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A B S T R A C T

The radiation sensitivity of integrated memory cells increases dramatically as the supply voltage decreases.
Although there are some Error Correcting Code (ECC) studies to prevent faults on memories used in space ap-
plications, there is no consensus on choosing the best ECC product-type with two-dimensional Hamming to
mitigate data faults in memory. This work introduces the Product Code for Space Applications (PCoSA), an ECC
product based on Hamming and parity in both rows and columns for use in memory with space-application
reliability requirements. The potentialities of PCoSA were evaluated by injecting (i) thirty-six error patterns
already available in the literature and (ii) all possible combinations of up to seven bitflips. PCoSA has corrected all
cases of the thirty-six error patterns, and it has a correction rate of 100% for any three bitflips, 82.67% for four
bitflips, and 69.7% for five bitflips.
1. Introduction

The Integrated Circuit (IC) manufacture is in the nanoscale era,
implying a very large-scale integration. However, due to the decreased
supply voltage and node capacitance, the amount of charge stored in a
circuit node decreases, making the circuit more susceptible to various
types of particles, such as protons, neutrons, heavy ions, alpha particles
and high energy electrons, that generate faults during space applications
[1–4]. Faults in ICs have been studied for over 40 years [5–8]. The most
common appearance of these particles in space is the Single Event Upset
(SEU) that cause unpredictable effects on running processes and elec-
tronic system outputs, such as data loss or error that may damage com-
ponents, reduce performance, disrupt the data processing and even cause
accidents [9–11].

There are several techniques for mitigating space application faults
such as shielding, Process Technology, Hardened Memory Cell, Triple
Modular Redundancy (TMR), and Error Correction Code (ECC). To
minimize Process Technology failures, Silicon on Insulator (SoI) tech-
nology uses a thin layer of silicon on top of the insulator during the chip
manufacturing process. In Hardened Memory Cells, different parts of
original circuits are replaced by their hardened versions, which are less
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susceptible to faults but consuming more area and can imply more la-
tency. The TMR technique uses three identical implementations of the
same logic function, and the outputs are connected to a voter that decides
mostly the correct result [12]. Lastly, ECCs are used to protect digital
circuit data against errors that may occur in memory cells or transmission
channels. The basic concept is to have an encoding and decoding algo-
rithm to restore the correct value of the information [13].

The works of [14–25] show that the ECCs most widely used in space
applications are Low-Density Parity Code (LDPC), Hamming,
Reed-Muller (RM), Bose-Chaudhuri-Hocquenghem (BCH), Product code,
Reed-Solomon and its variations. Erosan and Tavli [14] exploit LDPC to
detect adjacent errors in SRAMs. Cui and Zhang [16] use an ECC(22, 16)
based on Hamming and interleaving for 32-bit memories. Varghese et al.
[18] investigate the possibility of using RM code for multi-bit errors in
high-speed aerospace applications. The work of Su et al. [19] combines
the BCH(15,7) code, which can correct two errors, with the TMR tech-
nique, achieving higher detection and correction rates when compared to
the standard Hamming, TMR, and BCH. Silva et al. [20] compare CLC (a
product-code with extended Hamming and parity bits) to RM(2, 5) and
another product-code called Matrix. Goerl et al. [25] propose an ECC for
memories, called Parity per Byte and Duplication (PBD), which is based
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Fig. 2. Product code with k1k2 data bits and n1n2 � k1k2 check bits in rows and
columns (adapted from [29]).
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on a configuration with the addition of parity bits and data duplication.
Although there are several studies of ECCs targeting memories for

space applications, there is no consensus on the choice of codes used to
compose an ECC product-type and whether using two-way Hamming
product code along with parity is the best approach to mitigate the upsets
in the data of a memory; as well as, there is no consensus in choosing the
error patterns used for verifying the performance of each ECC. The in-
vestigations consider various combinations, such as Hamming, Extended
Hamming, Parity, and BCH. Some researches use extended Hamming and
parity, such as [20,21], but fail to correct all the patterns presented in this
paper.

Regarding error patterns, the literature presents several studies.
Castro et al. [21] generate pseudorandom words for each scenario, and
the cells are positioned adjacent to each other. Radiation tests are also
used to characterize the shapes of these patterns. Radaelli et al. [26]
obtain error patterns using tests with different energy levels, i.e., 22 MeV,
47 MeV, 95 MeV, and 144 MeV. There are also researches like the one
presented by Rao et al. [27] that consider error patterns and the proba-
bility of error occurrence.

