Journal of Systems Architecture 116 (2021) 102064

Contents lists available at ScienceDirect

EMBEDDED
SOFTWARE
DESIGN

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Check for

ML-driven classification scheme for dynamic interference-aware resource | e
scheduling in cloud infrastructures @

Vinicius Meyer *, Dionatra F. Kirchoff, Matheus L. Da Silva, Cesar A.F. De Rose
School of Technology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Building 32, Av. Ipiranga, 6681 - Porto Alegre - RS, Brazil

ARTICLE INFO ABSTRACT

Keywords:

Interference-aware classification
Cross-application interference
Resource contention

Workload analysis

Machine learning

Cloud computing

Dynamic resource scheduling

Computing systems continue to evolve, resulting in increased performance when processing workloads in
large data centers due to the virtualization benefits. This technology is the key factor that allows multiple
applications to share resources, thereby enhancing the overall hardware utilization of cloud computing
environments. However, multiple cloud-services contending for shared resources are susceptible to cross-
application interference, which can lead to significant performance degradation and, consequently, an increase
in Service Level Agreements violations. Nevertheless, state-of-the-art resource scheduling still relies mainly on
resource capacity, adopting heuristics such as bin-packing and overlooking this source of overhead. But in
recent years, interference-aware scheduling has gained traction, with the investigation of ways to classify
applications regarding their interference levels and the proposal of static interference models and policies for
scheduling co-hosted cloud applications. The preliminary results already show a considerable improvement
in resource utilization and can be considered as the first steps toward a dynamic scheduling strategy. In
this scenario, this paper proposes a machine learning-driven classification scheme for dynamic interference-
aware resource scheduling in cloud computing environments. The main goal is to present how a classification
approach, that better represents the workload variations, affects resource scheduling. In the first place, we
analyze how hardware resources react to different applications with dynamic workloads. Then, we explore
distinct interference classification formats and evaluate their efficiency, taking the dynamic nature of cloud
workloads into account. Lastly, we present an interference-aware application classifier based on machine
learning techniques and compare it with related work, adopting a variety of workload patterns. Preliminary
results revealed an improvement in resource utilization efficiency by 27%, on average, when applying our
classification approach in cloud infrastructures.

1. Introduction efficiently, reducing expenses with energy consumption [5]. However,

related work [6-8] show that several cloud-services contending for

In recent years, cloud computing has received considerable at-
tention from the scientific community. It is accepted as an ultimate
way of managing data utilization and resources, as well as delivering
various computing IT services [1]. Many internet-based applications
have begun to take advantage of cloud computing due to the promise
of unlimited computing resources and the pay-as-you-use model [2,3].
A cloud system can offer this set of capabilities by the benefit of
virtualization techniques, executing multiple virtual instances placed
on different physical machines, located in data centers [4]. This strat-
egy allows cloud computing providers to use their infrastructure more

shared resources can generate cross-application interference, which
may lead to significant performance degradation and consequently to
an increase in Service Level Agreement (SLA) violations.

In order to allow virtualized platforms to deliver SLA guarantees
for high user satisfaction, efficient and automatic resource scheduling
strategies are essential [9,10]. Resource scheduling is a core function
of cloud computing providers and a central component to coordinate
all the other platform features to deliver performance-oriented so-
lutions [11]. Typically, in large data centers, resource scheduling is

The code (and data) in this article has been certified as Reproducible by Code Ocean: (https://codeocean.com/). More information on the Reproducibility
Badge Initiative is available at https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals.

* Corresponding author.

E-mail addresses: vinicius.meyer@edu.pucrs.br (V. Meyer), dionatra.kirchoff@edu.pucrs.br (D.F. Kirchoff), matheus.lyra@edu.pucrs.br (M.L. Da Silva),

cesar.derose@pucrs.br (C.A.F. De Rose).

https://doi.org/10.1016/j.sysarc.2021.102064

Received 15 May 2020; Received in revised form 19 January 2021; Accepted 15 February 2021

Available online 20 February 2021
1383-7621/© 2021 Elsevier B.V. All rights reserved.

http://www.elsevier.com/locate/sysarc
http://www.elsevier.com/locate/sysarc
https://codeocean.com/
https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals
mailto:vinicius.meyer@edu.pucrs.br
mailto:dionatra.kirchoff@edu.pucrs.br
mailto:matheus.lyra@edu.pucrs.br
mailto:cesar.derose@pucrs.br
https://doi.org/10.1016/j.sysarc.2021.102064
https://doi.org/10.1016/j.sysarc.2021.102064
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2021.102064&domain=pdf

V. Meyer et al.

accomplished through heuristics, such as bin-packing, which consid-
ers only resource capacity aspects, overlooking their source of over-
head [12,13].

Looking for alternatives, recent related work [14] has proposed
static models and scheduling policies based on interference gener-
ated by co-allocated applications. That study suggests an attraction/
repulsion method built upon the workload profile of each application,
getting around the traditional concept of just observing resource uti-
lization and capacity. In this case, web applications are investigated
since they are a category that presents workload variations at runtime.
Besides, they have an unpredictable intensity variation of resource
utilization due to different user request patterns and periodicity [15].

Performance interference among web applications in multi-tenant
systems is known to adversely impact the Quality of Service (QoS)
properties of applications [16]. Dynamic service demands and work-
load profiles further raise the challenges for cloud service providers
in managing resources on-demand to satisfy SLAs while minimizing
operational costs [17]. Any solution that addresses these challenges re-
quires an approach that should account for the workload variability and
performance interference [18]. Therefore, evolving from a static to a
dynamic interference-aware scheduling strategy brings some questions
up, given the inherently dynamic nature of the process, such as: How to
classify dynamic workloads based on resource interference in real-time?
When to execute the classification?

In order to start answering these questions, this paper proposes an
interference-aware classification scheme that aims at enabling better
utilization of available resources through the execution of multiple
workloads on the minimum number of physical machines, and, conse-
quently, minimizing SLA violations. Usually, any scheduling approach
must consist of at least two parts: a classification scheme for identifying
which applications should and should not be scheduled together, as
well as the scheduling policy that makes the decisions based on this
information [19]. Since the classification component plays a pivotal
role in dynamic resource scheduling in cloud computing environments,
in this work, we focus on the analysis of a classification scheme and
its efficiency. Firstly, we perform an initial analysis of how applica-
tions with dynamic workloads behave under distinct circumstances,
observing each resource and its contrast to response time aspects.
Then, we describe how an interference-aware classification scheme,
that better represents the workload variations, handles computational
resources and its effect on resource scheduling. Finally, we present
an interference-aware application classifier based on the combination
of two well-known machine learning techniques, validating its model
through some quality measures, and then comparing the classifier with
related work.

The rest of this document is organized as follows: Section 2 discusses
related work and background material. Section 3 presents an analysis
of interference from dynamic workloads. Section 4 demonstrates dif-
ferent interference classification formats and their impact on resource
scheduling. Section 5 describes an interference-aware application clas-
sifier, its functionalities and capabilities. Section 6 introduces related
work in the literature. Finally, Section 7 depicts conclusions and future
directions.

