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Abstract—The decrease of the performance gain dictated by Moore’s Law boosted the development of manycore architectures to
replace single-core architectures. These new architectures must employ parallel applications and distribute its workload over a
multitude of cores to reach the desired performance. Parallel applications are harder to develop than sequential ones since the
developer must guarantee data integrity using synchronization primitives. While multiple novel solutions have been proposed to speed
up parallel applications through handling one type of data synchronization primitive, exceptionally few works support multiple types of
synchronization primitives and legacy code. This article proposes Subutai, a hardware/software co-design solution for accelerating
multiple synchronization primitives without modifying the application source code. By providing a new user library, while retaining an
existing synchronization API, legacy and novel applications can benefit from our solution. Our experimental evaluation, which provides
a POSIX Threads implementation, demonstrates Subutai speeds up to 2.71x and 4.61 x the execution of single- and multiple-

application executions, respectively.

Index Terms—Legacy parallel applications, PThreads, network-on-chip, distributed scheduler

1 INTRODUCTION

SINCE the end of the last century, a significant shift has
occurred in the industry, transitioning the processor chips
from a single- to a multicore design using a dozen cores. This
paradigm has evolved to incorporate hundreds and soon
thousands of simple cores, performing a manycore architec-
ture, to continue to deliver higher performance.
Unfortunately, only increasing the number of cores does
not imply increasing the performance, as the applications
must be parallel-compatible to exploit the hardware paral-
lelism. Where once a single sequential thread could do the
execution, now the developer has to partition the workload
into multiple execution threads and synchronize their
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execution [1], dealing with deadlock, livelock, race condi-
tion, and non-deterministic events [2]. Decisions regarding
both partitioning and synchronization of the workload are
crucial to determine the achievable performance of the
application on manycore systems since even small sequen-
tial portions of execution can have a significant performance
impact, as observed in Amdahl’s law. Because of this
impact, parallelization is primarily done manually, allowing
fine-grained performance optimizations.

Synchronization, namely the access and update of the
application data, is a vital concern in any parallel application.
The typical limitation to novel synchronization solutions is
that developers have to refactor the source code. The redesign
applies even to already parallel-compatible code, as the
Application Programming Interface (API) of different solu-
tions are not the same. The refactoring of source code due to
API changes has substantial limitations; we highlight these
three: (i) software redevelopment cost, (ii) challenge of paral-
lel code refactoring, and (iii) lost legacy source code.

Software development cost already dominates new Sys-
tem-on-Chip (SoC) designs, as the manycore architecture and
its counterpart, the parallel applications, are common ele-
ments of such designs [3]. Besides, the Read-Copy-Update
(RCU) synchronization primitive used by the Linux kernel,
for instance, influences over 16 million Lines of Code (LoC)
across 15 kernel subsystems [4]; thus, even experienced devel-
opers do not easily achieve a refactoring of it.

Source code modification is always an error-prone task.
McConnell estimates that up to 100 bugs can be present per
thousand LoC [5]. Refactoring parallel code is even more sus-
ceptible than sequential code because often the developers are
befuddled with the use of synchronization techniques. For
instance, while RCU shows impressive results, it demands a
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thorough understanding of computer architecture design,
presenting the tradeoff of rising performance gains but
increasing code and maintainability complexity [2].

Finally, the essential requirement for refactoring a legacy
application is the source code availability. However, often
the legacy source code is lost, leaving only the binary code.
Hence, the developers need to rewrite the entire code,
increasing the software development cost. Moreover, given
the amount of legacy software, a complete rewrite of the
entire code is unlikely to happen [6].

Therefore, we propose a novel synchronization solution that
accelerates parallel applications without modifying the application
source code. Our solution speeds up even applications that do
not or cannot share their codes; in this case, as long as the
binary is dynamically linked. Otherwise, static or dynamic
linked binaries are supported. Our hardware/software solu-
tion, called Subutai, tackles the synchronization problem
within a low-level Network-on-Chip (NoC) Interface (INI).

Software-wise (Subutai-SW), we implemented the POSIX
Threads (PThreads) according to the IEEE Std 1003.1 stan-
dard [7]." Thus, any application employing the PThreads API
(i.e., pthread.h) is compatible with Subutai. The PThreads
compatibility restricts a multitude of optimizations since we
cannot inject the source code with extra synchronization meta-
data or change the application communication model. In
addition to interfacing with the application, our software
must work with new functionalities on the hardware-side;
hence, we provide an Operating System (OS) driver responsi-
ble for the latter activity.

Hardware-wise (Subutai-HW), we extended an existing
on-chip NI to support, in a distributed way, the following
synchronization primitives: mutex, barrier, and condition.
NI handles new types of packets and requires access to a
small (Iess or equal to 1 KiB) memory to record synchroniza-
tion events and metadata. Fig. 1 depicts the Subutai solution
with a general-purpose computing stack, highlighting the
components required for its operation.

We demonstrate that our solution speeds up single paral-
lel applications ranging from 1.05x up to 2.71x for 64-
thread executions. Moreover, in a competitive scheduling
scenario, Subutai speeds up multiple parallel applications
ranging from 1.58x up to 4.61 x . For these results, the hard-
ware requirement for Subutai increases the area of the NI in,
approximately, 46 percent; however, the overhead is insig-
nificant compared to the total chip area (less than 1 percent
for a 400 mm? chip). The key contributions of this paper are
listed next:

1) This work proposes a novel synchronization tech-
nique that avoids modifying parallel applications
while accelerating their execution. The work sup-
ports both legacy and novel applications designed
using the PThreads API.

2)  We designed all the components of Subutai and pro-
vided a detailed analysis of its performance in acceler-
ating standard synchronization primitives. Moreover,
we evaluate it with state-of-the-art related work.

1. Includes mutex, barrier, and conditions. Besides, we provide the
PThreads software implementation for supporting the options pro-
vided by the attribute parameter.
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Fig. 1. Subutai components are highlighted in red (1, 2, 3) in the comput-
ing stack. Subutai only requires changes in the (1) PThreads implemen-
tation, (2) OS NI driver, and (3) on-chip NI. Additionally, (4) a new
scheduling policy (in blue) is explored in this work as an optional
optimization.

3) Weconducted experiments using parallel applications
provided by PARSEC, a well-known benchmark for
this domain. The experiments were analyzed for both
single- and multiple parallel executions. Besides, we
evaluated scheduling policies for executing parallel
applications. Such experiments are essential to evalu-
ate the performance of Subutai on several execution
scenarios.

This paper extends a conference version [8] by (i) evalu-
ating Subutai with state-of-the-art related work, (ii) provid-
ing new estimations of the Subutai-HW design including
memory, (iii) presenting details of the Subutai-SW imple-
mentation (userspace library and OS driver), (iv) evaluating
an additional application (x264), (v) evaluating a scheduler
policy proposal, (vi) evaluating concurrent application exe-
cution, and (vii) presenting the synchronization model of
the analyzed applications.

2 RELATED WORK

A program can be comprised of many computational units
like threads, processes, coroutines, and interrupt handlers.
We employ the term thread as a generic word to encompass
these computational units. We organize the related work in
software-oriented and hardware-oriented /mixed solutions.
Table 1 summarizes the essential characteristics of these sol-
utions and compares our work to the state-of-the-art.

