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Fast 3D-HEVC Depth Map Encoding
Using Machine Learning

Mário Saldanha , Gustavo Sanchez , César Marcon , and Luciano Agostini , Senior Member, IEEE

Abstract— This paper presents a fast depth map encoding for
3D-High Efficiency Video Coding (3D-HEVC) based on static
decision trees. We used data mining and machine learning
to correlate the encoder context attributes, building the static
decision trees. Each decision tree defines that a depth map Coding
Unit (CU) must be or not be split into smaller blocks, considering
the encoding context through the evaluation of the encoder
attributes. Specialized decision trees for I-frames, P-frames and
B-frames define the partitioning of 64 × 64, 32 × 32, and 16 × 16
CUs. We trained the decision trees using data extracted from the
3D-HEVC Test Model considering all-intra and random-access
configurations, and we evaluated the proposed approach con-
sidering the common test conditions. The experimental results
demonstrated that this approach can halve the 3D-HEVC encoder
computational effort with less than 0.24% of BD-rate increase
on the average for all-intra configuration. When running on
random-access configuration, our solution is able to reduce up to
58% the complete 3D-HEVC encoder computational effort with
a BD-rate drop of only 0.13%. These results surpass all related
works regarding computational effort reduction and BD-rate.

Index Terms— 3D-HEVC, depth maps, machine learning, deci-
sion trees, time saving.

I. INTRODUCTION

THREE-DIMENSIONAL (3D) video systems have
evolved considerably in the last few years due

to their real-world visual experience that goes beyond
Two-Dimensional (2D) videos. 3D videos allow the users
to enjoy an experience with depth perception by employing
techniques such as stereoscopic, multi-view and Multi-View
plus Depth (MVD), being applied in multimedia applications

Manuscript received July 21, 2018; revised October 21, 2018 and
December 27, 2018; accepted January 28, 2019. Date of publication
February 7, 2019; date of current version March 5, 2020. This paper was
performed in cooperation with Hewlett-Packard Brazil Ltda., using incentives
of Brazilian Informatics Law (Law no 8.248 of 1991). This work was financed
in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Brasil (CAPES), Brazil-Finance Code 001-, and also by the Brazilian research
support agencies CNPq and FAPERGS. This paper was recommended by
Associate Editor W. Liu. (Corresponding author: Mário Saldanha.)

M. Saldanha and L. Agostini are with the Graduate Program in
Computer Science (PPGC), Video Technology Research Group (ViTech),
Federal University of Pelotas, Pelotas 96010-610, Brazil (e-mail:
mrdfsaldanha@inf.ufpel.edu.br; agostini@inf.ufpel.edu.br).

G. Sanchez is with the IF Farroupilha, Alegrete 97555-000, Brazil, and
also with the Graduate Program in Computer Science, Pontifical Catholic
University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil (e-mail:
gustavo.sanchez@acad.pucrs.br).

C. Marcon is with the Graduate Program in Computer Science, Pontifical
Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil
(e-mail: cesar.marcon@pucrs.br).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2019.2898122

such as 3D movies, Free-Viewpoint TV [1], autostereoscopic
systems and others.

The experts of the Joint Collaborative Team on Video
Coding (JCT-VC) developed the High-Efficiency Video Cod-
ing (HEVC) standard [2] for reaching high compression rates
on 2D high definition videos. Based on HEVC, the Joint
Collaborative Team on 3D Video Coding Extension Devel-
opment (JCT-3V) drawn the 3D-HEVC standard [3], [4] to
perform an advanced 3D video coding intending to reach high
compression efficiency.

There are some recent works [5]–[8] focusing on developing
fast encoding solutions for 2D videos. The 3D video encoding
is even a more complex system, requiring the encoding of
multiple views at the same time, demanding more bandwidth
for video transmission and a larger amount of space for video
storage. The amount of data increases proportionally with
the number of cameras/views used to capture scenarios for
simulcast or multi-view coding. 3D-HEVC adopts the MVD
data format to increase the encoding efficiency, which is an
alternative to multi-view video format that considers a set
of texture views and the associated depth maps. Lightweight
synthesis techniques, such as Depth Image Based Rendering
(DIBR) [9], are applied to interpolate the texture views based
on the depth maps, producing as many synthesized or virtual
views as required at decoder/receiver side [9]. Thus, only a
subset of views (texture and depth) is encoded/transmitted, and
the decoder/receiver side can generate virtual views without
needing to encode/transmit intermediary views.

A depth map describes geometrical information of the scene
indicating the distance between a camera and objects using
gray shades [3]. The characteristics of depth maps are very
different from texture frames since depth maps have large
homogeneous regions delimited by sharp edges, whereas tex-
ture frames contain a complex content with sudden variations
in the sample values [10]. Although depth maps are not pre-
sented to viewers [11], the geometrical information is crucial
for generating the synthesized views. During the encoding, dis-
tortions on the edge information of the depth maps can cause
inaccurate representation between foreground and background
pixels in the process of synthesizing views, changing the
structure of the 3D videos. Therefore, the preservation of edge
information is an essential task when encoding depth maps to
provide high quality synthesized views [12]. In homogeneous
regions, the problem is reduced because human eyes cannot
perceive small changes in the depth values [13].