2. Background and state-of-the-art

This section outlines the state-of-the-art concepts intrinsic to the
work. Firstly, we characterize applications with dynamic workloads.
Then, we define interference and its impact on performance. After, we
introduce the interference-aware scheduling concept. Lastly, we explain
the machine learning techniques adopted in this study.

Journal of Systems Architecture 116 (2021) 102064
2.1. Applications with dynamic workloads

In cloud computing, applications may have different workload pat-
terns and QoS requirements. For example, non-interactive batches re-
quire completion time, while transactional web applications are con-
cerned with throughput guarantees. Different application workloads de-
mand a diverse type and amount of resources. In particular, batch-jobs
tend to be relatively stable, while latency-sensitive tends to be highly
unpredictable and bursty in nature [20]. Besides, latency-sensitive
applications can include short latency-critical user-facing tasks, such as
responding to web search requests. Also, this class of workloads is char-
acterized by short deadlines in the order of tens of milliseconds [21].

Multi-tenant web systems can efficiently allocate resources within
and among data centers according to time-varying demand [15]. Their
workload is not deferrable, and this means that every time a request
is received, the response should be generated immediately afterward.
Consequently, such applications must make real-time scheduling of the
load, which does not delay the current requests [22]. This application
category presents workload variations at runtime and an unpredictable
intensity variation of resource utilization due to the user’s different
request patterns and periodicity [15]. Therefore, web applications are
ideal candidates to evaluate interference effects suffered by dynamic
workloads and will be considered as target applications in this work.

Garg et al. [20] propose an admission control and scheduling mech-
anism to ensure the meeting of users’ QoS requirements, as specified
in SLAs. The authors claim that it is important to be aware of different
types of SLAs and the mix of workloads for better resource provisioning
and utilization of data centers. Results show substantial improvement
in reducing SLA violations. Sampaio et al. [23] address the resource
allocation issues running different types of application workloads, such
as CPU- and network-intensive applications. After conducting several
experiments with synthetic workloads, results indicate that the author’s
strategy is able to fulfill contracted SLAs of real-world environments
while reducing energy costs.

2.2. Performance interference

Nowadays, due to resource sharing techniques, physical machines
host several applications. Resource sharing methods, such as virtual-
ization and containerization, provide several approaches to mitigate
resource contention problems related to co-hosted applications. Such
technologies are the main drivers of high resource utilization in mod-
ern data centers. However, the intensive use of a source, considering
multiple services, certainly will face resource contention problems. This
problem is known as performance interference, and it may lead to
severe performance degradation [14,24].

Resource consolidation may lead to severe performance degrada-
tion. The performance degradation caused by virtual machines running
on the same computational environment is known as virtual machine
interference. Handling higher virtual machine interference may result
in a higher consolidation, while strict low interference requirements
may demand more resources. Jersark and Ferreto [7] claim that ap-
plications are affected by other virtual machines, which use the same
resource intensively in the same physical machine. Furthermore, each
resource is affected differently. CPU intensive applications led to perfor-
mance degradation of 14%. In memory and disk I/O intensive applica-
tions, the performance degradation was as high as 90%. Therefore, it is
clear that performance interference is a problem, and the performance
degradation varies depending on the most used resource.

Besides the environments mentioned above, performance interfer-
ence also affects container-based environments. Disk-intensive applica-
tions running over containers promote performance degradation that
uses different resources intensively. Xavier et al. [8] have tested several
combinations of co-hosted workloads. While some of these combina-
tions led to performance degradation of 38%, they could also combine
the workloads with no interference.

V. Meyer et al.

Cluster environments usually run multiple user-applications concur-
rently, handling several requests that eventually compete for access to
shared resources such as the file system or the network. Low application
performance may be caused by interference from different sources.
Shah et al. [25] state that mapping performance data related to shared
resources onto time slices can establish the simultaneity of application
usage across jobs, which can be indicative of inter-application interfer-
ence. In some cases, inter-application interference causes performance
degradation by up to 50%.

2.3. Interference-aware scheduling

In cloud computing ecosystems, consolidating multiple user applica-
tions onto multi-core servers generates interference between co-hosted
applications, which impacts application performance. To minimize in-
terference effects and improve application performance, a common
solution is to utilize schedulers that consider interference issues [26].

Chiang and Huang [27] present TRACON, a Task and Resource Allo-
cation CONtrol framework that mitigates the interference effects from
concurrent data-intensive applications and improves the overall sys-
tem performance. TRACON utilizes machine learning-based techniques
to perform an interference model prediction that infers application
performance from resource consumption observed from different VMs
and an interference-aware scheduler that is designed to utilize the
model for effective resource management. Evaluation results present
an improvement of 50% on application at runtime and 80% on I/O
throughput for data-intensive applications in virtualized data centers.

Kansal and Ghaffarkhah [16], Delimitrou and Kozyrakis [28] and
Shekhar et al. [18], concerned about meeting QoS requirements while
improving the system efficiency, have built online interference-aware
schedulers. They apply predictive models that observe workload met-
rics and performance interference interactions to perform resource
management. Experimental evaluations show system utilization im-
provement by up to 35% [16]; QoS guarantee rates of 52% [28]; and
tail latency reduction by up to 39% [18].

Zhu and Tung [29] and Bu et al. [30] present task scheduling
strategies that include interference aspects, based on task performance
prediction models to realize better workload placement decisions. Pro-
posed models achieve an average error of less than 8% and a speedup
of 1.5 to 6.5 times for individual jobs, respectively. Zang et al. [31]
and Wang et al. [32] developed interference-aware job scheduling al-
gorithms to estimate the effect of interference among multiple instances
of virtualized environments. Results show that proposed scheduling
algorithms, on average, reduce the execution time of tasks by 6.5%.

Chen et al. [12] present CloudScope, a system for diagnosing inter-
ference for multi-tenant cloud systems. It (re)assigns virtual machines
to physical machines and optimizes the hypervisor configuration for
different workloads. The interference-aware scheduler improves virtual
machine performance by up to 10% compared to the default scheduler.

2.4. Machine learning algorithms

Some problems are solved from algorithms specifying step-by-step
how they can be solved. However, it is not an easy task to write a
program to mimetize human abilities, such as face or voice recogni-
tion, which demands experiences and pattern recognition. Therefore,
machine learning is a technique that learns from data, patterns analysis,
and approximation functions to extract knowledge based on the input
data [33]. Machine learning techniques are mainly grouped into three
categories: (i) reinforcement learning, (ii) supervised, and (iii) unsu-
pervised. Reinforcement learning allows a machine to learn from the
feedback received through interactions with an external environment.
Unsupervised machine learning is applied to conclude from a given
dataset consisting of input from a data. Supervised machine learning
techniques estimate the relationship between input attributes and a
target attribute. Thus, they can be classified into two main categories:

Journal of Systems Architecture 116 (2021) 102064

classification and regression. On the regression, the output variable
takes continuous values; on the other hand, while in classification, it
split the data into different classes [34]. In this study, two machine
learning algorithms have been employed: SVM for classification and
K-Means for clustering.