2.1 Software-Oriented Solutions

PThreads, Open MultiProcessing (OpenMP), and Intel
Threading Blocks Building (TBB) are established solutions
that use software to synchronize parallel applications. These
solutions provide analogous implementations of a similar set
of synchronization primitives, but with different abstraction
levels. In contrast, PThreads provides a low-level interface for
developers, OpenMP and TBB offer abstract programming
models (fork-join and task-based models, respectively) [20].
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TABLE 1

Related Work Summary
Solution Orientation Requirements Legacy code compatible* Uses PThreads Target data synchronization Experimental results
PThreads Software Latency No Yes Barr., cond., mutex Real applications
OpenMP Software Latency, app. model No Yes (libgomp) Atomic, barr., mutex Real applications
TBB Software  Latency, app. model No Yes (Linux) Atomic, cond., mutex Real applications
RCU [9] Software Latency No May use Mutex Linux kernel
Boehm [10] Software Latency Maybe Yes Mutex Synthetic
F.-P.etal [11] Software Latency Yes Indirectlyb Barrier IS and synthetic
SOFRITAS [1] Software Code correctness Limited Yes Barr., cond., mutex PARSEC, ...
Sivaramet al. [12] ~ Mixed Fault-tolerance No® No Barrier Synthetic
Abellanetal. [13] ~ Mixed Latency and area No?* Indirectly® Barrier Synthetic
Stoif et al. [14] Mixed Latency No?® No Barrier, mutex FPGA, synthetic
MCAS [15] Mixed Latency and area No No Atomic Synthetic
CASPAR [16] Hardware Latency Yes No Atomic FFT, IS, ...
HTM [17], [18] Mixed Latency Maybe May use Mutex, spin lock Indirectly®
Not. Mem. [19] Hardware Latency, app. model Yes May use Spin lock MPEG-4 decoder
Subutai Mixed Latency and area Yes Yes Barr., cond., mutex PARSEC

Barr. = Barrier; cond. = Condition; app. = Application;
Not‘ = Notifying; Mem. = Memories; F.-P. = France-Pillois;
This term is defined in Section 2.3;

“ Not addressed in the work; * The work employs OpenMP, and it employs PThreads internally; © HTM can be used on the PThreads implementation.

DeLozier et al. [1] propose SOFRITAS, a software-only
robust memory consistency model that can detect and pre-
vent atomic violations on parallel applications at the cost of
execution overhead (roughly 59 percent). Unfortunately,
the applications must be annotated with a novel API when
using library calls.

Boehm [10] and France-Pillois et al. [11] provide optimiza-
tions on the implementations of the PThreads and OpenMP
libraries, respectively. The first work suggests relaxing the
reordering rules for load and store operations, while the last
work identifies an expansive function that was uselessly being
called during the barrier waking process.

Attiya et al. [21] formally proved that deterministic struc-
tures, as employed by the previously discussed libraries,
cannot eliminate the use of expensive synchronization. There-
fore, non-deterministic solutions focusing on relaxing the con-
straints that force the use of such expansive synchronization
have been proposed to tackle this problem. Kirsch et al. [22]
propose k-FIFO, which is a lock-free queue that removes up to
k — 1 out-of-order elements from the queue. Desnoyers ef al.
[9] describe a synchronization technique based on the pub-
lish-subscribe mechanism called RCU. Parallel applications
that rely on RCU have to deal with stale data. The bottleneck
of these solutions is that the application code adaptation is
passed on to the developer.

2.2 Hardware-Oriented/Mixed Solutions

Sivaram et al. [12] propose a fault-tolerant hardware-based
barrier synchronization. Their design uses a tree structure
to sum intermediate values, decreasing the number of
packets injected into the network. Their work is comple-
mentary to our solution. Abelldn et al. [13] explore three
HW barrier architectures and integrate them on the
OpenMP programming model. Unfortunately, they evalu-
ated only synthetic applications. Stoif et al. [14] implement
an arbiter on FPGA that guarantees mutual exclusion to a
portion of the shared memory area and an HW-based syn-
chronization barrier that speeds up the application execu-
tion; however, their work does not implement full barriers

and conditions, and it is limited to simple test cases instead
of real applications.

CASPAR [16] improves the performance of CAS opera-
tions by breaking the serialization of multiple CAS calls and
executing them in parallel. Patel et al. [15] propose a special
HW instruction, called MCAS, to change multiple memory
positions atomically, optimizing the synchronization pro-
cess. Hardware Transactional Memory (HTM)? provides an
abstraction for executing blocks of code atomically. HTM
guarantees correctness by aborting transactions that conflict
with others [17].

Finally, Martin ef al. [19] propose the Notifying Memories
concept to reduce communication latencies introduced in
the NoC by pruning useless memory accesses. This concept
uses spinlocks and is applied to dataflow applications only.
Our work is also based on extending the NI architecture,
but targeting shared-memory systems.

2.3 Comparison With the State-of-the-Art Work

A direct comparison of works in the data synchronization
field is unfeasible as they do not employ a common test sce-
nario that standardizes the experimental evaluation. Espe-
cially hardware and mixed solutions employ a varied set of
target applications. Table 1 shows that there is no intersec-
tion of applications in the experimental results. Conse-
quently, we limit the comparison of experimental results to
published results on Section 8; here, we discuss the support
for data synchronization primitives and legacy code.

Three solutions are generic API specifications (PThreads,
OpenMP, TBB) for cross-platform use. All other works are
optimizations on existing APIs, except for RCU, as it creates
a read-write lock capable of reading and writing at the same
time. Boehm optimizes memory barriers for lock and unlock
PThreads procedures. The approaches proposed by France-
Pillois et al. and Abelldn et al. share the same idea of opti-
mizing the use of barriers in OpenMP applications. The

2. HTM can be simulated in software, yet the overhead imposed by
the software layer can be prohibitive [23].
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former achieves this through a software-only approach,
while the latter uses a mixed solution. MCAS and CASPAR
optimize the use of CAS procedures on lock-free applica-
tions. The Notifying Memories solution targets a specific
programming model and synchronization scenario: data-
flow and spinlocks, respectively. HTM allows speculative
execution of critical sections guarded by mutexes or spin-
locks. Finally, our solution accelerates PThreads data syn-
chronization primitives through hardware execution while
keeping legacy-code compatibility.

We define that a solution is legacy code compatible if a
given application can use the set (or a subset) of the solu-
tion, either by (i) recompiling without source code changes,
or (ii) dynamically linking to a library provided by the solu-
tion. Therefore, besides Subutai, the following solutions
support legacy code: Boehm [10], France-Pillois ef al. [11],
CASPAR [16], Notifying Memories [19], and HTM [17].

The works of Boehm and France-Pillois et al. are entirely
done at the software level; they are not directly related to our
work, as the former does not support reordering I/O opera-
tions (which we use for Subutai-HW communication), and
the latter is an optimization for OpenMP (which we only sup-
port indirectly). CASPAR accelerates a different type of appli-
cation (lock-free applications) not supported directly by
PThreads or Subutai. Notifying Memories can benefit from
our work if the spinlocks usage is done through PThreads
(i.e., pthread_spin_lock), which is not the case of the
paper presented in [19]. Besides, Notifying Memories target
the data-flow application model only, while we support any
model that uses the shared-memory paradigm.

HTM has two operation modes, whereas the Hardware
Lock Elision (HLE) is the only mode with legacy support.
HLE extends the parallel library code (e.g., PThreads) to use
a hot/slow path approach. First, the operation is executed
speculatively using HTM,; if it fails, then the legacy code is
executed. HTM uses the same approach of Subutai, making
changes in the library synchronization routines only.
Besides, HTM is complementary to our solution, as both
can be used in unison to handle synchronization primitives.

To the best of the authors” knowledge, Subutai is the only
solution that speeds up various types of synchronization
primitives while keeping unchanged the userspace interface
(i.e., APD).

3 SOFTWARE-ONLY AND SUBUTAI SOLUTIONS

Solutions for data synchronization are implemented in soft-
ware-only (SW-only) or in a hardware/software composi-
tion. The solutions provide trade-offs according to the
constraints on the target design (e.g., portability, perfor-
mance). This section aims to clarify the target architecture
used for achieving the experimental results, as well as to
clarify the control flows used to synchronize shared data,
using an example based on the Linux OS.

3.1 Target Architecture

Fig. 2 shows a schematic representation of the target archi-
tecture. Each core communicates with caches and a local NI.
An NoC with routers using a standard design that includes
buffers, a crossbar switch, and a switch allocator imple-
ments the interprocessor communication.
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Fig. 2. Schematic of the manycore target architecture.