The 3D-HEVC depth map coding introduces some new
tools such as Depth Modeling Modes (DMM) [14], Depth
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Intra Skip [15], and Segment-wise Direct Component
Coding (SDC) [16] targeting an efficient encoding. Besides,
depth maps have the same flexible quadtree-based structure
that HEVC uses for texture frames [2]. In this structure,
each frame is divided into Coding Tree Units (CTUs), and
each CTU can be recursively divided into smaller blocks,
called Coding Units (CUs). Finally, each CU can be split into
two or four Prediction Units (PUs), which are individually
evaluated. In the 3D-HEVC Test Model (3D-HTM) [17],
a Rate-Distortion Optimization (RDO) process is performed
at each level of the quadtree to determine the best coding
mode and the best partition size for a CU at that level.

The RDO evaluation is a complex task, requiring a
high computational effort. To minimize this effort, several
works [22]–[32] have recently proposed techniques to simplify
the 3D-HEVC depth map coding and partitioning structure.
Although these works reduce the encoding time and complex-
ity, most of them significantly reduce the encoding efficiency.

The use of machine learning in video coding applications
is a promising approach to reduce the encoder computational
effort, minimizing the Rate-Distortion (RD) efficiency losses.
Such solution was applied in some recent works targeting
different video coding domains, like the conventional HEVC
coding [33]–[35], the HEVC Screen Content Coding exten-
sion [36], and the H.264/AVC to HEVC transcoding [37].

Our previous work [38] proposed a quadtree limitation for
the depth map intra-prediction to reduce the computational
complexity and minimize the RD efficiency losses. This
quadtree limitation approach uses Data Mining (DM) as a
tool to build a set of decision trees for finding the best
size for a current CU; consequently, allowing terminate the
quadtree decision process early. The structure decision of the
CU partitioning is seen as a data classification problem, which
is efficiently solved by a set of tests.

This article extends our previous work [38], which cov-
ered only intra-frame prediction, targeting a complete fast
3D-HEVC depth map encoding considering intra- and inter-
frame predictions. This solution builds decision trees employ-
ing machine learning to define the quadtree splitting; thus,
avoiding the full RDO calculation. Decision trees were
selected to be used in this investigation due to its simplicity
and high accuracy for this kind of problem. Besides, decision
trees have a hardware-friendly characteristic, allowing an
easier and efficient future hardware design. However, other
machine learning models will be explored in future works of
our research group targeting video encoding optimizations.

Since intra-frames (I-frames) are encoded with different
partitioning structures and coding tools than the unidirectional
frames (P-frames) or bi-directional frames (B-frames) [2],
we built two new sets of trees: one for I-frames and other for
P- and B-frames. Each set encompasses specialized decision
trees for each CU size (16×16, 32×32 and 64×64), totalizing
six decision trees. This solution significantly reduces the
depth map encoding effort with negligible encoding efficiency
degradation. To the best of authors’ knowledge, this is the first
work in the literature (besides our previous work [38]) using
decision trees for reducing the 3D-HEVC depth map encoding
effort.

The remaining of this paper is divided as follows. Section II
discusses related works focusing on the computational effort
reduction for the 3D-HEVC coding. Section III presents the
3D-HEVC coding structure including the quadtree structure
and I-, P-, and B-frames. Section IV provides an initial
analysis to motivate the proposed solution. Section V details
the proposed solution. Section VI shows and discusses the
experimental results. Finally, Section VII renders the conclu-
sions of this work.

II. RELATED WORK

Although several works, such as [18]–[32], focus on saving
time on depth map coding, only a few of them ([18], [21]–[25])
emphasis on performing this timesaving using CU quadtree
depth limitation techniques. The works [22] and [23] focus
on limiting only the I-frames CU quadtrees, while [21], [24],
and [25] are applied in P- and B-frames to limit the CU
quadtree depth. Moreover, some works (e.g., [54]) perform a
CU quadtree limitation in 3D-HEVC; however, this technique
is applied only in texture coding. The technique exploited
in [54] predicts the encoding CU level in the dependent
texture views using CU level information of neighboring
views already encoded. Thus, Subsections II-A and II-B
present related solutions focusing on intra-frame (I-frame) and
inter-frame (P- and B-frames) complexity reduction, respec-
tively.

A. Intra-Frame Prediction Solutions

Shen et al. [18] classified the encoding CU in three types
(simple, normal and complex) using the encoding mode and
the RD-cost of previous encoded CUs in intra prediction.
When the encoding CU is classified as simple, then only
planar and DC modes are evaluated. If CU is classified as
normal, then planar, DC and angular modes are evaluated.
Finally, when the CU is classified as complex, all those
modes and DMMs are evaluated. Besides, Shen et al. [18]
also propose to limit the quadtree expansion by checking the
current RD-cost and verifying if the best mode selected at
intra-frame prediction is DC or planar.

Zhang et al. [19] designed a fast depth intra mode decision
using only planar, DC, vertical and horizontal modes in HEVC
intra-frame prediction. DMMs are only executed when the
best encoding mode in HEVC intra-frame prediction is planar
or DC. Besides, the DMM-1 encoding effort is reduced by
evaluating only a subset of their wedgelets.

