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Abstract—The time spent to assess the application performance
through clock-cycle simulators is a bottleneck of an NoC-based
manycore design; thus, requiring higher abstraction levels at
early design stages. However, high-level synchronization of pro-
cessing and communication in such systems is a challenge. This
work develops and validates Chronos, an untimed abstraction
of an NoC-based manycore, built with Open Virtual Platform,
that seeks precise traffic modeling in such a way to preserve the
temporal and spatial distributions of the physical implementation.
Results show the similarity of the temporal and spatial traffic
distributions compared to a reference RTL-level platform.

Index Terms—NoC-based manycores, abstract modeling, traf-
fic evaluation, OVP

I. INTRODUCTION AND RELATED WORK

In the last decade, several works [1]–[8] proposed Virtual
Platforms (VPs) to model systems at a higher abstraction level.
The VP approach aims to accomplish two goals: (i) to estimate
performance, area, and energy to the designers in the early
stages of the project; (ii) to enable software and hardware
development in parallel, reducing the time-to-market [9].

Models targeting performance estimation for early design
space exploration are tuned based on data obtained from the
physical level [10]. According to design constraints, high-level
synthesis tools can generate Pareto curves related to the best
configuration for processing, communication, and storage.

Lemaire et al. [2] introduced a flexible modeling envi-
ronment built around a SystemC-TLM kernel to explore
some hardware features, demonstrating its potential for silicon
implementation validation and application mapping at early
design stages. Helmstetter et al. [3] proposed an MPSoC VP
to evaluate the hardware costs of a specific architecture, reach-
ing guidelines to exploit these higher dynamicity protocols
according to application needs. MPSoCBench is a VP for
heterogeneous MPSoC modeling introduced by Duenha et al.
[4] that provides energy consumption estimation. Lima et al.
[7] proposed a VP based on multiagent systems to compare
and select routing traffic algorithms.

Software development models seek simulation speed and
not necessarily performance estimation. Madalozzo et al. [5]
proposed a VP that combines different architecture description
languages and simulators to improve software productivity
in manycore systems, providing fast software validation and
debuggability. Cataldo et al. [6] built an abstract platform on
GEM5 to model NoC-based MPSoCs and evaluate synchro-
nization mechanisms of parallel applications.

Using binary code translation techniques, tools such as
OVPSim [9] allow the entire simulation of a software stack,
including an operating system and user applications. These

models do not require a detailed hardware description, requir-
ing only an instruction set simulator and peripheral modeling
support; the number of instructions executed during the simu-
lation usually provides an acceptable performance estimation.

The knowledge of the traffic behavior enables, for exam-
ple, to identify hotspots [11] and detect anomalies that may
signalize attacks [12]. However, the traffic behavior in NoC-
based manycore systems, including its temporal and spatial
distribution, is an abstract modeling gap. This work aims to
fill this gap allowing the software development on Chronos,
an abstract model of an NoC-based manycore, which provides
high-speed simulation to observe long-time traffic series.

II. OVP BACKGROUND

OVP allows accurate temporal modeling by counting in-
structions executed by the processor. The execution time is
computed by dividing the number of instructions executed in
all simulation steps by the nominal processor speed in MIPS
(Million Instructions per Second). The simulation step is called
quantum, which is the number of instructions each processor
executes in each turn [9]. The user in the OVP simulator
can specify the number of instructions per quantum q. For
example, the P0 processor starts executing q instructions,
followed by P1 that executes the same number of instructions,
and so on, until all processors have executed q instructions.
Only after that, the simulation time advances, and the next
quantum executes.

The quantum only covers instructions executed on proces-
sors. Peripherals may execute in two ways, out of the quantum:
(i) before processors start their executions by using OVP API
functions; (ii) atomic execution triggered by callbacks, such as
when a processor write or read in a memory-mapped register.

Figure 1 exemplifies a sequence diagram with the execution
of two peripherals (Periph0 and Router) and two processors
(proc0 and proc1) on the platform. First, peripherals are
sequentially initialized by connecting packetnet ports (connec-
tion between peripherals) and registers through the constructor
function inserted in the main file. Then, the quantum of the
processors starts running proc0 that sends the message “data”
to proc1 by writing it in a memory-mapped register, which
links proc0 with Router. Next, the memory-register callback is
called. The callback sends a message to Periph0 notifying that
there is a flit to be transmitted, and sends data to proc1. During
the quantum 1, proc1 receives this data, and after completing
quantum 1, Periph0 calls the printDebug() function that shows
the number of transmissions in that quantum.

OVP allows the parallel execution of processor code through
the quantum approach, but the execution of peripherals is978-1-7281-7670-3/21/$31.00 c©2021 IEEE
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Fig. 1. Execution model in OVP, showing the communication among
processors and peripherals.

atomic. Therefore, modeling NoC as a peripheral is a chal-
lenge due to the absence of mechanisms that allow NoC and
processors to execute in parallel.

