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Summary

Current computer systems separate main memory from storage, and program-
ming languages typically reflect this distinction using different representations
for data in memory and storage. However, moving data back and forth between
these different layers and representations compromise both programming and
execution efficiency. To remedy this, the concept of orthogonal persistence (OP)
was proposed in the early 1980s advocating that, from a programmer's stand-
point, there should be no differences in the way that short-term and long-term
data are manipulated. However, at that time, the underlying implementations
still had to cope with the complexity of moving data across memory and storage.
Today, recent nonvolatile memory (NVM) technologies, such as resistive RAM
and phase-change memory, allow main memory and storage to be collapsed
into a single layer of persistent memory, opening the way for more efficient pro-
gramming abstractions for handling persistence. In this work, we revisit OP
concepts in the context of NVM architectures and propose a persistent heap
design for languages with automatic memory management. We demonstrate
how it can significantly increase programmer and execution efficiency, remov-
ing the impedance mismatch of crossing semantic boundaries. To validate and
demonstrate the presented concepts, we present JaphaVM, an implementation
of the proposed design based on JamVM, an open-source Java Virtual Machine.
Our results show that JaphaVM, in most cases, executes the same operations
between one and two orders of magnitude faster than regular database-based
and file-based implementations, while requiring significantly less lines of code.
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1 INTRODUCTION

Computer systems traditionally separate main memory from storage. This distinction is imposed by limitations of access
latency, cost, volatility, power, or capacity of the existing memory and storage technologies. Programming languages
typically reflect this distinction using semantically different representations for data in memory (eg, data structures and
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objects) and in storage (eg, files and databases). Moving data back and forth between these different layers and representa-
tions has implications for programmer efficiency (additional effort, complexity, maintenance challenges, and probability
of defects) as well as for execution efficiency (unnecessary data movement and duplication, increased number of instruc-
tion cycles, and memory/storage usage). Data-type protection offered by programming languages is also often lost across
this mapping. This problem, dubbed impedance mismatch, has been described in the literature as the Vietnam of Computer
Science.1

Based on these observations, the concept of orthogonal persistence (OP) was proposed in the early 1980s.2 It proposes
that from a programmer's standpoint, there should be no differences in the way that short-term and long-term data are
manipulated. In other words, persistence should be an orthogonal property of data, independent of data type and the way in
which data is handled. Programmers should focus on the core aspects of their applications, while the runtime environment
would take care of managing the longevity of data. During the 1980s and 1990s, this concept was explored in several
research initiatives, including programming languages, operating systems, and object-oriented databases.1,3 However, the
underlying implementations still had to cope with the complexity of moving data across memory and storage.

Recent byte-addressable, nonvolatile memory (NVM) technologies such as phase-change RAM4,5 and memristor6 are
expected to enable memory devices that are nonvolatile, require low energy, and have density and latency closer to
dynamic RAM (DRAM). These technologies allow main memory and storage to be collapsed into a single entity: persis-
tent memory (PM). It has potential to improve file systems, databases, operating systems, and any other system relying on
data storage, including programming languages, the focus of this work.

Many recent studies proposed PM programming interfaces to manipulate data in byte-addressable, NVM.7 So far, inter-
faces were proposed for languages with explicit memory management, such as C and C++.8-12 However, little work has
been carried out to explore PM programming interfaces in languages with managed runtimes and automatic memory
management, such as Java, Python, Ruby, and JavaScript. These languages offer interesting potential for implementing
programming interfaces that handle persistence transparently, since the existing garbage collection (GC) mechanisms can
be leveraged to determine the appropriate object lifetime. The present work helps filling this gap, by presenting the first
Java Virtual Machine (JVM) specifically designed for PM, leveraging automatic memory management to enable automatic
data persistence between JVM reinitializations.

The main contributions of this work are described as follows. First, we revisit OP concepts in the context of PM, and
propose a design for the runtime environment of languages with automatic memory management based on an origi-
nal combination of OP, PM programming, persistence by reachability, and lock-based failure-atomic transactions. We
demonstrate how it can significantly increase programmer and execution efficiency, removing the impedance mismatch
of crossing semantic boundaries. Second, we present JaphaVM, an implementation of the proposed design based on
JamVM,13 an open-source JVM, to validate and demonstrate the presented concepts. To the best of our knowledge,
JaphaVM is the first JVM specially designed to take advantage of NVM technologies.

The rest of the paper is organized as follows. Section 2 outlines background information related to OP and associated
principles and challenges. Section 3 presents the proposed design, and Section 4 shows the JaphaVM prototype imple-
mentation. Section 5 presents the evaluation results. We then review and put our contributions in the context of related
research in Section 6. The conclusion and future work are presented in Section 7.

2 ORTHOGONAL PERSISTENCE

As mentioned previously, the cost of mapping data as represented in memory to either files or databases (and vice-versa) is
known as impedance mismatch and adds complexity to both software development and execution.1 Orthogonally persis-
tent object systems propose to solve this problem by supporting a uniform treatment of objects irrespective of their types,
allowing values of all types to have whatever longevity is required. The benefits of OP can be summarized as follows:

• Improving programming productivity from simpler semantics.
• Avoiding ad hoc arrangements for data translation and long-term data storage.
• Providing protection mechanisms over the whole environment.
• Supporting incremental evolution.
• Automatically preserving referential integrity over the entire computational environment for the whole lifetime of an

application.
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Atkinson and Morrison14 identified three principles that, if applied, would yield OP, summarized as follows.

1. The principle of persistence independence. The form of a program is independent of the longevity of the data it
manipulates. Programs look the same whether they manipulate short-term or long-term data.

2. The principle of data type orthogonality. All data objects should be allowed the full range of persistence irrespective of
their type. There are no special cases where objects are not allowed to be long-lived or are not allowed to be transient.

3. The principle of persistence identification. The choice of how to identify and provide persistent objects is orthogonal
to the universe of discourse of the system. The mechanism for identifying persistent objects is not related to the type
system.

Experience with the development of different OP systems demonstrated that persistence by reachability, also known
as transitive persistence, is the appropriate mechanism for implementing OP in systems with the work of Dearle et al.1
It determines that all objects that are reachable directly or indirectly from a set of persistence roots must be treated as
persistent.