Chen et al. [20] created a technique for detecting edge
regions in depth map coding. If the encoding block does not
contain an edge, then the DMMs are not evaluated, and the
quadtree expansion is finished.

Peng et al. [22] proposed an approach that mixes block- and
quadtree-level decision algorithms. The block-level decision
uses a threshold based on the RD-cost of the prediction modes.
The quadtree-level algorithm computes the variance of the
CU and the maximum variance of the sub-blocks. The split
only occurs if the maximum variance of sub-blocks is higher
than the CU variance or if the CU variance is higher than a
threshold.
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Zhang et al. [23] exploit a QP-based quadtree depth limit to
detect if the information of smaller blocks is relevant or their
evaluation can be skipped. This solution is based on regions
of interest (edge regions), which are extracted by applying
the Corner Point (CP) [55] feature. CPs indicate the details
level of each block to predict the quadtree for the current
CU. Thus, the evaluation of smaller sizes of CUs is avoided
when regions without significant information are computed.
Whereas, the evaluation of larger sizes of CUs can be skipped
in blocks containing significant details.

B. Inter-Frame Prediction Solutions

Zhang et al. [21] speed up the depth map encoding by
correlating the depth maps with the texture information and
classifying edges. The texture information is used to predict
the depth level of the current depth map CU and to decide
for evaluating only Merge/Skip mode (if all texture predictors
are encoded with Merge/Skip). Whereas, they use the Canny
operator algorithm to classify a depth map CU as an edge
region or no edge region. When a depth map CU is classified
as no edge region, the depth map CU is evaluated only with
Merge/Skip, inter 2N × 2N, planar and DC modes.

Mora et al. [24] propose an inter-component tool called
Quadtree Limitation (QTL) that limits the quadtrees for P- and
B-frames (QTL is not applicable to I-frames). Their proposal
is based on the idea a texture frame and its associated depth
map represent the same scene at the same time and viewpoint;
therefore, their quadtree structure is closely linked. Thus,
the QTL tool is used to predict the depth level of the depth
map quadtree based on the texture quadtree decision; i.e., the
depth map quadtree is constrained to the same level of the
texture quadtree. The current version of the 3D-HTM reference
software adopts the QTL tool as a default technique.

Lei et al. [25] propose a fast mode decision algorithm for
depth map coding based on the grayscale similarities and
the inter-view correlation, which is composed of early CU
termination and early PU mode decision for encoding depen-
dent views. The CU termination decision uses a threshold
for classifying the grayscale similarities between the current
encoding CU and the co-located block in the reference frame.
When there is a high similarity, the quadtree depth level of
the current CU is constrained by the level of the co-located
quadtree in the reference frame. A grayscale similarity and an
inter-view correlation are applied in the PU mode decision,
which finalizes when the co-located CU in reference view
selects Merge or Inter 2N × 2N as best mode. Besides,
different strategies are proposed to encode P- and B-frames
of dependent views. P-frames also use spatial information of
adjacent CUs for early PU decision.

This article presents the first work using data mining and
machine learning to evaluate the complete encoder attributes of
the 3D-HEVC depth maps and extract the correlations of these
attributes, avoiding some dynamic encoder decisions inside
intra and inter predictions, reducing the encoder complexity.
Liu et al. [33] and Correa et al. [34] also used machine
learning techniques (convolution neural network and decision
trees, respectively) but applied to a 2D encoder (texture only).

Fig. 1. Basic 3D-HEVC coding structure with temporal, inter-view, and
inter-component prediction.

Since the scenario of this work is entirely different, a new
and complete evaluation of the encoder attributes correlations
was necessary, conducting the definition of new attributes and
allowing the definition of inedited static decision trees.

III. 3D-HEVC CODING STRUCTURE

The 3D-HEVC coding structure is based on Access Units
(AUs), which contain all texture frames and the respective
depth maps. To encode each frame in an AU, 3D-HEVC
defines an advanced quadtree-based partitioning structure, for
both texture and depth data. Fig. 1 shows the basic 3D-HEVC
coding structure and the dependencies among AUs, views,
components (texture/depth) and I-, P- and B-frames. An AU
can contain an arbitrary number of views; the first view to be
encoded is known as the base view. Fig. 1 relies on features
implemented on the 3D-HTM reference software [17], and it
illustrates the base view (T0) and two dependent texture views
(T1, T2) beyond their correspondent depth maps (D0, D1, D2).
T0 is independent of other views, being encoded by an HEVC
encoder since an HEVC decoder provides images for the 2D-
conventional display from a bitstream generated by a 3D-
HEVC encoder. However, the dependent views are encoded
using data from the base view to reducing the inter-view
redundancy through a process called Disparity Compensation
Prediction (DCP) [39], [40].

3D-HEVC uses a hierarchical B-frame structure; the anchor
frame of the base view and their correspondent depth map are
I-frames, and the remaining are B-frames, whereas the anchor
frames of dependent views are P-frames and the remaining are
also B-frames. The encoding tools of the base view according
to the frame type (I- and B-frames) are presented next:

• I-frames of depth maps are encoded using the HEVC
intra-prediction and new intra-prediction tools, such as
DMM-1, DMM-4, SDC and DIS [41]. Although DMM-4
is classified as an intra-prediction tool, it also uses
inter-component information from texture frame;
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Fig. 2. 3D-HEVC quadtree structure of a CTU split into CUs.