Product codes are combinations of codes for creating error correction
and detection methods. The term product code is used when the code-
word forms a rectangle composed of linear blocks; these blocks are ar-
ranged so that the rows are encoded by one code, and the columns are
encoded by another code [28,29]. Liu et al. [30] propose a scheme that
combines extended line Hamming and column parity to avoid Multiple
Bit Upset (MBU), keeping the correction capability with small area
consumption and power dissipation. Moran et al. [31] show two types of
product code based on Matrix to correct errors in adjacent memory cells.
Additionally, Yang, Emre and Chakrabarti [32] propose a product code
that codifies rows and columns using Reed-Solomon and Hamming,
respectively; the proposed code reaches a high correction rate with sig-
nificant hardware reduction.

The main contribution of this paper is to propose, implement and
discuss a new configuration of Hamming-based product code that in-
cludes parity on both rows and columns. This code called Product Code
for Space Applications (PCoSA) reaches high correction and error
detection rates enabling it to be used in applications where reliability is a
critical requirement, such as space applications.

2. PCOSA BACKGROUND

R. Hamming [33] has developed the Ham(n, k) linear block code for
correcting a single error, where n is the total bits of the codeword, and k is
the number of information bits. Equation (1) shows that r is the number
of check bits that are added to the data to compose the codeword.

r¼ n� k (1)

Fig. 1 shows that Hamming is a binary linear block code with r � 2,
which is based on Equations (2) and (3).

Parity is an error detection method that adds an extra bit to the
codeword. The parity bit can be either 0 or 1, depending on the number
of 1s are in the codeword.Moreover, Extended Hamming is a code having
Fig. 1. Representation of a generic Hamming code Ham(n, k); n is the total
number of bits, k is the amount of data bits, and r is the redundancy.

n¼ 2r � 1 (2)

k¼ 2r � r � 1 (3)
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a parity bit for increasing the Hamming code capacity to detect double
errors besides to correct a single error [20]. The code proposed here uses
even parity so that the total of 1s in the word, including the added parity
bit, is even [34].

Fig. 2 shows that given two linear codes C1(n1, k1) and C2(n2, k2),
then the product code is the combination of both codes (n1n2, k1k2),
which is denoted by C1C2. The data is written in a matrix k1k2. Each one
of the k2 rows is coded using code C1, forming n1 columns. Each one of
the n1 columns is encoded using code C2, forming a matrix n1n2. The
linearity of the product code allows coding to begin with C1 followed by
C2, or vice versa [28,29,35]. Also, if C1 has minimum distance d1 and C2

has minimum distance d2, then de product code C1C2 has minimum
distance d1 � d2. As the minimum distance of a code increases, the higher
the code detection and correction capability [29].

Column-Line-Code (CLC) [20] is a product code that uses Extended
Hamming in format Ham(8, 4) (i.e., n ¼ 8, k ¼ 4, and r ¼ 4), as shown in
Fig. 3. CLC is a code (40, 16), wherein a 16-bit word (represented by bits
D0-D15) is encoded in a 40-bit codeword with 16 data bits, 12 check bits,
8 column-parity bits, and 4 row-parity bits. This code format makes CLC
have a minimum distance d ¼ 8 since Extended Hamming has d ¼ 4 and
parity has d ¼ 2.

The column-parity bits Pc0 to Pc3 are used to detect errors in data bit
columns, while the remaining bits Pc4 to Pc7 are used to detect errors in
check bits and row parity bits. The combination of extended Hamming on
each line with the parity bits allows correcting MCUs in the data word as
well as the check and parity bits.

Equations (4)–(6) describe how to calculate Cq, performed by XOR
(�) operations, where q is the check bit index.

Cq ¼D4q
3þ1 � D4q

3þ2 � D4q
3þ3 8q 2 f0; 3; 6; 9g (4)

Cqþ1 ¼D4q=3 � D4q
3þ2 � D4q

3þ3 8q 2 f0; 3; 6; 9g (5)

Cqþ2 ¼D4q=3 � D4q
3þ1 � D4q

3þ3 8q 2 f0; 3; 6; 9g (6)
Fig. 3. CLC product code with data D, check bits C, parity of row Pr, and parity
of column.Pc (adapted from [20]).



Fig. 4. PCoSA structure with 16 data bits. The code has five regions: data (D),
check bits of the D rows (C1), check bits of the columns D and C1 (C2), parity of
the rows D and C1, and C2 (P1), and parity of all columns (P2).
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Equation (7) presents all Pr bits that are calculated to implement the
extended Hamming code.

Prq ¼D4q � D4qþ1 � D4qþ2 � D4qþ3 � C3q � C3qþ1 � C3qþ2; 8 0 � q � 3

(7)

Equations (8)–(10) show how to calculate Pcq, where q is the column
index of Pc.

