
Microelectronics Journal 100 (2020) 104799
Contents lists available at ScienceDirect

Microelectronics Journal

journal homepage: www.elsevier.com/locate/mejo
Optimized buffer protection for network-on-chip based on Error
Correction Code

Alan Pinheiro a,*, Daniel Tavares a, Felipe Silva a, Jarbas Silveira a, C�esar Marcon b

a LESC-DETI, Federal University of Cear�a (UFC), Fortaleza, Brazil
b PPGCC, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
A R T I C L E I N F O

Keywords:
Networks-on-chip
Fault tolerance
Buffer protection
Error Correction Code
* Corresponding author.
E-mail address: cadore@lesc.ufc.br (A. Pinheiro)

https://doi.org/10.1016/j.mejo.2020.104799
Received 16 September 2019; Received in revised
Available online 22 April 2020
0026-2692/© 2020 Elsevier Ltd. All rights reserved
A B S T R A C T

Newest technologies of integrated circuits manufacture require a communication architecture such as a Network-
on-Chip (NoC). The NoC buffers are susceptible to Multiple Cell Upsets (MCU). Besides, as the technology scales
down, the probability of MCU increases. Thus, applying an Error Correction Code (ECC) in NoC buffers may come
as a solution for reliability issues, although increasing the design costs and requiring a buffer with higher storage
capacity. This work evaluates two models of data arrangement for NoC buffers protected by three types of ECCs,
preserving the protection of the storage information, and reducing the area usage and power dissipation
compared to other solutions. We evaluated the performance of fault-tolerant NoC buffer schemes by applying the
models on three types of ECC and measuring the buffer area, power overhead and error coverage. The experi-
mental results show that the use of the Optimized model keeps the reliability for MCU while reducing area
consumption and power dissipation in approximately 25% and 30%, respectively.
1. Introduction

The increasing development of VLSI technologies allowed integrating
multiple circuits into a single System-on-Chip (SoC), providing efficient
solutions for countless applications in several areas, such as entertain-
ment, telecommunication and consumer electronics [1]. These systems
require high scalability, massive parallel communication and, some-
times, strict timing constraints. Network-on-Chip (NoC) is an efficient
packet-oriented communication structure [2], presenting high flexibility,
scalability, and parallelism [3], fulfilling the communication re-
quirements of such applications. The NoC architecture encompasses
routers, links and Network Interfaces (NIs) to connect Processing Ele-
ments (PEs) such as processors and memories. Routers, containing con-
trol logic, crossbars and buffers, dispatch the packets sent by PEs through
the NoC links. Depending on the NoC topology, global links interconnect
the routers, and local links connect each PE to the NI and the NI to a
router [4].

Multiprocessor SoC (MPSoC) is a multiprocessing system widely
applied in a broad range of parallel applications, such as network security
and data transmission. Additionally, NoC-based MPSoCs bring a signifi-
cant enhancement in the area usage and power dissipation, along with
higher communication speed [5].
.

form 28 February 2020; Accepted

.

The scale-down of recent manufacturing technologies increases the
MPSoC susceptibility to a Multiple Cell Upsets (MCU) incidence, causing
transient faults. MCU is induced by many sources, such as radiation,
coming from cosmic emissions and electromagnetic interference [6]. The
most common solution to mitigate data errors of critical applications is
the use of an Error Correction Code (ECC) [7]. Buffers are critical com-
ponents of an NoC, responsible for temporarily store the data traffic. A
strike of a charged particle may induce information errors on these
buffers, compromising the data transmission or even causing a commu-
nication crash (e.g., altering the header content of a packet, producing a
deadlock situation). Cho. Leem and Mitra [8] emphasize the importance
of using fault-tolerant circuits in critical parts, primarily those structures
dealing with crucial system information, for providing some reliability
degree to maintain the application working correctly in hostile
environments.

Radetzki et al. [9] present an overview of the fault tolerance methods
applied to NoCs, covering performance and cost tradeoffs of imple-
menting ECCs in input buffers. They describe that NoCs can be affected
by permanent or transient errors occurring in different network levels,
such as packet routing and the flow control of each router. To detect these
types of errors, the designers usually adopt in-operational detection
techniques and built-in self-test circuits for transient and permanent
17 April 2020

mailto:cadore@lesc.ufc.br
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mejo.2020.104799&domain=pdf
www.sciencedirect.com/science/journal/00262692
www.elsevier.com/locate/mejo
https://doi.org/10.1016/j.mejo.2020.104799
https://doi.org/10.1016/j.mejo.2020.104799


Fig. 1. Router structure of NoC Phoenix, highlighting the encoders, decoders
and input buffers [14].

A. Pinheiro et al. Microelectronics Journal 100 (2020) 104799
errors, respectively. Achballah, Othman and Saoud [10] investigate the
problems and challenges of the emerging NoC designs. Wang et al. [11]
analyze the best way to apply ECC techniques to improve the NoC reli-
ability. They studied six protection approaches to achieve a protection
strategy with the best tradeoff among delivery rate, latency, area over-
head, and energy consumption.