• I-frames of texture are encoded using only the HEVC
intra-prediction, then the I-frames are fully compliant
with a conventional HEVC codec;

• B-frames of texture and depth maps are encoded with
the tools employed in I-frames and, also with the
bi-directional Motion Estimation (ME) [42]. Moreover,
the Merge/Skip Mode (MSM) [43] is evaluated to reduce
the temporal redundancy. B-frames of texture base view
are also fully compliant with a conventional HEVC codec.

The encoding process of dependent views are presented
below, considering the allowed frame types (P- and B-frames):

• The first P-frame of texture is encoded with: (i) the
HEVC intra-prediction; (ii) the Disparity Compensation
Prediction (DCP); and (iii) the inter-component depth to
texture using tools such as Depth Based Block Partition-
ing (DBBP) [44]. When there are reference frames for
texture P-frame, also it is used the unidirectional ME,
which can evaluate MSM;

• The first P-frame of depth maps is encoded with the tools
used in depth maps I-frames and, also with DCP. The
remaining P-frames of depth maps also can be encoded
with unidirectional ME;

• B-frames of texture and depth maps are encoded with
the same tools of P-frames plus the bi-directional ME
tool [42].

3D-HEVC inherits an advanced and flexible quadtree-based
structure from HEVC, where a frame is divided into Coding
Tree Units (CTUs), and each CTU can be recursively split in
a quadtree structure where the leaves are Coding Units (CUs).
Finally, each CU can be divided into two or four Prediction
Units (PUs), which are separately predicted through the intra-
or inter-frame processes [4]. The same process applied in the
texture coding is used in the depth map coding.

Fig. 2 exemplifies a 64×64 CTU split into several CUs with
different quadtree depth levels, where the tree leaves (filled
squares) are the final encoded CUs. Commonly, 3D-HTM sets
the CTU size in 64 × 64 and a CU can be a single 64 × 64
block (1st tree depth), or the CTU can be recursively split into
four blocks until reaching the 8 × 8 size (4th tree depth).

All PUs use either intra- or inter-frame prediction. The intra-
frame prediction uses only the HEVC intra-prediction modes
for texture data, whereas, for depth data, DMMs (used mainly
in edge regions) and DIS (used when homogeneous regions

are encoded) are also available, together with the conventional
intra-prediction [41]. The ME, DCP and MSM tools are
available for both texture and depth maps in PU inter-frame
prediction. MSM is conceptually the same used in HEVC, and
it is similar to the SKIP mode of H.264/AVC [45]. Besides,
3D-HEVC texture coding uses DBBP, which defines the block
partitioning based on the corresponding depth block [44].
3D-HEVC defines the quadtree structure evaluating the CU
sizes, PU partitions and PU modes with an iterative splitting
process employing RDO.

IV. INITIAL ANALYSIS AND MOTIVATION

We implemented two initial experiments to evaluate the
impact of depth map complexity inside the global 3D-HEVC
encoder and, also the encoder behavior regarding Quantization
Parameters (QPs). Both experiments evaluate All-Intra (AI)
and Random-Access (RA) encoder configurations [47] using
the 3D-HTM version 16.0 [17]. Besides, the experiments
covered the Common Test Conditions (CTC) [47] using eight
sequences and four pairs of Quantization Parameters (QP-
pair). The experiments covered the 3D video sequences:
Balloons [48], Kendo [48] and Newspaper_CC [49] with
a resolution of 1024 × 768 pixels, and GT_Fly [50], Poz-
nan_Hall2 [51], Poznan_Street [51], Undo_Dancer [52] and
Shark [53] with a resolution of 1920 × 1088 pixels. Each
QP-pair defines the pair of quantization parameters used to
encode texture and depth maps (QP-texture, QP-depth) [47].
The four QP-pairs evaluated were (25, 34), (30, 39), (35, 42)
and (40, 45). Additionally, to have accurate results, we per-
formed these evaluations turning off the quadtree limitation
available by the 3D-HTM default, because this default limita-
tion already reduces the encoding effort at the cost of coding
efficiency losses.

Fig. 3 shows the distribution of the 3D-HEVC encoding
effort considering the average results for all CTC sequences
and four different QP-pairs. In AI configuration, the encoder
spends an average of 83% and 17% of the time to encode
depth maps and texture, respectively, as displayed in Fig. 3(a).
It happens in the AI scenario because texture coding only
applies the HEVC intra-frame prediction, whereas, depth map
coding also employs DMMs, DIS, and SDC evaluations [41].
Considering the AI configuration, the depth map coding is
4.8 times more time demanding than the texture coding,
on average.