Pcq ¼Dq � Dqþ4 � Dqþ8 � Dqþ12 8 0 � q � 3 (8)

Pcq ¼Cq�4 � Cq�1 � Cqþ2 � Cqþ58 4 � q � 6 (9)

Pc7 ¼Pr0 � Pr1 � Pr2 � Pr3 (10)

CLC checks the integrity of the codeword by analyzing each row and
column. The CLC algorithm starts generating the syndrome vectors of
column-parity (sPc) and check bits (sC). These vectors require the
Recalculated Check bit (rC) and the Recalculated Column-parity bits
(rPc) that are computed using the same equations of C (Equations
(4)–(6)) and Pc (Equations (8)–(10)), respectively. Equations (11) and
(12) describe the computation of sC and sPc, respectively.

sCq ¼Cq � rCq 8 0 � q � 11 (11)

sPcq ¼Pcq � rPcq 8 0 � q � 7 (12)

The CLC algorithm detects errors in the codeword when any of the sC
and sPc bits are nonzero. Additionally, the Pr bits are also recalculated
(rPr) to cover triple errors on the same line, allowing generating the line-
parity syndrome (sPr), which is calculated according to Equation (13).

sPrq ¼Prq � rPrq 8 0 � q � 3 (13)

Equation (14) calculates sCrq, which is the reduction to one bit of all
sC bits of each line, where þ represents the logical OR operator.

sCrq ¼ sC3q þ sC3qþ1 þ sC3qþ2 8 0 � q � 3 (14)

Table 1 allows us to check whether an error has occurred and, if so, to
indicate what type of error, as well as whether the number of errors is an
even or odd, and thus apply the associated correction method; i.e., parity,
Hamming or Hamming with parity.

According to the error pattern, CLC achieves higher correction and
detection rates than Matrix and RM(2, 5); however, there are several
error patterns produced by SEUs that are not covered by CLC.

3. PCoSA codeword definition

PCoSA employs the same extended Hamming-based structure of CLC
but applying also Hamming to the columns. Therefore, PCoSA(64, 16),
which is based on Extended Ham(8, 4), is the smallest possible product
code format that implements PCoSA.

Fig. 4 illustrates PCoSA(64, 16) format, wherein a 16-bit word (rep-
resented by bits D0-D15) is encoded into 64 bits distributed as follows: (i)
16 data bits, (ii) 12 row-check bits C1, (ii) 7 row-parity bits P1, (iii) 21
column-check bits C2 and (iv) 8 column-parity bits P2. This code format
Table 1
Correction table based on the syndrome bits [20].

sCr sPr sPc Status Correction method

0 0 0 No error –

0 0 1 Error detected –

0 1 0 Error detected –

0 1 1 Triple error corrected Parity
1 0 0 Error detected –

1 0 1 Even errors corrected Parity
1 1 0 Odd errors corrected Hamming
1 1 1 Odd errors corrected Hamming and Parity
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makes PCoSA have a minimum distance d ¼ 16 since Extended Hamming
has d ¼ 4, increasing the detection and correction capability of PCoSA
compared to CLC.

Equations 15 to 17 and 18 to 20 compute the recalculated check bits
rC1q and rC2q, respectively, where q is the bit-index. Additionally,
Equations (2), (21) and (22)3-25 compute the recalculated parity bits rP1
and rP2, respectively.

rC1q ¼D4q
3
� D4q

3þ1 � D4q
3þ38q 2 f0; 3; 6; 9g (15)

rC1qþ1 ¼D4q=3 � D4q
3þ2 � D4q

3þ38q 2 f0; 3; 6; 9g (16)

rC1qþ2 ¼D4q
3þ1 � D4q

3þ2 � D4q
3þ38q 2 f0; 3; 6; 9g (17)

rC2q ¼
�
Dq � Dqþ4 � Dqþ12

C1q�4 � C1q�1 � C1qþ5
8 0� q� 3 8 4� q � 6 (18)

rC2qþ7 ¼
�
Dq � Dqþ8 � Dqþ12

C1q�4 � C1qþ2 � C1qþ5
8 0� q� 3 8 4� q � 6 (19)

rC2qþ14 ¼
�
Dqþ4 � Dqþ8 � Dqþ12

C1q�1 � C1qþ2 � C1qþ5
8 0 � q � 3 8 4 � q � 6 (20)

rP1q ¼D4q � D4qþ1 � D4qþ2 � D4qþ3 � C13q � C13qþ1 � C13qþ2 8 0 � q � 3

(21)

rP1q ¼C27q�28 � C27q�27 � C27q�26 � C27q�25 � C27q�24 � C27q�23

� C27q�22 8 4

� q � 6 (22)

rP2q ¼Dq � Dqþ4 � Dqþ8 � Dqþ12 � C2q � C2qþ7 � C2qþ14 8 0 � q � 3

(23)

rP2q ¼C1q�4 � C1q�1 � C1qþ2 � C1qþ5 � C2q � C2qþ7 � C2qþ14 8 4 � q

� 6

(24)

