correction rates of the die 1, and encompassing three val-
ues of 𝜆 (10-4, 10-5, 10-6). The horizontal axis is time ex-
pressed in days, while the vertical axis is reliability 𝑅(𝑡)

expressed in %.

Figure 19. Reliability provided by LPCa-I, LPCa, 4×Ham(8,4)-I and

4×Ham(8,4) on die 1. The reliability regards three values of 𝜆 (bit faults per
day). The horizontal axis is the time in days, and the vertical axis is the reli-

ability in %.

The 𝜆 parameter indicates the error incidence rate in
memory. For example, 𝜆=10-4 indicates one bitflip every
10,000 days; consequently, one bitflip every 208 days in the
48-bit LPC. As 𝑅(𝑡) is computed cumulatively, Figure 19
shows that in 3000 days, for instance, the memory would
have 14 bitflips, which would lead to reliability close to
zero for all evaluated ECCs.

For all values of 𝜆, Figure 19 displays that LPCa-I, fol-
lowed by LPCa, is the most reliable ECC throughout the
period. For instance, with 𝜆=10-5, LPCa-I reaches a rate of
99.96%, 70.26% and 53.33% at days 1, 1000, and 2000, re-
spectively. For these same days, 4×Ham(8,4)-I has 99.96%,
69.99%, and 53.22%, while Ham(8,4) has 99.95%, 64.57%,
and 43.74%. Until day 2000, the values of LPCa and
4×Ham(8,4)-I are very close to each other, not exceeding a
difference greater than 0.4%. After this day, the difference
reaches almost 20%. As of day 7000, 4×Ham(8,4) has a reli-
ability of less than 20%. Finally, at day 15000, LPCa,
4×Ham(8,4)-I and 4×Ham(8,4) have reliabilities of 12.38%,
10.10%, and 6.13%, respectively.

7.4 Final Remarks

Experimental results show that there is a high variation
in the incidence of errors between the dies of a 3D memory.
This feature makes room for the research of heterogeneous
ECC models, whose correction capacity is higher in the up-
per and lower dies, significantly reducing in the interme-
diate dies. This research involves exploring the relation-
ship between the number of information bits versus redun-
dancy bits and, consequently, working with various re-
quirements, such as minimizing area consumption and
power dissipation.

8 CONCLUSIONS

This work proposes LPC - a product-type ECC that uses
Hamming and parity codes on both rows and columns.
The experimental results demonstrate that this code imple-
mented in two lightweight decoding versions, in inter-
leaved (LPCa-I) and non-interleaved (LPCa) algorithms,
has high error correction capability enabling its usage in
space application memories.

The validation of the proposed ECC and the correction
technique applied by the LPCa-based decoding algorithms
were performed using a set of simulations varying the er-
ror severity level and test cases, producing different num-
bers of errors on the dies of the 3D memory. The results
were analyzed and discussed comparing LPCa-I and LPCa
with two other ECCs based on the Hamming codes
(4×Ham(8,4)-I and 4×Ham(8,4)), equally designed for use
in space application memories.

For each ECC, 16 combinations of error severity levels
and test cases were simulated 30,000 to achieve a high con-
fidence degree for error correction rate and reliability re-
sults. When considering the higher error severity level, the
error correction capacities of LPCa-I is only 1.3 times
higher than 4×Ham(8,4)-I; and, in the same situation, the
LPCa-I error correction capacity is more than 2 times
higher when compared to 4×Ham(8,4). When considering
all dies and all error severity levels, the error correction

0

10

20

30

40

50

60

70

80

90

100

0 3000 6000 9000 12000 15000

R
(%

)

Time (days)

4xHam(8,4)-I 4xHam(8,4) LPCa-I LPCa

4xHam(8,4)-I 4xHam(8,4) LPCa-I LPCa

4xHam(8,4)-I 4xHam(8,4) LPCa-I LPCa

 =10-6

 =10-5

 =10-4

 =10-4

 =10-5

 =10-6

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on August 31,2021 at 11:47:44 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3034400,
IEEE Transactions on Computers

D. FREITAS ET AL.: LPC: AN ERROR CORRECTION CODE FOR MITIGATING FAULTS IN 3D MEMORIES 11

rate of LPCa-I, on average, is 7.1% and 22.1% higher than
4×Ham(8,4)-I and 4×Ham(8,4), respectively. The higher er-
ror correction results of LPCa-based algorithms are due to
(i) its matrix format and (ii) the existence of two syndromes
for each row and column (Hamming check and parity bit),
and (iii) a novel technique that improves Hamming capac-
ity by applying bit inversions in double error occurrences.

Finally, the experimental results show that the die stack-
ing characteristics of 3D memories provide radiation pro-
tection, reducing the incidence of errors in lower layers;
Additionally, the heat dissipated by the active logic below
the lower die also generates errors, but these are little prop-
agated to the upper dies. This 3D error incidence model
makes room for researching ECCs with different error cor-
rection capabilities applied to each layer of 3D memory.