Fig. 3(b) shows QP-pair has a higher influence for the RA
configuration than for the AI configuration. Here, the depth
maps still require higher encoding effort than texture. The
highest difference is found for the QP-pair (40, 45), where
80% of the processing time is used to encode depth maps and
20% to encode texture. The smallest difference occurs on the
QP-pair (25, 34), where texture coding and depth map coding
use 31% and 69% of the encoder time, respectively. The
depth map encoding concerning RA configuration is 2.9 times
more time consuming than the texture coding, on average.
This evaluation shows the depth map coding is a bottleneck
in the 3D-HEVC encoding and solutions for reducing the
computational effort required to encode depth maps without
penalizing the encoding efficiency are crucial.
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Fig. 3. 3D-HEVC complexity distribution regarding four QP-pairs in (a) AI
and (b) RA configurations.

Fig. 4. Distributions of CU sizes for 3D-HEVC depth maps regarding four
QP-pairs in (a) AI and (b) RA configurations.

The second experiment evaluated the influence of the
encoder attributes and configurations in the internal encoder
decisions. As previously mentioned, the 3D-HEVC standard
provides a flexible encoding structure; and the implementation
of the 3D-HTM encoder employs a complex RDO-based
process to assess the combinations of encoding structures
(block partitions and prediction modes) that allows choosing
the one with the lowest RD-cost. Fig. 4(a) and (b) display
the results of CU size distribution for four values of QP-pair
considering AI and RA configurations, respectively.

The variation in the QP affects the CU size distribution
for both configurations because QP defines the compression
rate influencing the image quality. High QPs generate more
homogeneous areas in the coded image that are efficiently
encoded using bigger CU sizes. However, with a low QP,
the predicted images tend to preserve several details, requiring
lower CU sizes to maintain the encoding efficiency.

In our analysis, RA configuration uses less small CUs
when compared to the AI configuration for all evaluated
QP-pairs, because the RA configuration allows the inter-frames
and inter-views redundancies exploration using motion and
disparity estimation. The exploration of these redundancies

Fig. 5. Encoding time distribution of each CU size for four QP-pairs
considering AI configuration.

in P- and B-frames allows higher encoding efficiency reusing
bigger blocks from reference frames.

Fig. 5 details the computational cost to evaluate each
CU size, considering only depth map encoding time and AI
configuration. One can observe there is a high computational
cost associated with the evaluation of smaller CU sizes, such
as 8 × 8. Also, one can conclude the smallest encoding effort
is spent in 64 × 64 CUs for all QP-pair values.

Joining the presented results, one can conclude an early
decision algorithm that limits the encoding of smaller CUs
could provide a good tradeoff between encoder decision accu-
racy and high encoding time reduction.

Although the QP values and encoder configurations have
a substantial influence on the quadtree definition, the simple
removal of some quadtree level is not an appropriate solution
for reducing the encoding effort, since this decision can
significantly degrade the encoding efficiency (bit-rate versus
quality). However, a solution able to decide when a current
CU should not be split into smaller CUs considering the QP
value, the encoder configurations and other encoder attributes,
can avoid the high cost of evaluating the full RDO process.
Then, a most robust solution should be provided to reduce
complexity with minor impact on the coding efficiency.

The encoder has many other decisions defined at runtime.
Then, solutions that statically fulfill some of these decisions
considering the encoder context (and not the full RDO) and
with less impact on the encoder efficiency are highly desirable.

Decision trees can be used to predict the value of dependent
variables identifying regularities and building generalizations
in attributes of the data set. These models are built through
the data mining techniques, frequently used when high accu-
racy and low complexity execution are required [46]. Then,
decision trees could be an interesting solution to deal with
the encoder decisions considering the encoder context and
avoiding the full RDO process.

V. FAST CU ENCODING BASED ON MACHINE LEARNING

This article presents a fast depth map encoding using
machine learning to define decision trees which are used in
the encoder CU quadtree split decision process instead of
the full RDO process. Section V-A explains the methodology
employed to define the decision trees. Sections V.B and V.C
explain the developed decision trees for I-frames and P- and
B-frames, respectively.
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Fig. 6. Methodology for design and evaluation of the encoder with the
decision trees.

A. Methodology

This article explores the use of data mining and machine
learning based on attributes with high correlation with the CU
split decision to build static decision trees to determine when
a CU should be split into smaller ones. The split choice occurs
when the decision tree classifies the encoding CU as requiring
further evaluations; otherwise, the computation of that CU
is finalized. The use of data mining and machine learning
allows discovering correlations between the encoding context
and its attributes. If these correlations are strong enough, it is
possible to define static decisions trees to reduce the encoding
complexity with negligible impact on the coding efficiency.

Based on this exploration, this work proposes the usage of
six static decision trees. One tree is necessary for splitting
decisions of each CU size (16 × 16, 32 × 32 and 64 × 64).
Besides, I-frames use different encoder tools than P- and
B-frames, generating different contexts. Thus, one group of
trees is necessary for I-frames and another one for P- and
B-frames.

Fig. 6 summarizes the methodology used in this work.
The first step is the application of data mining to define
the most relevant encoder attributes that must be considered.
This step was performed by executing the 3D-HTM and
extracting statistical data correlating the CU split decision with
the evaluated attributes. Relevant information for the decision
process and a flag indicating if each CU has been split or
not were stored. The data mining process is responsible for
pre-processing the statistical data collected in the previous
step. The pre-processing balances the input-data, organizing
it in two equal-sized sets containing 50% of entries that lead
to the CU split and 50% of entries that do not split the CUs.