Majumber, Suri and Shekhar [12] propose a hybrid buffer for cells of
Static Random-Access Memory (SRAM) and Spin Transfer
Torque-Magnetic RAM (STT-MRAM) with Single-Error Correct-Double
Error Detection (SEC-DED) mechanism against transient faults. The
proposal considers the buffer depth to minimize the performance impact
since 4-bit cells of Single Event Effect-MRAM (SEE-MRAM) can replace
an SRAM bit cell. The routers retransmit flits based on the ECC for flits
received with uncorrected errors. The authors conclude that the strategy
used for limited flit relay resolves the stochastic switching effect on
STT-MRAM devices without affecting the NoC flow and latency.

Silva et al. [13] analyze the impact of applying some types of ECCs for
protecting NoC buffers against transient faults. The implementations of
both encoder and decoder of all proposed ECCs showed a low impact on
the area usage and power dissipation. However, the redundancy words
need to be stored in buffers, as well as transmitted inside the packet flits.
They stored data and redundancy bits in a model called extended buffer,
where for each data address, the subsequent address contains the
redundancy word. This model increases the buffer width significantly;
thus, rising the area susceptible to MCU.

This work extends our previous scheme for NoC buffer design [14]
and analyses the impact of an optimized ECC model for implementing
three types of ECCs on the router buffers: ExHamming [13], ExHamming
with interleaving and FUEC-TAEC [15]. These router buffers are
designed to store the packet flits that travel in the NoC, as well as the
redundancy words generated by the encoders. We evaluated the pro-
posed schemes applying a set of synthetic traffics considering (i) latency
results per traffic load offered, (ii) traffic accepted per load offered, and
(iii) error coverage when applying 1 to 4 error patterns. Also, we extract
circuit synthesis results for area consumption and power dissipation of
the NoC routers and buffers.

2. ECCs applied to the target architecture

We choose the router buffers of NoC Phoenix [16] to evaluate the
proposed technique implemented in three types of ECCs. Phoenix has
regular mesh topology, wormhole switching and five dual-channel ports
per router. Each router implements the XY routing algorithm, on-off flow
control and Round-Robin arbitration. Fig. 1 presents the router structure
of NoC Phoenix, which uses circular FIFO (First-In-First-Out) buffers for
each one of the five input ports: North, East, West, South, and Local.

The input and output of all buffers of NoC Phoenix contain encoders
and decoders, respectively, that implement ExHamming, ExHamming
with interleaving and FUEC-TAEC, with ECC optimization techniques. All
mechanisms for link protection and monitoring are omitted since this
work focuses only on buffer protection.

2.1. ExHamming code

Hamming is a well-known ECC developed by Richard Hamming [17]
that can correct a single error or detect double errors. Hamming is one of the
first ECCs applied to critical applications that require high data reli-
ability. Equation (1) shows that Hamming encodes m data bits in n bits
requiring k redundancy bits.

m¼ n� k (1)

Additionally, Hamming defines that for each integer n � 2 there is a
code size illustrated by Equation (2), which can be rewritten according to
Equation (3).
2

n¼ 2k � 1 8n � 2 (2)
k¼ log2ðnþ 1Þ 8n � 2 (3)

Equation (3) shows that Hamming is a low-cost ECC, where the
redundancy bits grow proportionally to log2ðnÞ. ExHamming extends the
original Hamming code by adding a parity bit to reach the SEC-DED
capacity while maintaining the same low-cost characteristic.

2.2. ExHamming code with interleaving

The reasoning for using the interleaving method is to enforce that
double errors or even more complex errors occur in different words. The
appliance of interleaving architectures, combined with ECCs, provides a
significant increase in reliability for data information [18].

Fig. 2 presents the interleaving pattern applied in this work in three
steps. The interleaving process allows correcting double or more errors
for ECCs with low correction capability, like the Hamming code. Step 1
splits a 16-bit of data (D) into two 8-bit of data composing the words A
and B. Step 2 encodes each word separately according to the ExHamming
code, producing the codewords A0 and B’. Note that ExHamming codifies
8 data bits with more 5 redundancy bits, whereas 16 data bits require
only more 1 bit of redundancy, demonstrating the increase in redundancy
when applying ExHamming with interleaving. Finally, Step 3 interleaves
the codewords A0 and B0 producing AB’. The use of ExHamming with
interleaving increases the correction and detection capability of the
standard ExHamming, allowing reducing the occurrence of adjacent
error patterns.

2.3. FUEC-TAEC code

Gracia-Mor�an et al. [15] proposed the Triple Adjacent Error Correc-
tion with Flexible Unequal Error Control Methodology (FUEC-TAEC) as a
new ECC. FUEC-TAEC is a linear code that detects and corrects data er-
rors applying a parity-check matrix H [19], which is computed using the
Boolean Satisfiability problem through a recursive backtracking algo-
rithm. FUEC-TAEC has, as the main advantage, the high correction
capability against adjacent errors and low redundancy usage.

The authors explain in Refs. [15] that after defining the values of n
and k (the same parameters of Equation (1)), the first step is the selection
of error patterns to be corrected and detected. The next step is to find the
matrix H that satisfies Equations (4) and (5), where e is the error vector,
Eþ is the set of vectors to be corrected, and EΔ is the set of errors that can



Fig. 2. Example of applying the ExHamming with interleaving code in a 16 data bit.