REFERENCES

[1] A. Bagatin, S. Gerardin, A. Paccagnella, S. Beltrami, E. Camerlenghi,
M. Bertuccio, “Effects of Heavy-Ion Irradiation on Vertical 3-D NAND
Flash Memories”, IEEE Transactions on Nuclear Science, vol. 65, n. 1,
pp. 318-325, Jan. 2018.

[2] W. Zhang, T. Li, “Microarchitecture soft error vulnerability character-
ization and mitigation under 3D integration technology”, Proceedings
of the IEEE/ACM International Symposium on Microarchitecture (MI-
CRO), pp. 435-446, 2009.

[3] G. Brucker, B. Parson, “Radiation Test, Simulation of CMOS/SOS/Si-
Gate ALU, ROM Devices”, IEEE Transactions on Nuclear Science,
vol. 23, n. 6, pp. 1720-1727, Dec. 1976.

[4] R. Kjar, B. Peterson, J. Blandford, “Radiation Hardened 64-bit
CMOS/SOS RAM”, IEEE Transactions on Nuclear Science, vol. 23, n.
6, pp. 1728-1731, Dec. 1976.

[5] G. Brucker, “Characteristics of CMOS/Bulk, SOS Memories in a Tran-
sient Environment”, IEEE Transactions on Nuclear Science, vol. 24, n.
6, pp. 2209-2212, Dec. 1977.

[6] T. Ellis, “Radiation Effects Characterization of the SBP9900A 16-bit
Microprocessor”, IEEE Transactions on Nuclear Science, vol. 26, n. 6,
pp. 4735-4739, Dec. 1979.

[7] T. Kato, T. Yamazaki, N. Saito, H. Matsuyama, “Neutron-Induced
Multiple Cell Upsets in 20-nm Bulk SRAM: Angular Sensitivity and
Impact of Multiwall Potential Perturbation”, IEEE Transactions on Nu-
clear Science, vol. 66, n. 7, pp. 1381-1389, Jul. 2019.

[8] R. Kjar, B. Peterson, J. Blandford, “Radiation Hardened 64-bit
CMOS/SOS RAM”, IEEE Transactions on Nuclear Science, vol. 23, n.
6, pp. 1728-1731, Dec. 1976.

[9] G. Brucker, “Characteristics of CMOS/Bulk, SOS Memories in a Tran-
sient Environment”, IEEE Transactions on Nuclear Science, vol. 24, n.
6, pp. 2209-2212, Dec. 1977.

[10] M. Sato, R. Egawa, H. Takizawa, H. Kobayashi, “On-chip checkpoint
with 3D-stacked memories”, Proceedings of the International 3D Sys-
tems Integrations Conference (3DIC), pp. 1-6, 2015.

[11] K. Puttaswamy, G. Loh, “3D-Integrated SRAM Components for High-
Performance Microprocessors”, IEEE Transactions on Computers, vol.
58, n. 10, pp. 1369-1381, Oct. 2009.

[12] H. Han, J. Yang, “Asymmetric ECC organization in 3D-memory via
spare column utilization”, Proceedings of the IEEE International Sym-
posium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFTS), pp. 13-16, 2015.

[13] H. Han, J. Chung and J. Yang, “READ: Reliability Enhancement in 3D-
Memory Exploiting Asymmetric SER Distribution”, IEEE Transac-
tions on Computers, vol. 67, n. 8, pp. 1193-1201, Aug. 2018.

[14] M. Bagatin, S. Gerardin, A. Paccagnella, S. Beltrami, C. Cazzaniga, C.
Frost, “Atmospheric Neutron Soft Errors in 3-D NAND Flash Memo-
ries”, IEEE Transactions on Nuclear Science, vol. 66, n. 7, pp. 1361-
1367, Jul. 2019.

[15] M. Bagatin, S. Gerardin, A. Paccagnella, S. Beltrami, A. Costantino,
M. Muschitiello, A. Zadeh, V. Cavrois, “Total Ionizing Dose Effects in
3D NAND Flash Memories”, IEEE Transactions on Nuclear Science,
vol. 66, n. 1, pp. 48-53, Jan. 2019.

[16] H. Yoon, J. Park, J. Kim, “An Efficient Error Detection Technique for
3D Bit-Partitioned SRAM Devices”, Journal of Semiconductor Tech-
nology and Science, vol. 15, n. 5, pp. 445-454, Oct. 2015.

[17] L. Chang, Y. Huang, J. Li, “Area and reliability efficient ECC scheme
for 3D RAMs”, Proceedings of VLSI Design, Automation and Test
(VLSI-DAT), pp. 1-4, 2012.