The statistical information obtained in the data mining
process is used to feed the machine learning process and train
the decision trees. The Waikato Environment for Knowledge
Analysis (WEKA) [56], version 3.8, was used for creating
each decision tree. The decision trees were created using the
J48 algorithm, which is an open-source implementation of the
C4.5 algorithm [57] available on WEKA.

We performed the Reduced Error Pruning (REP) algo-
rithm [58] in each tree, to avoid the overfitting problem
on the dataset training. This procedure reduced the size of
the decision trees, contributing to accelerate the encoding
process and contributing to an easier and faster future hardware
implementation. Additionally, REP allows a better feature
generalization of the depth map CUs at the cost of a small
accuracy loss.

TABLE I

CONFIGURATIONS USED IN THE EXPERIMENTS

The created decision trees were inserted in 3D-HTM, substi-
tuting the conventional RDO process. The final evaluation was
done using additional video sequences; i.e., video sequences
different from that used in the decision tree definition.

We selected randomly two video sequences from CTC
(Kendo [48] and Poznan_Street [51]) and, Champagne_tower
[48] and Pantomime [48] to be used in the training stage. To
demonstrate the robustness of the proposed method, we gen-
erated three sets of trees using different training sequences.
Firstly, we apply only the Kendo sequence in the training
process generating three trees for I-frames (the same published
in our previous work [38]) and three trees for P- and B-
frames. Secondly, we increased the number of sequences used
in the training process using Kendo and Poznan_Street in
this step. Thus, other six threes were generated (three for
I-frames and three for P- and B-frames). Thirdly, we generate
six decision trees using four sequences (Kendo, Poznan_Street,
Champagne_tower, and Pantomime) for the training process.
The reached results are discussed in the next sections and
showed that this approach is robust even when only one
sequence is used in the training process since the reached
results were similar for the three training sets.

Different video sequences were evaluated in Section VI to
demonstrate the trained solution can achieve high quality in
different encoding scenarios. It is important to emphasize there
is a limited number of 3D video sequences with their depth
maps available to make 3D video coding experiments.

Table I shows the main configurations applied to the exper-
iments for each encoder setting. These configurations are in
accordance with the CTC definitions. However, small changes
in the configuration scenario tend to lead to similar results,
considering the full quadtree search process is not affected by
these changes.

Sections V-B and V-C discuss the generate decision trees
using Kendo as the training sequence for I-frames and, P- and
B-frames, respectively.

B. Intra-Frame Decision Trees

We collected a large amount of data from the depth video
sequences and internal encoding variables to find features
that could lead to effective decisions of CU splitting. The
all-intra (AI) configuration was considered to define the
intra-frame decision trees since this configuration only allows
the use of intra prediction tools. The attributes listed in Table II
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TABLE II

ATTRIBUTES EVALUATED IN I-FRAMES

Fig. 7. Probability of not splitting 64 × 64 CU regarding the analyzed
attributes for AI configuration.

were stored for each encoded block during the 3D-HTM
execution. These attributes were selected intending to extract
characteristics that have a high correlation with a splitting
decision.

Fig. 7 exemplifies the probability density functions for four
of the selected attributes, showing the correlation between
these attributes and the CU splitting decision. Fig. 7(a), (b),
(c) and (d) show MaxDiff, VAR_64, RD-cost, and VAR_8
have lower values for those CUs not split into smaller ones.
In these four cases, low values of attributes indicate a high
probability of a decision that does not split the CU, while
high values of these attributes indicate a high probability of
splitting.

Among all evaluated attributes, some of them were selected,
considering the correlation of each attribute with the CU split
decision. The algorithm applied to build the static decision
tree, which is based on the Information Gain (IG), defines
the most relevant attributes for dealing with the split decision.
IG refers to the difference between the entropy of all data set
and the entropy of the subset of the evaluated attribute.

WEKA generated three intra-frames decision trees consid-
ering the IG of the analyzed attributes associated with the CU

TABLE III

ATTRIBUTES APPLIED TO I-FRAMES DECISION TREES
USING Kendo AS TRAINING SEQUENCE

split decision. Table III shows the complete list of attributes
used to define the three intra-frame decision trees, the accuracy
of the designed trees, the size regarding the number of nodes
and the IG of each selected attribute using the Kendo video
sequence. We also present the accuracy and the size of the
tree, when REP is not used, showing a small increase in the
accuracy with a high impact in the tree size.

Fig. 8 exemplifies the static decision tree generated for
64 × 64 CUs using Kendo as the training sequence, where
the leaves “N” and “S” correspond to non-split and split deci-
sions, respectively. The other eight trees generated focusing
on I-frames (using one, two and four sequences for training
process) were not shown in function of the available space in
this article.

C. Unidirectional and Bi-Directional Frame Decision Trees

The decision trees employed on the P- and B-frames
definition were built in a similar way to the ones used
on the I-frames. The attributes analyzed for I-frames were
also evaluated for P- and B-frames. However, new attributes
were also assessed since there are many different features in
P- and B-frames when compared to I-frames, such as
inter-frame and inter-view dependencies. These new attributes
and their description are listed in Table IV.