2.4.1. SVM

Support Vector Machine (SVM) is a supervised technique based on
statistical learning theory. Support vectors are the data points nearest
to the hyperplane. Hence, the main idea is finding a hyperplane that
best divides a dataset with the minimum cost into two classes in
a dimensional space. [35] Sotiriadis et al. [36] minimized perfor-
mance degradation in cloud computing, introducing a virtual machine
scheduling algorithm. They apply SVM to classify resource usage. As
a result, performance degradation has been minimized by 19%, and
CPU real-time has been maximized by 2%. Sant’Ana et al. [37] present
a real-time scheduling policy selection algorithm. They evaluated the
use of logistic regression and SVM to perform the mapping of running
queue job characteristics and machine states. The results show SVM
reached a classification accuracy by up to 81%.

2.4.2. K-means

K-Means is an unsupervised technique that attempts to split a given
dataset into a fixed number of clusters. In this method, each centroid
(k) is an existing data point in the given input dataset. The process of
classification and centroid adjustment is repeated until the values of
the centroids stabilize. The final centroids will be employed to produce
the final clustering. Gill et al. [38] propose a resource scheduling
technique for holistic management of cloud computing resources. This
method uses K-Means for clustering the workloads for execution on a
different set of resources. Results indicate that the authors’ proposed
technique is capable of reducing energy consumption by 20.1% while
improving reliability and CPU utilization by 17.1% and 15.7% respec-
tively. Xu et al. [39] formulate a generic job scheduling problem for
parallel processing of big data in heterogeneous clusters and design a
K-Means-based task scheduling algorithm, referred to as KMTS. Sim-
ulation results show that KMTS improves execution performance by
25% and 30% on average in single job scheduling and parallel job
scheduling, respectively, over existing methods.

3. Interference of dynamic workloads

Uncontrolled access to shared resources can cause performance
variations, leading applications to perform unsteadily or even fail. The
friction caused by the competition to access cache, memory, disk, or
internal busses is called resource contention [40]. I/O contention, for
instance, occurs when multiple tasks compete for a portion of disk
bandwidth in a context where the demand is higher than the available
resources. The constant expansion of data centers has raised a concern
regarding resource contention issues, where performance aspects are
crucial, and SLA cannot be violated, which is the case of cloud com-
puting infrastructures [8]. In order to understand interference effects
under dynamic workloads in a more appropriate way, first, we need
to understand the basics of how does each resource behaves and is
handled by internal devices while the workload varies. Furthermore,
we may need to understand what problems they might cause when
contention-related issues are applied to all those types of resources. In
every aspect, each of the main resources such as cache, CPU, memory,
disk, and network, are those that suffer the most by consolidated
applications that may share the same infrastructure [6].

This section aims to explain how the interference is profiled and
how applications with dynamic workloads act under different circum-
stances. Initially, we introduce the interference profiler used in this
work. After, we present a resource interference analysis, and lastly, its
impact on response time.

V. Meyer et al.
3.1. Profiler and setup environment

To characterize the interference generated by each application,
we used a tool called IntP [8]. It profiles running applications us-
ing low-level kernel instrumentation, returning the interference levels
generated on each resource subsystem. Although IntP can be used to
provide metrics in realtime because of its low overhead, in this work
we used it only as an offline profiler to generate a dynamic interference
classification of the applications that will be used later in the dynamic
scheduling. It is structured in modules that are responsible for each type
of access on a specific resource at the infrastructure level, and outcomes
the percentage of hardware resources utilization, per application, in an
isolated fashion. This isolated measurement provides analytical infor-
mation to the system to determine how much an application interferes
with each other. The higher the metric is, the more interference the
application is profiled generates. More specifically, the tool returns the
percentage of interference of the following metrics:

* netp — physical network;

* nets — network queue;

* blk — disk;

» mbw — memory bandwidth;

llcmr — last-level cache miss rate;

* licocc — last-level cache occupation;
» cpu — CPU utilization;

All experiments have been performed over a Dell PowerEdge
R740xd equipped with: 2x Intel Xeon Gold 5118 Processor, 300 GB
DDR4 RAM Memory, 1TB Hard Drive, and 4x Gigabit Ethernet Inter-
face. The adopted operating system is Ubuntu Server 16.04 LTS (Xenial
Xerus).

3.2. Resource analysis

To perform an in-depth analysis of interference generated on dif-
ferent hardware resources from applications with dynamic workloads,
Node-Tiers' has been adopted. This tool is a multi-tier benchmark
that allows fine-grained personalization of resource utilization. Node-
Tiers stresses the computer system in various selectable ways and was
designed to exercise various physical subsystems of a computer through
web requests. This tool explores the web applications concept (client—
server) and allows the creation of workload variations. The server-side
was performed over a server (presented in Section 3.1). While the
client-side was configured on a different computer. Both pieces of
equipment were connected through a Gigabit Ethernet Network. The
goal is to stress a server in many ways (distinct resources), through
latency-sensitive applications, increasing the request arrival rate, and
observing interference effects over the changes in workload behavior.

Firstly, we have chosen Node-Tiers algorithms that stress more a
given resource. After, an increasing workload has been created, varying
from 0 to 300 requests per second, within 300 s. Each algorithm was
executed in two ways: in isolation and two applications’ instances co-
hosted, labeled here as parallel. Fig. 1 presents all experiments’ results,
depicting how each resource is affected by interference over time.
Below, a detailed analysis is discussed.

3.2.1. Cache

Last Level Cache (LLC) memory is a hardware device created to
minimize the performance gap between the processing cores and the
main memory [41]. When two or more processes are assigned to the
same CPU node, threads occasionally share on-chip memory space,
and it may lead to resource contention [8]. At the isolated execution,
it is possible to observe that the resource that suffers the highest
interference is the cache, with an increasing but non-linear behavior.

1 https://github.com/uillianluiz/node-tiers

Journal of Systems Architecture 116 (2021) 102064

The next most affected resources are memory and CPU, which pur-
sue a linear trend. In parallel execution, cache interference increases
significantly, and some peaks in cache-miss occurred at the end of
the experiment. Although the interference suffered by the memory is
following a linear trend, this resource interference increases more than
twice in parallel compared to isolated execution. The same happens
with the CPU metric.

3.2.2. CPU

Multiple co-hosted applications running might outstrip the available
amount of CPU cycles, when this happens it is called CPU contention [8,
42]. In our experiment, even though the target resource to be stressed
is the CPU, the cache is the one that suffers the most from interference.
The CPU follows a linear trend, both in isolated and parallel execution.
In this case, the CPU, on average, duplicates over time, generating the
highest proportionality among all experiments. The memory rates seem
to double from isolated to parallel tests as well.

3.2.3. Memory

Memory contention happens when the memory requirements for
the active processes exceed the available system physical memory,
causing the system to run out of memory while dramatically decreasing
the system performance. To overcome this problem, the operating
system (OS) present two possible mechanisms: (i) System Paging, when
the OS starts to move fractions of active processes to the disk and
tries to recover physical memory and reestablish stability; and (ii)
System Swapping, when the OS starts to swap an entire process to
the disk to reclaim memory, causing tremendous disk overhead [43].
In the isolated execution, the memory follows a linear tendency until
a given amount of requests. When requests overtake such a quantity,
the CPU increases considerably, reaching interference rates over 90%.
This abrupt CPU growth happens when the request arrival rate reaches
more than 300 requests per second, approximately. Since workloads
are co-hosted in parallel execution, that request rate is reached earlier,
close to 150 s, creating a significant resource usage increment. So, it
is possible to note that not only resources are widely consumed, but
the experiment that should have finished within 300 s, finished close
to 310 s, generating performance degradation.