Modern multiprocessors consist of double digits of proc-
essing core units [24]. Thus, we target an NoC-based many-
core architecture composed of 64 processing cores. Each core
has access to instruction and data caches. The Level 1 cache is
private and is divided into instruction and data caches. The
Level 2 cache is shared among the cores, and banks are dis-
tributed on the system. Therefore, our target architecture uses
a Non-Uniform Cache Memory Access (NUCA) architecture
with faster L2 accesses for nearby banks. We explore synchro-
nization solutions for Symmetric Multiprocessing (SMP),
because it facilitates the development of parallel applications,
as developers do not need to concern themselves with data
placement [25]. Hence, cache coherence is required and used.

The SW-only uses a single instance of Linux, while Subutai
employs a decentralized approach, where each core has its
self-governing OS. The decentralized OS design enables the
scheduler to be decentralized as well. A decentralized sched-
uler provides a faster thread switching, which benefits parallel
applications. Additionally, for dozens or more cores, message
passing can be much faster than memory sharing [26].

3.2 Target Parallel Library

Subutai transforms software events (e.g., mutex lock, condi-
tion wait) in hardware events (e.g., NoC packets). As such, we
can target any number of available library interfaces. We
chose the PThreads interface because (i) it is widely employed
as a de facto standard to parallel application implementation,
and (ii) it is used internally as the base of multiple synchroni-
zation solutions, as shown in Table 1. Consequently, PThreads
provides Subutai a broad range of applicability.

We focused on three of the four main groups of the
PThreads standard operations: mutex, barrier, and condi-
tion handling. Thread events (create, exit, join) are not on
the critical path, and so are left to be handled at the OS level.
An extensive description of PThreads operations is out of
our scope. We limit the discussion to the essentials of the
three focused groups.

The mutex group contains locking and unlocking func-
tions. Locking is a blocking function that exclusively locks a
variable. If the variable is already locked, the calling thread
is blocked. Otherwise, this operation returns the variable
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Fig. 3. Synchronization control flow employed on Linux-only based
solution.

locked by the calling thread. Unlocking is a non-blocking
function that changes the variable state and wakes up
blocked functions if there are any waiting threads.

The barrier group contains a single blocking function,
called wait, which synchronizes participating threads at a
user-specified code point. A barrier has a fixed number of
threads decided at allocation time; participating threads are
only woken up when they all hit the barrier.

The condition group contains wait, signal and broadcast
functions. Wait is an unconditionally blocking function that
inserts threads on a waiting list for a condition event. The
operation of the wait function requires locking a mutex vari-
able, which is passed as a reference to the function; this
mutex is unlocked once the wait function concludes its
work. The signal and broadcast are non-blocking functions
that wake up one and all threads, respectively, waiting for a
condition event. In these cases, the mutex is optional.

For all groups, one or more queues are required to record
blocked threads. Condition functions need to handle two
queues due to the associated mutex. Barrier and mutex func-
tions deal with only one queue. Besides, the three groups have
non-blocking functions that allocate and deallocate variables.
This work replaces the handling of these operations from an
entire software solution to a hardware/software approach.

3.3 Software-Only Solution

Fig. 3 exemplifies the synchronization flow for the SW-only
solution deployed on Linux. The example starts with the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 5, MAY 2021

user application requesting a synchronization operation
through a function call, such as a mutex lock. The function
is associated with a PThreads interface that acquires the
requested lock for the thread using a memory shared among
application threads.

The SW-only implementation tries to acquire the mutex
atomically multiple times. The first moment occurs within the
PThread library, which, on success, immediately returns to the
application (delay marked with ¢;). Otherwise, the PThread
library calls the Linux Kernel (specifically the Futex subsys-
tem), which has another codepoint for obtaining the mutex;
the last codepoint is the most time-critical point, as it implies
that the current thread goes to the sleeping state, waiting for a
mutex unlock event originated by the owner thread to be
awakened for requesting the mutex again. ¢, and t3 reference
the delays associated with these two accesses to the shared
memory, respectively. Additionally, if the thread cannot
acquire the mutex lock after being awakened (due to another
thread executing on ¢;), then the SW-only solution implements
a loop to re-execute its code. At each loop, the basic delays ref-
erenced by ¢, and ¢35 may be increased by At,, or At, + At;,
depending on where the mutex lock is obtained [27].

Throughout the timing of the synchronization flow, extra
delays may occur due to access to the shared cache memory,
as well as possible cache misses in the shared data that would
imply a much more significant delay. Also, since Futex is
potentially distributed into the manycore caches, these two
last codepoints imply communication costs through the NoC.

3.4 Subutai Solution

Subutai is a synchronization solution for legacy and novel
parallel applications comprised of a software/hardware co-
design to perform fast synchronization operations. This sec-
tion describes the high-level interaction of the Subutai’s
components, which are illustrated in Fig. 1, together with a
general-purpose computing stack.

Subutai encompasses a userspace library, a kernelspace
driver, a hardware module, and an optional scheduler policy
(discussed in Section 7). The userspace library mimics an
existing synchronization solution intended for parallel appli-
cations. Therefore, the Subutai library procedures provide the
same interfaces (i.e., API) with different implementations.
The ability to mimic existing synchronization libraries is an
essential feature of Subutai to speed up parallel applications.

Each core in the system has a Subutai-HW module that
extends the NI and is responsible for accelerating synchro-
nization operations. Subutai-HW is a Finite State Machine
(FSM) coupled with a small dedicated memory (details in
Section 5). Once the user application calls a procedure, the
Subutai library employs kernel services through system
calls, providing the link between the hardware and software
parts. Thus, the userspace library abstracts the hardware
protocol (Subutai-SW - details in Section 4).

Fig. 4 depicts the Subutai communicating flow. A unique
identifier (ID) on the entire system addresses each synchroni-
zation variable. An incremental counter determines the NI
that hosts the synchronization primitive: NI hosts the first
primitive; NI hosts the second one, and so on, following a
fairness method. Other dynamic allocation strategies can be
further studied, but this is out of the scope of this work.
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Fig. 4. Synchronization control flow employed on Subutai.

The communication flow of Subutai starts with the appli-
cation making a PThreads interface request through any
function described in this section; the Subutai library identi-
fies the unique ID for this primitive and passes it to the
driver along with the interface request. Then, the driver
writes to either registers or a memory that the NI has access
to; this decision is made at the driver level with the capabili-
ties available in the system. Next, the driver writes in a con-
trol register to inform the command to the NI and waits for
an interrupt to receive the remote response.

In case the local Subutai-HW hosts the lock, the NI can
respond immediately, performing a prompt request from the
driver. Thus, the driver does not use the router, avoiding the
injection of packets in the NoC; the delay of this procedure is
marked with 7;. Therefore, situations where the local Subutai-
HW hosts the synchronization primitive implies a quick
response as the request does not propagate across the NoC.

If the local Subutai does not host the lock, then the local
NI injects a packet into the NoC targeting the remote Subu-
tai-HW, which handles the request and responds to the local
NI with a new packet. The address of the remote Subutai-
HW is embedded into the ID packet field (discussed in
Section 5.1). This procedure implies an additional delay of
packet traffic on the network, being noted by 7.

3.5 Subutai Versus SW-Only Solutions

The comparison of Fig. 4 with Fig. 3 allows us to understand
the differences between Subutai and SW-only approaches.
Synchronous flows marked by ¢; and 7; exemplify situa-
tions where the local processing manages the lock. Thus,
regardless of the approach used, the response latency is
lower compared to the latencies of the decentralized proc-
essing flows.

Subutai offers a more efficient hardware-level solution
for a decentralized decision; thus, the flows marked with ¢,
and t3 have higher latencies than the one marked with 7.