Pr27 ¼P10 � P11 � P12 � P13 � P14 � P15 � P16 (25)

Applying Equations (26)–(29), the decoding algorithm computes
sind ¼ [sC1, sP1, sC2, sP2] - a vector composed of four syndromes; i.e.,
sC1 and sC2, which are the check bit syndromes of C1 and C2, respec-
tively, and sP1 and sP2, which are the row and column parity syndromes,



Fig. 5. Thirty-six error patterns used in the experiments, encompassing one
simple error, ten double errors, twenty triple errors, and five quadruple errors
(adapted from [27]).
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respectively.

sC1¼
X3

q¼0

�
C13q � rC13q

�þ �C13qþ1 � rC13qþ1

�þ �C13qþ2 � rC13qþ2

�
(26)

sC2¼
X3

q¼0

�
C2q � rC2q

�þ �C2qþ7 � rC2qþ7

�þ �C2qþ14 � rC2qþ14

�
(27)

sP1¼
X3

q¼0

P1q � rP1q (28)

sP2¼
X3

q¼0

P2q � rP2q (29)

The PCoSA decoding algorithm explores the sind ¼ [sC1, sP1,
sC2, sP2] vector in the binary format sindb ¼ [sc1, sp1, sc2, sp2]. Equa-
tion (30) presents how to compute a binary element of sindb from its
counterpart in sind. For example, if sind ¼ [0,2,2,3], then
sindb ¼ [0,1,1,1].

sx¼
�

0; if sX ¼ 0
1; else

(30)

4. PCoSA correction background

We designed PCoSA to reach high correction rates for error patterns
with high incidence in spatial memories. This section presents these
patterns, the format for injecting these patterns into a codeword for
verification purposes and the PCoSA error correction method.

4.1. Basic error patterns

Rao et al. [27] proposed assessing ECCs using the 36 error patterns of
most incidence in memories, attained with simulation results with a
commercial tool for evaluating strikes of neutron particles. Fig. 5 shows
Fig. 6. (a), (b) and (c) show error patterns 2, 3 and 18, respectively. The red recta
pretation of the references to colour in this figure legend, the reader is referred to t
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these patterns that were employed to assess ECCs in other works like [20,
36].

We inserted these error patterns in the PCoSA codeword performing
some adjustments. For example, the error pattern 2 has two adjacent
bitflips on the same line; thus, it is inserted into the memory as follows:
(i) the leftmost bit of this pattern is set as reference; (ii) the possible
insertion positions are established (as shown in Fig. 6(a)); (iii) this
pattern is placed in all valid positions of the matrix; (iv) each pattern is
placed w times in the 8� 8 matrix, with w¼ 64 only for the patterns with
1 bitflip, the other error patterns make w < 64.

Fig. 6 exemplifies areas where error patterns 2, 3, and 18 can be
placed; these areas take into account the size and shape of the pattern. We
must delimit the insertion region boundaries of each error pattern to
ensure that the codeword obtains the exact pattern format. The region
boundaries, which limits the number of patterns placed into the code-
word, are highlighted by the red rectangles in Fig. 6; for instance, error
patterns 2 and 3 have 56 insertion possibilities, while error pattern 18
has only 42 insertion possibilities.

The reference of all error patterns is the upper left bit of each pattern.
Fig. 6(a) illustrates that the pattern 2 cannot be placed in the last column,
as there are not two memory spaces available. Similarly, Fig. 6(b) dis-
plays that pattern 3 cannot be placed on the last line. Finally, Fig. 6(c)
shows that the pattern 18 is limited to row six and column seven.
4.2. Correction method

We validate PCoSA with MatLab scripts that insert all error patterns
into all regions of the memory matrix illustrated in Fig. 4. For example,
an error pattern containing a simple error is placed in the five regions (D,
C1, P1, C2 and P2); an error pattern with an adjacent double error on the
same line, is placed in 7 possibilities: D, D [ C1, C1, C1 [ P1, C2, C2 [ P1
and P2. The operator [ represents an area composed of more than one
region; for instance, D [ C1 indicates that a double error has occurred,
and one bit of this error is in region D and the other one is in region C1, as
shown in Fig. 7(a).

Simulating all the possibilities of placing the 36 error patterns,
considering the cases of miscorrection (which occur in patterns that have
triple errors in the same row) allows us to create a table that associates
the error pattern, its positioning and the values of the sind vector.
Fig. 7(b) exemplifies the error pattern 32 mapped in 3D [ C1, indicating
three errors in region D and one error in region C1.

The PCoSA algorithm starts checking and correcting the column
check bits associated with the data (i.e., C20 to C23, C27 to C210, and
C214 to C217) using the check bits C24 to C26, C211 to C213 and C218 to
C220, as well as the parity bits P14 to P16. This correction aims to achieve
higher reliability for the column check bits associatedwith the data. Also,
fields P24 to P27 allow checking the consistency of the check bits and
parity columns, and in case of inconsistent values, the number of errors
detected is increased. Then, the algorithm calculates the syndromes,
generating sindb.