III. NOC-BASED MANYCORE MODEL

The Chronos behavior resembles a clock cycle-accurate
NoC-based manycore encompassing a matrix of Processing
Elements (PEs), each one containing a processor connected
through a Network Interface (NI) to a 2D-mesh NoC with
XY routing, round-robin arbitration, and input buffering. NI is
responsible for exchanging packets between the NoC and local
memory. Packet reception and transmission are performed
in parallel to avoid deadlocks. For packet transmission, NI
manages a control flow algorithm that checks whether NoC
has a channel available for packet injection. NI interrupts the
processor for packet reception using a packet reading routine
implemented at the Operating System (OS) level.

Figure 2 displays an instance of Chronos that preserves the
same routing and arbitration features of the RTL NoC-based
manycore to generate similar traffic distributions.
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Fig. 2. (a) instance of Chronos, (b) main components of each PE. Iterator
is a component used by the abstract model.

The OVP simulation tools provide the modeling of pro-
cessors and local memories. Thus, the modeling of these
components is out of the scope of this work.

IV. NI AND NOC MODELS

Before describing the NI and NoC models, it is necessary
to understand the underlying problems related to the packet
synchronization in a quantum-based temporal model, and the
way callback functions operate:

(i) Consider a set of PEs in a 3x3 mesh NoC. If PE0 and PE8
send packets to PE7 in the same quantum, only the packet

data produced by PE0 will be consumed, since PE8 runs
after PE7. Consequently, only in the next quantum PE7
will consume the packet data produced by PE8. This
problem leads to the packet transmission indeterminism
since the quantum model orders parallel events according
to the PE placement in the NoC.

(ii) Suppose PE0 and PE6 send data to PE7 in the same
quantum. The callback from PE0 remains “open” until
PE7 consumes the packet (see Figure 1 - the producer
“opens” the callback, while the consumer “closes” it).
Thus, even if PE6 is executed before PE7, there will be
no consumption by PE6 due to the callback behavior.

Due to these problems, Chronos requires the Iterator
component (Figure 2) for activating the packet transmissions.
The iterator is a virtual component responsible for triggering
each router at the end of a quantum. It evaluates all routers
sequentially with flits to transmit, sending one flit to the next
router or local port. This process is similar to the RTL model
behavior.

A. Network Interface Modeling

NI performs the communication between processor and
NoC and implements a Direct Memory Access (DMA). Fig-
ure 3 describes the NI environment, ports, and connected
modules. The communication API provides functions to send
and receive packets. NI uses these functions to write in
memory-mapped registers the packet address to be sent or
received, releasing the processor during the communication
with the NoC. The following ports access these registers:

• address: NI configure the address register with the ad-
dress of incoming packets at the processor startup. During
the application execution, NI uses this register to store the
packet address to be transmitted to another PE;

• statusTX: the processor reads a status register to verify
the local port availability. If the read value is zero, the
processor may start a packet transmission;

• statusRX: the processor notifies the NI a complete packet
reception.
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Fig. 3. The NI environment describing ports and connected modules.

B. Packet Injection

Two actions occur when a processor writes in statusTX: (i)
NI sends to the local port buffer the first flit of the packet;
(ii) the router notifies the iterator that it has data to transmit.
These actions characterize a non-blocking transmission; i.e.,
if the router local port is available, the processor programs
the NI to transmit the packet at the end of the quantum and
continues the application execution.
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When the quantum ends, the iterator triggers routers to
transmit flits according to the control flow signals (flits may be
blocked due to an NoC congestion). Sequentially, the iterator
searches for routers with flits to transmit; for each positive
case, the iterator performs a communication step transmitting
one flit to the next router respecting the arbitration and routing
policies. The transmission stops when flits cannot advance due
to congestion, or the packets were delivered to their targets. If
all flits of a packet were transmitted, NI rises intTX, notifying a
complete packet transmission. A new quantum period starts at
the end of a transmission round. Processors with intTX asserted
execute the interruption handler, releasing the statusTX register
for another transmission.

Figure 4 exemplifies a 3x3 mesh NoC with flows 6 → 7,
0→ 7, 2→ 4 to understand that the abstract communication
method implements the expected NoC behavior. NI7 receives
the packet from R6 and blocks the R7 local port. Flow 0→ 7
stops at the R7 south buffer and flow 2→ 4 blocks at the R1
east port. Only in the next quantum, NI7 receives flow 0→ 7,
releasing flow 2→ 4.

R6 R7 R8

R3

R0

R5

R1 R2

R4

NI7

blocked path due to unavailable port

Fig. 4. Example of flows being transmitted during a simulation quantum.

C. Packet Reception

The execution of a receive() call blocks the processor up
to the end of the quantum. The packet reception occurs only
at the next quantum, if available. The NI handles the packet
reception during the iterator execution. If NI receives an
incoming flit (condition defined by the control flow signals),
it writes the flit into the memory address. Upon the reception
of a complete packet, NI rises the processor intRX signal.

The processors execute the interruption handler at the be-
ginning of the quantum. If intRx is active, the processor copies
the packet contents to the address defined in the receive() call.
At the end of the packet reception the processor writes in the
statusRX signal, enabling NI to receive a new packet.

Note that each processor may transmit and receive one
packet per quantum. This model adopts a small quantum value
(250 to 1,000 instructions) to avoid long simulation periods
with processors waiting for communication data.