Experimental implementations of the OP principles were made with several languages, including Java. Examples of Java
OP implementations are Grasshopper/Java,15 PJama,16 PEVM,17 ANU OPJ,18 Merpati19, and aspect-oriented program-
ming implementations.20,21 All these systems removed the burden of explicitly translating data representations between
memory and storage from the programmer; however, the problem was transferred to the internal system implementation,
which still had to cope with moving data between these different domains.

The introduction of PM can solve the impedance mismatch problem at both interface and implementation levels by
removing the duality memory versus storage, opening up the way for new solutions, such as our design presented in the
next section.

3 PROPOSED DESIGN

The use of one set of abstractions for handling data in memory and another for storing the same data is not a fundamen-
tal necessity of programming languages, but an accidental result of the current technology, which separates fast, small,
volatile main memory from slow, abundant, nonvolatile secondary storage. If these two different layers are collapsed into
PM at the hardware level, then OP implementations in software can provide simpler programming abstractions, resulting
in less code complexity and lower programmer effort.

This section introduces a design of orthogonally persistent heaps for data persistence in languages with automatic
memory management, assuming the availability of PM hardware. Our design can significantly increase programmer and
execution efficiency, as in-memory data structures are transparently persistent, without the need for programmatic storage
handling, and there is no longer a need for crossing semantic boundaries anymore.

We defined three main requirements for the proposed design. First, it should allow for simplified development and
maintenance of persistence code, by adhering to the OP principles. Second, it should keep backward source and bytecode
compatibility with existing code whenever possible. Finally, the proposed design should allow generalization, so it could
be applied to object-oriented languages with automatic memory management (ie, not limited to Java).

We also defined some system assumptions for the target hardware platform we are aiming in: NVM devices are accessed
directly using CPU load and store operations, volatile processor caches are still present, and NVM load/store latencies are
similar to DRAM (an assumption also made by previous research10,11).

From an operating system perspective, we assume it uses a PM-aware file system, which is designed specifically for
PM.22 A PM-aware file system provides direct access to PM, removing the block I/O layer, bypassing the page cache, and
eliminating other steps rendered unnecessary by PM, as data can be directly addressed by the processor at byte granularity.
Examples of such file systems are BPFS,23 PRAMFS,24 PMFS,25 Ext4/DAX,26 SCMFS,27 NOVA,28 and M1FS.29

The remaining of this section describes the design of persistent heaps adherent to the OP concepts. By persistent heap,
we mean all the persistent state that can be bound to a program, which may include the heap itself and other elements
of the persistent state, such as threads, stacks, loaded types (classes), JVM metadata, etc. This section also lists the main
challenges and open points that must be addressed to have a robust solution.
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3.1 Persistent heap adherent to OP concepts
A key component of our design is a persistent heap mapped to PM. We are considering the term persistent heap as referring
to all state that can be made persistent, which may include not only the heap itself, but other elements, such as threads,
stacks, type definitions, method code, and other data as required by the particular implementation.

To determine the longevity of objects, we advocate the use of persistence by reachability using as roots of persistence the
static variables of all classes, which are persistent and the stack of all active threads. This approach leverages the same
reachability criteria used for Java GC30 and has been used in previous OP Java implementations.15-18

In the next sections, we list what needs to be stored in the persistent heap to support persistence by reachability of both
class attributes and stack references. Although we use examples in Java to demonstrate the concepts, this approach can
be generalized to other object-oriented languages.

3.1.1 Persistence by class attribute reachability
A persistent heap in which persistence is defined by class attribute reachability contains at least the following elements:

• Type (classes, interfaces, etc) definitions
• Objects (type instances)

In this variant, only objects referenced from class attributes are considered persistent and must be spared by the
Garbage Collector. When a program with a persistent heap of this variant is executed, class definitions that are already
present on the persistent heap will not be loaded again, and their class attributes point to objects already present on the
persistent heap.

Direct references. Figure 1 shows an example of persistence by class attribute reachability in Java. Line 3 declares the
static attribute aString. When the class is loaded, the value of aString is set to the empty string "". When the method
main() is executed for the first time, the initial value of aString is concatenated to the string “AB” (Line 6), and thus
aString points to a new String object with the value “AB” (it points to a new object since strings are immutable objects
in Java). When the program is executed for the second time, it will create a third String object with the value “ABAB.”
At this point, only this last String object is reachable from a class attribute and thus should be made persistent, while
the other strings previously created are disposable. This sequence of steps is depicted in Figure 2.

FIGURE 1 An example of persistence by
class attribute reachability

(A) (C)(B)

FIGURE 2 Example of persistence by class attribute. A, After persistence example class loading; B, After first execution of main(); C, After
second execution of main() [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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FIGURE 3 An example of
persistence by indirect class attribute
reachability

It should be noted that this behavior deviates from the current Java language specification, since data from previous
executions are preserved. This conflicts with our requirement of keeping backward source and bytecode compatibility
with existing code whenever possible. Our solution to reduce the impact is offering control whether a program execution
is bound to a persistent heap (thus exhibiting the behavior described here) or not (default Java semantics). The usage and
management of persistent heaps and how to bind them to programs is further discussed in 3.2.

Transitive references. In the previous example, objects that were directly referenced by class attributes were considered
persistent. It is also true for objects that are transitively referenced by class attributes as well. Figure 3 illustrates this
case. Proxy is a simple class that contains one instance attribute called aString. Class IndirectExample has one
class attribute of the type Proxy called proxy. Every time the method main() is invoked, it concatenates “AB” to
proxy.aString value (Line 11). Since strings are immutable in Java, every concatenation generates a new String
object in the heap. This sequence of steps is similar to the previous example, but now the references from a class attribute
are indirect.

3.1.2 Persistence by stack reachability
Persistence by class attribute, described in the previous section, provides a way to access persistent data created during
previous program executions. By adding persistence by stack reachability, it becomes possible to create a snapshot, or
checkpoint, of a given execution state and make it persistent, so it can be resumed in the future.