Fig. 9 exemplifies the probability density functions, regard-
ing four of the selected attributes, showing the correla-
tion between these attributes and the CU splitting decision.
Fig. 9(a) shows the probability of the CU not be split according
to the MAD_4 (MAD of its 4 × 4 sub-blocks), Fig. 9(b)
illustrates the probability of the CU not be split according to
the Neigh_depth. Fig. 9(c) and (d) shows the probability of the
CU be split according to the Ratio and RelRatio, respectively.

On the one hand, regarding MAD_4 and Neigh_depth
attributes, low values tend to keep the encoding CU size.
On the other hand, low values of Ratio and RelRatio tends
to split the encoding CU. Therefore, the knowledge of these
attributes is crucial for achieving efficient decisions on the
current CU splitting.
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Fig. 8. Decision tree for splitting decision in 64 × 64 CUs for I-frames trees using Kendo as the training sequence.

TABLE IV

NEW ATTRIBUTES EVALUATED IN P- AND B-FRAMES

Fig. 9. Probability density function of the current 64 × 64 CU not be split
(a) and (b) and be split (c) and (d) with RA configuration for four attributes.

Table V shows the attributes used in the three decision trees
for P- and B-frames, the designed trees accuracy, the tree
size and the IG of each attribute using Kendo as the training
sequence. Again, the accuracy and size of not using REP are
also available, justifying its usage.

TABLE V

ATTRIBUTES USED IN P- AND B-FRAMES DECISION TREES

USING Kendo AS THE TRAINING SEQUENCE

Fig. 10 exemplifies the decision tree built for 64 × 64 CUs
using Kendo as the training sequence. The remaining decision
trees (using one, two and four sequences for training process)
were not shown in this article in function of the available
space.

VI. EXPERIMENTAL RESULTS

The decision trees were implemented inside the 3D-HTM
version 16.0 [17] and evaluated following the CTC for 3D
experiments [47], which have the same configurations pre-
sented in Table I. However, in this case, the sequences used
in the training process were not considered in the evaluating
process.

Firstly, the decision trees were evaluated using the AI
configuration. Next, the performance of the proposed solution
was evaluated using RA configuration. The results employ
Bjontegaard Delta-rate (BD-rate) [59] metric considering
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Fig. 10. Decision tree for splitting decision in 64 × 64 CUs for P- and B-frames using Kendo as the training sequence.

TABLE VI

EXPERIMENTAL RESULTS WITH THE AI CONFIGURATION

the synthesized views quality and the computational effort
reduction of the entire encoder (texture and depth maps).
Section VI-A shows the results and comparisons for AI con-
figuration, while Section VI-B compares the results obtained
with the RA configuration.

A. All Intra (AI) Configuration Results

Table VI shows the results reached by the decision trees
specialized in intra-frames. This experiment was done con-
sidering the AI configuration. The decision trees created
using Kendo (DT-1) sequence, the decision trees created
with Kendo and Poznan_Street (DT-2), and the decision trees
created with Kendo, Poznan_Street, Champagne_tower, and
Pantomime (DT-4) sequences were evaluated. The results are
presented using two main metrics: BD-Rate Increase (BDRI)
and Computational Effort Reduction (CER). These results
consider the complete encoder (texture plus depth encoding).

Table VI shows an average computational effort reduction
of 52.3%, 51.9% and 50.4% using DT-1, DT-2 and DT-4,
respectively. As a drawback, the proposed solution presented
a BD-Rate increase of 0.19% (DT-1 and DT-2) and 0.23%
(DT-4). Additionally, when considering only depth map
coding, the proposed solution reduces 59.0% (DT-1), 58.5%
(DT-2) and 55.8% (DT-4) the encoding effort, on average.

Fig. 11(a) illustrates the percentage of CUs that were not
split according to the CU size and QP-depth value under
AI configuration. As higher is the QP-depth, as higher is

TABLE VII

COMPARISON WITH RELATED WORK IN AI CONFIGURATION

the probability of the CUs to be encoded with larger sizes;
consequently, as higher is the percentage of not splitting
decisions. It happens because higher QP-depth values tend
to generate more homogeneous regions (with fewer details),
and homogeneous regions are more efficiently encoded using
larger CU sizes. For instance, the percentage of CUs that were
not split with 64×64 CUs and QP-depth = 45 is 84.52% (DT-
1), 82.25% (DT-2) and 80.51% (DT-4), on average.

The reached results for AI configuration, including those
presented in Table VI and Fig. 11(a), one can conclude our
methodology is robust independently of the number of used
training sequences since similar results were reached when
using one, two or four training sequences.

Finally, we emphasize the proposed solution can halve
the computational effort of the entire 3D-HEVC encoder
(texture plus depth) at the cost of less than 0.23% in BD-rate,
on average.