The reasons for the lower latency of Subutai are: (i) lock-
ing for the mutex queue (marked with * in Fig. 3) is required
only in the SW-only approach, as Subutai-HW has access to
private memory area to handle the concurrent threads
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TABLE 2

Memory Space Reduction of Synchronization Primitives
Primitive GNU LibC x86 64 Subutai Reduction
(name) (bytes) (bytes) (Percentage)
mutex 40 4 90.0%
barrier 32 4 87.5%
condition 48 4 91.7%

(Section 5.1); (ii) susceptibility to data conflicts in distrib-
uted shared caches, which does not occur in Subutai that
implements this functionality using dedicated queues in
Subutai-HW (Section 5.1); (iii) the efficiency of a lock event
when another thread is using it. The Subutai implementa-
tion returns this information to the local tile as soon as it is
available, while the SW-only implementation is delayed by
the OS scaling (Fig. 4 — HW events can occur concurrently
to the execution of the thread); (iv) the use of dedicated con-
trol packets allows to employ Quality-of-Service (QoS) tech-
niques, providing differentiated priority for the traffic of
control packets (Section 5.1). The consequence is that control
packets are propagated with lower average latency and that
the variability between latencies is also lower compared to
data packet latencies.

As a conclusion, either because of cache conflicts or
packet latency variability in the NoC, Subutai ensures more
predictability than the SW-only solution.

4 SUBUTAI-SOFTWARE (SUBUTAI-SW)

Subutai provides a new PThreads library for parallel applica-
tions to use our solution. Every time the user application
requests an operation on a mutex, barrier, or condition, the
library passes on the request through a system call for the OS
driver (items (i) and (ii) from Fig. 4). The request is changed in
terms of structure, as the user application handles these syn-
chronization variables by variable names, which are memory
positions, while the hardware tracks these variables with a
unique ID unrelated to the memory and name of the variable.
The driver receives the unique ID for the variable, which is
known by the library (not known by the application) and
decodes the packet destination through reserved fields in this
ID (Section 5.1) (item (iii) from Fig. 4). The request is processed
in hardware, and, eventually, the response is received in the
local NI. Then, the local NI interrupts the software to notify it
of a packet arrival event; the OS driver reads it and is able to
finish the user application request (last four steps of Fig. 4).
Finally, other types of PThreads operations (i.e., thread man-
agement) are kept unchanged.

Because most operations of PThreads are offloaded to be
handled on the hardware, valuable cache space can be saved
(up to 91.7 percent compared to x86_64) for the respective
structures of the synchronization variables, as shown in
Table 2. All synchronization primitives have the same size in
Subutai since they only contain the 4-byte unique ID (refer to
Section 5.1). The on-chip NI driver implementation was based
on an existing driver that performs basic procedures for send-
ing and receiving packets. We reuse these procedures for the
requests from the PThreads library. Additional logic is intro-
duced in the driver to understand the packets sent and
received, as Subutai makes the driver an active component to
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Fig. 6. Subutai-HW control structure.

change thread states on its own (e.g., wake up a thread when it
owns a mutex).

5 SuBUTAI-HARDWARE (SUBUTAI-HW)

5.1 Architecture and Implementation Choices
Subutai-HW extends a standard NI architecture for han-
dling synchronization operations fastly. Fig. 5 shows the
schematic representation of Subutai-HW and its location on
the target architecture. The main components of Subutai-
HW are (i) an FSM, (ii) a set of registers; and (iii) a local
ScratchPad Memory (SPM), which is entirely controlled in
HW by the FSM, except for memory initialization. Initializa-
tion is done through the OS driver and requires the creation
of a free double-linked queue. We validated and imple-
mented the Subutai-HW architecture by Register-Transfer
Level (RTL) simulation [28] and synthesis [29]. Besides, we
developed an analytical model to demonstrate its operation
latencies and scalability.

The left-hand side of Fig. 5 shows that Subutai-HW
employs double-linked queues to record events. As an alter-
native to statically allocating for the worst case, the double-
linked queues allow Subutai-HW to employ a dynamic allo-
cator for reducing memory consumption to the minimum,
at the cost of additional pointer arithmetic logic. Besides,
condition variables are dealt more efficiently with such
structure, as it avoids the thundering herd problem [30]. We
based the queue manipulation on the futex implementation
of the Linux kernel [31].

Subutai-HW operates using two structures for recording
information. Fig. 6 shows the first one, which records the
metadata of the synchronization primitives. Software only
knows the first 32-bit field, which is employed as an ID of
this primitive. However, for Subutai-HW, the first bit “F” is
used to allocate/deallocate this structure. The next 7-bit
field is the unique ID for the NI on the system. Lastly, the

F NI ID Self Pointer F Prev R Next
Queue head Queue tail Thread ID Core ID
Value
(Owner/Number of threads) Max Value Fig. 7. Subutai-HW queue structure.

furthest 24-bit field is used as a pointer to itself; we employ
this technique to avoid the cost of searching for an element
of the structure every time a new request has arrived. The
second 32-bit field encompasses the head and tail of the
double-linked queue. The last 32-bit field records values
used for some of the primitives. The first 16-bit field is
employed to (i) record the thread and core that owns a
mutex, and (ii) store the current number of threads waiting
on a barrier. The barrier primitive uses the furthest 16-bit
field to record the maximum number of threads allowed in
a barrier.

Fig. 7 shows the second structure — a double-linked
queue element composed of six fields. The first bit is
employed to allocate/deallocate the element. The “prev”
and “next” fields are pointers to the previous and next ele-
ments, respectively, or nil if they do not exist. The 16th bit
“R” is reserved and used for memory alignment. The last
32-bit field identifies the requesting thread. The “Core ID”
field is padded with zeroes because the NoC packet uses
only 8-bit to identify the core.

The minimum memory requirement for the SPM is one
control element and 63 queue positions, regarding a target
64 core architecture. Since we have to record up to p—1
cores, the minimum SPM size is 129£63x64 — 516 bytes. Note
that Subutai-HW is incorporated into every NI; conse-
quently, we handle up to 64 primitive variables even with
minimum sizing. The target architecture employs an SPM
of 1 KiB (4 control elements and 122 queue elements) that
handles up to 256 primitive variables in hardware. A dou-
ble-linked queue allocates elements dynamically, allowing
Subutai to consume memory on demand. A static allocator,
on the other hand, cannot handle more than one control ele-
ment with only 122 positions available (< 2 x 63) — since
the worst-case scenario is 63 positions per element,’ as

3. We assume for the sake of size estimation that the number of
threads does not exceed the number of cores. However, the queue is
capable of handling such a scenario.
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TABLE 3
Latencies for Subutai-HW FSM States

State Best response Worst‘ Packet Injection
time response time
. (n xm)+
Allocation 4m + ¢ (3m + c) (nxm)+(m+c)
Deallocation 3m 3m None
Mutex Lock 2m + ¢ 11m 2m + ¢
Mutex Unlock 2m 10m + ¢ 2m +c¢
(m+c) + (12m +
. . (m+c¢)+p x|4e) + (23m + 7c)...
Barrier Wait ™™ (11m + 3¢) —(m+c¢)+px
(11m + 3¢)
.. - 5m+c+ 10m + ¢+
Condition Wait Mutex Unlock | Mutex Unlock None
Condition
Broadcast m 18m + ¢ 1lm+c
Condition Signal m 29m + 2¢ 11lm+c

¢ = cycle latency, m = memory latency, n = number of synchronization varia-
bles handled by Subutai-HW, p = number of threads on a barrier.

explained earlier. Thus, a static solution would be either too
limited or a waste of memory resources.

Although the number of primitives used in the experi-
mental results is far from the SPM memory limit, there are
two scenarios where the SPM cannot handle a request. In
one scenario, the system does not have more primitive
space available in any SPM; thus, Subutai rolls back to pro-
vide the SW-only implementation of the primitive. In the
other scenario, there are no more queue elements available
in a given primitive; therefore, we respect the POSIX stan-
dard and set errno to EAGAIN [7], hinting to the developer
that it should try again later.