In this variant, the stack is also part of the persistent state, and objects that are directly or indirectly referenced by any
of the active stack frames are considered persistent and are not disposable by the Garbage Collector. A persistent heap in
which persistence is defined by stack reachability contains the following elements:

• Type (classes, interfaces, etc) definitions
• Objects (type instances)
• Stack
• Threads

Figure 4 shows an example of persistence by stack reachability in Java. Line 12 creates a new stackExample object in
the heap. The stack frame of the main()method contains a variable ex referencing the stackExample object, so it will
be considered persistent until method main() completes. Line 13 calls method doConcat(), thus creating a new stack
frame. Line 4 declares string aString, initialized to value " ". Lines 5-8 list a loop that will concatenate “AB” toaString, for
two iterations. Every loop iteration will create a new String object in the heap (since strings are immutable in Java), but
only the string object referenced by aString will be considered persistent, since it is referenced by a valid stack frame.
When doConcat() finishes its execution, all string objects will be disposable, since no active stack frame references it.
This sequence of steps is depicted in Figure 5. For example, if the execution is suspended at any of the intermediate steps
(a, b, or c), the reference of aString in the persistent stack can be used to resume execution from that same step.
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FIGURE 4 An example of persistence by
stack reachability

(A)

(C) (D)

(B)

FIGURE 5 Example of persistence by stack reference. A, Execution after a string initialization (line 4); B, After first execution of loop (line
5); C, After second execution of loop (line 5); D, After method doConcat() finishes [Colour figure can be viewed at wileyonlinelibrary.com]

Persistence by stack reachability allows the complete execution state of a program to be automatically made persistent,
so execution can be resumed from the same point in a future moment. If the execution is suspended or interrupted at an
arbitrary moment, it can be resumed exactly from that point.

3.2 Storage and management of persistent heaps
As mentioned, throughout this text, we use the term persistent heap to refer to the persistent state that can be bound to
a program, which may include not only the heap itself, but all other elements of the persistent state (eg, threads, stacks,
classes, and JVM metadata) as well as other data as required by the implementation.

We assume a PM-aware file system providing namespace management and user access control to chunks of PM.7 The
file system contains persistent heap files, which can be mapped to the address space of any process via PM programming,

http://wileyonlinelibrary.com
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FIGURE 6 Persistent memory hosting an in-memory file system,
which contains a persistent heap file

either by directly calling the mmap() system call or using higher-level APIs for PM.8-10,12 Once mapped to the address
space, the process can manipulate PM directly, without page caches. This scenario is depicted on Figure 6. When the
runtime environment of a program is invoked (eg, JVM), the file containing the persistent heap is passed as a parameter.

In this work, we are exploring only the scenario where one process is bound to a single persistent heap at a given
point in time. It is an interesting research problem for future work to consider multiple persistent heaps manipulated
simultaneously by a single process, as well as multiple processes concurrently using a single persistent heap (ie, a shared
persistent heap).

The persistent heap can contain only persistent data, or it can contain also a persistent execution state. Both are
described in the next sections.

Data Persistence. Data persistence stores program data in a persistent heap but does not store the program execution
state. After the process execution is terminated, or interrupted, all persistent data (defined by class attribute reachability, as
described in Section 3.1.1) is available to be bound to a new process, that can be either the same program or a different one.

One way to instantiate data persistence is invoking a program while passing the persistent heap as an execution argu-
ment for it or for its runtime environment. Taking the program described in Figure 1 as an example, and assuming
a JVM with support for OP, it could be called by the command line as java -persistent-heap=heapfile.ph
PersistenceExample. In this example, the program would be bound to the persistent data state contained in
heapfile.ph.

Execution persistence. Execution persistence implies that both data and the execution state of a given program are
contained by the persistent heap. In this case, both persistence by class attribute reachability and by stack reachability
(described respectively in Sections 3.1.1 and 3.1.2) are used. The persistent heap contains both data and program code.
After the process is terminated, or interrupted, the persistent heap contains a snapshot of the execution state at a specific
consistent point in time, and can be resumed from that point.

3.3 Consistency and transactional properties
The persistent heap must be kept in a consistent state even in the presence of failures, such as abnormal program ter-
mination due to power outages, runtime faults, resource exhaustion, etc. To accomplish this, we propose the use of
failure-atomic transactions, provided by lower-level PM programming APIs such as Mnemosyne8 and NVML,12 which
provide failure-atomic transactions by means of transactional memory and journaling, respectively. Failure-atomic trans-
action implementations ensure that data is flushed from processor caches into PM with atomicity and consistency
properties, so the persistent heap is not corrupted.

It is also desirable for the programmer to be able to express application-specific transactional semantics. We advocate
the use of locks defined by the application programmer to identify the scope of failure atomic transactions (lock-based
failure-atomic transactions). In the context of Java, synchronized methods and blocks define locks around specific
objects by means of calls to monitorenter and monitorexit opcodes. Atlas10 introduces a similar approach for the C
language, and Welc et al31 demonstrated that Java synchronization locks can be used to express transactional semantics.

3.4 Design challenges
The previous sections described a persistent heap design for PM. This section lists the main challenges and open points
that must be addressed to have a robust solution. In our solution, we have addressed some of these points, as will be
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described in Section 4, and others will be target of future work.

• Sharing data across different programs and programming languages. It is often necessary to share persistent data
across multiple distinct programs, sometimes with concurrent access. These programs can be written in the same
programming language or in different programming languages.

• Type evolution. Each object in a heap belongs to a specific type. When a reference type is changed, objects that already
exist in the heap must be bound to a new type, and its data and code must be adjusted appropriately to convey the
semantics intended by the programmer. This process is known as type or class evolution.32

• Persistent bugs. A system with execution persistence may incur in persistent deterministic bugs that crash or impair
subsequent executions.

• External state. Some objects and variables represent state that is external to the virtual machine. Notable examples are
networking resources (eg, sockets), files, and elements that vary from one system to another, such as locale. There is
a fundamental incompatibility arising from the fact that OP assumes that all state is persistent by default, while in a
transient program all variables are reinitialized on each run.

• Security. When using a persistent heap, potentially sensitive data becomes vulnerable to unauthorized access and
tampering. Data protection techniques such as encryption and signing are potential solutions.

