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Abstract—The representation of words by means of vectors,
also called Word Embeddings (WE), has been receiving great
attention from the Natural Language Processing (NLP) field. WE
models are able to express syntactic and semantic similarities,
as well as relationships and contexts of words within a given
corpus. Although the most popular implementations of WE
algorithms present low scalability, there are new approaches that
apply High-Performance Computing (HPC) techniques. This is
an opportunity for an analysis of the main differences among the
existing implementations, based on performance and scalability
metrics. In this paper, we present a study which addresses
resource utilization and performance aspects of known WE
algorithms found in the literature. To improve scalability and
usability we propose a wrapper library for local and remote
execution environments that contains a set of optimizations such
as the pWord2vec, pWord2vec MPI, Wang2vec and the original
Word2vec algorithm. Utilizing these optimizations it is possible
to achieve an average performance gain of 15x for multicores
and 105x for multinodes compared to the original version. There
is also a big reduction in the memory footprint compared to the
most popular python versions.

Index Terms—Natural Language Processing, Word2vec, Per-
formance Evaluation.

I. INTRODUCTION

The language representation model Word Embedding (WE)
has gained visibility in the natural language processing (NLP)
field. This kind of model enables findings such as syntactic and
semantic similarities, as well as relations and word contexts
within a given corpus (input text). The neural networks algo-
rithms identify linguistic patterns and allow algebric operations
between the words’ corresponding vectors of the WE models.
For example:

[Madrid]− [Spain]+ [France]� [Paris] (1)

Where [Paris] would have the vector that most approximates
the operation in Equation 1 [1].

These WE models can be applied in different fields, such
as the forensic science by extracting texts from documents
related to criminal investigations. In this case, the models can
be used as an aid for investigators to identify patterns and
associated words. Also, they can be applied to associate people
with places, performing researches at suspicious activities.

Word2vec, introduced by Mikolov et al. [1], is a WE
algorithm widely used in the NLP field. Their implementation
has scalability problems, which means that it does not improve
performance based on the amount of resources available. Thus,
it requires several hours to complete its executions, which can
be seen in Section IV. The scalability problem remains in
newer versions of algorithms based on Miklov’s Word2vec.
However, there are opportunities for improvements by apply-
ing High-Performance Computing (HPC) solutions, which are
based on parallel computing and provide performance and
scalability by splitting the problem in multiple statements
concurrently processed.

Similar to Word2vec there are other WE algorithms, e.g.
FastText and Wang2vec. These are capable of generating vec-
tor representations from larger corpora using different training
strategies and consequently producing language models with
particular characteristics.

Besides the above mentioned versions, there are other
optimizations that are able to achieve better results in terms
of performance and resource utilization. However, suffer from
limited usability since they are not in the most popular tools for
the application of these algorithms, e.g., Gensim [2], NLPNET
[3] and spaCy [4].

This paper presents an analysis of the main differences
between the above-mentioned implementations, considering
points directly related to performance and scalability. We
investigate the established WE NLP implementations and the
optimizations proposed by the HPC field aiming to provide
insights about the resource utilization and performance issues
of the different analyzed versions.

The main contributions of the current work include:

• An analysis of the most known WE algorithms and
implementations concerning performance and resource
usage;

• A wrapper library that contains the original Word2vec
and a set of optimizations, namely, the pWord2vec,
pWord2vec MPI, and Wang2vec algorithms. This tool
allows the NLP community to access the parallels and
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distributed tools bringing the possibility to generate mod-
els based in bigger corpus;

• A preliminary evaluation of the wrapper library.
The rest of this paper is organized as follows. Section II

summarizes the concepts used in this study. Section III lists
related work. Section IV presents a performance evaluation
of the WE algorithms considered in this work. Section V
describes in detail how our proposed solution works and its
functionalities. Finally, Section VI depicts our conclusions and
future directions.

II. BACKGROUND

A. WE Algorithms

In recent years, the extensive use of Language Models
(LMs) led to significant results in the NLP field. A standard
approach for generating LMs is the use of algorithms such as
Word2vec, FastText, and Wang2vec [5].

These algorithms receive large volumes of text in a given
language. From a training strategy, they construct a vocabulary
and learn vector representations (in a given vector space R

n of
dimension n) for these words, based on the context in which
they are inserted.