Fig. 3. Data flow and structure of the Extended buffer scheme.

A. Pinheiro et al. Microelectronics Journal 100 (2020) 104799
be detected. It means that each correctable error must generate a
different syndrome, and each detectable syndrome must generate a new
syndrome, being different to all syndromes generated by correctable
errors.

H� eTi 6¼H� eTj 8ei; ej 2Eþ
���ei 6¼ ej (4)

H� eTi 6¼ H � eTi 8ei 2 EΔ; ej 2 Eþ (5)

2.4. Summary of the ECCs

Table 1 summarizes the characteristics of the ECCs presented in this
section, considering 16 data bits; this table shows that each ECC has a
specific size for the redundancy words. Additionally, Table 1 shows the
capacity of detecting and correcting errors of each ECC.

3. Extended buffer scheme

We implemented ExHamming, ExHamming with interleaving, and
FUEC-TAEC codes using (i) Basic, (ii) Extended, and (iii) Optimized buffer
schemes. The Basic buffer scheme is a straightforward buffer imple-
mentation; the Extended buffer approach was proposed by Silva et al.
[13], whereas the Optimized buffer scheme was proposed in Ref. [14].
Our previous work [14] only applied the Optimized scheme for ExHam-
ming code; here, we extend this model assessment by adding two
different ECCs: Interleaved ExHamming and FUEC-TAEC codes.

This section describes the Extended buffer scheme, while the next
section explains the Optimized one.

Let Basic buffer be a buffer implemented without redundancy; then,
the structure of the Extended buffer requires expanding the width of the
Basic buffer according to the redundancy word generated by a given ECC.
Fig. 3 shows that this approach encodes each data-flit on every pushing
Table 1
ECC structures for 16 data bits, together with their error correction and detection
coverages.

ECC Width (bits) Coverage

Redundancy Data Total Correction Detection

ExHamming 6 16 22 1 2
ExHamming þ
Interleaving

10 16 26 2 4

FUEC-TAEC 8 16 24 3 4

3

procedure before writing into the buffer. The redundancy word is written
side-by-side with its related data-flit in the same buffer address. The
pulling procedure decodes the data after reading the buffer address; next,
this procedure transmits the data to the output link. Each access is per-
formed in one clock cycle.

Equation (6) defines the buffer width (Bw) of the Extended scheme.
Where Dw is the data width and Rw is the width of the redundancy word,
which changes according to the applied ECC.

Bw ¼Dw þ Rw (6)

Let P be the buffer depth; then, Equation (7) computes the total of bits
in the buffer (Tb).

Tb ¼P� Bw (7)

4. Optimized buffer scheme

This work defines real depth and effective depth concepts to explain the
Optimized buffer approach. The first concept describes the total number



Fig. 4. Concepts of real depth and effective depth applied to the two schemes
of buffers.

A. Pinheiro et al. Microelectronics Journal 100 (2020) 104799
of addresses that a buffer has, i.e., it is the number of buffer addresses in
the physical implementation. The second concept is the number of ad-
dresses available for data-flit storing, i.e., without regarding redundancy
addresses. Fig. 4 shows these concepts. Note that the effective depth can be
equal or less than real depth, but never higher.

The Extended buffer scheme uses effective depth equals to the real
depth; thus, the buffer width must be larger than the Basic buffer.
Differently, the Optimized buffer approach keeps the buffer width iden-
tical as the Basic buffer scheme and sets the effective depth less than the
real depth. The remaining addresses are reserved for the redundancy
words; consequently, increasing the data and redundancy regions.

The Optimized buffer scheme requires specific circuits for each ECC to
avoid bit fragmentation during the data positioning into the buffer. We
defined Equations (8)–(11) based on the Least Common Multiple (LCM)
between Dw and Rw to find the Minimum storing Relation of Data and
Redundancy (MRDR). Equation (8) computes the number of addresses
for redundancy words (Ar), and Equation (9) calculates the number of
addresses for data words (Ad). Note that Ad ¼ n, whereas Ar ¼ m.
Equation (10) computes the real depth (P) by Ar þ Ad. Finally, Equation
(11) calculates the total of bits (Tb).

Ar ¼ LCMðDw;RwÞ
Dw

(8)

Ad ¼LCMðDw;RwÞ
Rw

(9)

P¼LCMðDw;RWÞ �
�
Dw þ Rw

Rw � Dw

�
(10)
Fig. 5. Data and redundancy positioning for the b

4

Tb ¼ LCMðDw;RWÞ � Dw þ Rw

Rw
(11)
� �

4.1. ExHamming buffer architecture

Applying Equations (8)–(10) with 16 data bits, ExHamming has
MRDR defined by Ar ¼ 3, Ad ¼ 8, and P ¼ 11; i.e., the data region has 8
addresses (effective depth), the redundancy region has 3 addresses, and
thus, the entire buffer has 11 addresses (real depth). Fig. 5 shows that this
technique segments some redundancy words into two buffer addresses to
take advantage of buffer space.