3.2.4. Disk

Disk throughput can be seen as the most volatile performance
metric in a system, because it is architecture-driven and might be
affected by external components, such as virtual memory, buses, and
I/0 controllers [44]. For isolated execution, the increase in the disk
is smoothed, following a linear trend. In parallel execution, the inter-
ference that co-allocated applications generate follows an exponential
trend. Since the arrival request rate is doubling every second, it is
possible to observe that interference generated by the block storage
contention is significantly amplified.

3.2.5. Network

Network contention appears when processes send messages that
travel over the same network interface card (NIC), passing through in-
ternal buffers concurrently, thereby increasing job communication time
and degrading performance [45]. In isolated and parallel execution,
network back-pressure grows linearly. Comparing both executions, it is
possible to note that even if the load doubles in parallel execution, net-
work interference does not double proportionally. Besides, in parallel
execution, the use of cache is intensified, generating some cache-miss
incidences and presenting a strong relationship between network and
cache resources.

https://github.com/uillianluiz/node-tiers

V. Meyer et al.

Journal of Systems Architecture 116 (2021) 102064

Cache CPU Memory Disk Network
100
754 e
3

~ 50+ - =y
R el 3
S 254 - J’-’l"‘i‘ | e 1_..-#‘\ a
R e = I e g o ST P = wusii
o
5 1004
€
8 754 -
=] 15
= i " g

i ~1 |2

259 \a ﬁ p - -

017 T T T T T T T T T —T T o T T
0 150 300 0 150 300 0 150 300 0 150 300 0 150 300
Time (seconds)
Resources blk === cpu llemr llcocc ==== mbw === netp === nets

Fig. 1. Isolated and Parallel executions from Node-Tiers algorithms that stress the more cache, CPU, memory, disk, and network resources.

3.2.6. General remarks

In general, we can conclude that each application has a specific
resource usage behavior, creating different interference rates. Besides,
when observing specific resources, we highlight that applications can
generate interference indexes according to the workload variation, pro-
portionally to the load changes, which are the cache and CPU examples.
On the other hand, the opposite happens as well, when the interference
generated does not follow the workload rise proportionality, that are
the cases of memory, disk, and network. Also, we state that these
analysis results could change if they were executed over different
hardware, strongly depending on their characteristics or capabilities.

3.3. Impact on response time

Left unmanaged, the competition for machine resources can lead
to severe response-time degradation and unmet SLAs [46]. Latency-
sensitive does not regularly imply hard real-time applications but also
applications that have soft bounds on response times beyond which
users will find the application behavior unacceptable. For instance,
users expect a web search to complete within a specific amount of
time [18]. So, delays in latency-sensitive applications runtime do not al-
ways represent properly their performance degradation or demonstrate
SLA violations. Therefore, to evaluate such applications deterioration
accurately, we have analyzed the response time degradation through
a set of experiments. With Node-Tiers, we have combined all algo-
rithms, mentioned in the previous subsection, in parallel executions and
captured their response times. To better explain, the application that
uses more the cache was combined with the one that uses more the
CPU, memory, disk, and network. This experiment has been performed
with all algorithms, matching all of them. All executions take the same
workload and time interval: 0 to 300 requests per second within 300 s.
Fig. 2 depicts all the collected response times from all tests.

It is possible to notice that each application has its specific incre-
ment in response time and none of them have a linear growth trend.
For example, in the CPU-network execution, the Network application
starts to increase its response time before the CPU. In the CPU-memory
case, practically memory does not change its response time behavior
while CPU does.

Another interesting remark is that all executions with the same
application, in the diagonal line (i.e. cache—cache, CPU-CPU, and so
on), present the same behavior and start to increase their response
times practically at the same time. This happens because the same
resource is being used, causing approximately the same response time
degradation.

It is worth mentioning that although each application has its char-
acteristics and different behavior, when co-hosted with another one,
the interference generated between them tends to affect proportion-
ally their response times, on average. This means that response time
degradation is proportional to each resource.

Table 1
Interference intervals and their respective level labels, introduced by
Ludwig et al. [14].

Interval Label
0% Absent
1%-20% Low
21%-50% Moderate
51%-100% High

4. Workload interference classification

Resource scheduling can be defined as the ability of cloud infras-
tructures to dynamically change the amount of resources allocated to a
running application. Hardware resources should be allocated according
to the change of workload, allowing the management of resources to
preserve the Quality of Service requirements at reduced cost [47]. In
the previous section, it has been stated that workload variations can
affect differently the behavior of applications, not only in resource us-
age but also in response time aspects. Each application execution might
have a different hardware subsystem comportment, strongly depending
on the workload variability. Therefore, an interference classification
scheme that perceives the changes of application behavior over time
becomes essential to perform interference-aware scheduling strategies
in cloud computing environments.

The most challenging part of the problem is to find a classifi-
cation scheme that can accurately determine how cross-application
interference affects each resource when they are being shared over
time [19]. To this end, this section presents a preliminary evaluation of
how different interference classification techniques impact interference
overhead and resource utilization. First, we discuss the impact of work-
load variation on the classification phase of these techniques. Then, we
evaluate their efficacy in reducing the overhead and improve resource
utilization in such a scenario.

4.1. Classification analysis

To evaluate scheduling policies alternatives, Ludwig et al. [14] have
created a classification method that explores interference at levels.
Such method analyzes the interference suffered by machine resources
(CPU, memory, disk, network, and cache) over the entire application
execution. The authors’ technique categorizes such resources with their
respective interference level labels, according to Table 1.

To introduce an example, we have run a QoS-oriented e-commerce
benchmark called Bench4Q [48]. This application has features to de-
duce a controllable and flexible representation of complex session-
based workloads and to simulate authentic customer behavior. First, we
created an increasing workload, starting with a low load and gradually
going to a high load, and profiled it with IntP. Bench4Q emulates active
e-commerce users through entities called Emulated Browsers (EBs), so

V. Meyer et al.

Journal of Systems Architecture 116 (2021) 102064

Cache CPU Memory Disk Network

] —

0.

404 =
7] il R | r—
E ol
Q
E 404 =
= g
g 204 —— g
2 || g | O
S 0-
=3
2
& 40 =)

1 s e |

0.

401 Z

204 g,

—— |
0 150 300 0 150 300 0 150 300 0 150 300 0 150 300

Time (seconds)

Application

right top
N

Fig. 2. Response time collected combining cache, CPU, memory, disk, and network algorithms from Node-Tiers.

the load started with 10 simultaneous EBs and every minute we added
10 more, ending the execution with 120 EBs (720 seconds). Fig. 3
shows interference suffered by each resource in this experiment. The
top chart presents the static classification method proposed by [14],
which analyzes the interference levels over the entire application life
process and assigns just one label per profiled resource based on mean
values. In this work, we refer to this classification format as Unique. To
evaluate how well this technique deals with workload variations and its
impact on the classification, we redid the same experiment segmenting
the trace in four parts and applying the same static classification
technique to each part. Results are shown at the bottom chart of the
same figure and we refer to it as Segmented.