1) Word2vec training process: Word2vec is the algorithm
for embeddings generation proposed by Mikolov et al. [1].
This method attempts to predict the neighborhood of a target
word within a context window, producing vectors representa-
tions for the found vocabulary.

Two architectures are used by this algorithm: the Continu-
ous Bag-of-Words (CBOW) and the Skip-Gram. The former
predicts a target word from a given context. The latter predicts
the context words for a target word. Both architectures require
significant processing time, which can get worse according to
the data volume and parameters used. However, it is notewor-
thy that, due to the increase in the range of words considered
for training, the Skip-gram model has greater complexity [6],
therefore requires greater computational power.

The WE models show precise forms of word representation,
and their use is common in NLP systems that use words
as basic input units [7]. These models are capable of rep-
resenting document vocabularies, capturing the word context,
its syntactic and semantic meaning, and words relations in a
given corpus. As pointed out by Hartmann et al. [7], different
methods for embeddings generation have been developed since
the publication of the most popular among them Word2vec [1].
Most of these WE learning processes require high computa-
tional power, as we detail in Section IV. Parameters such as
vector dimension, window, architecture, and usage of larger
datasets, directly influence resource consumption.

2) Wang2vec training process: The Wang2vec, as men-
tioned in previous sections, is also an algorithm for generating
embeddings, and it is fundamentally based on Word2vec.
Two modifications of the Word2vec algorithm give rise to
Wang2vec. These modifications allow the model to capture
greater detail of the syntactic features of a language. In the
CBOW architecture, the input tokens are the concatenation of
the one-hot vectors of the context words that appear. In the

Structured Skip-gram architecture, the prediction parameters
change to predict each context word, depending on the position
concerning the target word [8].

3) FastText training process: The FastText is a WE algo-
rithm that is also divided into two architectures: CBOW and
Skip-gram. This type of embeddings is used with success in
many NLP tasks such as Text Classification and Named Entity
Recognition. One of the main differences between Word2vec
and FastText is that FastText can estimate values for words
that are not part of its pre-trained model. It happens because
the training of the model uses n-grams instead of whole words.
For example, given the token “matter” and n= 3, we will have
the 3-grams: <ma, mat, att, tte, ter, er> [9].

B. Usability of WE algorithms in the NLP context

The Python language offers libraries that focus on NLP.
These are target on preprocessing, manipulation, and analysis.
Examples include the Gensim [2], NLPNET [3] and spaCy [4]
libraries.

Among the above mentioned examples, the Gensim library,
firstly defined as a framework, aims to fulfill a gap among
the NLP applications. This library contains some of the main
word processing algorithms, allowing them to be used from
a single system. Python was the programming language used
for its development due to its easy learning curve, compact
syntax, multiplatform nature, and easy deployment [10].

Currently, Gensim is a free Python library, designed for raw
and unstructured text processing for semantic data extraction
[2]. Even though Gensim is one of the most popular options
from the NLP community, there are some limitations in its use,
e.g., elevated memory consumption and resource utilization,
which may be a barrier to large data input processing. Also,
Gensim does not support the HPC optimizations proposed
for WE models generation, which could lead to significant
performance improvements.

III. RELATED WORK

The first Word2vec algorithm implementation was proposed
by Mikolov et al. [1]. The original version already performed
the model training in parallel through the pthread library,
since a sequential execution would be unfeasible for real
applications. In this case, the parallelism level increment
occurs in a scenario where the main memory is global for all
processor cores. The input text is divided by the number of
threads in order to execute the training process and update the
final output file, thus ignoring the race conditions [11]. From
this proposal, other implementations based on the Mikolov’s
et al. algorithm emerged, some examples are the FastText and
Wang2vec.