R2 is an example of a redundancy segmentation; the addresses 8 and 9
store the first (4 bits) and second (2 bits) parts of R2, respectively. This
scheme implies that the data-redundancy logical pair uses 2 to 3 ad-
dresses depending on the segmentation of the redundancy word. Addi-
tionally, the logical pair data-redundancy is correlated by indexes; e.g.,
when a data is stored into the address 0 (data region), the associated
redundancy is R0 (redundancy region).

Fig. 6 illustrates the data flow of the Optimized buffer from encoding
until decoding. In a single clock cycle, the encoder codifies every
incoming data into a data-redundancy logical pair and writes the data
and redundancy into the next available data region and redundancy re-
gion addresses, respectively. These addresses are pointed by the Head
and Tail registers that perform the write and read FIFO positions,
respectively.

While the data storage requires a simple binary decoder to select the
buffer positioning, the redundancy storage requires two circuits. The
Address Generator circuit selects the buffer address based on the Head
pointer, and the Bit Mask circuit places the redundancy word in the
specific bit position of the buffer (which can be segmented or not).

The reading process is similar to the writing process. In a single clock
cycle, the decoding circuit reads the next available data-redundancy pair
addressed by the Tail pointer. Then, the decoder evaluates and eventually
corrects the data according to the decoding pattern.

4.2. Interleaved ExHamming application

Applying Equations (8)–(10) with 16-bit data, the MRDR for Inter-
leaved ExHamming is Ar ¼ 5, Ad ¼ 8, and P ¼ 13. Fig. 7 shows that
these parameters require to segment 4 redundancy words to fit into this
configuration, resulting in four fragmentation sizes. In the Interleaved
ExHamming scheme, there are more segmented words than the previous
one; therefore, the data access requires a more complex circuit.

4.3. FUEC-TAEC application

Fig. 8 illustrates that FUEC-TAEC employs a regular distribution of
uffer architecture implementing ExHamming.



Fig. 6. Architectural model of the Optimized buffer scheme of a router input buffer, and the data flow, which encompasses encoding, storage, decoding and
address generation.

Fig. 7. Data and redundancy positioning for the buffer architecture with Interleaved ExHamming code.

A. Pinheiro et al. Microelectronics Journal 100 (2020) 104799
the redundancy words; as Dw is the double of Rw, it is not necessary to
segment any redundancy word. Applying Equations (8)–(10) with 16
data bits, FUEC-TAEC has MRDR defined by Ar ¼ 1, Ad ¼ 2, and P ¼ 3.
However, for a closer dimension to the other schemes, we defined Ad

with the same value of the previous architectures (Ad ¼ 8). Conse-
quently, the other variables were defined as Ar ¼ 4 and P ¼ 12. These
variables configure the dataflow model demonstrated in Fig. 6.

4.4. Theoretical comparison

Equations (7) and (11) provide an analytical formulation to compare
and estimate which model has the highest area consumption. To do this,
we analyzed the number of bits each model required. The larger the Rw,
the larger the buffer of the Extended scheme. Also, Rw specifies the
5

configuration of Ad and Ar for the Optimized buffer approach. Let P’ and
P’’ be the depths of Optimized buffer and Extended buffer approaches,
respectively; let T ’

b and Tb’’ be the total of bits of Optimized buffer and
Extended buffer, respectively; then, setting P’ ¼ P’’makes T 0

b < T 00
b for any

ECC applied.

5. Synthesis results

This section presents and discusses the results of the Basic, Extended
and Optimized schemes synthesized with Cadence’s Genus for 65 nm
CMOS technology. Fig. 9 to Fig. 11 show the impacts of Optimized and
Extended schemes on ExHamming, ExHamming with interleaving and
FUEC-TAEC ECC architectures. For comparison purposes, we use the
Basic buffer scheme as a reference, which has the same real depth as the



Fig. 8. Data and redundancy positioning for the buffer architecture of the FUEC-TAEC code.

A. Pinheiro et al. Microelectronics Journal 100 (2020) 104799
other schemes.
For each ECC application, the encoders and decoders of the Extended

and Optimized schemes are the same. However, the Optimized scheme has
a more specialized access circuit for the data buffer. Other differences are
the total of bits that depends on the coding architecture (defined in
Equation (11)) and the redundancy alignment.

Fig. 9 shows that ExHamming consumes less area than Interleaved
ExHamming because the interleaving process requires two 8-bit data
encoders-decoders (refer to Fig. 2). Although the Optimized scheme saves
area, the interleaving approach implies more power dissipation for both
Optimized and Extended schemes. The Extended and Basic buffer schemes
have the same generic data access based on the FIFO mechanism, whose
implementation complexity is higher than a specialized circuit of the
Optimized scheme. The Extended scheme has more area than theOptimized
scheme because of the ECC implementation and the number of storage
bits (Equation (7)). FUEC-TAEC has the lowest cost in the Optimized
scheme because it has a more straightforward logic of data access; be-
sides, the Optimized and Basic schemes have the same number of storage
bits (Equation (11)).