V. RESULTS

Experiments evaluate the spatial and temporal traffic dis-
tribution aiming to compare the RTL NoC-based Manycore
implementation to Chronos.

A. Spatial Traffic Distribution

The first experiment evaluates the spatial traffic distribution
on both platforms. The simulation annotates the moment that

each flit is transmitted in all ports of the routers. A script
computes the sum of all flits from all NoC ports at simulation
intervals; a snapshot represents each interval. The total simula-
tion time considers the number of clock cycles or quantums for
the RTL platform or Chronos, respectively. The traffic volume
is also normalized according to the largest number of flits
transmitted by a given router during the scenario simulation.

Figure 5 presents four intervals of the traffic distribution
during the simulation of a 9x9 manycore, executing 12 appli-
cations, partitioned into 65 tasks. The communication volume
in the RTL simulation is higher in the first snapshots, while
the Chronos is spread along with the execution time. This
difference is due to the timing models. Besides this difference,
it is noticeable a similar spatial traffic distribution, with the
same congested areas.

(a) Chronos.

(b) RTL model.

Fig. 5. Evaluation of the spatial traffic distribution.

This experiment shows the similarity of spatial traffic dis-
tribution between Chronos and RTL platform. This result
shows the feasibility of adopting Chronos to evaluate mapping
heuristics [13], routing algorithms, congestion effects due to
the traffic flows, energy consumption in the communication
architecture.

B. Temporal Traffic Distribution

The second experiment evaluates the temporal traffic simi-
larity between the RTL platform and Chronos when executing
a hotspot application on a 5x5 system and with the same task
mapping. The simulations report the number of flits traversing
each router port at each 10,000 clock cycles (RTL platform)
and 1,000 instructions (one Chronos quantum).

Figure 6(a) shows the number of flits captured at the
router 16 north port (the hotspot target PE). As expected, this
figure displays that there is no timing relation between the
RTL platform and Chronos. The difference comes from the
packet communication modeled in Chronos, allowing only one
packet reception/transmission per quantum; i.e., if a processor
requests a packet, it will be delivered in the next quantum,
stalling the processor.

Figure 6(b) groups quantums according to the relation
number of quantums
RTL samples′ number into sets. As one can see, the bursts of
flits are not aligned on the X-axis due to the timing models.
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Fig. 6. Temporal traffic distribution evaluation.

Aiming to evaluate the Chronos precision, instead of the
accuracy compared to the RTL platform, we employed the
Dynamic Time Warping (DTW) algorithm [14], which aligns
two temporal series. Figure 6(c) shows both packet series
perfectly aligned in time. However, there is a difference in the
number of transmitted flits due to two reasons: (i) the RTL
platform adds control flits in the packets, while Chronos does
not include them; (ii) the RTL platform has a manager
processor that communicates with control packets with other
tasks, these control packets are absent in Chronos.

This work adopts the Euclidean distance (ED) between
series to quantify the traffic similarity on both platforms.
According to [15], it is necessary to normalize the temporal
series due to different offsets and amplitudes. Normalization
consists of translating and resizing the series so that all have
zero mean and unit standard deviation. The normalization
method used in this work was z-normalization, presented in
Equation (1), where z[i] is the value that replaces the u[i]
element of the U series, and m and s are the mean and
standard deviation of U, respectively. After normalization, the
ED (Equation (2)) is used to measure the similarity degree
of the series. Figure 6(d) presents the normalized data, which
coincides 100%, making ED equals to 0. The closer to 0, the
greater the similarity between the two series.

z[i] =
u[i]−m

s
(1)

dEuc(U, V ) =
n∑

i=1

((u[i]− v[i])2)
1
2 (2)

In this experiment, 38.5% of the router ports with applica-
tion traffic presented ED = 0; 17.14% of the routers obtained
ED = 3.86 due to a burst at the beginning of the simulation,
when the manager processor of the RTL platform sends control
packets to all other processors. The maximum, average, and
median ED were 13.86, 4.64, and 3.86, respectively. It was
also observed that ports without traffic from the manager
processor obtained a shorter distance than the others.

This result demonstrates that Chronos generates similar

temporal traffic distribution than the RTL platform because
the NoC behavior (routing algorithm and arbitration policies)
is the same in both platforms. This result paves the way
to use Chronos in algorithms requiring long time series,
such as security (anomaly detection) and aging mitigation
(temperature estimation).

VI. CONCLUSION

This article presented Chronos, an abstraction of an NoC-
based manycore implemented in OVP. Chronos provides a
novel mechanism for synchronizing processing and NoC com-
munication flows, resulting in spatial and temporal behavior
similar to clock-cycle accurate implementations. The results
showed that the quantum granularity does not allow Chronos to
have higher temporal accuracy than a reference platform with
clock-cycle precision. However, the traffic distribution maps
and the similarity of temporal traffic distributions demon-
strated that the proposed platform has a high precision de-
gree to reach high-quality volumetric and temporal applica-
tion execution comparisons. Future works move towards the
Chronos usage related to research methods that require the
manycore platform simulation for long periods, as dynamic
thermal management techniques and intrusion detection.
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