The FastText algorithm uses a method where each repre-
sentation is induced by the sum of the N-grams vectors with
the surrounding word vectors. The N-gram is a sequence of N
words used to generate estimates in the probabilities of words
attribution [12]. With its method, the FastText aims to capture
morphological information to induce the process of generating
WE [7], [13].
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TABLE I
HPC AND WE ALGORITHMS FROM STATE-OF-THE-ART

Features Parallelism exploration Usability Performance
Implementations Cbow Skip-Gram Multicore Multinode Gensim compatible Language
Gensim.Word2vec � � � - � Python
Gensim.FastText � � � - � Python

Word2vec � � � - - C
pWord2vec - � � - - C

pWord2vec MPI - � � � - C
Wang2vec � � � - - C

Recent work shows concern over the Word2vec algorithm
scalability and performance improvement, such as the proposal
of the called pWord2vec [14], an optimization for shared
and distributed memory contexts. Its implementation consists
of a Word2vec extension with a negative sample sharing
optimization. In highlighted points, there is a mini-batching
based scheme (a division of the training data in smaller
loads) and shared negative samples to convert basic linear
algebra subprograms (BLAS) operations of level 1 vectors to
multiplication operations of level 3 matrices.

Another similar study was proposed by Rengasamy et al.
[11]. The authors aimed to increase throughput by sharing
positive/negative samples in several context windows using
Skip-gram architecture. Similarly, Ji et al. [14] proposed an
optimization also based on the Word2vec algorithm, which
addresses the distribution and parallelization in environments
with distributed memory using MPI and OpenMP technolo-
gies. The gains, in this case, are significant, and show scala-
bility for up to 32 nodes with 76 cores each.

Table I shows data regarding state-of-the-art algorithm
implementations for the generation of WE Word2vec and
FastText available in the Gensim library. It also indicates
optimizations found in the bibliography, relating to function-
ality, exploration of parallelism, usability, and performance.
Notice that implementations developed in Python language are
present in the Gensim library and provide the user with the
generation of WE models on the two architectures proposed by
Mikolov et al. [1]. However, they are limited to the scalability
requirements, since they do not use resources that provide
scale-out. The optimizations written in the C language are
impaired as to their usability since they are not present in
the most popular tools for the application of these algorithms,
as presented in Table I. However, optimizations written in C
have performance gains and scalability.

Intending to present an interface for conceptually different
types of word and document embeddings, facilitating the
training and distribution of state-of-the-art sequence labeling,
text classification and language models, Akbik A. et al. [15]
proposed present Flair. This Framework aims to abstract
specif engineering challenges that different types of WE raise
by presenting a unified interface for all WE and arbitrary
combinations of embeddings.

IV. PERFORMANCE EVALUATION

The most widespread WE algorithms in the NLP com-
munity uses programming with multiple processing threads
on computers with shared memory. However, from an HPC
perspective, the implementation proposed by Mikolov [1], as
well as the other versions based on it, have low scalability and
low performance. Consequently, it can take several hours to
finish its executions.

This section investigates the performance and efficiency
levels of the established WE algorithms. We also compare the
high-performance optimizations to answer specific questions
about performance and memory consumption.

A. Algorithms performance evaluation

The word embedding algorithms have become a study
object for the HPC area [11], [14], as previously mentioned.
Implementations focused on performance and scalability were
developed, but most popular versions among the NLP re-
searchers area do not surpass state-of-the-art results, such as
implementations of [11], [14]. Figure 1 shows the minimum
requirements in terms of memory consumption from Table I
versions. Additionally, Table II presents the best results re-
garding possessing time.

For our experiments, we used the parameter vectors’ size
equal to 200, window 8, negative 25, sample 1e-4, iter 15,
min-count 5 and a PT-BR 4 GB file [16] as input. The
computational testbed consists of a Dell EMC PowerEdge
R740 server with two sockets, each one containing a 5118
Xeon Gold processor of 2.30 GHz, 12 Cores/24 Threads 12
MB L2 cache. The total number of cores is 24/48, with 16.5
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Fig. 1. Memory consumption of the analyzed algorithms.
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MB of L3 cache shared by the two sockets and 322 GB of
main memory.

TABLE II
FASTEST PROCESSING TIME OF THE ANALYZED IMPLEMENTATIONS.