The Optimized buffer scheme simplifies the data access, having spe-
cific implementations for each ECC (Equations (8)–(11)). Fig. 9(b) shows
that the values for theOptimized scheme of FUEC-TAEC are smaller due to
the simplicity of the data layout, which lets the data access circuit even
Fig. 9. (a) Absolute and (b) relative area consumption of the three ECCs
implemented in Extended and Optimized approaches.

6

simpler.
Fig. 10 shows that the larger area of the Interleaved ExHamming

circuit implies an increase in the static energy dissipation when
compared to the ExHamming architecture. Additionally, Fig. 10 illus-
trates the leakage power of the Optimized buffer is lower than the
Extended buffer for all architectures because the Optimized scheme is
more cost-effective than the Extended scheme, mainly when implemented
in the FUEC-TAEC code.

Fig. 11 shows the dynamic power of all architecture, revealing the
activity of each circuit. The Extended and Optimized schemes dissipate
more dynamic power than the Basic buffer, due to the coding and
decoding activity.

TheOptimized buffer scheme is more efficient than the Extended buffer
scheme in the ExHamming architecture, although both solutions have the
same encoder-decoder circuits. The Interleaved ExHamming architecture
reveals that both solutions have nearly the same dissipation because the
amount of dynamic power produced by the ECC is equally high and
prevalent. Finally, FUEC-TAEC coding/decoding requires a simpler data
access circuit; thus, minimizing the dynamic power dissipation.

6. Error coverage analysis

Fig. 12 illustrates the experimental setup employed to analyze the
Fig. 10. (a) Absolute and (b) relative leakage power dissipation of the ECCs
implemented in Extended and Optimized approaches.



Fig. 11. (a) Absolute and (b) relative dynamic power dissipation of the ECCs
implemented in Extended and Optimized approaches.

Fig. 12. Experimental setup for evaluating the techniques proposed in
this work.

Fig. 13. Proceeding of error injection in a synthetic 16 � 8 buffer.

A. Pinheiro et al. Microelectronics Journal 100 (2020) 104799
error coverage of all implementations proposed here. We guide this
analysis considering the correction rate as the robustness metric.

The factors of study are the protection level that changes between
each ECC, and the error patterns injected into the buffer, which varies the
error severity degree. The Basic buffer scheme is not included here
because it does not implement ECC circuits.

Step 1 combines the two schemes of buffer protection with the three
implemented ECCs, resulting in 6 solutions. Next, Step 2 defines the
writing data procedure; the current ECC circuit encodes each input flit
and stores with its redundancy word. This analysis is performed in a
single buffer using flits with random data.
7

Step 3 injects into the buffer one error pattern per analysis. For all
analyses, we injected from 1 to 4 adjacent errors in random positions,
based on the experiments described in Ref. [20]. First, we inject 100,000
errors of 1-bit flip and proceed to Step 4. The storage of bits is spatially
positioned as a memory in the injection proceeding. All error patterns are
distributed in a 3 � 3 matrix; the right side of Fig. 13 illustrates samples
of error patterns. Fig. 13 shows an error pattern being injected in a
random position p(x,y), which can be any coordinate of the gray region.

Each decoding operation is monitored during the reading procedure
in Step 4, and all correction/detection results are recorded. Ω represents
the unknown set of counted corrections per error injection. Steps 2, 3 and
4 are executed 100,000 per error severity (1, 2, 3 and 4 errors per
pattern) for each architecture. Therefore, the total amount of error pat-
terns injected is 400,000.

Table 2 shows the error coverage results for all buffer architectures in
the Extended and Optimized schemes. These results indicate that the
Optimized scheme is equally efficient for error correction as the Extended
scheme. The 3 and 4 errors are out of the ExHamming error correction/
detection capacity because ExHamming is an SEC-DED. On the other
hand, the Interleaved ExHamming code increases this correction/detec-
tion capacity since the patterns contain adjacent errors that are placed in
different codewords.

Fig. 14 depicts that some patterns of adjacent errors may be in
different data and redundancy cells, and/or positioned at the border that
divides the data and redundancy region (striped region), allowing the
ECC to correct these types of errors.

ExHamming reaches a high correction rate for two errors because the
used error pattern makes most errors occurring in different words; i.e.,
although a single ExHamming code can fix only one error, the error
pattern implies corrections with more than one cell. Fig. 15 shows one of
these occurrences with a pattern consisting of two errors that affect the
bit 5 of words A and B.

As errors become more aggressive (i.e., 3 or 4 errors), the occurrence
of double errors in the same data word increases, reducing the correction
rate. Note that the ExHamming is still able to correct 3-error and some 4-
error patterns. Therefore, a 4-error pattern can be distributed in 4
different words.

Considering that the correction capacity of Interleaved ExHamming is
potentially the double of ExHamming, it is expected that the patterns
with 1 and 2 errors (Table 2) always be corrected. In this evaluation, it
was also verified that the Optimized scheme discreetly surpasses the
Extended one for corrections performed in patterns with 3 and 4 errors.

FUEC-TAEC should correct all cases of errors inserted into the buffer.
However, for 3 errors, the correction rate is not 100%. This behavior is
justified by the existence of 3 error patterns that provoke two non-
adjacent errors in one data, and the third one hits another data. Data B
and C demonstrate this situation in Fig. 16.