[18] J. Kim, J. Yang, “DRIS-3: Deep Neural Network Reliability Improve-
ment Scheme in 3D Die-Stacked Memory based on Fault Analysis”,
Proceedings of the ACM/IEEE Design Automation Conference (DAC),
pp. 1-6, 2019.

[19] R. Hamming, “Error detecting and error correcting codes”, Bell System
Technical Journal, vol. 29, n. 2, pp. 147-160, Apr. 1950.

[20] F. Silva, J. Silveira, J. Silveira, C. Marcon, F. Vargas and O. Lima, “An
Extensible Code for Correcting Multiple Cell Upset in Memory Ar-
rays”, Journal of Electronic Testing, vol. 34, n. 4, pp. 417-433. 2018.

[21] R. Tocci, N. Widmer, G. Moss, “Digital Systems – Principles, Appli-
cations”, 10th ed., Ed. Pearson, pp. 41-46, 2007.

[22] F. Macwilliams, N. Sloane, “The Theory of Error-Correcting Codes”,
3rd ed., vol. 16, Ed. North-Holland, pp. 568-570, 1977.

[23] T. Moon, “Error Correcting Code – Mathematical Methods, Algo-
rithms”, 1st ed., vol. 1, Ed. Wiley, pp. 430-432, 2005.

[24] R. Zaragoza, “The Art of Error Correcting Coding”, 2nd ed., Ed. Wiley,
West Sussex, England: Wiley, pp. 170-201, 2006.

[25] J. Kim, N. Hardavellas, K. Mai, B. Falsafi, J. Hoe, “Multi-bit Error Tol-
erant Caches using Two-Dimensional Error Coding”, Proceedings of
the IEEE/ACM International Symposium on Microarchitecture (MI-
CRO), pp. 197-209, 2007.

[26] M. Manoochehri, M. Annavaram, M. Dubois, “CPPC: Correctable Par-
ity Protected Cache”, Proceedings of the Annual International Sympo-
sium on Computer Architecture (ISCA), pp. 223-234, 2011.

[27] P. Nair, D. Roberts, M. Qureshi, “Citadel: Efficiently Protecting
Stacked Memory from Large Granularity Failures”, Proceedings of the
IEEE/ACM International Symposium on Microarchitecture (MICRO),
pp. 51-62, 2014.

[28] X. Jian, V. Sridharan, R. Kumar, “Parity Helix: Efficient protection for
single-dimensional faults in multi-dimensional memory systems”, Pro-
ceedings of the IEEE International Symposium on High Performance
Computer Architecture (HPCA), pp. 555-567, 2016.

[29] P. Nair, B. Asgari, M. Qureshi. “SuDoku: Tolerating High-Rate of
Transient Failures for Enabling Scalable STTRAM”, Proceedings of
the IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), pp. 388-400, 2019.

[30] M. Kishani, H. Zarandi, H. Pedram, A. Tajary, M. Raji, B. Ghavami,
"HVD: horizontal-vertical-diagonal error detecting and correcting code
to protect against with soft errors", Design Automation for Embedded
Systems, vol. 15, pp. 289-310, May, 2011.

[31] J. Gracia-Morán, L. Saiz-Adalid, D. Gil-Tomás, P. Gil-Vicente. “Im-
proving Error Correction Codes for Multiple-Cell Upsets in Space Ap-
plications”, IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 26, n. 10, pp. 2132-2142, Oct. 2018.

[32] F. Alzahrani, T. Chen, “On-chip triple-error correction and quadruple-
error detection ECC structure for ultra-large, single-chip memories”,
Computers and Electrical Engineering, v. 26, n. 5, pp. 317-335, Jan.
2000.

[33] F. Silva, W. Freitas, J. Silveira, C. Marcon, F. Vargas, "Extended Ma-
trix Region Selection Code: An ECC for adjacent Multiple Cell Upset
in memory arrays", Microelectronics Reliability, vol. 106, pp 1-9, Jan.
2020.

[34] P. Nair, V. Sridharan, M. Qureshi, “XED: Exposing On-Die Error De-
tection Information for Strong Memory Reliability”, Proceedings of the
ACM/IEEE Annual International Symposium on Computer Architec-
ture (ISCA), pp. 341-353, 2016.

[35] M. Patel, J. Kim, H. Hassan, O. Mutlu, “Understanding and Modeling
On-Die Error Correction in Modern DRAM: An Experimental Study
Using Real Devices”, Proceedings of the IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN), pp. 13-25, 2019.

[36] D. Radaelli, H. Puchner, S. Wong, S. Daniel, “Investigation of multi-
bit upsets in a 150nm technology SRAM device”, IEEE Transactions
on Nuclear Science, vol. 52, n. 1, pp. 2433-2437, Dec. 2005.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on August 31,2021 at 11:47:44 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3034400,
IEEE Transactions on Computers

12 IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXXXXX 2020

[37] P. Rao, M. Ebrahimi, R. Seyyedi, M. Tahoori. “Protecting SRAM-
based FPGAs against multiple bit upsets using erasure codes”. Proceed-
ings of the ACM/EDAC/IEEE Design Automation Conference (DAC),
pp. 1-6, 2014.