5.2 Response Time

Table 3 shows the latencies of the states as dependent on the
Subutai-HW cycle ¢, the SPM write /read latency m, the num-
ber of synchronization primitives handled n, and the maxi-
mum number of threads on a barrier p. Each memory
operation can either be a write or read operation in a given m
cycle. The first column identifies the Subutai-HW state. The
second and third columns identify the fastest and slowest
latencies for the state, respectively. Finally, the last column
shows when the packet is ready to be injected into the NoC -
as, for some states, packets can be injected before finalizing
the request processing. Additionally, some states (e.g., Deallo-
cation) do not need to generate packets at all.

To illustrate the best and worst response time of Table 3,
we describe the Mutex Lock state, which models the
pthread_mutex_lock operation. The fastest scenario,
whose latency is 2m + ¢, happens when the mutex is
unlocked. It requires two memory operations: (i) fetch the
control structure (field “Value” from Fig. 6) to check the
owner of the mutex (latency = m); and (ii) rewrite this field
with the requesting thread (latency = m). Finally, the NI is
notified that a new packet can be injected (latency = ¢). The
injected packet is the same as the requesting packet except
for the header. The worst scenario takes more time (latency
= 11m) because the state deals with two queues entries. It
starts with the same memory operation that reads the con-
trol structure for this primitive. Thus, the circuit realizes
there is already an owner, which demands to queue up the
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TABLE 4
Subutai-HW States Latency With ¢ = 1ns, m = 2ns,n =4, p =
63, FSMentry = 4ns, FSMexit = 1ns

State Best response time VYorst response | Packet Injection
(empty queue) time (queued) Best | Worst
Allocation 14 ns 20 ns 10ns | 15 ns
Deallocation 11 ns Il ns None
Mutex Lock 10 ns 27 ns None 10 ns
Mutex Unlock 9 mns 26 ns None 12 ns
Barrier Wait 19 ns 1583 ns None 732[137
Condition Wait 20 ns 47 ns None
Condition Broadcast 7 ns 42 ns None 27 ns
Condition Signal 7 ns 65 ns None | 27 ns

request. First, Subutai-HW allocates a free queue entry and
updates its queue pointers (takes up to 4 memory opera-
tions); then, it writes the requesting thread information into
it and the tail information in the primitive metadata (6 more
memory operations), performing 11 memory operations in
total. The latency for the other states follows a similar
procedure.

Table 4 shows the latencies used in the experimental
results. We clocked Subutai-HW at the same frequency as
the NI (1 GHz). SPM employs the previously discussed 1
KiB single-port SRAM-based implementation with uniform
access of 2 cycles, 4 control structures, and 122 queue
entries. Besides the Subutai-HW state latencies of Table 3,
Table 4 includes the values of the NI used in this work; let
FSMentry and FSMexit be the entry and exit latencies for
Subutai-HW, then FSMentry = 4 ns (3 cycles for 3 flits of 32
bits and 1 cycle to decide the next state) and FiSMexit =1
ns (1 cycle to set a flag) to reach any state. A detailed report
of equations and values described in Tables 3 and 4, and the
pseudo-code implementation of Subutai-HW can be found
in [32].

The latency required to release threads on a barrier exceeds
one thousand nanoseconds due to the queue size of threads
waiting on the barrier — it does not represent the packet injec-
tion latency. Thus, some threads execute much earlier than
the total value. As shown in the last column, the packets are
injected periodically at every 25 ns, except for the first packet,
which is injected in 7 ns. Thus, the total number of cycles is
1,583 ns, which is composed of the following parameters:
FSMentry + FSMexit +m + ¢+ p x (11m + 3c).

The Condition Broadcast and Condition Signal states show
interesting latency results. At first glance, it would seem
more plausible that releasing one thread (signal) would be
faster than releasing all threads (broadcast). However, this
conjecture is not valid due to the following reasons. First, by
releasing all threads, the state has to deal with only one
queue (mutex) instead of two queues (mutex and condi-
tion). Second, due to the way condition works, only a single
thread is indeed released since a mutex is associated with it.
Consequently, the broadcast state avoids the scenario previ-
ously described for the barrier state — only the owner of the
mutex will be released.

Subutai-HW also includes six 32-bit and three 1-bit regis-
ters; three are used for the packet fields (Fig. 8), and six
more to (i) handle the free queue; (ii) memory swapping
operations; and (iii) control flags to receive and send pack-
ets. For receiving/sending packets, Subutai-HW reuses the
already available registers of the NI. The packet structure is
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Fig. 8. Subutai’s packet format.

combined with the recorded information in the two control
structures (Figs. 6 and 7) to handle any request.

6 APPLICATION SYNCHRONIZATION MODEL

The performance of Subutai is evaluated through the widely
used PARSEC benchmark, as it provides a wide range of
application domains, parallelization models and data shar-
ing. From their application set, we employ Bodytrack,
Streamcluster, and x264; we limit our discussion to the syn-
chronization model used by these applications. An exten-
sive overview of these applications is outside the scope of
this paper (more information can be obtained in [33]).

Bodytrack is a computer-vision application that tracks a
3D pose of a mark-less body. It uses mutexes for data shar-
ing, and conditions and barriers to make sure all threads are
synchronized and able to handle more requests. The work-
flow of Bodytrack starts with a single ‘master” thread (T)
responsible for creating synchronization primitives, creat-
ing T, _ 1 threads, and sending computation requests for
them. Then, the threads T,..., T, _ 9 do the actual compu-
tation through the requests from T(y. Finally, the last thread
(T, - 1) performs asynchronous 1/O operations (e.g., load-
ing images from disk to memory).

Fig. 9 depicts the workflow of Bodytrack. Initialization is
done exclusively by T, where the synchronization varia-
bles and threads are created. Then, T() divides the computa-
tional work among the worker threads and sends a
condition broadcast for all worker threads. Meanwhile,
each worker thread checks if its work is available - if so, the
thread skips the condition and moves on to the next phase;
otherwise, the thread waits for the condition variable.

Each thread uses mutexes to access shared memory
while performing the computational work. Meanwhile, T
uses a barrier to wait for all worker threads to conclude
their jobs. The barrier guarantees that all worker threads are
ready to handle the next work request. As the worker
threads finish their work, they join the barrier as well. Only
when all threads have joined the barrier, they are released
to execute the next phase, which loops back to the genera-
tion of more work to the worker threads. This loop is exe-
cuted until no more work is available.

The workflow plotted in Fig. 9 simplifies three aspects of
the work of the Bodytrack application. First, after the
worker threads have received a request through the condi-
tion, they acknowledge it using another barrier (not shown
in Fig. 9), and the associated mutex of the condition. Second,
Fig. 9 does not show the thread responsible for asynchro-
nous I/O (T}, _ 1) because it communicates only with T
and the number of requests is at most 10 events, which is
tiny compared to the core workflow. Third, Fig. 9 abstracts
the application process conclusion because this process
does not use data synchronization.
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Fig. 9. Bodytrack’s synchronization scheme. T, _ | is not shown as it
does not participate in the Bodytrack workflow.

Streamcluster is a data-mining application that solves the
online clustering problem for a stream of input points; it
computes an approximation for the optimal clustering of
them. This application has a simpler communication model
than Bodytrack, using a single instance of mutex, barrier,
and condition. Nonetheless, Streamcluster shares the same
barrier-based synchronization scheme as Bodytrack.

x264 is a lossy video encoder for high-quality streams
that do not employ barrier synchronization primitives, and
all mutexes variables are associated with condition varia-
bles. This application uses a sliding pipeline model, whose
number of pipeline stages equals the number of video
frames, while the sliding window is determined at runtime
by the number of thread requested. The total number of
stages created is 1 + 2 x video frames [34].