It is possible to notice that there are resources that do not change
their labels, for instance, memory, cache, and network. Since they
keep their interference metrics at the same level, on average, with no
expressive variation, their labels are maintained. On the other hand,
also some resources do change their labels, which are the CPU and disk
cases. The disk has a smooth decrease in its behavior, moving from
low to absent label, at the execution halfway. Besides, CPU has the
biggest behavior change, starting with low, going to moderate levels,
and ending with a high interference level.

While there exist applications with expressive variations in the
interference metrics over a given period, we have noticed there exist
those that do not present it. To better explain, we did the same
experiment with a benchmark developed to evaluate database perfor-
mance for workloads, similar to those of Facebook’s production, named
LinkBench.? This application can be configured to simulate a variety
of workloads, and plugins can be written for benchmarking additional
database systems. Again, an increasing workload has been created. In
the LinkBench benchmark, it is possible to set the number of requests
(operations) and the number of requesters (threads). The number of
requests was configured into 1000 (fixed), and the number of requests
varied from 10 to 50 (by 10 to 10). The entire execution was profiled
with IntP. Also, a single classification was performed on top of the
entire application execution. After, the execution was partitioned into
four parts as well, and each part was classified again. Results are
presented in Fig. 4.

The top chart (Unique) shows that only disk and cache suffer low
rates of interference, in general. By classifying the application in four
parts, in the bottom plot (Segmented), it is possible to notice that the

2 http://github.com/facebookarchive/linkbench

Table 2
Performance degradation generated by resource interference, introduced by Ludwig et
al. [14].

Level CPU Memory Disk Network Cache
Absent 1.00 1.00 1.00 1.00 1.00
Low 1.03 1.07 1.12 1.05 1.07
Moderate 1.15 1.62 1.82 1.32 1.18
High 1.33 1.74 2.25 1.57 1.26

overall interference generated in each resource keeps the same labels.
This means that the interference metrics do not change significantly
to modify their labels. Concluding that: (i) there are cases where
interference levels do not change, even when their workload does; and
(ii) in these cases, the Ludwig et al. [14] classification method is well
applied since there is no representative variation in the interference
metrics.

Summing up, while Bench4Q execution generates a significant vari-
ation in terms of interference effects, LinkBench does not. This high-
lights that, due to their dynamic workload nature, each application
should be handled differently.

4.2. Impact on interference overhead

Aiming to evaluate interference changeability and scheduling as-
pects over time, by profiling the total interference generated of running
an application, a tool called CIAPA® has been adopted. This is a
scheduling analysis tool that uses an interference overhead function,
represented by their interference set I’. The interference level for each
resource is denoted as follows:
gl)y={I1ell,.1>1} '6D)

res

where res = {CPU, memory,disk,cache, network}. The function g, de-
noted in Eq. (1), returns a set of values that are greater than 1. All
resource interference metrics are measured and allocated into an inter-
val. Depending on the interval in which they are set, the interference
overhead index value varies according to Table 2.

CIAPA tries to minimize the total interference overhead by testing
all possible combinations of applications per host. Therefore, the result

3 https://uillianluiz.github.io/ciapa

http://github.com/facebookarchive/linkbench
https://uillianluiz.github.io/ciapa

V. Meyer et al.

Journal of Systems Architecture 116 (2021) 102064

100
50 =
=%
K=
(=3
; °
~ % cpu mod
IS mem low
t G g
2 cache P"Eﬁ"
8 T T T
8 1004 | 1 1
S
13} 1 1 1
£ 1 1 1
1 1 1
1 1 1
504 1 1 | z
ag
1 1 1 8
| 1 1 g
1 1 3
1]] =
04 1 1 1
cpu low | cpu mod | cpu mod , cpu hlgh
mem |ow mem Iow mem low mem |ow
disk low ! ! disk absent ! disk absent
net aR %nt 1 net aRs nt 1 net apsent 1 net apsent
cache hig) cache | cache ig | cache ig
0 100 200 300 400 500 600 700
Time (seconds)
Resources blk |me=== cpu llcocc == mbw

Fig. 3. Unique (top) and Segmented (bottom) Bench4Q static interference classification. To facilitate the visualization, a Loess function was applied to smooth short-term variations
in each resource. Resources labels that changed are shown in bold in the bottom plot. IntP metrics that do not suffer any interference in these experiments were not depicted.

1004 cpu absent
mem absent
disk ow
net absent
cache low
g
504 =
(=3
[¢d
<
S
)
2 0
£ 1001 . . .
b5 cpu absent . cpu absent . cpu absent . cpu absent
&= mem absent mem absent mem absent mem absent
5 disk low 1 is low 1 is| low 1 disk low
= net absent | net absent | net absent | net absent
— cache low . cache low . cache low . cache low »
']
1 1 1
504 1 1 1 5
1 1 1 3
1 1 1 &
1 1 1
1 1 1
0- T T L T T L T T L T T
0 100 200 300 400 500 600 700
Time (seconds)
Resources blk llcoce

Fig. 4. Unique (top) and Segmented (bottom) LinkBench static interference classification. To facilitate the visualization, a Loess function was applied to smooth short-term variations
in each resource. IntP metrics that do not suffer any interference in these experiments were not depicted.

is finally given by the multiplication of the cost of each resource, which
is calculated by using the function seen in Eq. (2).

[= Foll) % fr) 5 Ty) % ful) % Fa(Ily) @

To execute applications with dynamic workloads, we have elected
three different applications that can execute workload variation. The
first and second are the already mentioned Bench4Q and LinkBench.
The third one is a decision support benchmark called TPC-H.* This ap-
plication evaluates the performance of various decision support systems

4 http://www.tpc.org/tpch/

by the execution of sets of queries against a standard database under
controlled conditions.

Different workload variations can change the behavior of the ap-
plication in terms of resource usage and performance. In order to
variate their comportment, four workload patterns have been set for
each application. We have set up the following workloads: Increasing,
Periodic, Decreasing and Constant. This idea has been inspired by Igbal
et al. [15] study, where Increasing starts with a low load and gradually
goes to a high load. Periodic has continuously high-to-low and low-to-
high load variations. Decreasing is the opposite of Increasing, it starts
with a high load and gradually goes to a low load. Finally, Constant
keeps always the same workload.

http://www.tpc.org/tpch/

V. Meyer et al.

10000 4
10001

100 4

) I I .
| H =
4 6 8 10 12

Number of Hosts

. Unique

Fig. 5. Comparison of interference overhead.

Interference Overhead

Segmented

To evaluate interference variations, each application was submitted
to the 4 workload patterns, resulting in 12 different examples. These
examples have been tested over different numbers of hosts, as follows:
4, 6, 8, 10, and 12. After, we have applied two classification formats
on each workload: (i) Unique and (ii) Segmented. Where, Unique rep-
resents just a single classification over the entire application execution,
while Segmented divides each execution into four parts and runs the
classification on each one. Since, to perform the Segmented format, the
application was divided into four parts and each part outcomes a set of
interference level labels, the outcomes from the Unique format were
multiplied by four in order to create a proportionality between both
formats.