Table 2 shows 16 possibilities of syndrome sindb; only bold patterns
marked with ‘*’ need to go through the correction algorithm as errors
outside region D can be recalculated from D information.
ngles show regions where the pattern can be inserted into memory. (For inter-
he Web version of this article.)



Table 2
Mapping of error patterns using sindb ¼ [sc1; sp1; sc2; sp2].

sindb Error type Number of error patterns

0 0 0 0 No error –

0 0 0 1 Outside region D 4
0 0 1 0 4
0 0 1 1 20
0 1 0 0 4
0 1 0 1 8
0 1 1 0 8

* 0 1 1 1 Patterns 21, 33 Total 84 - only 4 in region D
1 0 0 0 ∅ –

1 0 0 1
* 1 0 1 0 Pattern 36 Total 84 - only 4 in region D
* 1 0 1 1 Patterns 2,5,34 Total 17 - only 9 in region D

1 1 0 0 ∅ –

* 1 1 0 1 Pattern 14 Total 4 - only 2 in region D
* 1 1 1 0 Patterns 3,4,35 Total 18 - only 9 in region D
* 1 1 1 1 Several patterns Total 213 - several in region D

∅ - means an unreachable syndrome.

Fig. 7. Error patterns (a) 2 and (b) 32 of Fig. 5 placed in regions D [ C1, and 3D [ C1, respectively. The bold bits with red-shaded background represent the error
pattern. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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The columnNumber of error patterns shows the number of patterns
displayed in Fig. 5 for a given sindb. For example, sindb ¼ [0, 0, 0, 1]
encompasses four error patterns occurred outside region D; these pat-
terns are 1, 2, 5 and 21, and all patterns falling in the region P2. The
following paragraphs detail the error patterns, the correction method
applied and region that generates a given sindb combinations, which are
bolded and marked with ‘*’ in Table 2.

sindb ¼ [0, 1, 1, 1].
Pattern Region sind Correction method
21
 D
 [0 1 3 3]
 Triple error row is obtained with SP1,
and bitflips are corrected using SP2
2D [ C1
33
 3D [ C2
 [0 2 3 2]
 The bitflip out the triple error row is
corrected by selecting the center
column using SC2, and the second
error row using the lower SP1. After
recalculating the syndromes, the error
row is known by SP1 and bitflips are
changed using SP2
2D [ C1 [ C2
sindb ¼ [1, 0, 1, 0].
Pattern Region sind Correction method
36
 D
 [2 0 2 0]
 The four bitflips are corrected by
referencing the upper left bit of the
pattern. This bit is found using the
upper SC1 and the leftmost SC2. The
position of this reference bit allows us
to change the other three bitflips
D [ C1
D [ C2
 [1 0 2 0]

D [ C1 [ C2
75
sindb ¼ [1, 1, 0, 1].
Pattern Region sind Correction method
14
 D
 [3 3 0 1]
 It is a triple error in the column marked
SP2; bitflips are corrected by rows using
SP1
2D [ C2
 [2 3 0 1]
sindb ¼ [1, 0, 1, 1].
Pattern Region sind Correction method
2
 D
 [1 0 2 2]
 The row is obtained using SC1, and
bitflips are corrected by knowing the
column positions through SP2
D [ C1

5
 D
 [1 0 2 2]
D [ C1

34
 D
 [2 0 3 2]
 Correction algorithm applies

Hamming to the leftmost and
rightmost columns, causing a double
error to remain in the column. Next,
the syndromes are recalculated, and
the two bitflips are corrected by
obtaining the column by SC2 and the
rows by SP1
3D [ C1
D [ 3C1
2D [ 2C2
 [1 0 3 2]

D [ C1 [ 2C2
sindb ¼ [1, 1, 1, 0].
Pattern Region sind Correction method
3
 D
 [2 2 1 0]
 These patterns contain double errors
pointed by SC2; bitflips are corrected
by rows using SP1
D [ C2
 [1 2 1 0]

4
 D
 [2 2 1 0]
D [ C2
 [1 2 1 0]

35
 D
 [3 2 2 0]
 SCI points to the first row of the

pattern, which is corrected with
Hamming. Next, the syndrome is
recalculated, and Hamming is applied
to the second row (pointed by SCI).
Finally, the algorithm recalculates the
syndrome and corrects the remaining
two bitflips knowing; rows are
pointed by SPI
2D [ 2C1
3D [ C2
 [2 2 2 0]

D [ 2C1 [ C2
D [ 3C2
 [1 2 2 0]
sindb ¼ [1, 1, 1, 1].
This syndrome occurs with error patterns in the format m� c, where

m and c are the numbers of rows and columns with errors, respectively.
For example, Fig. 7(a) and (b) display a 1 � 2 and 2 � 3 error format,
respectively. In cases of miscorrection, or in cases where the error is in
regions such as D [ C2, the error patterns may have different dimensions
from those calculated. The PCoSA algorithm uses Equations (31)–(33) to
calculate the error size T.

