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Abstract. With the rise of Big Data, there has been a significant effort
in increasing compute power through GPUs, TPUs, and heterogeneous
architectures. As a result, many applications are memory bound, i.e.,
they are bottlenecked by the movement of data from main memory to
compute units. One way to address this issue is through data prefetch-
ing, which relies on accurate prediction of memory accesses. While recent
deep learning models have performed well on sequence prediction prob-
lems, they are far too heavy in terms of model size and inference latency
to be practical for data prefetching. Here, we propose extremely com-
pact LSTM models that can predict the next memory access with high
accuracy. Prior LSTM based work on access prediction has used orders
of magnitude more parameters and developed one model for each appli-
cation (trace). While one (specialized) model per application can result
in more accuracy, it is not a scalable approach. In contrast, our mod-
els can predict for a class of applications by trading off specialization
at the cost of few retraining steps at runtime, for a more generalizable
compact meta-model. Our experiments on 13 benchmark applications
demonstrate that three compact meta-models can obtain accuracy close
to specialized models using few batches of retraining for majority of the
applications.
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1 Introduction

Prefetching is critical in reducing program execution time through hiding the
latency due to data movement. Especially, with the advent of GPUs, TPUs,
and heterogeneous architectures that accelerate computation, the bottleneck is
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shifting towards memory performance. The central aspect of prefetching is to
be able to accurately predict future memory accesses. This can be seen as a
sequence prediction task, which in theory, is well-suited for machine learning.
Specifically, LSTM (Long-Short Term Memory) based Deep Learning has shown
tremendous success in sequence prediction tasks like text prediction [4], along
with other natural language tasks such as part of speech tagging [11] and gram-
mar learning [14]. Since memory accesses have an underlying grammar similar
to natural language, such models are naturally applicable to learning accesses.
Recent work [5,13,15] has shown that LSTM based methods indeed lead to
higher accuracy than those used in traditional prefetchers.

However, in reality, LSTM based prefetchers are far from becoming prac-
tical due to their extremely high memory and computation requirements. For
instance, the models proposed in [5] can have more than a million parameters.
Such a large number of parameters (and thus computations) make it infeasible
to implement a prefetcher based on LSTM, as to be useful, these predictions
need to be faster than accessing the sequence of memory addresses without any
prefetching. Recent work [13] proposes an encoding method that reduces the size
of the LSTM model to few thousands of parameters. They also show that such
high compression can be achieved without any significant loss in accuracy. As
a result, inference can be fast and models can be retrained quickly on demand,
when there is a drastic change in access patterns. The drawback of this app-
roach is that it requires training one model each for all applications. This is not
a scalable solution as the number of applications grow, the total size of the mod-
els (storage required on the memory controller where these models will reside)
grows linearly, thus defeating the purpose of having compact models. Further,
such models do not apply to applications that have not been seen in training.

To address these shortcomings in making deep learning based prefetchers
realistic, we develop a new approach - we show that using a small number of
compact models (termed MemMAP) is sufficient to adaptively and accurately
predict on a diverse set of applications of interest, i.e. these models can also gen-
eralize to applications not seen during training. Our approach relies on identify-
ing clusters of applications that are similar, and then training a meta-model [3]
for each cluster. MemMAP for high scalability (adaptability to multiple appli-
cations) and generalizability at the cost of small loss in accuracy and need for
few retraining steps. Through extensive experiments on PARSEC [1] benchmark,
which has diverse applications, we demonstrate that our approach leads to accu-
rate, adaptable, and generalizable prediction access models. Using only three
compact models of size 24K parameters each, we are able to perform on par
with specialized models for 13 applications. We envision that in a real system
implementation, the memory controller will run all three models concurrently,
and use the model that produces better accuracy over last few accesses. Note
that, in this paper, our objective is not to develop a full scale prefetcher, but to
design a small set of highly accurate and compact LSTM based access predic-
tion model to enable a realistic prefetcher implementation. A prefetcher built on
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top of our approach and its hardware implementation will be explored in future
work. Specifically, our contributions are as follows:

– We improve upon the state-of-the-art compressed LSTM models for access
predictions, eliminating its necessity of one model per application (trace);

– We propose a clustered meta-learning-based approach to obtain more general
prediction models that can achieve high accuracy after a small number of
gradient steps and can even generalize to unseen/new applications;

– We experimentally demonstrate that our approach is accurate, adaptable, and
generalizable – with a reduced number of models, we can achieve the same
level of accuracy as the specialized (one model per application) approach with
a much smaller memory footprint.