Table VII compares the proposed solution with the works
[18]–[20], [22], and [23], which also focus in AI configuration.
In [18], CER is only presented for depth maps, where 61% is
obtained with 0.2% of BDRI. BDRI of our solution is in the
range [0.19%, 0.23%] with a CER of depth maps in the range
[55.8%, 59.0%]; therefore, these results are quite similar. The
methods proposed by [19], [20], [22], and [23] have a CER
ranging from 22.8% to 41% with BDRI ranging from −0.15%
to 0.8%. Our solution obtained a CER and BDRI in the ranges
[50.4%, 52.3%] and [0.19%, 0.23%], respectively, on average.
Thus, our solution presents very competitive results when
compared to these related works in both metrics.
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Fig. 11. Percentage of non-splitting CUs according to the block size and QP-depth for (a) AI and (b) RA configurations.

TABLE VIII

EXPERIMENTAL RESULTS WITH RA CONFIGURATION

B. Random-Access (RA) Configuration Results

The entire solution of fast 3D-HEVC depth maps was
evaluated using the RA configuration, where all proposed
decision trees are used together. Table VIII summarizes
the experimental results with the RA configuration showing
DT-1 reached a CER of 52.0% and a BDRI of 0.19%,
DT-2 obtained a CER of 57.6% and a BDRI of 0.07%, and
DT-4 achieved a CER of 58.3% and a BDRI of 0.13%.
Moreover, regarding only depth map coding our solution
reached a CER of 68.0% (DT-1), 75.8% (DT-2) and 76.7%
(DT-4), on average.

Fig. 11(b) depicts the percentage of CUs were not split
according to the CU size and QP-depth value when evaluated
in RA configuration. The tendencies are similar to those
presented in Fig. 11(a) but less pronounced in this case. Again,
as higher is the QP-depth value, as higher is the use of
larger CUs; consequently, as higher is the CUs with not split
decisions. The highest not splitting percentage reaches 97.7%
(DT-1), 96.2% (DT-2) and 97.5% (DT-4) with QP-depth = 45
when processing 64 × 64 CUs.

Table IX compares the solution proposed in this article
with the works [18], [19], [21], [24], and [25], which also
focus on RA configuration. Again, in [18], CER is presented
only for depth map coding, where 40% is obtained with a
BDRI of 0.1%. Our decision trees reached average results of
BDRI and CER (when considering only the depth maps) in
the ranges [0.07%, 0.19%] and [68.0%, 76.7%], respectively.
When compared to [19], our proposed solution achieved
similar results of BDRI, but with a CER more than ten times
better. The solutions presented in [21] and [25] achieve good

TABLE IX

COMPARISON WITH RELATED WORK IN RA CONFIGURATION

results of CER; however, with significant losses on BDRI. Our
decision trees reached a little better CER results than [21]
and [25], but with a much lower impact in BDRI. Finally,
the state-of-the-art method presented in [24] (adopted in 3D-
HTM) reached 52.0% of CER with BDRI of 1.02%, whereas
the proposed decision trees present better results in both axes.

The experiments using RA configuration showed the deci-
sion trees reached very competitive results where only one
related work [24] reached the same CER, but with 6.8 times
more impact on BD-rate, when compared to DT-1. On the
other hand, only one work [19] reached similar BD-rate
impacts, but with a CER more than 10 times smaller.

The experiments demonstrated that using a different number
of training sequences tends to achieve similar results of non-
splitting CUs with small variations in BD-rate and compu-
tational effort. Besides, one can notice a higher number of
training sequences does not ensure better results, as demon-
strated in Table VI and Table VIII. One can conclude the
proposed solution is robust and presented excellent results
even when used one, two or four training sequences.

VII. CONCLUSIONS

This article presented a fast 3D-HEVC depth map encod-
ing solution, which uses static decision trees to define the
partitioning of CUs instead of the complete and complex
RDO process. After encoding a given CU size, a decision
tree decides if the CU must be split or not into smaller sizes.
The decision trees were built with data mining and machine
learning to extract correlations among the encoder context
attributes.

Two types of trees were defined using J48 algorithm avail-
able on the WEKA software, being one for I-frames and other
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for P- and B-frames since the encoder behavior is significantly
different for these types of frames, requiring specialized trees.
Besides, one decision tree was created for each one of the three
levels of CU sizes where the partition is allowed (16 × 16,
32 × 32 and 64 × 64), indicating if the CU must or not be
split into smaller CUs. Finally, three sets of decision trees
were evaluated, one set built using only one training sequence,
another set built using two training sequences, and a set built
using four training sequences, trying to evaluate the robustness
of the proposed approach. Then, a total of 18 decision trees
were built and evaluated in this article.

The evaluation of the developed trees was done using a set
of six sequences that were not used in the training process.
Through experimental analysis, the proposed solution reached
an average Computational Effort Reduction (CER) higher than
50% for AI and RA configurations. In both cases, the BD-rate
has increased by less than 0.25% in the synthesized views,
on average. The best results were reached by the decision
trees built using two sequences in the training process and
when these trees were evaluated through the RA configuration,
where the trees for I-frames and the trees for P- and B-frames
were used together. In this case, our solution can reduce in
almost 58% the complete 3D-HEVC encoder computational
effort (texture plus depth) with a BD-rate drop of only 0.07%,
surpassing all related works in both axes.

Considering the presented results, we conclude the proposed
solution can be efficiently used to encode depth maps with
better results than all published solutions, including those
solutions implemented in the 3D-HTM.
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