4 JAPHAVM PROTOTYPE IMPLEMENTATION

In this section, we present JaphaVM, a prototype to validate and evaluate the effectiveness of the design presented in
Section 3. The current version of JaphaVM is limited to data persistence (described in Section 3.2). Execution persistence
will be implemented in future versions. The full source code is publicly available at our repository.33

4.1 Rationale
Many object-oriented languages can be adapted to employ the OP abstractions. We opted for Java since its use is
widespread in a variety of environments, from embedded devices to high-performance computing applications, and its GC
mechanism already manages the object longevity by reachability, which can be leveraged for persistence by reachability.

Some previous OP implementations in Java, such as ANU OPJ,18 followed the approach of bytecode transformation,
allowing portability across different JVMs. Other implementations, such as PJama16 and PEVM,17 chose to modify the
JVM itself, permitting deeper modifications of the Java execution environment. We propose to use the latter approach,
making modifications to the JVM, to have complete control over the data structures used to manage heap, stacks, threads,
and type definitions. Since the mentioned OP-oriented JVMs are no longer available, only current JVMs can be used as
implementation baseline. Our choice was JamVM,13 due to its simple and straightforward implementation.

4.2 JamVM and GNU classpath
JamVM runs on top of a wide set of Unix-like Operating Systems, including Linux, FreeBSD, OpenBSD, Solaris, OpenSo-
laris, Darwin, Android, and iOS. It runs on x86, x86-64, ARM, Sparc, MIPS, and PowerPC architectures. It was the first
JVM used in the Android OS, before it was replaced by the Dalvik JVM. JamVM version 1.5.4 was used as baseline for our
prototype, which was developed on Linux/x86.

JamVM requires an implementation of the Java class libraries. In this work, the GNU Classpath34 V0.92 open-source
implementation was used. Some modifications to GNU Classpath were made to address design issues, as will be described
in Section 4.4.

4.3 NVML
The baseline JamVM version uses an anonymous, nonfile-backed memory-mapped area via the mmap function to allocate
space for the JVM heap. We attempted a first implementation of the persistent heap simply modifying the mmap flags to
use a shared memory mapping backed by a file on top of a PM-aware file system. Although this implementation indeed
worked to provide heap persistence, it did not provide fault tolerance.

Our current persistent heap implementation uses the NVML pmemobj library12 for manipulating persistent heap data to
ensure fault-tolerance, as NVML provides journaled transactions via an undo log in PM. In other words, before modifying
any data in-place, NVML first adds an entry with the original, unmodified values to a log in a separate PM address space,
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then modifies the value in place, and finally marks the log entry as complete; in case the program is interrupted (eg, by
a power failure), the next execution will search the log for entries not marked as complete and use them to restore the
original data, thus ensuring fault tolerance. To take advantage of this NVML feature, JaphaVM stores its persistent heap
in an NVML memory pool, mapped to a file in PM. NVML has been chosen for currently being one of the most active
and widely adopted PM programming APIs and providing a suitable transactional model. On advantage of NVML is not
requiring memory hardware with special transactional capabilities.

4.4 Summary of JVM modifications
The next sections present the changes made to the baseline JamVM code. Most of them were made to keep heap data
and metadata in the NVML memory pool and manipulated in a way that ensures fault tolerance. Some changes were also
made to the GNU Classpath library to address the handling of external state (such as standard console input/output), as
further explained.

Persistent heap. Figure 6 illustrates the different data structures that a JVM stores in memory: class definition, thread
data, including a stack for each thread, and the heap where object instances and their metadata are stored. As mentioned
in Section 4.3, we replaced the anonymous memory mapping originally used by the JamVM by an NVML memory pool,
whose contents include dynamically and statically allocated objects, Java type definitions, executable code, and additional
metadata, such as heap base address, maximum heap size and free heap space, pointers to free heap regions, and GC
metadata.

To allow the invocation of the JamVM with a persistent heap, we have added a new invocation argument
-persistentheap:<heapname> that alternates between a persistent mode and nonpersistent mode.

Type definitions and compiled methods. We need to ensure that all data structures that are referenced by heap objects,
such as Java type definitions and compiled methods, are made persistent and can be retrieved in future executions. How-
ever, many of these structures were stored outside of the heap allocation space in the baseline JamVM implementation.
While implementing JaphaVM, we have modified its memory allocation routines to store these data structures inside the
same NVML PM pool where we store heap objects.

Internal hash tables. JamVM uses a set of internal hash tables to keep track of loaded symbols, classes, and other meta-
data. To locate data in the PM pool across JVM executions, these tables are also stored by JaphaVM in the PM pool
itself.

Failure-atomic transactions. The JVM instructions are known as opcodes. Some of these opcodes modify the internal VM
state (eg, push/pop stack data, create new object in the heap, etc), and must never leave the heap in an inconsistent state.
To meet the consistency requirements described in Section 3.3, we have modified all Java opcodes that change persistent
data to happen in the context of NVML transactions. These opcodes are: astore, aastore, bastore, castore,
fastore, iastore, lastore, dastore, new, newarray, anewarray, multianewarray, putstatic, and
putfield. A description of each of these opcodes can be read at the Java Language Specification.30

The previous paragraph explained how JaphaVM ensures consistency at opcode granularity, but we still must enable
programmers to define transactional behavior at application level. As described in Section 3.3, our design accom-
plishes that by using synchronized methods and blocks. In JaphaVM, we have modified the monitorenter
and monitorexit opcodes in such a way that, when monitorenter is called, it starts a new NVML transaction.
NVML transactions can be nested, so all subsequent opcodes will execute in the context of this transaction. Conversely,
monitorexit completes the corresponding transaction. In the context of JaphaVM, we call those user transactions, as
their scope is determined by the application programmer.

If any of the opcodes that change heap data are invoked outside the scope of an ongoing user transaction, each will begin
a fine-grained transaction with the scope of the opcode execution. In the context of JaphaVM, we call those automatic
transactions, as they are triggered internally by the JVM to define consistency points when modifying the heap.

Garbage collection. As GC modifies the persistent heap state, it must happen in the context of an NVML transaction.
We have modified the gc0 function responsible for GC, which is called in two situations: (1) during a synchronous GC,
triggered by the VM running out of heap space to satisfy an allocation request, in which case the GC will happen inside
a transaction that is already started; and (2) during an asynchronous GC, invoked by a specialized thread that triggers a
GC periodically when the VM is idle. In JaphaVM, asynchronous GCs are only triggered when there are no outstanding
transactions, to avoid isolation problems.