2 Related Work

Several prior works have proposed LSTM for memory access prediction [5,15].
In [12], the authors propose the use of logistic regression, and decision tree
models to enhance prefetching. The authors in [7] evaluate various machine
learning models on their ability to improve prefetching for data center appli-
cations. Neural networks and decision trees where shown to achieve the highest
performance in this application domain. The work in [9,10], and [6] presents
an extensive evaluation of LSTM for prefetching, achieving similar performance
improvements as the other LSTM based approaches. Among the related work [5]
has received significant attention. Their approach is impractical to be directly
applied for prefetching, and as stated by the authors, is only a first step towards
an LSTM-based prefetcher. They, and several state-of-the-art machine learning
based access predictors perform the training on cache misses as it reduces the
size of training. However, an accurate prefetcher will change the distribution of
cache misses and hence invalidate its own trained model. Secondly, to achieve
higher accuracy, some online training is necessary to learn application specific
patterns. Their models are extremely large to be used for real-time inference or
online retraining. Even after considering labels for predictions that cover 50% of
the data (leading to a compulsory accuracy loss of 50%), the number of labels
can be of the order of 10K. This, in turn, with a small hidden layer of size 100
will lead to a model with more than million parameters. Instead, we propose to
use a small ensemble of highly compact LSTM models.

In [13] a compact LSTM based prediction model was proposed. Extremely
high compression of LSTM model was achieved through encoding of the labels
(jumps in memory accesses ‘deltas’). The approach is based on the observation
that the number of parameters are dominated by the output layer. Therefore, for
label set of size n, they create the output layer with log n nodes each of which can
take a 0 or 1 value. This network is trained to predict a multi-label output with
log n labels, which is the binary representation of the delta instead of a single
label (1 out of n) representing the delta itself. This technique led to around 1000×
compression. On the other hand, in the process of compression, the prediction
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problem is made harder due to the fact that all the log n bits need to be predicted
correctly for the right memory access prediction. Yet, the experiments confirm
that the loss in accuracy due to 1000× compression is negligible. While training
one model for each application is possible and leads to highly specialized and
accurate models [13], it is not a scalable solution. Further a specialized model
does not generalize to other applications (see Fig. 1). In this work, we apply
the same compression techniques presented in [13], but use meta LSTM models
to avoid the need for one model per application. We also propose a clustered
meta-learning-based approach to obtain more general prediction models that
can achieve comparable accuracy as previous techniques after a small number of
gradient steps and can even generalize to unseen/new applications. This results
in a much smaller memory footprint compared to related work, allowing its
implementation in hardware.

3 MemMAP Approach

We see the problem of access prediction as a sequence prediction problem, where
the task is to predict the “delta”, i.e., the jump in address with respect to the
current address. This reduces the number of labels, i.e., possible outcomes for
the predictions. Further, it accounts for the fact that often an application has
similar jumps in addresses, even though it may start from a different memory
location. Prior work [5,13] has taken the same approach of classifying deltas for
the same reasons. Next we will explain the modeling of MemMAP.

3.1 Compression

For an LSTM model to be realistically used for prefetching, it needs to have
low latency and should require small amount of computation. These factors are
closely related to the size (number of parameters) of the model. As shown in [13],
the size (number of parameters) of the simple LSTM model for memory access
prediction is dominated by the dense last layer. Few thousands of output layers
may lead to slowing down of inference due to large number of parameters in
the final layer. Instead of using the deltas (jumps in memory accesses) directly
as labels, the approach in [13] predicts the binary representation of deltas, con-
verting the problem from a single label (1 out of n) prediction problem to a
multi-label prediction problem (log n labels). Using this technique, we obtained
an LSTM architecture which has 23, 944 parameters.