Classification outcomes were inserted into CIAPA, and the results
are presented in Fig. 5. As mentioned before, CIAPA uses an interfer-
ence overhead function that represents the total interference generated
into the system. The lower this result, the better the hardware is being
used. This means that lower indexes present better hardware efficiency
so that reducing response time, makespan, and so on.

In general, the largest difference has occurred with the smallest
number of hosts. These were the cases that happened more cross-
application interference. Resulting in greater performance degrada-
tion among co-located applications. With the growth of hosts num-
ber, the difference between interference overhead incidence decreases.
Therefore, resource concurrency among co-hosted applications tends
to decrease, as well. Only with the largest number of hosts, both
classification methods, have achieved the same values. This happened
because each host ran only one application instance. Since there is no
incidence of cross-application interference, the result has been led to
the minimum.

It is interesting to note that in all experiments, performed in Fig. 5,
the Segmented format reaches lower interference overhead indexes
than the Unique one. The results demonstrate that Segmented for-
mat improved the hardware utilization efficiency by 22%, on aver-
age, reducing resource consumption and also performance degradation
at the application level. This highlights that a workload-aware fine-
grained classification can reduce interference overhead while a single
one can lead to less efficient scheduling decisions. Besides, evaluating
cross-application interference at time intervals tends to improve the
performance of applications while preserving the Quality of Service
requirements.

From now on, in this paper, the Classification Method refers to
the method of how does each resource receives its interference level
within a given execution period, while Classification Format indicates
how many time slices the Classification Method is applied in: Unique
format for a single interference classification over the entire application
execution, and Segmented for multiple classifications.

Journal of Systems Architecture 116 (2021) 102064

@ @ LEVEL:
_]Memory

E A cpu

(] M T
Interfere-n'c: q.(susevrs/ilsed) (urﬁu%;iril:ed) -‘{[l Dk
Metries] Network
ll Cache

@ —| Training Dataset l—

Fig. 6. Classifier architecture overview: Component 1 represents the collecting of in-
terference metrics; Component 2 depicts the training dataset assisting machine learning
algorithms; Component 3 illustrates the classification process and its outcomes [49].

5. ML-driven interference-aware application classifier

In the previous section, we did some experiments under high work-
load variations running a static interference classification only once
(Unique) and several times along the execution (Segmented). Com-
parison results showed that the Segmented format reaches better re-
source utilization efficiency than the Unique one. However, the inter-
ference levels’ thresholds (Table 1) of the applied static classification
method [14] were empirically defined. Although this still resulted in
applications’ scheduling with better overall results, we have observed
that applying that method over some applications with high workload
variations could lead to an unrepresentative classification estimate.
Thus, this approach may face problems when dealing with different
types of applications that have dynamic workload patterns.

To tackle this issue, we created an interference-aware application
classifier based on the combination of two well-known machine learn-
ing techniques: Support Vector Machines (SVM) and K-Means. After
trained, the proposed classifier receives monitored metrics from appli-
cations and dynamically defines their interference levels thresholds for
each resource. This application classifier was first introduced in [49]
in its static variant, and here we improve this work by introducing a
dynamic version, where we apply the classifier several times during the
execution of an application to better react to workload variations and
possible changes in its interference levels.

This section details the classifier functionality and presents an eval-
uation of its utilization, performing different experiments. First, we
explain the overall functionality of how does the proposed classifier
work, including its dependencies and capabilities. Then, we present an
evaluation of the dataset and model validation. Lastly, we compare its
efficiency with related work.

5.1. Classifier design

Two machine learning algorithms work together to implement the
proposed classifier: SVM for classification and K-Means for clustering.
Initially, SVM receives interference metrics from the target application
collected each second by IntP, and those metrics are classified and
stored into resource queues for their respective classes: memory, CPU,
disk, network, and cache. Subsequently, K-Means quantifies values for
each queue and returns their interference level for a specific period.
Both machine learning algorithms use a training dataset, previously
defined, to assist their decisions. Fig. 6 illustrates an overview of how
the classifier works. More details about the classification method are
presented in the next subsections.

5.1.1. Interference profiling

To characterize the interference generated by each application we
used IntP. The general idea is to profile applications at runtime, return-
ing an interference for each resource used during execution: memory
(mbw), CPU (cpu), disk (blk), network (netp and nets), and cache
(llcocc and llemr). IntP returns these metrics every second, based on the
workload variability (higher values correspond to a higher interference
overhead).

V. Meyer et al.

5.1.2. Training dataset

To take advantage of selected machine learning techniques, it is
essential to have as much quantity of data as possible to use as input
in order to train the models. However, no available datasets were
found in the literature with cross-application interference traces. To
tackle this issue, Node-Tiers has been used. Since this tool is able to
stress the computer system in many ways, through web requests, we
could generate a diversified interference dataset by performing various
algorithms.

To maintain a data history from each interference class, we had to
stress the main resource classes and store their interference metrics. To
better understand, let us take an example: To collect CPU interference
metrics, Node-Tiers has been set with cpu parameter, which means
only the CPU was stressed. To collect the cache class, cache parameter
has been set, and so on. We have produced five major interference
classes: memory, CPU, disk, network and cache. More precisely, 10,000
samples have been collected from each class of interference, resulting
in a dataset with 50,000 samples.

5.1.3. Classification process

The proposed ML-based interference classifier dynamically defines
thresholds and assigns interference levels for each resource used by the
monitored applications for a particular time slice, without the need for
user intervention.

The target application is monitored with the IntP tool, every second,
generating data from 7 resource metrics (described in Section 3.1).
This data is passed to SVM as input data to be classified. SVM is a
supervised technique, so it uses labeled data from a training dataset
to label the new data. SVM takes this tuple of 7 interference values
and categorizes it into one of the 5 resource classes: memory, CPU,
disk, network, and cache. The idea here is to select the class that best
represents the interference generated by this application in this second
and store the interference value(s) in its respective queue. Since this
is done at runtime for all applications that are being executed, it is
a way to reduce overhead, selecting the most representative values
for each class. After a system defined time interval, the values stored
in these resource queues become K-Means input data, so that the
corresponding interference level for each resource is assigned. This two-
step classification process is repeated until the end of the execution,
characterizing the dynamicity of our approach, where interference
levels are reevaluated regularly so that we are able to better react to
changes in the workload.

Inspired by [14], we used four possible levels: absent, low, mod-
erate, and high. But in our work, these thresholds are not empirically
predefined, but variable for each resource and automatically defined
in the K-Means training phase. When there is no interference incidence
from a class (no data in the respective queue for the period), the
classifier interprets it as Absent.

K-Means, previously trained, determines the interference levels of
each resource class. K represents classes division: low, moderate, and
high. Therefore, its value has been set to 3 (k = 3). At the beginning of
the classification process, SVM trains its model and K-Means finds its
centroids. Since both techniques are supported by an already created
dataset, the SVM model and K-Means centroids are the same until
retrained.