T ¼m� c (31)

m¼maxðsC1; sP1Þ (32)



Table 3
Correction method applied to each format of sindb ¼ [1,1,1,1].

T Pattern Region Correction method

1 � 1 1 – SC1 and SC2 point to bitflip row and column
that is corrected by Hamming

1 � 2 12, 13,
15-20

D [ C2 All these patterns have a size of 2� 2 but are
defined as 1 � 2 because a bitflip occurs
outside region D. The correction algorithm
checks the first row of the bitflip through
SC1 or SP1, corrects the bitflip that is inside
D and then applies Hamming to the first
seven columns

13, 15,
18, 20

D [ C1 [ C2

1 � 3 21 D Only error pattern 21 has dimension 1 � 3;
the other error patterns are set here because
they have bitflips outside of the region D.
The correction algorithm checks for columns
that have errors using SC2 and applies
Hamming.

D [ 2C1
27 2D [ C2

D [ C1 [ C2
28 D [ 2C2
30 D [ 2C2
31 2D [ C2

D [ C1 [ C2
2 � 1 – 2D The 2� 1-dimension error only occurs in the

second verification set (which considers all
combinations of up to 7 bitflips). These cases
use Hamming in the first four rows

2 � 2 6-13, 15-
20

D The error correction algorithm first checks if
any rows have double errors. If so, it corrects
the bitflip whose column is pointed by SP2
and fixes by Hamming each row. If there is
no double-column error, Hamming fixes
each of the first four rows

D [ C1
6–11 D [ C2

2 � 3 32 D The correction algorithm checks if there are
any double errors in the column. If so, it
corrects the error using the top row pointed
by SP1. Subsequently, the algorithm checks
the columns pointed by SP2 and corrects the
bitflips applying Hamming. Otherwise, it
checks the columns pointed by SP2 and
corrects bitflips using Hamming

3D [ C1
D [ 3C1
D [ 3C2

33 D
3D [ C1
D [ 3C1
D [ 2C1 [ C2

27, 28,
30, 31

2D [ C1
D [ 2C1

3 � 1 14 D This pattern refers to a triple error in the
column; so, the error correction algorithm
applies Hamming on the first four rows

D [ 2C2

3 � 2 22–24 D Since these are simple line error patterns, the
error correction algorithm applies Hamming
to the first four rows

D [ C1
2D [ C2
D [ 2C2

22, 23 D [ C1 [ C2
29 D

2D [ C1
2D [ C2
D [ C1 [ C2
D [ 2C2

3 � 3 25, 26 D They are just simple error patterns in the
rows; the error correction algorithm applies
Hamming on rows one to four

2D [ C1
D [ 2C1
2D [ C2
D [ C1 [ C2
D [ 2C2

– – – If none of the above cases, the error
correction algorithm applies Hamming to the
first four lines

Fig. 8. Configuration of PCoSA(256, 121) using Ham(15, 11). The 121 data bits
are encoded in 256 bits; rr is 52.7%, with 135 bits of redundancy.

Fig. 9. PCoSA(1024, 676) employing Ham(31, 26) and encompassing 676 data
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c¼maxðsC2; sP2Þ (33)

Table 3 describes all possibilities of T, together with the corre-
sponding pattern, region and correction method.

5. Exploring scalability and redundancy rate

The Redundancy Rate rr, computed by Equation (34), is a metric that
indicates the cost in bits of an ECC, which is given by the ratio between
the redundancy and codeword bits. The higher the rr, the greater the
weight of the redundancy bits of the codeword. However, the lower the
76
rr, the lower the redundancy impact; consequently, the lower the ECC
cost.

rr¼ r
n
� 100% (34)

PCoSA was designed to protect memories with words longer than 8
bits through code replication or code scaling. Replicating a smaller code
is a technique that maintains the redundancy rate, while code scaling
reduces rr.

The PCoSA scaling is achieved, using other Hamming formats that
preserve the same minimum Hamming distance of four, making the
product-code to have the same minimum d ¼ 16; consequently, preser-
ving the same the correction and detection rates for all scaled versions of
PCoSA. For instance, when using Ham(16, 11) and Ham(32, 26) in place
of Ham(8, 4), increases the codeword length to the ones presented in
Fig. 8 and Fig. 9, respectively.