3.2 Meta-learning

The other dimension of reducing the overhead of memory access prediction is to
reduce the number of models required for all the applications of interest. While
training one model for each application leads to highly specialized and accurate
models [13], it is not a scalable solution. Further a specialized model does not
generalize to other applications. To demonstrate this, we trained specialized
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models as in prior work [13], and tested them on other applications. Figure 1
shows one such instance, where the model was trained using the application
“Swaption” and then tested on other applications of PARSEC benchmark. The
results clearly indicate that the models are not generalizable.

Fig. 1. Model obtained from one application do not generalize to other applications.
The model was trained on the application ‘swaption’ and tested on all the applications
in the PARSEC benchmark. The dots represent the accuracy achieved by training on
the respective applications, provided as the reference accuracy.

Therefore, there is a need for creating a more general model that can work
well for a class of applications, thus eliminating the size requirement of one model
per applications and possibly generalizing to unseen applications. From the huge
variations in accuracies seen in the plots, it is also clear that different patterns
exist in different applications. This indicates that one model may not readily
apply to all applications, and instead may requires some retraining. With the
goal of obtaining a general model that quickly adapts to a chosen application,
we use Model-Agnostic Meta-Learning [3] that samples batches from a set of
applications to train one meta-LSTM model (Algorithm1). First, we sample a set
of applications and from each we prepare a batch of memory accesses. This batch
is used to calculate loss and update adapted parameters from meta-parameters.
Then from this mixed set of applications, a batch is prepared to compute the loss
which is used to update the meta-model parameters. At termination, a meta-
model is obtained which can adapt to all the tasks used in this training with few
retraining steps.

3.3 Ensemble Meta-learning

While in the ideal scenario, we would like one meta-model to be enough, in real-
ity, the application traces may vary drastically, making it difficult for one model
to adapt to all the applications. Instead, we propose to use a small ensemble of
meta-models that can cover all the applications. Our intuition is that it is better
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Algorithm 1. Doubly Compressed LSTM with MAML
1: function MAML-DCLSTM(S)
2: S: A set of applications
3: Initialize θ and initial parameters α, β
4: for k ← 1 to Nepoch do
5: Sample batch of applications Ai ∼ S
6: for all Ai do
7: Sample a batch D of m accesses from Ai

8: Evaluate ∇θLAi(fθ) using D, where LAi is the binary cross-entropy loss
9: Compute the adapted parameters: θ′

i = θ − α∇θLAi(fθ)
10: Sample accesses D′

i from Ai for the meta-update
Update θ ← θ − β∇θ

∑
Ai∼S LAi(fθ′

i
) using each D′

i and LAi

11: return θ

Fig. 2. Clusters obtained from PARSEC benchmarks.

to have similar applications for one meta-model, and so we train one meta-
model for each set of similar applications. We construct the similarity matrix of
the given set of application traces using soft-DTW [2] and then apply k-means
to cluster the memory accesses. Soft-DTW is a differentiable approximation of
DTW (Dynamic Time Warping). A smoothing parameter γ is introduced to
the original min operation in DTW to create a generalized min operator. It
can acquire better minima due to its better convexity properties in processing
time-series data. As a pre-processing step, we convert the memory accesses into
decimal values. Then they are standardized through subtracting the mean and
dividing by the standard deviation. These standardized trace chunks are fed into
a k-means clustering algorithm that uses soft-DTW to calculate the distance.
The parameter k (number of clusters, i.e., number of meta-models) of k-means is
chosen based on the memory available for storing the access prediction models.
For our experiments, we have chosen k = 3 (see Sect. 4.2).