For example, we may have an IntP tuple for a running application
(i.e. [0%, 0%, 3%, 15%, 5%, 10%, 80%]) as input in a particular second
classified by SVM as “CPU”. This output is buffered in the respective
class queue, in this case CPU. This classification phase is repeated for
the duration of a time interval, and then these class queues become
K-Means input to determine an application interference level for each
class within the monitored interval. These queues are only used to
buffer the SVM output for each class since SVM runs each second and K-
Means runs for each time interval. The goal here is to reduce overhead
since this is done at runtime.

Journal of Systems Architecture 116 (2021) 102064

The classifier was implemented using the free statistical software
tool R.° To execute SVM and K-Means algorithms we have elected
e1071 [50] and stats [51] R packages, respectively. Basically, SVMs
can only solve binary classification problems. To allow for multi-class
classification, 1ibsvm performs the “one-against-one” technique by
fitting all binary subclassifiers and finding the correct class by a voting
mechanism [50]. Even though we have chosen R in this work, the
model design is not limited to this specific tool, other software or
libraries, such as Keras® for Python or Weka’ for Java, could also
potentially be utilized. One factor in choosing (or dismissing) a machine
learning platform is its coverage of existing algorithms [52]. R provides
flexibility for implementing several types of model architectures.

Many machine learning techniques are available in the literature,
and depending on the chosen one, there are different sets of pa-
rameters to be configured. In order to: (i) not over- or under-fitting
the training model; (ii) to eliminate the user responsibility of setting
these parameters; and (iii) to find the best set of parameters for ma-
chine learning techniques, caret® package has been used. This package
provides a standard syntax to execute a variety of machine learning
methods, thus simplifying the process of systematically comparing
different algorithms and approaches.

Since our application classifier analyzes workload behavior through
interference metrics, this approach can be applied with other inter-
ference metrics and monitoring tools (like PAPI°). All files, includ-
ing source codes and results, are available at GitHub'® and Code
Ocean [53].

To better understand the classifier functionality, Fig. 7 presents the
execution of Bench4Q under an oscillating workload. Each class of
interference is demonstrated separately, together with its classification
level for the elapsed time. Overall, CPU and cache are more stressed
than memory, disk, and network. It is worth noting that disk and
network resources have undergone low interference rates, on average
less than 2% and 5%, respectively. In this case, network classification is
categorized as absent while the disk is labeled as low. Although mem-
ory values seem not particularly elevated (less than 25% on average),
our classifier labeled this resource class as high, based on the K-Means
threshold setting.

5.2. Classifier evaluation

In this section, we analyze the training dataset and validate the
proposed ML model presenting its quality metrics.

5.2.1. Dataset analysis

In reference to data analysis, machine learning techniques process
the dataset and produce a set of descriptive statistics on the included
features. In addition to a handful of metrics, these techniques support
statistics on configurable data slices and cross-feature statistics such as
the correlation between them. The correlation between a component
and a variable estimates the information they share. The variables can
be plotted as points in the component space using their correlation as
coordinates [54].

Fig. 8 presents the Circle of Correlations. This image shows the
correlations between all interference metrics collected to develop the
training dataset and the principal components (PC) are shown via
coordinates. The relationships between all variables can be interpreted
as follows:

5 https://www.r-project.org/

6 https://keras.io/

7 https://www.cs.waikato.ac.nz/ml/weka/index.html

8 https://cran.r-project.org/web/packages/caret/index.html
9 https://icl.utk.edu/papi/
https://github.com/ViniciusMeyer/interference-classifier

-
o

https://www.r-project.org/
https://keras.io/
https://www.cs.waikato.ac.nz/ml/weka/index.html
https://cran.r-project.org/web/packages/caret/index.html
https://icl.utk.edu/papi/
https://github.com/ViniciusMeyer/interference-classifier

V. Meyer et al.

CPU: moderate Memory: high

Cache: high

Journal of Systems Architecture 116 (2021) 102064

Disk: low Network: absent

100 4 100 4 1004 100 4
§ 754 @ 75 g § 754 “3 75
o o (53 L o
Q Q Q Q Q
5 50- 8 50) 8 50 8 50
O L |2 L ol
b= b= < < b=
L 254 8 254 2 L 254 8 254
”-l T T T T ()-I T T T T T T T T T ()-I = T T == T “I U-l T T T T
0 175 350 525 700 0 175 350 525 700 0 175 350 525 700 0 175 350 525 700 0 175 350 525 700
Time (seconds) Time (seconds) Time (seconds) Time (seconds) Time (seconds)
— cpu — mbw + llemr — llcocc — blk © netp —— nets
Fig. 7. Bench4Q execution under an oscillating workload.
: Table 3
1.0- 1 Quality measures of machine learning techniques. (- not applicable)
1
cpu 1 Measure SVM K-Means
1
1 Accuracy 0.97 -
051 : llemr F1-Score 0.98 -
1 Rand Index - 0.82
1
O 00— -mbwo— oo | N R
g o0 nets = “rietp
licocc 1
! and Recall metrics. The SVM algorithm was evaluated by repeating
1
-0.5 | a 5-fold stratified cross-validation 10 times, with different randomly
1 e
! selected partitions. This mechanism finds the model with the highest
10 | blk validation score.
: For clustering, we have defined Rand Index [56] (or Rand Mea-
-1.0 -0.5 0.0 05 1.0 sure) as a quality measure. Rand Index is a measure of the similarity
PC1

Fig. 8. Correlations circle of dataset interference classes.

« Different assets moving in the same direction are positively corre-
lated; if they move together exactly, they are perfectly positively
correlated;

* Uncorrelated returns have no relationship to each other and have
a correlation coefficient of close to zero; so, they are orthogonal
to each other;

» Negatively correlated returns move in opposite directions (quad-
rants). Series that move in exactly opposite directions are per-
fectly negatively correlated.

By looking at this image, observing all features, we can get impor-
tant insights into the shape of the dataset. It is worth noting that there
is a strong positive correlation between some interference classes, such
as llcocc and mbw. On the other hand, there are those that present a
negative correlation, such as cpu and blk. This means that: (i) while the
cache is used, memory bandwidth is used as well; and (ii) while CPU
is consumed, the disk is practically not required. This information is
essential for the clustering phase (K-Means) since it uses those data to
train and find the optimal centroids arrangement (interference interval
levels). It is noteworthy that information comes from the training
dataset, and if we change it, the correlation between resources probably
will have different behavior (directions), strongly depending on the
data.

5.2.2. Model validation

Usually, when a model is created with the support of machine
learning techniques, a validation step is performed to find out if it has
a good quality rate. We validate that a model is safe to serve when a
simple premise is reached: the quality measures have to achieve reason-
able rates. For this purpose, we have elected two classification quality
measures [55]: (i) Accuracy is the most common measure to evaluate a
classification process. It is defined as the degree of right predictions of a
model (or conversely, the percentage of miss-classification errors); and
(ii) F1-Score (or F-Measure), that makes a relation between Precision

10

between two data clustering. It has become the index of choice in
comparing the agreement between two separate partitions of the same
dataset. This measure adjusts for chance agreement and is not re-
stricted to comparing partitions with the same number of segments.
Complete independence between the two divisions yields a Rand Index
of essentially zero. Complete association yields an index of 1.0. From
a mathematical standpoint, this index is related to accuracy but is
applicable even when class labels are not used.