Table 5 displays the number of synchronization primi-
tives used by each PARSEC application. Additionally,
Table 6 depicts the number of synchronization events for
the same set of applications. On the one hand, neither the
number of threads nor the input size affects the number of
synchronization variables, except for x264, where the num-
ber of frames (i.e., input size) affects the number of primi-
tives. On the other hand, Table 6 displays that both affect
the number of calls of these primitives.

7 SCHEDULING

We employ multiple parallel applications that share com-
puting resources to minimize the global idle time and maxi-
mize the rate of application instances. This work proposes a

TABLE 5
Number of Synchronization Primitives for
PARSEC (simmedium Input)

Application Mutex Condition Barrier
Bodytrack 3 1 4
Streamcluster 1 1 1
x264 95 95 0
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TABLE 6
Number of Events of Synchronization Primitives During the
Execution of PARSEC Applications (simmedium Input)

o Events per number of threads
Application Type 16 3 N

Barrier! 2101 4293 13416

Bodytrack Condition 447 750 1529

Mutex 9000 10472 8677

Barrier! 208048| 364480 728960

Streamcluster Condition 381 802 1274

Mutex 510 1054 2142

Barrier 0 0 0

x264 Condition 86 310 354

Mutex 4154 4340 4344

(1) Every packet is counted as an event. Thus, in a 64-thread barrier, for
instance, 64 events are generated for waiting on a barrier, and other 64 events
are generated for releasing them, as the NoC does not support broadcast
messages.

new scheduling policy to accelerate the critical sections of
parallel codes. Additionally, we evaluate its performance
impact on parallel applications against the Round-Robin
(RR) scheduler, which does not differentiate the sections of
parallel applications. We do not propose a new scheduler,
instead, a scheduler policy that any scheduler can adopt in
its decisions.

We target the scheduler rather than the application, as it
does not require modifying the application code. Thus, we
intend to further speed up applications by aggregating mul-
tiple parallel applications with a critical section-aware pol-
icy. Running multiple applications makes every application
slower (i.e., increases the execution time), as they have to
contend for computational resources. However, the sched-
uling impact on execution time can be mitigated by the poli-
cies employed on the scheduler.

The fair scheduler employs equal-priority for all applica-
tions making them have the same slowdown to enforce fair-
ness. Eq. (1) shows the lower-is-better unfairness metric [35]
that can be used to evaluate the fairness of the scheduler

MAX (Slowdowny, . .. Slowdown,,)

1
MIN (Slowdowny, . . M

Un fairness =

., Slowdown,,) "

Where n is the number of applications in the workload
ETchedi

and Slowdown; = Tk, where ET,.,.q; denotes the execu-
tion time of application ¢ under a given scheduler, and
ET jonei is the execution time of the application ¢ when exe-
cuting alone.

The baseline scheduler employs the RR policy that
avoids starvation by running the application set in a deter-
ministic order and uses a fixed share of execution time
(timeslot). These features provide a fair distribution of exe-
cution runtime as all applications have the same number of
timeslots regardless of the application type (i.e., low unfair-
ness).* The experimental unfairness values obtained will be
discussed in the experimental results section.

Parallel applications can be roughly divided into sequen-
tial and parallel execution modes. Every parallel application
contains at least a small sequential part for initialization,

4. Assuming the scheduler shares the same timeslot for all threads of
a given application.
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Fig. 10. Comparison of three application sets for the distribution of time
spent in critical section on a RR scheduler with a timeslot of 1 ms.

such as thread creation and parsing of application parame-
ters. Mutual exclusion data access is another sequential exe-
cution commonly used among parallel portions. By using a
mutex, either independently or associated with a condition,
a thread is exclusively executing a given portion of code
(i.e., a critical section) and potentially limiting all other
threads. Consequently, delaying the execution of critical
section code should be avoided to decrease the overall
sequential time of an application.

Fig. 10 compares the critical section latency for three sets
of the Bodytrack application: (i) standalone (x1), with four
(x4), and with eight instances of Bodytrack (x8). The Y-axis
is the percentage of overall critical section time on a given
time interval (X-axis). The X-axis comprises the last value
until the current value, except for the first case, where it
starts at zero and goes until 2 ns. For instance, the X value
equals to 2'2 comprises the time spent on a critical section of
[2",2'%) ns. As discussed previously in Section 6, all threads
of Bodytrack, except the last one, participate in the synchro-
nization scheme; since this example employs 64 threads, up
to 63 threads share the same critical section.

We compare the same application on these three scenar-
ios; consequently, the number of accesses into the critical
section is approximately the same. However, the time spent
into a critical section by a thread is not the same, as the
scheduler can interrupt the application execution. Fig. 10
shows that as the number of applications increases, the time
each thread spent into a critical section also tends to
increase since the scheduler does not differentiate execution
on a sequential or parallel mode. The figure shows two sit-
uations where the time spent in critical sections spikes
upward: from 2! to 212 ns and 28 to 2! ns. The first spike
results from the application synchronization usage: this
interval has the most number of cases for Bodytrack, as
shown by the standalone case. The second spike happens
only when multiple applications are introduced (Body-
trackx4 and Bodytrackx8). As we use a timeslot of 1 ms,
the time spent in the critical section revolves around half
this value (i.e., 2'9). The threads do not necessarily use the
entire timeslot, as they can request to be scheduled out to
wait for an event, for instance. Bodytrack has shown signifi-
cant enough cases of such scenarios that the spike happens
around half of the total timeslot. Nonetheless, this experi-
ment shows that a scheduler based on the RR policy affects
the synchronization latency and execution time.
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Fig. 11. Overall time spent in critical section for the sum of the work-
related mutexes of Bodytrack on RR and CSA-enabled schedulers.

Execution time in critical section (ms)

Fig. 11 (legend RR) shows the total time spent in the criti-
cal section for the same set of applications. As expected, the
time spent increases as more applications content for core
usage. The behavior shown here by not taking note of the
critical sections of parallel applications motivates the pro-
posal of introducing the context of critical sections into the
scheduler decisions. Therefore, the gains of utilizing Subu-
tai can be maintained in a massive scheduler contention sce-
nario. We call this proposal the critical section-aware policy
(CSA), whose results are depicted in Fig. 11 (legend CSA).
The critical section execution time is kept as close as possi-
ble to the single application execution by applying the CSA

policy.

7.1 Critical Section-Aware Policy (CSA)
We introduce CSA into the scheduler policies for executing
critical section code as fast as possible. The policy works as
follows. Every time a given thread has CSA enabled and is
currently inside a critical section (i.e., holding a mutex), it
has priority over the execution of all other threads that are
not in the same scenario. In case another thread also has
CSA enabled and is inside another critical section, an RR
policy is applied to switch between them until either one
finishes. Finally, if there are no threads that meet those
requirements, an RR policy is applied to switch between the
entire application set. We use RR as the baseline scheduler
policy, yet more complex policies can also be applied.
Unfortunately, increasing the priority of a given thread
over all others without any limitations generates two issues:
(i) the scheduler deadlocks if the application also deadlocks;
and (ii) it affects negatively on the performance of all other
threads (i.e,, high unfairness). Therefore, a time limit,
defined in Eq. (2), was implemented in the CSA to deal with
both issues

CSALimit = (ThrReady + ThrRun — 1) x (2 x T5S),
(2)

where ThrReady and Thr Run are the numbers of threads
currently in the ready and running states, respectively. For
both cases, the idle thread is ignored. 75 is the chosen time-
slot for the RR policy, generally in milliseconds. For
instance, for a scheduler with a sum of 8 threads on the
ThrReady and Thr Run states and a TS of 1Tms, when one of
these threads gains CSA priority, its time limit is 14 ms.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 5, MAY 2021

TABLE 7
Impact of C'SA Limit on the Bodytrack Application Set
Employing a Timeslot of 1 ms

Application set Schedule requests ~ Schedule ~ CSA (CS) RR(CS)
(not CS) requests (CS)

Bodytrack x4 305517 CSA (CS) + 15267 1558

Bodytrack x8 323379 CSA (RR) 15274 1274

CS = Critical Section.