We consider the meta-model obtained for each cluster as a representative
of a class of applications. In real implementation, all k (one for each of the k
clusters) meta-models will work in parallel to predict the memory accesses, and
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Algorithm 2. Doubly Compressed LSTM with cluster based MAML
1: function C-MAML-DCLSTM(S)
2: Clustering applications in S into a collection of sets {Si}k

i=1

3: for i ← 1 to k do
4: θi ← MAML-DCLSTM(Si)

5: return {θi}

as more of the memory trace is seen, with few retraining steps, we will be able
to identify which of the k models is more accurate. That model will be chose
to continue inference, until the accuracy drops below a desired level. In that
scenario, parallel retraining for all k meta models will resume. We believe that
such retraining and switching between meta-models is essential as the program
may go through a drastic change in access pattern. Similar concept of online
retraining has been considered in [13].

4 Experiments

4.1 Datasets

We conducted extensive experimentation on the PARSEC benchmark [1], which
was specifically chosen because of its diverse set of applications. The Intel Pin [8]
tool was used to obtain memory access traces for each application. As mentioned
earlier, instead of actual memory locations, we transform the memory traces to
sequences of deltas by subtracting consecutive hexadecimal memory address and
converting them to integer. The reason for this is to allow the model to predict
memory locations for any future execution of the same application, since the
relative memory differences are expected to stay consistent [5,13]

4.2 Model Settings

We used the doubly compressed LSTM (DCLSTM) architecture as described
in [13]. It has an embedding layer with 10 units, followed by an LSTM layer with
50 units, followed by a dense layer with 50 units, and 15 outputs to represent
up to 215 most frequent deltas. We also used a dropout of 10%, look back window
3 (i.e., takes last three access predictions as input), 20 training epochs, a batch
size 256, and 50-50 train/test split. We used sigmoid activation function and
binary cross entropy loss function. This architecture is trained differently by
different models as described below1.

– Specialized: This is the DCLSTM model trained for one application. Ideally,
this would be the best performing model, but it cannot be generalized. We
will use the accuracies obtained from the specialized model as reference to
compare other models on the given applications that are trained to adapt to
multiple applications.

1 The code is available at: https://github.com/MemMAP/MemMAP.

https://github.com/MemMAP/MemMAP
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– Concatenated: This DCLSTM model is trained by simply concatenating the
training traces from all applications.

– MAML-DCLSTM: This is a meta-model where the weights are learned using
Algorithm 1.

– C-MAML-DCLSTM: This is a meta-model obtained from Algorithm2.
Instead of training with all the applications, this is trained with applica-
tions that belong to the same cluster. Three such models were trained based
on the three clusters obtained from PARSEC (see Fig. 2).

4.3 Results

The goal of our experiments is to show that our cluster-based compact meta-
LSTM models are: (a) Accurate – produce accuracy comparable to specialized
models; (b) Adaptable – quickly adapt, i.e., specialize themselves for the given
application; and (c) Generalizable – adapt to high accuracy even when the appli-
cation was never seen before. The following results discuss these aspects.

Fig. 3. Accuracy of the models pre- and post-retraining.

Figure 3 shows the accuracy results of all the methods. The specialized model
serves as a reference for the ideal accuracy we wish to achieve. For concatenated
model, MAML-DCLSTM and C-MAML-DCLSTM, we compared the model per-
formance before retraining (pre-update) and after retraining (updated) by spe-
cific trace. In the experiment for pre-update models, we use 200K accesses for
training and the next 200K for testing. For retraining, we use unseen 200K
accesses of specific trace to retrain the existing pre-update models to get updated
models for each trace. Then, we test them with the next 200K accesses in the
trace. As shown in Fig. 3, the accuracies of all pre-update models are improved
after retraining. In most cases (11 out of 13), MAML-DCLSTM models achieve
higher accuracy than concatenated models, even when they start with lower
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pre-update accuracy. This shows that the meta-model learns fast with a more
general initialization. C-MAML-DCLSTM models gain a similar level of raises
as MAML-DCLSTM. Due to the higher similarity of traces in the same clus-
ter, C-MAML-DCLSTM models usually have higher pre-update accuracy. As a
result, in 9 traces, C-MAML-DCLSTM outperform MAML-DCLSTM and in 3
traces they perform similarly. Overall, C-MAML-DCLSTM results in accuracies
close to the specialized models in 9 out of 13 traces.