[38] A. Neale, M. Jonkman, M. Sachdev, “Adjacent-MBU-Tolerant SEC-
DED-TAEC-yAED Codes for Embedded SRAMs”, IEEE Transactions
on Circuits and Systems-II: Express Briefs, vol. 62, n. 4, pp. 387-391,
Apr. 2015.

[39] Jiaqiang Li, P. Reviriego, L. Xiao, C. Argyrides, Jie Li, "Extending 3-
bit Burst Error-Correction Codes with Quadruple Adjacent Error Cor-
rection", IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 26, n. 2, pp. 221-229, Feb. 2018.

[40] C. Argyrides, H. Zarandi, D. Pradhan, “Matrix Codes: Multiple Bit Up-
sets Tolerant Method for SRAM Memories”, Proceedings of the IEEE
International Symposium on Detect and Fault-Tolerance in VLSI Sys-
tems (DFT), pp. 340-348, 2007.

David C. C. Freitas received the bachelor’s degree in
mechatronics engineering from Federal Institute of
Ceará (IFCE), Fortaleza, Ceará, Brazil in 2012. He re-
ceived the master’s degree in electrical engineering from
the Federal University of Paraíba (UFPB), Campina
Grande, Paraíba, Brazil, in 2016. He is a PhD student at
Federal University of Ceará (UFC) in Teleinformatics En-

gineering Department since 2018. Since 2017, he has been with the
Federal Institute of Ceará, where he is currently Professor. His current
research interests are in electronic circuits, Petri Nets, Embedded
Systems Hardware, Lead Acid Batteries, Digital Circuit Design (ASIC
and FPGA), Fault Tolerant Systems and Error Correction Codes.

David F. M. Mota is an engineer and master in Te-
leinformatics Engineering from the Federal University
of Ceará (UFC). He was a developer in electronic engi-
neering at Instituto Atlântico for 7 years. Was a re-
search fellow at UFC in the Embedded Systems area.
Worked at the Computer Systems Engineering Labor-
atory (LESC) as a Hardware Engineer. At the Orion In-

stitute of Science and Technology he also served as a hardware en-
gineer. He worked at Schneider Electric developing low power
Nobreaks and implementing electronic circuits and printed circuit
boards. He is currently a UFC server / engineer based at the Institute
of Physical Education and Sports (IEFES) and a PhD student in the

Teleinformatics Engineering postgraduate program. Has experience
in Embedded Systems projects with emphasis on electronic circuit im-
plementation and development of high complexity multi-layer printed
circuit boards with focus on High Speed Design.

César Marcon received the Ph.D. degree in computer
science from the Federal University of Rio Grande do
Sul, Brazil, in 2005. He has been a Professor with the
School of Computer Science, Pontifical Catholic Uni-
versity of Rio Grande do Sul (PUCRS), Brazil, since
1995. He is a senior member of Institute of Electrical
and Electronics Engineers (IEEE) and member of the

Brazilian Computer Society (SBC). He has more than 150 papers pub-
lished in prestigious journals and conference proceedings. His re-
search interests include embedded systems in the telecom domain,
MPSoC architectures, partitioning and mapping application tasks, and
fault-tolerance and real-time operating systems.

Jarbas A. N. Silveira received the Ph.D. degree in te-
leinformatics engineering from Federal University of
Ceará (UFC) in 2015. He has been an Adjunct Profes-
sor with the Teleinformatics Department, UFC, Brazil,
since 2009, where he is also with the Engineering La-
boratory Computer Systems. His research interests are
in the areas of embedded systems on digital circuits,

computer architecture, on-chip communication architectures, fault tol-
erance, and real-time systems.

João C. M. Mota received the B.S. degree in physics
from the Federal University of Ceará, Fortaleza, Brazil,
in 1978, the M.Sc. degree in electrical engineering from
the Catholic University of Rio de Janeiro, Rio de
Janeiro, Brazil, in 1984, and the Ph.D. degree in elec-
trical engineering from the State University of Campi-
nas, Campinas, Brazil, in 1992. He is currently a Pro-

fessor at the Federal University of Ceará and the Assistant Director
for Interinstitutional Relationships of its Technology Center, founding
member of the Brazilian Society of Telecommunications, member of
the Brazilian Society of Health Informatics, adviser to the Student
Branch of the Institute of Electrical and Electronics Engineers (IEEE)
in FUC, member of the Signal Processing Society and IEEE Commu-
nications Society.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on August 31,2021 at 11:47:44 UTC from IEEE Xplore. Restrictions apply.