Handling external state. As described in Section 3.4, one of the challenges of OP is how to handle references to state
that is external to the system. An example of that are file descriptors for stdin, stdout, and stderr. In GNU
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FIGURE 7 OPRuntime class

Classpath, these file descriptors are opened by native code that is invoked from the static initializer of the Java library class
gnu.java.nio.FileChannelImpl. The Java Language Specification30 determines that a static initializer is executed
when the class is initialized, which takes place just once, when the class is originally loaded. However, we need to open
the console file descriptors every time the VM is executed. None of the existing Java language abstractions provides a way
to express this.

We have taken the approach used previously for PEVM17 and PJama,16 exposing to developers an API for mak-
ing classes and objects resumable, ie, providing an interface for specifying methods to be executed every time the
VM execution is resumed. To be resumable, an object must implement the interface OPResumeListener, which
defines a void resume() method and be registered by the OPRuntime.addListener() class method. To exe-
cute resume code at the class scope, the class must implement a static resume() method and be registered by the
OPRuntime.addStaticListener() class method.

We have implemented the OPRuntime class as part of GNU Classpath (its interface is depicted on Figure 7).
To get the resume() methods to be executed whenever the JVM resumes execution, JaphaVM invokes
OPRuntime.resumeAllListeners() just before the execution of the application's main() method.

Finally, we applied it to reopen the console file descriptors, modifying gnu.java.nio.FileChannelImpl to reini-
tialize them inside a static resume() method that is invoked in two occasions: (1) by its static initializer and (2) by
OPRuntime.resumeAllListeners(), since it is registered using OPRuntime.addStaticListener() by the
static initializer.

With this approach, not only can JaphaVM automatically reallocate its internal resources (such as the console file
descriptors) but also is available for Java programmers to manage their own application-level resources.

One downside is that this mechanism violates OP's principle of persistence independence, as the programmer is required
to manually implement resume behavior when holding references to objects that represent volatile external state, such as
files and sockets. However, there seems to be no obvious way to solve this transparently.1 On the other hand, it requires
small programmer involvement when compared to traditional file-oriented or database-oriented approaches.

4.5 Prototype limitations
As will be shown in next sections, JaphaVM has been successfully used to execute a wide range of complex programs
and functions as a vehicle for both performance and development complexity experiments, showing the benefits of OP's
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principles in NVM architectures. Still, as is the case with any engineering artifact, the current version of the JaphaVM
prototype has the following limitations, which we plan to address in future versions:

• Interpreter inlining: Support for interpreter inlining (code-copying JIT) is not yet implemented in JaphaVM.
• Heap size: The heap size is currently fixed.
• Heap address relocation: Internal pointers to heap objects use fixed memory addresses in the current version, so the

persistent heap must be always mapped to the same virtual address range.
• Data versus execution persistence: The current version supports only data persistence (see Section 3.2).
• Type evolution: JaphaVM currently does not support type evolution.

Note that the baseline JamVM version supports interpreter inlining and heap resizing, although JaphaVM currently
does not. The other limitations refer to persistent heaps and thus are only applicable to JaphaVM.

5 JAPHAVM EVALUATION

To assess the effectiveness of our design, we verified our prototype implementation along two axes:

1. Execution performance. Verify the relative performance of selected programs using orthogonally persistent data in
PM compared to traditional implementations storing data in either files and databases.

2. Development complexity. Verify if the proposed design reduces the complexity of programs that rely on persistent
data. Less complexity leads to reducing development effort and improved quality.35,36

To assess both development effort and execution performance, we have used two different workloads: (1) the OO7
benchmark and (2) a modified version of the Lucene search engine. Both are described in the next sections.

5.1 Experimental setting
The experiments were executed on a 32-core machine with 244GB of main memory running Ubuntu Linux 12.04. All
experiments were executed at least three times to identify variation and outliers. The results of the multiple executions
were generally consistent, and the average results were used.

Since computers using NVM to implement PM are not yet available, we used DRAM to simulate PM, an approach
employed by previous studies.10,11 An area of 32 GB was reserved for a PM-aware file system: M1FS,29 a configuration
optimized for working directly with byte-addressable memory storage. JaphaVM was executed using a persistent heap
with capacity of 8 GB, without considering metadata.

5.2 OO7 benchmark
The OO7 benchmark37 was originally aimed at object-oriented database management systems (OODBMS), and used in
previous Java OP research.17,18,38 This benchmark in a first step creates a database of objects combined in a tree-like
hierarchy (including atomic and composite parts), whose nodes point to finer-grained objects with mutual references,
forming a graph; as a second step, it performs multiple traversals through the graph (some of them modifying the contents
of some nodes), and queries on the stored objects. Traversal 1 is a raw traversal of the complete hierarchy, traversal 2 is
a traversal with updates, subdivided into (2a) update one atomic part per composite part; (2b) update every atomic part;
and (2c) update each atomic part per composite part four times; finally, traversal 6 is a sparse traversal. The size of the
OO7 database is configurable. For more details about the OO7 benchmark, please refer to its documentation.39

We have chosen the OO7 benchmark for a number of reasons. Since it was used in previous Java OP research, it permits
a basic level of comparison. It models both read-intensive and write-intensive tasks on top of an in-memory graph, which
is a common use case today. Finally, it permits a comparison of performance and development complexity between an
OP implementation and a traditional relational database backend.

In our experiments, the relational database is mapped to Java objects by means of Hibernate, an object-relational map-
ping (ORM) framework. ORM is the preferred approach for most real-world, complex applications, as it removes from
the programmer the burden of manually translating relational tables into objects and vice versa. In Section 5.3, we will
consider another application that uses files as the backing store.
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5.2.1 Experiment description
Tests with OO7 were executed in the following distinct configurations:

1. Disk-based DB. Backed by a traditional disk-based database (PostgreSQL version 9.1), using the Hibernate framework
version 3.2 for ORM.