CSALimit has a direct proportionality between a parallel
application execution time and the scheduler’s unfairness.
In other words, a high CSALimit value will produce a fast
parallel application execution for an unfair scheduler, and
the opposite is also true. As we aim to keep the scheduler’s
fairness, we chose a limit that accelerates parallel applica-
tion without increasing the scheduler’s unfairness. Eq. (2) is
a first empirical proposal, but a dynamic limit can be used
to rebalance the CSA policy according to the scheduler pro-
file. We chose the limits defined in Eq. (2) as it restricts the
delay on other threads at most three times compared to the
RR policy. When all threads are running on the RR policy,
the maximum delay is (ThrReady+ ThrRun — 1) x TS.
Thus, the scheduler changes to the RR policy to maintain a
fair scheduling, if the execution of the critical section
reduces the priority of the other threads. The time limit
deals with deadlock situations; however, to avoid livelocks,
the scheduler requires a system-specified limit on the use of
CSA policy for a given timeframe. Such methodology has
been used effectively against other types of scheduler
livelocks [36].

The fairness restriction of CSALimit allows accelerating
only a subset of critical sections; this is the reason why the
critical section time is lower with Bodytrack x8 than with
Bodytrack x4 (Fig. 11 - legend CSA). Table 7 shows the
impact of CSALimit on the Bodytrack application set. The
second, fourth, and fifth columns show the number of
scheduling requests made outside of any critical section,
inside a critical section with CSA enabled, and inside a criti-
cal section where RR has been enabled due to CSALimit,
respectively. The third column shows that all scheduling
requests for a critical section are either using CSA or RR pol-
icy. Approximately 10 and 8 percent of the total critical sec-
tions had CSA disabled as their time surpassed the
CSALimit time on Bodytrack x4 and x8, respectively. Even
though we are analyzing the same Bodytrack, while run-
ning in a set of 4 and 8 applications, there are some discrep-
ancies in the total number of requests for scheduling due to
the use of synchronization primitives. Streamcluster and
x264 presented shorter critical sections on our experimental
results, and they never triggered the CSALimit.

8 EXPERIMENTAL RESULTS

We demonstrate our solution results using a two-fold
approach. First, the system area and scalability of our solu-
tion are evaluated through an RTL implementation of Subu-
tai-HW. Second, the system performance and scheduler are
evaluated through architecture simulation and parallel
applications from the PARSEC benchmark. Like Butko et al.
[37], we employ the Gem5 simulator [38] to produce
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TABLE 8
NI, Subutai-HW and SPM Synthesis With 28 nm SOI
Components Area (um?) Overhead
Basic NI 13539.23 -
Subutai FSM 2626.21 19 %
SPM 3702.00 27 %
Basic NI + Subutai-HW* 19867.44 46 %

*Subutai FSM + SPM

synchronization points of the applications; next, we feed
this information into an in-house SystemC simulator [32],
which enables us to collect experimental results. We run
applications with and without Subutai: the former will
henceforth be called Subutai, and the latter SW-only (.e.,
Linux Kernel).

8.1 Area

Subutai-HW comprises a register-based NI, an FSM for syn-
chronization control and linked pointer manipulation, and
a 1 KiB SPM to store metadata and events. We use a very
basic NI with 32-bit links, packing and unpacking logic, no
virtual channel and 2 I/O buffers of 16 x 32 bits. It is worth
noting that using HW synchronization operations releases
valuable memory and cache space that would otherwise be
required. Besides, the memory requirement is negligible if
compared to a typical processor cache (less than 10 percent,
if the cache size is 16 KiB). Table 8 summarizes the synthesis
results showing our solution increases by 46 percent the
basic NI area, including the local SPM; however, the over-
head is amortized when the entire chip area is considered.
For instance, using the Patel et al. [15] chip area of 400 mm?,
the percentage of total area consumption of Subutai-HW is
G1x0U3282L — (0.101%, while the enhanced NI is $4x0.01880TH —
0.317% for 64 cores. We synthesized all hardware elements
using Synopsis DC [29] with 28 nm Silicon on Insulator
(SOD) technology and 1 GHz clock frequency. Additionally,
the SPM was synthesized with Cut Explorer [39].

8.2 State-of-the-Art Area Comparison

We compare our solution to those related work that provide
enough data about the absolute area consumption (i.e., not
in percentages) and technology used. Table 9 depicts the
area consumption of five hardware-based solutions. For a
fairer analysis of the area consumption of each solution, we
divided the total area consumed by the estimated number
of cores in the system (i.e., area per core).
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Fig. 12. Experimental results showing acceleration for a single parallel
application. Values are in seconds of execution; the dotted red color is the
sum of synchronization operations; the flat blue color is processing time.

Subutai is second-to-last in terms of area consumed per
core in the system. Additionally, Subutai and HTM have an
additional area requirement per core; i.e, HTM needs to
change the first cache level of the system for its functional-
ity, and Subutai needs an SPM memory for synchronization
handling. Even so, Subutai is third-to-last in terms of area
consumption when both areas are combined. The hardware
of Abellan et al. [13] has the overall smallest consumption as
it is mainly comprised of wires and controllers. The last line
of Table 9 shows the estimation of area consumption for a
400 mm? chip [15] for the same set of related work. Subutai
only consumes approximately 0.1 percent of the total chip.
Once again, it is third-to-last in overall area consumption.

8.3 Acceleration of Single Parallel Application

Fig. 12 shows the results obtained for the three PARSEC appli-
cations analyzed in this work. We analyze the entire applica-
tion execution but plot the results for two threads for each
application: the master thread (T()), responsible for global syn-
chronization, and a worker thread instance (T7). Besides, the
results are divided into two: synchronization operations and
processing. The former aggregates all calls to PThreads (e.g.,
mutex lock), while the latter collects the processing needed by
the application. NoC communication and Subutai-HW laten-
cies did not contribute significantly for the execution time;
thus, they are not visually perceivable on the figure, although

TABLE 9
State-of-the-Art Area Consumption

HTM [18] MCAS [15] Abellanet al. [13] Notifying Memories [19] Subutai
Area per core (mm®) 0.32800 0.01824 0.00022 0.00534 0.00262
Additional area per core (mm?) 0.01560 No No No 0.00370
Target Frequency (GHz) Not addressed 3.40 0.62 0.50 1.00
Target System 8-core 32-core 64-core 12-core 64-core
Technology (nm) 65 14 (scaled) 45 65 28
Technique Estimation Synthesis Synthesis Synthesis Synthesis
Overhead for a 64-core 400 mm? chip 5.497 % 0.291 % 0.003 % 0.008 % 0.101 %
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(a) Bodytrack application set (OAT x RR x CSA).
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(c) x264 application set (OAT x RR x CSA).
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(d) mix application set (OAT x RR x CSA).

Fig. 13. Execution in seconds for multiple eight-application sets (lower is better) - (Exec = Execution).

they are present. Nonetheless, the figure shows that our solu-
tion reduces the application total time by handling synchroni-
zation faster.

From the designer point-of-view, the master thread (T)
shows the effective speedup, as it is responsible for initializing
and finalizing the application. Bodytrack achieved a speedup
of 1.78 x, and 1.77x for 32 and 64 cores, respectively. Stream-
cluster achieved a speedup of 2.71 x, and 2.20x for the same
core set. Finally, x264 achieved a speedup of 1.11x and 1.05x
for the same core set. Therefore, our solution achieved a
speedup of 1.77 x, on average. Table 6 displays the number of
synchronization calls, explaining the speedup difference; for
instance, Streamcluster requires, roughly, 18, 23, and 31 times
the equivalent of Bodytrack for 16, 32, and 64 cores, respec-
tively. Thus, we can better optimize worker threads, as they
are the ones using these primitives. The results also show that
Bodytrack and Streamcluster are not scalable to 64 cores.
Southern et al. [40] have independently corroborated this limi-
tation as well. Our solution works the same regardless of the
application scaling — as will be shown with a producer-con-
sumer application on Section 8.5.