Algorithm Architecture Processing time

Word2vec Cbow 1.3 h
Skip-Gram 22.1 h

Gensim.Word2vec Cbow 2.0 h
Skip-Gram 7.2 h

Gensim.FastText Cbow 1.5 h
Skip-Gram 3.0 h

Wang2vec Cbow 1.3 h
Skip-Gram 7.7 h

pWord2vec Cbow -
Skip-Gram 1.4 h

pWord2vec MPI Cbow -
Skip-Gram 1.5 h

In Skip-gram architecture, Mikolov’s Word2vec presents the
highest execution time overall. Its fastest result is about 15 to
19 hours longer than Python implementations. However, its
memory consumption, compared to others, is one of the low-
est, being close to 1.5 GB. The Wang2vec algorithm presents
a similar performance to Mikolov’s version. Nevertheless, it
performs the highest memory consumption compared to the
other C versions, close to 10 GB. The Gensim’s Word2vec, on
the other hand, presents a faster execution time in comparison
to the original version, finishing its execution about 15 hours
earlier. However, it consumes much more resources, been close
to 40 GB of RAM. The Gensim.FastText finishes its execution
4.2 hours faster and consumes approximately 3 GB more RAM
than the Gensim.Word2vec. In general, both algorithms show
similar results.

Regarding the analyzed versions which focus on CPU-
parallelism, the pWord2vec is the algorithm that brings better
results in terms of execution time and memory consumption,
as presented in Figure 1 and Table II. This approach presents
an execution time of 1.48 hours, consuming 5 GB of memory
for the same workload used in all experiments. However, the
pWord2vec contains only Skip-gram architecture.

Figure 2 presents the speed-up levels of the original
Word2vec, pWord2vec, pWord2vec MPI, Wang2vec, Gen-
sim.Word2vec and Gensim.FastText over the number of
threads/workers. The reference, in this case, is the original
Word2vec’s slowest execution time. From the speed-up levels
shown in Figure 2, it is possible to identify how each algo-
rithm deals with computational resources usage. The highlight
goes to the pWord2vec, which presents a speed-up of 15x,
being the fastest among the CPU-parallelism versions. For the
pWord2vec’s MPI version we generated projections for 4 and
8 nodes, based on the performance experienced on our testbed
and the values demonstrated in S. Ji’s paper [14].

The Gensim’s Word2vec CBOW architecture maintains
acceptable speed-up and efficiency levels until it reaches
12 cores. However, from this point on, the speed-up level
stagnates and does not increase significantly when the number

of processing cores is incremented from 12 to 24 and 48. The
non-acceleration, even with additional resources, characterizes
the low scalability of these versions.

Some implementations do not perform as expected in this
scenario. Those who present a speed-up lower than 1 are
slower than the reference, which means that they do not show
any speed-up. For this experiment, we analyze the behavior
of each version mentioned in the previous sections over the
“workers” parameter (number of threads) variation.

B. Models’ quality evaluation

We present an analysis of the models quality through an
extrinsic evaluation of semantic similarity. The purpose of the
semantic similarity task is to predict a degree of similarity
(from 1 to 5) between two sentences. The corpus used in
this evaluation is that of the shared task ASSIN (Avaliação
de Similaridade Semântica e Inferência Textual)1 proposed in
PROPOR 2016. The evaluation of this task is made using two
metrics: Pearson’s Correlation (ρ) for semantic similarity and
Mean Squared Error (MSE).

TABLE III
TRAINED MODELS’ EXTRINSIC EVALUATION.

Algorithm Architecture ρ MSE

Word2vec Cbow 0.48 0.58
Skip-Gram 0.54 0.54

Gensim.Word2vec Cbow 0.51 0.56
Skip-Gram 0.54 0.54

Gensim.FastText Cbow 0.51 0.56
Skip-Gram 0.55 0.53

Wang2vec Cbow 0.48 0.58
Skip-Gram 0.53 0.55

pWord2vec Cbow - -
Skip-Gram 0.53 0.55

pWord2vec MPI Cbow - -
Skip-Gram 0.53 0.54

Table III contains the results obtained with this extrinsic
evaluation. Although we perceive some variation, the results
are close to each other with regard to the evaluated metrics.
These evaluations may be used as a supplement when choosing
which algorithm should be used in a specific scenario.

Another point to be analyzed is the variance and standard
deviation of the metrics presented in table III. We present
these values in table IV. With these values we can see that
the generated models are quite similar, as we do not have loss
in the similarity evaluation.

TABLE IV
MODELS EVALUATION

Model s2 s
ρ 0,000576 0,024008

MSE 0,000262 0,016181

1http://propor2016.di.fc.ul.pt/?page id=381
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Fig. 2. Speed-up of word-embbedings algorithms generators. *Estimated values based on experiments.