2. Memory-based DB Backed by the H2 in-memory database (version 1.3.176), also using Hibernate.
3. JaphaVM — backed by a modified version of the benchmark using JaphaVMs persistence semantics; an in-memory

data structure holds the data, Hibernate is not used. The NVML memory pool containing the persistent heap was
created in M1FS, so as to simulate the behavior of a PM environment. JaphaVM was executed separately with three
approaches for handling transactions (see Section 4.4):
1. JaphaVM Automatic Tx: automatic Transactions, where each Java opcode modifying heap data is a

self-contained transaction.
2. JaphaVM User Tx: user Transactions, where the whole traversal is a single transaction within the bounds of a

synchronized block.
3. JaphaVm No Tx: no transactions, where there is no transactional overhead but also no fault tolerance.

We ran each configuration with three different database size presets (payloads): tiny, small, and medium. To understand
the I/O profile of each scenario, during the execution of the benchmarks we collected statistics using the /proc/PID/io
special file system interface.

5.2.2 Analysis of results
Looking at the overall results of the OO7 benchmark, we observe that JaphaVM can create and traverse large object graphs
with a performance two orders of magnitude better than database-backed scenarios using ORM layers. Figures 8A to 8C

(A) (B)

(C)

FIGURE 8 Comparison of execution times for each OO7 traversal across different database sizes (seconds, logarithmic scale).
A, Comparison of execution times for tiny database size; B, Comparison of execution times for small database size; C, Comparison of
execution times medium database size.
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FIGURE 9 Comparison of execution times for traversal 1 (seconds, logarithmic scale)

compare the execution time of creating the databases and each traversal for the different database sizes. We can observe
in Figure 9, which highlights Traversal 1, that all execution scenarios have similar trends, despite the execution times
being orders of magnitude different.

Tables 1 to 3 show I/O and execution counters for creating each database size, while Tables 4 to 6 show the same
information for Traversal 1 on each database size. Read and written chars show the total number of characters read and
written through system calls invoked by the program, irrespective if the operation was satisfied from the page cache or
from the backing storage. Console I/O is also included in the read/written chars count. Read and write syscalls show the
number of system calls invocations. They also list the number of voluntary and involuntary context switches.

As shown in Figure 8A, for the tiny database size JaphaVM takes about two seconds longer than PostgreSQL and H2
to create the database, due to memory pool initialization. However, for the creation of the small and medium databases
(Figures 8B and 8C), JaphaVM scenarios execute one or two orders of magnitude faster than the relational databases.
This is explained by the fact that JaphaVM requires less data movement and copy, which is confirmed by the data in
Tables 1–3 (we show a single column for JaphaVM because I/O counters for all transactional scenarios were identical).

TABLE 1 I/O counters for tiny DB creation Counter PostgreSQL H2 JaphaVM
DB DB

read chars 3 208 732 3 517 082 36 060
written chars 405 182 577 291 499
read syscalls 4126 6285 73
write syscalls 1602 3763 16
# voluntary context switches 138 123 13
# involuntary context switches 1 1 1

TABLE 2 I/O counters for small DB creation Counter PostgreSQL H2 JaphaVM
DB DB

read chars 9 102 770 17 936 590 82 105
written chars 11 150 783 19 702 246 74 490
read syscalls 56 468 150 443 1174
write syscalls 53 958 147 928 1116
# voluntary context switches 1231 1225 1104
# involuntary context switches 1 1 1
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Counter PostgreSQL H2 JaphaVM
DB DB

read chars 75 888 918 172 910 579 82 540
written chars 129 663 311 243 547 947 74 490
read syscalls 742 750 2 151 069 1174
write syscalls 741 264 2 148 581 1116
# voluntary context switches 1209 1238 1104
# involuntary context switches 1 1 1

TABLE 3 I/O counters for medium DB creation

Counter PostgreSQL H2 JaphaVM
DB DB

read chars 3 590 297 4 393 436 29 636
written chars 539 701 1 047 596 504
read syscalls 3972 5827 70
write syscalls 1421 3320 16
# voluntary context switches 62 62 13
# unvoluntary context switches 1 1 1

TABLE 4 I/O counters for Traversal 1 on tiny DB

Counter PostgreSQL H2 JaphaVM
DB DB

read chars 34 465 024 78 717 157 29 652
written chars 33 360 993 60 359 612 520
read syscalls 87 846 190 519 51
write syscalls 85 294 335 11
# voluntary context switches 62 62 13
# unvoluntary context switches 1 1 1

TABLE 5 I/O counters for Traversal 1 on small DB

The ORM layer used on the relational database scenarios creates many additional short-lived objects, and as conse-
quence, the JVM spends more time doing GC. For the medium database size, all objects created by JaphaVM fit into the
8 GB heap, not requiring GC; while the relational database scenarios required between 56 and 68 GCs (15 to 16 of them
also performing heap compactions), which accounted for 15.62% to 17.31% of the overall database creation time.

We also observe that JaphaVM execution has less context switches. This happens because it performs significantly less
storage access, and thus is less blocked by I/O waits, which are a common cause for voluntary context switches.

As expected, the JaphaVM scenarios with less transactional overhead have better performance, ie, coarse-grained trans-
actions (User Tx) have better performance than fine-grained transactions (Automatic Tx), and not supporting transactions
at all has the best performance.

The relational database scenarios (PostgreSQL and H2) consistently take the longest time to execute traversal bench-
marks. This is explained by the fact that these scenarios require ORM translation and access to storage, resulting in larger
amount of data movement, which can be observed on Tables 4–6. Data movement is proportional to payload; the larger
the database, more data movement is observed. PostgreSQL and H2 have very similar execution times, despite the former
storing data on disk and the latter in memory. This happens because the experimental system has enough memory to keep
the PostgreSQL database fully cached in memory. The trend for less context switches on JaphaVM is still observable, for
the same reasons presented in the database creation analysis.