On the one hand, the purpose of the PCoSA configurations presented
in Figs. 8 and 9 is to decrease rr, contributing to a code with less
redundancy and, consequently, lower cost in bits. For instance,
PCoSA(256, 121) and PCoSA(1024, 676) have rr equal to 52.7% and
33.98%, respectively, which is a significant reduction of the cost in bits
when compared to 75% of the basic PCoSA(64, 16). On the other hand,
since PCoSA scaling keeps the number of bits detected and corrected,
because it keeps the Hamming distance, but increases the number of
codeword bits, the detection and correction rate of the memory protected
bits encoded in 1024 bits; rr is 33.98%, with 348 bits of redundancy.



Fig. 11. (a) Detection and (b) correction rates of PCoSA, PBD, CLC, Matrix and
RM codes. The simulation is done using all combinations from 1 to 7 bitflips.
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by PCoSA is reduced.
Replication is performed using any PCoSA code, such as the minimum

PCoSA(64, 16), or other scaled versions as shown above: PCoSA(256,
121) and PCoSA(1024, 676). Fig. 10 illustrates PCoSA(256, 64) for
protecting a memory with 64-bit words; this code format was achieved
by replicating four PCoSA(64, 16).

On the one hand, this replicating process makes both PCoSA(64, 16)
and PCoSA(256, 64) have rr equal to 75%, which is a high cost in bits. On
the other hand, the replicating process scaling keeps the number of bits
detected and corrected, and also the detection and correction rate of the
memory protected by PCoSA.

6. Results and discussions

Fig. 11(a) and (b) shows the detection and correction rates, respec-
tively, for the experimental result that compares PCoSA to Matrix, CLC,
RM(2, 5) and PBD. Although PCoSA was designed to correct and detect
the 36 error patterns illustrated in Fig. 5, we performed an exhaustive set
of simulations containing all combinations from one to seven bitflips in
an 8 � 8 memory to explore PCoSA's ability to correct more errors. Note
that using all error patterns up to 7 bits reduces the error correction
capacity of PCoSA but increases the fairness of the results.

Fig. 11(a) shows that all error cases using PCoSA were detected. This
high detection rate happens because PCoSA has a matrix structure with
two syndromes (the Hamming-check and parity bits) for each row and
column. The PCoSA and PBD codes reach the highest detection rates up
to 7 bitflips. PBD does not achieve 100% detection for only in the 4 bitflip
cases (in this case, the code reaches 99.9%). This analysis is done in the
work of [37], which explains that some cases of 4 and 8 bitflips are not
detected. Matrix has the worst performance, detecting only 16% of cases
with 7 bitflips.

Fig. 11(b) demonstrates that the PCoSA and RM codes have 100%
correction rates for up to three bitflips. For cases with more bitflips,
PCoSA reaches higher correction rates. For example, our ECC reaches
82.7% of correction rate in the experiments with four bitflips; whereas,
the PBD code has the lowest correction rates up to three bitflips. Addi-
tionally, from four to seven bitflips, PBD, Matrix, and RM have the lowest
correction rates, reaching 0.76%, 0.34%, and 0.16% for 7 bitflips,
respectively.

7. Reliability and synthesis cost analysis

We performed a reliability analysis based on the works of Silva et al.
[20] and Argyrides et al. [38], taking into account the same statements
assumed by Ref. [38]: i) transient faults occur according to the Poisson
distribution and ii) bit faults are statistically independent.

Le Ne be the maximum number of errors, and FC be the errors cor-
rected, both occurring during time t, then, Equation (35) illustrates the
fault correction computation in a codeword FcðtÞ. Additionally, MF in-
dicates if memory fails and iF indicates that there are i upsets in memory.

FcðtÞ¼
XNe
i¼1

ðPfFCjiFg�PfiFjMFgÞ (35)

Let n be the number of bits in the codeword and λ be the one-bit fault
rate, then, Equations (36) and (37) compute the probability of having i
Fig. 10. PCoSA configuration for use in 64-bit memories. PC
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upsets in memory PfiFg and the probability of memory fail PfMFg,
respectively. Finally, Equation (38) calculates the probability of having
exact i upsets in a faulty memory PfiFjMFg.

PfiFg¼
�
n
i

�
ð1� e�λtÞie�λðn�iÞt (36)

PfMFg¼ 1� e�λnt (37)

PfiFjMFg¼ PfiFg
PfMFg (38)

The PfFCjiFg values are obtained in the previous section through the
simulation results presented in Fig. 11(b). Besides, letM be the number of
codewords in memory, then, Equation (39) shows that the reliability of a
memory RðtÞ is the product of the reliability of all words in a given time t.
Additional information on the equations can be found in Ref. [38].
oSA(256, 64) has 64 data bits and 192 redundancy bits.



Table 4
Area consumption, power dissipation, and delay for the encoder and decoder
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RðtÞ¼
 
1� PfMFg þ

XNe
PfiFg � PfFCjiFg

!M

(39)

synthesis analysis of all evaluated ECCs.