Figure 4 shows how retraining starting from various models improves the
accuracy as more of the trace is seen. We compared the performance of con-
catenated, MAML-DCLSTM, C-MAML-DCLSTM, and specialized models by
testing on two applications: Raytrace and Streamcluster. Note that, specialized
models are used for reference, and we do not performing any retraining for them.
We used 256 memory accesses for a batch of training and calculated test accuracy
on the next 10K samples in rolling windows. Retraining is performed beginning
from the weights of the neural network from the previous training batch. Based
on the plots, although both MAML and concatenated models have similar result
on some applications, the accuracy per batch on other traces such as Blacksc-
holes, Ferret, and Streamcluser indicate that MAML-DCLSTM model learns
faster than concatenated model, and C-MAML-DCLSTM performs better than
MAML-DCLSTM. One can see that the relationship between these three models
is clear for stable applications, while the others fluctuate a little. It seems that
both C-MAML-DCLSTM and MAML-DCLSTM model can adapt to the stable
applications rapidly and C-MAML-DCLSTM has the best adaptability. There
are some challenging traces such as Vips and X264 on which even specialized
model failed to achieve high accuracy. It is possible that the memory accesses
of these applications vary considerably, and so prediction is extremely hard. In
four out of 13 applications, the accuracy of C-MAML-DCLSTM is significantly
less than specialized model. Improved clustering and more meta-models may be
necessary for improving on these traces.

Figure 5 shows the comparison of how generalizable the models are. We
split the applications in the same cluster into the training (Bodytrack, Can-
neal, Dedup, Facesim, Fluidanimate, Freqmine, Swaptions, Vips) and test sets
(Raytrace and Streamcluster), the training set was used to build the meta-model
using C-DCLSTM-MAML and concatenated model, and then we tested on the
test applications to compare the performance of these two models for generaliz-
ability. We collected batches of 256 memory accesses for training and calculated
test accuracy on next 10K samples in rolling windows. We performed retrain-
ing starting from the weights of the neural network from the previous training
batch. The performance of C-MAML-DCLSTM improved after several memory
accesses for both Raytrace and Streamcluster, which demonstrates that it can
quickly generalize to unseen applications in the same cluster. Although the test
accuracy for concatenated model did increase after several memory accesses in
the case of Raytrace, it performed poorly in the case of Streamcluser. Further-
more, the C-MAML-DCLSTM model can obtain accuracy close to specialized
models using only a small number of batches.
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Fig. 4. Adaptability results for our meta-models.
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Fig. 5. Generalizability results for our meta-models.

5 Conclusions

We have proposed MemMAP a meta-model approach to predicting memory
accesses, a central aspect of prefetchers, necessary to improve memory per-
formance. We addressed the impracticality of current deep learning models in
prefetching due to their high storage requirement. We improved upon the state-
of-the-art, which although does provide compact LSTM models, it requires one
model for each application. Such an approach does not scale to large number of
applications. It also does not generalize to applications not seen before. We pro-
pose to use a clustering based meta-learning approach, where the applications
are first clustered and then a meta-model is trained for each cluster. While, it
is possible to train one model for all applications, the accuracy was typically
lower. Our approach exploits the trade-offs between total model size, accuracy,
and retraining steps. We showed that three models (with 3 × 24K parameters)
can achieve high accuracy quickly for 13 diverse applications. We show that our
approach is accurate for majority of applications in the benchmarks, it adapts
quickly with retraining of only one epoch with increasing number of accesses, and
it can generalize to applications that were not seen during training. In future
work, we will explore other clustering approaches to identify the ideal set of
meta-models, and their hardware implementation.
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