JaphaVM with automatic transactions (ie, a distinct transaction for each individual Java opcode modifying persistent
heap data) executes the same traversals up to three times faster than PostgreSQL and H2, as it requires significantly less
computational effort than the ORM scenarios. These results are achieved not only because JaphaVM runs completely in
memory, but also because its software stack is shorter and optimized for PM. These effects can be observed in the small
amount of data being read/written from the I/O subsystem. Its advantage is even more apparent with the larger database
configurations, as the ratio between overhead and data volume for the Disk-based and Memory-based DB scenarios is
higher. Additional gains can also be attributed to the lack of interprocess communication between the application and a
database server in the JaphaVM scenario.
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TABLE 6 I/O counters for Traversal 1 on medium DB Counter PostgreSQL H2 JaphaVM
DB DB

read chars 384 046 805 803 662 022 86 127
written chars 308 148 130 553 984 993 75 953
read syscalls 800 981 1 763 481 1173
write syscalls 798 418 1 760 978 1180
# voluntary context switches 66 66 13
# unvoluntary context switches 1 1 1

JaphaVM with a single user transaction executes two orders of magnitude faster than the ORM scenarios, and almost
one order of magnitude faster than JaphaVM with automatic transactions. In the latter, the great number of fine-grained
NVML transactions impose a considerable overhead, as each single transaction needs to issue memory fences and cache
drains to ensure that changes to the memory pool have reached the persistence domain upon transaction commit. By
using a single coarse-grained transaction instead of multiple fine-grained ones, performance is significantly improved.

Results for JaphaVM with no transactions are listed as reference, as it cannot be practically used due to its lack of fault
tolerance. We observe that this scenario executes about 30% faster than JaphaVM with a single user transaction, due to
the absence of transactional overhead.

5.3 Apache lucene
To evaluate JaphaVM using a real-world application, we have created a modified version of the Apache Lucene search
engine library40 using OP on top of JaphaVM. Lucene is a library written in Java that provides the ability of creating
inverted indices of text documents, then allowing queries on what documents contains which terms. Lucene version 3.6.2
was used as baseline.

The original version of Lucene stores the inverted index in a set of segment files. Our “Lucene-OP” version uses
instead a java.util.HashMap in the persistent heap, where each key is a term and each value has the type
java.util.HashSet referencing the documents that contain that term (see Figure 10). Other than that, both versions
perform the same tasks, such as tokenization, stop word filtering, stemming, and querying.

We have decided to experiment with a search engine since it is a critical, well-known real-world task, performed both in
personal computers (eg, email search) and huge parallel machines (eg, web search), which depends critically on persistent
data that can be easily held either in memory or in storage. We have chosen Lucene because it is the de facto standard
library for text indexing and searching in Java. The fact that its original version uses files as backing store makes a good
complement to our previous experiments with databases using OO7.

5.3.1 Experiment description
We have compared Lucene and Lucene-OP executing three tasks:

1. Indexing. Index a corpus of text documents, namely Project Gutenberg's Aug 2003 compilation41 containing 680 MB
of texts, distributed across 595 documents containing 684 420 different terms.

2. Single-term query. Query all documents containing a single term term1, resulting in 523 hits.
3. Double-term query Query the documents containing both term1 and term2, resulting in 49 hits.

Lucene-OP was executed with both user transactions and no transactional support. When executed with user transac-
tions, during the indexing process, each transaction encompassed the complete indexing of a single document, and during
querying each transaction encompassed the complete query.

5.3.2 Analysis of results
Examining the overall results of the Lucene experiments, we confirm the observations from OO7 that graph traversal
and pointer-chasing tasks are completed more than one order of magnitude faster using JaphaVM. However, we also
observe that for tasks that are dominated by writes (such as the creation of an inverted index), writing to traditional files
is potentially faster than their JaphaVM counterparts, due to the extra transactional overhead to keep the persistent heap
failure-tolerant on the latter. This indicates different trade-offs for the two scenarios: when accessing storage devices,
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FIGURE 10 Code of Lucene OP inverted index

Time (ms) Lucene Lucene-OP Lucene-OP
(Baseline) User Tx No Tx

Indexing 1 124 932 2 491 539 1 052 148
Single-term Query 93 6.5 4
Double-term Query 113 7.5 4

TABLE 7 Lucene execution times (ms)

Time (ms) Baseline Lucene-OP

read chars 543 801 327 426 434 910
written chars 229 084 470 62 716
read syscalls 51 784 27 715
write syscalls 15 334 1209
# voluntary context switches 598 601
# unvoluntary context switches 987 355

TABLE 8 Lucene Indexing I/O counters

writes typically perform better than reads; however, when accessing PM with journaled transactions, writes are more
expensive than reads.

Table 7 shows the execution time (in milliseconds) of each scenario using Lucene and Lucene-OP, the latter divided into
user transactions or no transactions. We observe that the indexing time of Lucene-OP without transactions is 7% shorter
than the original Lucene version. However, when transactions are introduced, Lucene-OP takes 55% longer than the
baseline. This can be explained by the fact that both Lucene and Lucene-OP undergo a similar effort to read the input files
(as we can infer from Table 8), but the index writing effort is directed either to files (Lucene) or to memory (Lucene-OP);
writing to files is typically a fast operation (data are written to a buffer, and actual writes to disk are deferred), while
writing to PM with transactional support carries additional overhead, as previously discussed in Section 5.2.2.

However, once data are committed to PM, queries become much faster than their file I/O counterparts. Looking at
query execution times on Table 7, we observe that they are more than one order of magnitude faster than the baseline
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TABLE 9 Lucene single-term query I/O counters Time (ms) Baseline Lucene-OP

read chars 1 417 374 118 902
written chars 49 711 49 762
read syscalls 1972 640
write syscalls 1058 1060
# voluntary context switches 527 527
# unvoluntary context switches 1079 1081

TABLE 10 Lucene double-term query I/O counters Time (ms) Baseline Lucene-OP

read chars 800 702 96 617
written chars 5141 5192
read syscalls 869 166
write syscalls 110 112
# voluntary context switches 53 54
# unvoluntary context switches 131 133

version. We can also observe that since queries are read-most operations (as confirmed by the I/O counters on Tables 9
and 10), the transactional overhead has less impact than on the indexing task.

5.4 Development complexity
It is a known fact that less complexity leads to reduced software development and maintenance effort, and improved
quality.35,36 For this reason, it is desirable to keep programs as simple as possible, while ensuring that they perform
their tasks correctly and efficiently; the advent of automatic memory management is an example of technique that was
adopted with that purpose. Program complexity can be measured using diverse metrics, including lines of code, number
of elements (such as classes, attributes, methods, etc) and class coupling, among others.