The x264 application does not employ barriers because it
uses hundreds of synchronization variables instead of dozens
(Table 5), and it does not have a logical dependency that
involves all threads; therefore, x264 has less contented syn-
chronization primitives. While Bodytrack and Streamcluster
utilize synchronization in all worker threads, some of the
worker threads of x264 have almost no synchronization; in
turn, the application is not penalized with significant synchro-
nization overhead. Another application like x264 from PAR-
SEC, named Facesim, is available in [32], and it shows similar
speed up results: 1.10x and 1.27 x for 32 and 64 cores.

Our solution provides less direct benefit to x264 com-
pared to the other two applications since it is designed to
accelerate synchronization overhead. In other words, when
synchronization primitives are not used to control most
threads, their acceleration may not affect significantly the
execution time since the synchronization may not be in the
critical path.

Since we aim for legacy code compatibility, no changes
have been made to any applications, either to increase the
use of PThreads or to insert metadata for Subutai. Therefore,
we target scenarios of running multiple applications to
improve the speedup of our solution further.

8.4 Accelerating Multiple Parallel Applications

Fig. 13 displays the experimental results organized into sets
of eight applications each: (a) eight instances of Bodytrack,
(b) eight instances of Streamcluster, (c) eight instances of
x264, and (d) a combination of 3, 2 and 3 instances of Body-
track, x264, and Streamcluster, respectively. All applications
have been set to use 64 threads and cores without restriction
regarding mapping threads to cores.

Figs. 13a, 13b, 13¢, and 13d illustrate the entire execution
time in seconds of an application set (i.e., from initialization to
termination of all applications), comparing RR, CSA, and a
One Application at a Time (OAT) scheduler. The latter sched-
uler is used for representing a mono application system (i.e.,
OAT can only execute one application). Lines a in Figs. 13a,
13b, 13c, and 13d show that Bodytracks, Streamclusters, x264s,
and mixed application sets have accelerations of 1.86 x,
2.13 x, 1.07 x , and 1.91 x , respectively, when running with
Subutai compared to SW-only implementations with an OAT
scheduler.
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TABLE 11
Results for Producer-Consumer Application

TABLE 10

Unfairness Metric for CSA and RR Schedulers (Lower is Better)
Application set SW-only Subutai

RR CSA RR CSA
Bodytrack x8 1.04 1.04 1.16 1.15
Streamcluster x8 1.11 1.11 1.19 1.19
X264 x8 1.27 1.24 1.12 1.20
mix x8 2.00 1.71 1.88 1.83

Additionally, lines b and ¢ of Figs. 13a, 13b, 13¢c, and 13d
show that placing these applications in a competitive schedul-
ing scenario increases the gains further because the idle time
for a given application can be used as working time for another
application; i.e., comparing CSA with OAT the speedups for
Bodytracks, Streamclusters, x264s, and mixed applications are
1.58 x, 2.69 %, 4.61 %, and 2.09 x, respectively. The SW-only
implementation has also presented gains, but the execution
time of it is always higher compared to Subutai for the set of
applications analyzed here. For the Streamcluster and mixed
applications (Figs. 13b and 13d), executing them on Subutai
with an OAT scheduler is faster than executing them on SW-
only with either scheduler policies used in this work.

Table 7 shows the impact of a scheduling policy
restricted to critical sections is limited, as for an application
such as Bodytrack, this section is approximately 5.12 per-
cent of the total execution time. For Streamcluster and x264
application sets, not shown in Table 7, the critical section
scheduling requests are 0.26 and 9.29 percent of the total
number of requests, respectively. The set of Streamclusters
with the CSA-enabled scheduler presented the highest
speedup when compared to the same set of applications
with an RR scheduler. Bodytrack and x264 presented a less
significant speedup of less than 1.01 x.

Table 6 shows that Streamcluster has by far the most signifi-
cant number of synchronization events of the application set.
The number of synchronization events is a crucial factor for
both Subutai and CSA in terms of their capacity to accelerate
applications. For Subutai, these events are accelerated through
the HW/SW co-design proposed by our work. For CSA, the
same set of events are the only moments where it can apply its
policy. Additionally, CSA relies on the premise that accelerat-
ing critical sections will decrease the overall execution time.
This premise works well on barrier-based workloads, such as
Streamcluster and Bodytrack, where the application is always
working on the worst-case scenario (i.e., all worker threads
blocked waiting for the slowest thread to join the barrier).
However, pipeline applications, such as x264, can start work-
ing on new data as soon as the first thread has finished; there-
fore, CSA has a lesser impact on such applications.

Table 10 presents the unfairness metric. For all cases, CSA
either maintains or decreases the unfairness of the scheduler
for the application set, except for x264. Nonetheless, Fig. 13c
shows that x264 has the same overall execution time in both
cases. Consequently, these results indicate that the use of the
CSA policy keeps the fairness of the baseline scheduler.

8.5 Synthetic Benchmark

The results presented in the previous sections provide a sys-
temic view of Subutai, but they do not convey the optimiza-
tion in the synchronization itself. The lack of a microcosm

Primitive Type Avg. SW Avg. Subutai
Lock empty 1537 ns 127 ns
Mutex Lock queued 64178 ns 916 ns
Unlock 4400 ns 60 ns
Barrier Wait (released) 102467 ns 1183 ns
Conditi Broadcast 25209 ns 60 ns
ondition Queued 42844 ns 1022 ns

view happens because the applications use at least thousands
of synchronization primitives during their execution. Conse-
quently, we employ a one producer many consumers syn-
thetic application encompassing a few calls to the three
synchronization primitives (mutex, barrier, and condition)
using six threads. Table 11 shows the average absolute time of
Subutai and SW-only for these primitives.

Subutai speeds up significantly every synchronization
primitive compared to the SW-only implementation. The
comparison is made from the application perspective; for
instance, the condition broadcast and mutex unlock opera-
tions have no response packet; consequently, Subutai can
return to the application immediately after the request
packet is sent. Thus, the processing is offloaded to the HW,
and the primitive is handled faster from the caller perspec-
tive. The SW-only implementation depends on the follow-
ing costs to handle synchronization primitives (Fig. 3): (i)
context switching; (ii) synchronization for queue operations;
and (iii) kernelspace switching. Item (i) is reduced in Subu-
tai by using a distributed OS. As stated in Section 3.1, we
can use a faster context switch with a distributed OS. The
faster OS is useful for functions that are blocking, and every
group handled by Subutai has these functions. Item (ii) is
reduced by offloading all queue operations to hardware.
Finally, item (iii) is not present in our OS. Subutai adds the
cost of I/O operations to deal with Subutai-HW (Fig. 4),
which is not present in the SW-only solution. Nonetheless,
these factors explain the gains shown in Table 11.

9 CONCLUSION

This paper presents Subutai, an HW/SW co-design solution
for accelerating legacy and novel parallel applications
through data synchronization. Unlike other synchronization
solutions [1], [9], [15], our approach does not require any user-
level modification, such as source code changes. Subutai over-
rides the shared library of PThreads while maintaining its
functionality and APL Ergo, any binary using PThreads for
data synchronization can benefit from the proposed solution.
Subutai relies on hardware-handled operations to accel-
erate common synchronization techniques found on parallel
applications. By doing so, the overall execution time speeds
up to 1.77 %, on average. Besides, we show that our solution
is efficient in the general case of multiple applications shar-
ing computing resources as we propose the CSA scheduling
policy to accelerate applications further on a resource-con-
tention scenario by providing priority to threads that are
currently running in a critical section. We have imple-
mented this policy using an approach that improves the
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balance of the scheduler (i.e., low unfairness), making the
policy highly portable across different scheduling techni-
ques. Even with such limitations, we achieved a speedup of
up to 4.61x for shared-memory parallel applications.
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