Area (μm2) Power (mW) Delay (ns)

Encoder Decoder Encoder Decoder Encoder Decoder

PCoSA 528 10051 0.043 0.848 0.43 1.91
Matrix 298 1090 0.010 0.050 0.15 1.01
CLC 435 1351 0.024 0.076 0.35 1.33
PBD 154 415 0.010 0.031 0.13 0.60
RM 504 4312 0.037 0.737 0.74 2.12
i¼1

Fig. 12 shows the reliability RðtÞ of the five ECCs regarding correction
capacity and a memory with M ¼ 1000. The results demonstrate that
PCoSA is the most reliable ECC throughout the period, having a much
smoother reliability drop curve over time. The reliability of PCoSA is
99.99%, 94.63%, and 48.41% at times 100, 500, and 1000, respectively.
On the opposite side is PBD, having an abrupt reliability drop, with
RðtÞ ¼48.13% at time 100 and tending to zero from time 300.

We synthesize the encoding and decoding modules of the five ECCs
evaluated in this work to analyze their implementation costs. Fig. 13 il-
lustrates the encoding and decoding schemes considering various types
of memories (i.e., manufacturing technologies, sizes, formats, and pro-
tocols) with specific reading and writing drivers to clarify the synthesized
modules. It is important to note that while the ECC encoder and decoder
Fig. 12. Reliability of PCoSA, PBD, CLC, Matrix and RM.

Fig. 13. Flow of encoding and decoding of the five ECCs evaluated, highlighting the m
colour in this figure legend, the reader is referred to the Web version of this article.
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modules are only dependent on the ECC algorithms, the driver modules
are memory configuration dependent.

Table 4 displays the synthesis results for the encoder and decoder of
PCoSA(64, 16) and all other evaluated ECCs, considering the encoding
and decoding of a 16-bit data; these results encompass area consumption,
power dissipation, and delay, which were achieved with the Cadence
RTL Compiler software synthesis for 65 nm CMOS technology under
normal operating conditions.

Independent of the evaluated ECC since most calculations are per-
formed on the decoder side, it has higher values of area consumption,
power dissipation, and delay when compared to the encoder. For
example, the area consumption and power dissipation of the PCoSA
decoder are about twenty times greater than the encoder, while the
encoder delay is four and a half times less than the decoder.

Also, comparing Fig. 12 to Table 4 enables us to observe a tradeoff
between reliability and synthesis costs. On the one hand, Fig. 12 clearly
demonstrates that PCoSA has a great advantage in terms of reliability
over other ECCs; on the other hand, Table 4 shows that this reliability
implies high costs in area consumption and power dissipation, especially
when compared to PBD that it is a very low-cost ECC. Finally, the com-
parison of PCoSA with RM (which is the second most reliable code)
shows that PCoSA consumes slightly more than twice the area and dis-
sipates only 15% more power.

8. Conclusions

This work proposes the Product Code for Space Applications (PCoSA)
odules (in green) that were synthesized. (For interpretation of the references to
)
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- a product-type ECC that uses Hamming and parity on both rows and
columns. The error detection and correction capabilities enable using
PCoSA in space application memories.

The validation of the proposed technique was performed using two
sets of simulations. The first set considers 36 patterns, containing double,
triple and quadruple errors, which were captured in memory simulation
focused on spatial applications. The second set of simulations was
exhaustively performed using all possible combinations of one to seven
bitflips within an 8 � 8-bit memory.

The results were analyzed and discussed comparing with four other
codes (Matrix, CLC, RM and PBD), equally designed for use in space
application memories.

In all error cases, adjacent or not, PCoSA presented 100% of detection
rate. This capability is due to (i) its matrix format and (ii) the existence of
two syndromes for each row and column (Hamming check and parity
bit). The other codes presented lower detection rates; the Matrix code
achieves the worst performance, detecting only 16% of seven bitflips.

PCoSA and RM showed 100% of correction rate up to 3 bitflips. From
4 to 7 bitflips, PCoSA has 82.7%, 69.7%, 55.3% and 43.7% of correction
rate, respectively. PBD has the worst correction rates up to 3 bitflips, and
from 4 bitflips the lowest rates are for PBD, Matrix and RM; For 7 bitflips
these codes have 0.76%, 0.34% and 0.16% of correction rate,
respectively.

Our work shows that PCoSA can scale to more memory configura-
tions, considering, for example, 16, 32 and up to 64 bits. When scaling
the code, the redundancy rate remains at 75%. However, the number of
redundancy bits can be reduced by using different Hamming configura-
tions. For instance, with Ham(15, 11) and Ham(31, 26), the redundancy
rates reduce to 52.5% and 33.98%, respectively.
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