One of the main motivations for the OP approach is to remove from the programmer the burden of explicitly dealing
with persistence, thus reducing program complexity. In the early 80s, Atkinson et al2 stated in the founding paper of OP
that about 30% of the lines of any program with a considerable amount of code would be concerned with transferring
data to and from files or a DBMS. In a later study14 they added that not only the program length increased complexity,
but also the use of multiple application and system building mechanisms, such as databases, mapping frameworks and
communication systems. They stated that this environmental complexity distracts the programmer from the task in hand,
forcing them to concentrate on mastering the multiplicity of programming systems rather than the application being
developed.

We have not identified recent studies quantifying the impact of persistence-specific code on program complexity, but
our experience porting OO7 and Lucene to OP confirmed the expectation that they require less lines of code, components,
dependencies, and overall development effort than their database- or file-oriented counterparts. We did not perform an
extensive complexity evaluation, but we have gathered some simple metrics from these examples that provide initial
insights on this subject.

We have compared both OO7 and Lucene baselines against their OP versions. Three simple complexity metrics were
collected for each implementation: logical lines of code (LOC), number of classes, and number of methods. The OO7
results are listed on Table 11 and Lucene's on Table 12.

TABLE 11 Development complexity for OO7 scenarios Metric OO7 OO7 Hibernate
JaphaVM DB Framework

LOC 987 1217 102 165
# Classes 18 19 1340
# Methods 163 172 12 281
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Metric Lucene-OP Lucene

LOC 1067 8314
# Classes 79 314
# Methods 247 1513

TABLE 12 Development complexity for Lucene scenarios

When retrofitting OO7 for using JaphaVM's persistence semantics, we leveraged the existing classes implemented by
the benchmark (Modules and Assemblies). Most of the work consisted of creating specialized subclasses that removed the
ORM mapping from these classes to the database. As a result, the OO7 version using JaphaVM is slightly less complex than
the traditional version using relational databases. However, the traditional version uses the Hibernate framework, which
has a number of lines of code more than a hundred times larger than the OO7 benchmark itself, and a number of classes
and methods about 75 times larger. The use of an ORM makes development simpler than manually programming the
application interactions with the database, but is still reasonably more complex than handling persistence orthogonally,
requiring from the programmer to master the ORM framework, and potentially additional runtime components.

Lucene-OP leverages many unmodified classes from the baseline implementation, especially for doing tokenization,
stemming, and filtering. However, the code for both storing and querying inverted indices is significantly simpler on
Lucene-OP. Table 12 shows that it requires seven times less LOCs, four times less classes and six times less methods to
perform the same tasks.

6 RELATED WORK

Previous designs for Java with OP were offered by PJama,16 PEVM,17 ANU OPJ,18 Merpati,19 and aspect-oriented pro-
gramming implementations.20,21 Differently from JaphaVM, none of these systems was designed for PM, so they still have
to manage and move data across memory and storage, with all the entailed complexity and performance implications. On
the other hand, the recent proposed Persistent Collections for Java (PCJ)42 and Espresso43 offer NVM support for Java,
but at cost of providing a programming model to enable users to deal with persistent data.

Several recent studies proposed programming interfaces to manipulate data in PM in C and C++: Mnemosyne,8
NV-Heaps,9 Heapo,11 Atlas,10 and NVML.12 Similarly to JaphaVM, most of these programming interfaces rely in some
form of persistence by reachability. However, as they are designed for languages with manual memory management,
special memory allocators, and/or persistence roots must be defined. Since JaphaVM is designed for a managed run-
time language, it leverages the persistence roots already used by Java's automatic memory management. We used NVML
as a lower-level layer for JaphaVM's failure-tolerant implementation, and others among the aforementioned C/C++
programming interfaces could have been used as well.

To the best of our knowledge, JaphaVM is the first JVM adherent to OP principles specifically designed to take advance
of NVM architectures.

7 CONCLUSION

The concept of OP was proposed in the early work of Atkinson et al,2 advocating that, from a programmer's standpoint,
there should be no differences in the way that short-term and long-term data are manipulated. In other words, persistence
should be an orthogonalproperty of data, independent of data type and the way in which data is handled. Programmers
should focus on the core aspects of their applications, whereas the runtime environment would take care of managing
the longevity of data. The motivation behind this was to avoid moving data back and forth between these different layers
and representations, what compromises both programming, and execution efficiency.

During the 1980s and 1990s, this concept was explored in several research initiatives, including programming languages,
operating systems, and object-oriented databases.1,3 However, the underlying implementations still had to cope with the
complexity of moving data across memory and storage. Today, recent NVM technologies, such as resistive RAM and
phase-change memory, allow main memory and storage to be collapsed into a single layer of PM, opening the way for
more efficient programming abstractions for handling persistence, like OP.

In this work, we have revisited OP concepts in the context of NVM architectures and proposed a persistent heap design
for languages with automatic memory management. We demonstrated how it can significantly increase programmer
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and execution efficiency, removing the impedance mismatch of crossing semantic boundaries. To validate and explore
the benefits of the OP concepts in practice, we presented JaphaVM, an implementation of the proposed design based
on JamVM, an open-source JVM. JaphaVM's programming interface is inspired by previous research on OP JVMs, but
its design leverages PM, resulting in a simpler implementation with better performance. It uses an original combination
of OP, PM programming, persistence by reachability, and lock-based failure-atomic transactions, a concept that can be
applied for other managed runtime languages, such as Python, Ruby, and JavaScript.

We have also described our prototype implementation and evaluated its advantages over traditional persistence
approaches, such as relational databases and files, considering both execution performance and programming complex-
ity. In our experimental results using benchmarks and real-world applications, JaphaVM in most cases executed the
same operations between one and two orders of magnitude faster than database- and file-based implementations while
requiring significantly less lines of code.

The current version of JaphaVM presents some shortcomings, such as lack of type evolution and execution persistence,
which we plan to address in future research. However, it provides a good starting point for evaluating the advantages that
PM is expected to bring to Java and other managed runtime applications: programs that are easier to write and maintain
and have significantly superior performance.
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