V. IMPROVING USABILITY

Analyzing the established optimizations proposed by the
High-Performance community, we have compared perfor-
mance, efficiency and memory consumption aspects. We no-
tice that those developed in the C language present more
considerable speed-up and lower memory consumption com-
pared to the Python versions. Nevertheless, these optimizations
are not commonly adopted by the NLP community. We
hypothesize that this situation may be caused due to the lack
of integration between these versions and the most popular
NLP’s tools, such as Gensim.

As shown in previous sections, each algorithm has its
features and behavior to solve similar problems as well as,
each parameter can increase the processing time. To minimize
its scalability and performance problems, utilizing the best
parameter set, demonstrated to be a relevant subject.

A. Preliminary wrapper library for optimized Word Embed-
dings implementations

To tackle this performance and usability issues, we have
developed a wrapper 2, presented in Figure 3. The main
goal is to integrate the high-performance optimizations earlier
mentioned into a single library, in the most transparent way
as possible regarding resource allocation and programming
languages related issues. The implementations can be used
for different purposes and applied to different computer ar-
chitectures e.g. multicore or multinode. Utilizing this wrapper
for the use of the mentioned WE algorithms, seeking the best
usage of the available resources and features, can improve its
usability.

We encapsulated bash scripts into python commands to
run each algorithm considering specific requirements in local

2https://github.com/mmatheuslyra/Wrapper

and remote environments. For remote executions, we used an
integration with the TORQUE resource manager to manipulate
job requests for the on-premise clusters. Therefore, for remote
executions, the library will transfer the data input files to the
on-premise cluster, make a batch job request to the TORQUE
manager, and lastly bring the output back. The computational
environments to be considered as a valid parameters must be
previously configured, informing all access credentials.

Remote Server

On-premise Clusters

Cluster 1

TORQUE 

On-premise Cloud 

Cluster N

Local

Fig. 3. Wrapper library for the optimized Word2vec implementations Call
scheme

The analysis from previous sections, combined with the
developed library, brings a better understanding of the ana-
lyzed WE implementations and allows users to choose the
one that better suits their objectives. The algorithms com-
posing the library are the original Word2vec, pWord2vec,
pWord2vec MPI, and Wang2vec.

The goal here is to allow researchers who do not have
knowledge in high-performance ecosystems to use its re-
sources more easily. It is worth noting that by applying
the wrapper, applications’ performance does not get worse,
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which enforces its usability. Figure 4 summarizes the speed-
up in comparison to the fastest time of the original Word2vec
version, which used 48 threads. Since the testbed has 24
physical cores, it is also possible to identify how each version
deals with additional resources.

Figure 4 complements the analysis, showing the best results
in terms of performance and the maximum number of threads
that provides speed-up. It is possible to identify that the
pWord2vec reaches 15x speed-up over the fastest executions
of the original Word2vec, and an estimated 105x in an 8-
node cluster for its MPI version. The Gensim.Fastext, Gen-
sim.Word2vec and Wang2vec algorithms achieved speed-up
for the Skip-Gram architecture, being 7.3x, 3.07x and 2.8x
respectively. For the Cbow architecture despite very close to
the original the algorithms do not achieve speed-up.
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Fig. 4. Speedup comparison between wrapper library and original Word2vec
executions. *Estimated values based on experiments.

VI. CONCLUSION

Aiming to promote a better understanding of each of the
available implementations of the Word Embeddings algorithms
and aid researchers to make more consistent choices regarding
their applicability, we present in this paper a detailed perfor-
mance evaluation that evidences their specific characteristics.
We analyze performance, efficiency, memory consumption,
scalability, and usability, in multicore and multinode archi-
tectures. Thus, it can become a strong ally to users and re-
searchers, serving as an aid for choosing the most appropriate
version for the desired output model, as well as the available
computational resources.

We also developed a wrapper library that integrates the
more optimized parallel and distributed versions of the WE
algorithm with the most popular NLP tools improving their
usability. This resulted in an average performance gain of
15x for multicores and 105x for multinodes compared to the

original version. There is also a big reduction in the memory
footprint allowing the execution of much bigger models.

In future work, we will investigate ways to automatically
suggest the best hyperparameter setup to further optimize
the execution of the parallel and distributed implementations
presented in this work.
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