The 4-error pattern experiment with FUEC-TAEC shows that its cor-
rections stand out the Interleaved ExHamming code. This is a conse-
quence of some 4-error patterns contain three adjacent errors in their
spatial positioning, which is a correctable situation for the FUEC-TAEC
code.



Table 2
Error coverage rates for all ECC architecture implementing the two fault-tolerant buffer schemes.

Number of errors Correction rate (%)

ExHamming Interleaved ExHamming FUEC-TAEC

Extended Optimized Extended Optimized Extended Optimized

1 100.00 100.00 100.00 100.00 100.00 100.00
2 75.01 76.07 100.00 100.00 100.00 100.00
3 44.37 46.48 87.50 88.63 90.91 91.92
4 1.88 3.14 51.52 52.25 60.01 59.95

Fig. 14. Error pattern hitting data and redundancy regions of a synthetic 16 �
8 buffer.

Fig. 15. Pattern with two errors hitting two words.

Fig. 16. Error pattern without three adjacent errors in the same line.

A. Pinheiro et al. Microelectronics Journal 100 (2020) 104799
7. Performance analysis

This section describes the experiments of performance using the
average latency and accepted traffic as metrics. The Basic buffer scheme
was not included because it has the same performance as the Extended
buffer scheme. The experiments explore (i) four synthetic traffic patterns;
(ii) injection rates varying from 1% to 100%; and (iii) buffer depths that
depend on the buffer scheme. The discussion is divided by traffic patterns
as follows. The injection rates were displayed in distinct ranges because
of the different saturation points. Additionally, each plot highlights the
variation between the buffer schemes.
7.1. Uniform traffic

The uniform traffic gives routers the same probability of being a
communication target [21]. Fig. 17 illustrates the impact of the buffer
depth variation between the Extended and Optimized schemes when the
uniform traffic pattern is applied. The saturation point appears between
8

30% and 40% in the accepted traffic plot. This behavior follows the
increasing average latency.

The variation in every Optimized scheme reveals that the Interleaved
ExHamming has the highest latency variation, but not very far from the
others. This latency variation happens because this architecture has the
highest buffer proportion denoted by Ad ¼ 8 and Ar ¼ 5.

7.2. Complement traffic

The complement traffic guides a source node to send messages to the
target node placed in a complementary address [21]. For instance,
supposing a 2D-NoC composed of 16 nodes addressed by four bits, the
complement of address 1011 is 0100. Fig. 18 depicts that the appliance of
ExHamming with interleaving has the most considerable gap between
Optimized and Extended schemes. Fig. 18(c) illustrates that in the context
of complement pattern, the saturation point of the Optimized scheme
happens in 28%, which is earlier than the Extended scheme (34%).
Considering that the complement traffic has some oscillations, the
Extended and Optimized schemes have a low variation in each latency and
accepted traffic results after the saturation point.

7.3. Perfect shuffle traffic

The perfect shuffle traffic makes a source node to send messages to a
target node placed in the address that corresponds to a one-bit rotation of
the source node (considering a binary address) [21]. This type of traffic
models the communication behavior of some applications like Fast
Fourier Transform and some sorting algorithms.

Fig. 19 illustrates that this traffic had the lowest impact on the
effective depth variation. Thereby, Fig. 19(a, b and c) illustrate that each
saturation point happens in 42% of the injection rate and the average
latency are similar for all cases besides the oscillation.

7.4. Hotspot traffic

The hotspot traffic fixes only one target for all sources [21]. The
hotspot is the most severe traffic because of only one target is defined for
all source nodes, except the target node itself. Therefore, the saturation
points occur in the very first injection rates (before 6%), as Fig. 20 shows
in the accepted traffic plots. Consequently, the average latency increases
very quickly compared to the other traffics. Also, the increasing curve is
very similar between the buffer schemes, aside from the oscillations.

Given these results, we can confirm that when the buffer increases in
effective depth, the saturation point must increase. However, the appli-
cation has also an influence on the packet latency and network
throughput.

Table 3 resumes the variation average between Extended and Opti-
mized schemes for all ECCs when using the four traffic patterns explored
here.

The perfect shuffle and hotspot patterns did not have considerable in-
fluence on the variation of the effective depth; none of them reaches 1% of
the variation in latency nor accepted traffic. The uniform and complement
traffics have more communication pairs, so there is further resource
concurrence, and congestions increase latency.



Fig. 17. UNIFORM distribution of the accepted traffic and average latency for Extended and Optimized buffer schemes of the three evaluated architectures: (a, b)
ExHamming, (c, d) Interleaved ExHamming and (e, f) FUEC-TAEC.

Fig. 18. COMPLEMENT distribution of the accepted traffic and average latency for Extended and Optimized buffer schemes of the three evaluated architectures: (a, b)
ExHamming, (c, d) Interleaved ExHamming and (e, f) FUEC-TAEC.

A. Pinheiro et al. Microelectronics Journal 100 (2020) 104799
8. Conclusion

This work evaluates the Optimized [14] and Extended [13] buffer
schemes of fault-tolerant NoC buffer architectures for applying three
ECCs of different correction levels. The Optimized buffer scheme applies
protection to all stored data. The cost analysis in the synthesis showed
that the Optimized buffer scheme presents better results than the Extended
9

one in terms of area usage and power dissipation.
Error coverage experiments revealed that the Optimized scheme

overcomes the Extended buffer scheme in almost all error patterns. The
internal redundancy words positioning in the buffer raises the possibility
of an MCU strike more than one data word; consequently, each bit flip
tends to be corrected by different decoders.

The Optimized buffer scheme reduces the area consumption and



Fig. 19. PERFECT SHUFFLE distribution of the accepted traffic and average latency for Extended and Optimized buffer schemes of the three evaluated architectures: (a,
b) ExHamming, (c, d) Interleaved ExHamming and (e, f) FUEC-TAEC.

Fig. 20. HOTSPOT distribution of the accepted traffic and average latency for Extended and Optimized buffer schemes of the three evaluated architectures: (a, b)
ExHamming, (c, d) Interleaved ExHamming and (e, f) FUEC-TAEC.

A. Pinheiro et al. Microelectronics Journal 100 (2020) 104799
power dissipation compared to the Basic buffer scheme applying the
FUEC-TAEC and provides similar reliability when compared to the
Extended scheme. Additionally, the performance analysis showed that
there is a low impact between Extended and Optimized buffer schemes,
generating a small variation in saturation points in each synthetic traffic
applied. Therefore, the Optimized buffer scheme becomes a more exciting
solution for implementing ECC buffers than the Basic and Extended buffer
10
schemes.
Finally, it is essential to note that the size of the redundancy word

generated by an ECC has a direct impact on network latency. This impact
depends on the Optimized scheme configuration (i.e., effective depth).
The size of this word also directly interferes in the complexity of data
access, even if the area and power costs are acceptable. For instance, the
FUEC-TAEC results show that the Optimized scheme performs better



Table 3
Summary of variation between Extended and Optimized schemes for each ECC and each traffic pattern.

Mean of variation between Extended and Optimized buffer schemes (%)

ECC Uniform Complement Perfect shuffle Hotspot

Lat AT Lat AT Lat AT Lat AT

ExHamming 10.51 2.72 9.19 3.38 0.83 0.86 0.37 3.41
Interleaved ExHamming 17.36 5.10 10.15 4.36 0.65 0.96 0.32 5.69
FUEC-TAEC 12.20 3.27 11.27 3.89 0.89 1.04 0.21 5.02
Average 13.36 3.70 10.21 3.88 0.79 0.95 0.30 4.71

Lat – Average Latency.
AT – Accepted Traffic.

A. Pinheiro et al. Microelectronics Journal 100 (2020) 104799
when the ECC redundancy word has a half-size of a flit. This conclusion
can guide the developer to select a more efficient ECC to reach the best
cost-effective in future works.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

CRediT authorship contribution statement

Alan Pinheiro: Methodology, Formal analysis, Writing - original
draft. Daniel Tavares: Methodology, Formal analysis, Writing - original
draft. Felipe Silva: Methodology, Formal analysis, Writing - original
draft. Jarbas Silveira: Methodology, Formal analysis, Writing - original
draft. C�esar Marcon: Methodology, Formal analysis, Writing - original
draft.

Acknowledgments

This study was financed in part by the Coordenaç~ao de Aperfeiçoa-
mento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

References

[1] L. Benini, G. De Micheli, Networks on chips: a new SoC paradigm, Computer 35 (1)
(Jan. 2002) 70–78.

[2] S. Jiang, Y. Liu, J. Luo, H. Cheng, G. Luo, Study of fault-tolerant routing algorithm
of NoC based on 2D-mesh topology, in: IEEE International Conference on Applied
Superconductivity and Electromagnetic Devices (ASEMD), 2013, pp. 189–193.

[3] A. Salaheldin, K. Abdallah, N. Gamal, H. Mostafa, Review of NoC-based FPGAs
architectures, in: IEEE International Conference on Energy Aware Computing
Systems & Applications (ICEAC), 2015, pp. 1–4.

[4] S. Khan, S. Anjum, U. Gulzari, F. Torres, Comparative analysis of network-on-chip
simulation tools, IET Comput. Digital Tech. 12 (1) (Sep. 2017) 30–38.
11
[5] W. Wolf, A. Jerraya, G. Martin, Multiprocessor system-on-chip (MPSoC) technology,
IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. (TCAD) 27 (10) (Oct. 2008)
1701–1713.

[6] P. Ferreyra, C. Marques, R. Ferreyra, J. Gaspar, Failure map functions and
accelerated mean time to failure tests: new approaches for improving the reliability
estimation in systems exposed to single event upsets, IEEE Trans. Nucl. Sci. 52 (1)
(Feb. 2005) 494–500.

[7] S. Lin, D. Costello, Error Control Coding, second ed., Pearson-Prentice Hall, 2004,
p. 1272.

[8] H. Cho, L. Leem, S. Mitra, ERSA: Error resilient system Architecture for probabilistic
applications, IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. (TCAD) 3 (4)
(Apr. 2012) 546–558.

[9] M. Radetzki, C. Feng, X. Zhao, A. Jantsch, Methods for fault tolerance in networks-
on-chip, ACM Comput. Surv. (CSUR) 46 (1) (Oct. 2013) 1–32, article 8.

[10] A. Achballah, S. Othman, S. Saoud, Problems and challenges of emerging
technology networks-on-chip: a review, Microprocess. Microsyst. 53 (Aug. 2017)
1–20.

[11] J. Wang, L. Huang, Q. Li, G. Li, A. Jantsch, Optimizing the location of ECC
protection in network-on-chip, in: International Conference on Hardware/Software
Codesign and System Synthesis (CODES), 2016, pp. 1–10.

[12] T. Majumber, M. Suri, V. Shekhar, NoC Router using STT-MRAM based hybrid
buffers with error correction and limited flit retransmission, in: IEEE international
Symposium on Circuits and Systems (ISCAS), May. 2015, pp. 2305–2308.

[13] F. Silva, W. Magalh~aes, J. Silveira, J. Ferreira, P. Magalh~aes, O. Lima Jr., C. Marcon,
Evaluation of multiple bit upset tolerant codes for NoCs buffering, in: IEEE Latin
American Symposium on Circuits & Systems (LASCAS), 2017, pp. 1–4.

[14] A. Pinheiro, J. Silveira, D. Tavares, F. Silva, C. Marcon, Optimized fault-tolerant
buffer design for network-on-chip applications, in: IEEE 10th Latin American
Symposium on Circuits & Systems (LASCAS), 2019, pp. 217–220.

[15] J. Gracia-Mor�an, L. Saiz-Adalid, D. Gil-Tom�as, P. Gil-Vicente, Improving error
correction codes for multiple-cell upsets in space applications, IEEE Trans. Very
Large-Scale Integr. (TVLSI) 26 (10) (Oct. 2018) 2132–2142.

[16] J. Silveira, C. Marcon, P. Cortez, G. Barroso, J. Ferreira, R. Mota, Scenarios
preprocessing approach for reconfiguration of fault-tolerant NoC based MPSoCs,
Microprocess. Microsyst. 40 (Feb. 2016) 137–153.

[17] R. Hamming, Error detecting and error correcting codes, Bell Syst. Tech. J. 29 (2)
(Apr. 1950) 147–160.

[18] S. Baeg, S. Wen, R. Wong, SRAM interleaving distance selection with a soft error
failure model, IEEE Trans. Nucl. Sci. (TNS) 56 (4) (Aug. 2009) 2111–2118.

[19] E. Fujiwara, Code Design for Dependable Systems: Theory and Practical
Applications, Wiley-Interscience, 2006, p. 702.

[20] C. Ogden, M. Mascagni, The impact of soft error event topography on the reliability
of computer memories, IEEE Trans. Reliab. (TR) 66 (4) (Dec. 2017) 966–979.

[21] W. Dally, B. Towles, Principles and Practices of Interconnection Networks, Morgan
Kaufmann Publishers Inc., 2004.

http://refhub.elsevier.com/S0026-2692(19)30782-7/sref1
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref1
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref1
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref2
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref2
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref2
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref2
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref3
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref3
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref3
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref3
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref3
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref4
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref4
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref4
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref5
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref5
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref5
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref5
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref6
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref6
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref6
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref6
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref6
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref7
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref7
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref8
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref8
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref8
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref8
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref9
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref9
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref9
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref10
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref10
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref10
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref10
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref11
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref11
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref11
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref11
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref12
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref12
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref12
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref12
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref13
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref13
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref13
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref13
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref13
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref13
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref13
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref14
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref14
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref14
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref14
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref14
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref15
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref15
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref15
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref15
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref15
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref15
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref16
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref16
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref16
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref16
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref17
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref17
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref17
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref18
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref18
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref18
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref19
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref19
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref20
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref20
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref20
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref21
http://refhub.elsevier.com/S0026-2692(19)30782-7/sref21

	Optimized buffer protection for network-on-chip based on Error Correction Code
	1. Introduction
	2. ECCs applied to the target architecture
	2.1. ExHamming code
	2.2. ExHamming code with interleaving
	2.3. FUEC-TAEC code
	2.4. Summary of the ECCs

	3. Extended buffer scheme
	4. Optimized buffer scheme
	4.1. ExHamming buffer architecture
	4.2. Interleaved ExHamming application
	4.3. FUEC-TAEC application
	4.4. Theoretical comparison

	5. Synthesis results
	6. Error coverage analysis
	7. Performance analysis
	7.1. Uniform traffic
	7.2. Complement traffic
	7.3. Perfect shuffle traffic
	7.4. Hotspot traffic

	8. Conclusion
	Declaration of competing interest
	CRediT authorship contribution statement
	Acknowledgments
	References