All quality measures range between 0 and 1. The higher the mea-
sured value, the better their quality. All mentioned metrics are pre-
sented in Table 3.

In all experiments, the quality metrics presented acceptable rates.
This means that both machine learning techniques used in the classifier,
induce a good training quality.

5.3. Comparison with state-of-the-art

To evaluate the proposed dynamic ML classifier, we compared it
to two static classification approaches (Ludwig et al.), that uses cus-
tomized classification intervals, and a variation of it that uses propor-
tional intervals (Proportional), to verify our claim that we would cope
better with applications that have dynamic workloads. We also com-
pare it to the state-of-the-art in round-robin scheduling as a baseline
(Even). More details about these techniques are presented below:

» Even implements the EvenScheduler algorithm, which is the
Apache Storm'' default scheduler. This algorithm distributes
computation tasks across nodes in a Round-Robin manner [57].
When tasks are scheduled, this approach counts all available slots
on each node and places application instances to be scheduled one
at a time to each node while keeping the order of nodes constant.
We have decided to use this method because Apache Storm is a
well-known framework that processes real-time data, like cloud
multi-tenant systems, which are the target applications in this
work. Besides, we consider Even as a baseline since it is the less
optimized approach.

11 https://storm.apache.org/

https://storm.apache.org/

V. Meyer et al.

'_

Z

Wl Low | MODERATE HIGH A
<

|_

=z

% LOW MODERATE HIGH B
2

| | |

z I I

%] LOW <+» MODERATE <+ HIGH C
@ I I

[ACHAUNAR AR SRR ARttt 0 1Y

0 10 20 30 40 50 60 70 80 90 100

Interference Intervals (%)

Fig. 9. Interference levels used in each classification method and their respective
intervals. Ludwig et al. (A) and Proportional (B) use static thresholds for determining
their interference classes while in our classifier (C), they are variable, automatically
defined without user intervention.

» Ludwig et al. [14] evaluate the profile of the application work-
loads and uses an interference classification at levels. This ap-
proach was introduced with details in Section 4.1 and was chosen
because it is the work most closely related to ours. The difference
between this work and ours lies in the fact that the classification
is static, done only one time in the beginning and the definition of
interference levels thresholds are fixed and empirically defined.
Proportional is similar to [14] but categorizes the interference
from each profiled resource through a proportional division of
the interference levels ranges (1/3 for each level, low [1%-33%],
medium [34%-66%], and high [67%-100%]). This technique was
chosen because this strategy to define fixed thresholds is com-
monly adopted in the resource management field [58,59].

One of the main challenges when classifying the interference levels
of an application is to define thresholds between each level for a
specific resource (for example, is 30% CPU interference low or mod-
erate? And 60% memory interference, moderate or high?). Even uses
an “in order” scheduling strategy, so, it does not take interference
classification aspects into account and, because of that, does not need
to define interference levels. Ludwig et al. (A) and Proportional (B) are
similar approaches that utilize an interference classification based on
fixed thresholds. In our approach, we use variable thresholds auto-
matically defined for each resource using ML. This is one of the main
contributions of this paper. To better visualize these differences, Fig. 9
depicts how the interference levels are defined for each technique. It is
worth mentioning that the two dashed lines (close to the points 30 and
70, on the x-axis) in our classification approach (C), are for illustrative
purposes only, and the arrows indicate that they can vary depending
on the workload.

To perform the comparison, the same workloads, with the same
patterns (increasing, periodic, decreasing, and constant) and over the
same applications (Bench4Q, LinkBench, and TPC-H), mentioned in
Section 4.2, were adopted.

As we saw in the experiments in Section 4, employing the Seg-
mented format to classify workload interference levels can reduce
interference overhead, since a classification scheme that better rep-
resents workload variations tends to use resources more efficiently.
Therefore, in this experiment, we expanded this approach into dynamic
classification methods that reclassify the workload after regular time
intervals. More specifically, the monitored period was set to 180 s,
which is a common interval found in related work that dynamically
reevaluates classifications at runtime, like [29]. Classification outcomes
were inserted into CIAPA over different numbers of hosts, as follows:
4, 6, 8, 10, and 12. The results are presented in Fig. 10.

In this figure, it is possible to observe that, in all executions, the Even
method presented the worst results (higher indexes), which was already
expected since this method ignores interference among applications.

11

Journal of Systems Architecture 116 (2021) 102064

10000 4

1000 A

- I i
) i L
| B
4 6 8 10 12

Number of Hosts

. Even . Ludwig et al.

Fig. 10. Comparison of interference overhead with state-of-the-art.

Interference Overhead

Proportional Our Classifier

In general, our solution demonstrated the best placement results, pre-
senting an improvement in the resource utilization efficiency by 27%,
on average, compared to the other strategies from related work. The
only exception appears with 12 hosts. In this case, each host handles
only one application, producing no interference rate and generating
the lowest possible interference overhead. As the number of hosts
decreases, interference overhead indexes become higher. Therefore, the
resource concurrency among co-hosted applications tends to increase as
well. With 4 hosts, the highest indexes occurred, revealing the case with
more cross-application interference incidence and greater performance
degradation.

Preliminary results, with different workloads, have confirmed that
resource interference is a characteristic that has a high impact on appli-
cation performance, which was already demonstrated by related work.
These experiments enforce that an ML-driven interference-aware dy-
namic classification scheme, which represents better the variability of
workloads over time, can improve results even more, executing efficient
scheduling decisions while enhancing the performance of applications
and reducing SLA violations.

6. Related work

Many studies have been previously conducted on building
interference-aware scheduling strategies, and the challenge is to have
fast and scalable tools for addressing real-world applications. Fur-
thermore, with virtualization technology, it has become possible to
consolidate easily and quickly adapt resource allocation. Consequently,
many recent efforts have studied performance interference issues in
light of these new capabilities. In this section, we only discuss those
works that are most closely related to interference-aware classification
and scheduling aspects.

Consolidating multiple applications in physical machines, with vir-
tualization techniques, has become a standard to cloud providers. This
consolidation, however, may result in performance-related problems
such as resource interference. In order to reduce the effects of such
issues, Ludwig et al. [14] propose placement algorithms based on inter-
ference and affinity policies and evaluate them for different workload
scenarios. As a result, they achieve a reduction in response time of 10%
compared to interference strategies and up to 18% when considering
only affinity strategies.

Zhu and Tung [29] developed an interference model that pre-
dicts the application QoS metric. The key distinctive feature is the
consideration of time-variant inter-dependency among different levels
of resource interference. To prove the effectiveness of the proposed
model, the authors tested several applications from a test suite and
SPECWeb2005 and have achieved an average prediction error of less
than 8%. In addition, it has been demonstrated that using the pro-
posed interference model to optimize the cloud provider’s metric (num-
ber of successfully executed applications) to realize better workload

V. Meyer et al.

placement decisions and thereby maintaining the user’s application
QoS.

Delimitrou and Kozyrakis [28] propose Paragon, an online and
scalable data center scheduler that is heterogeneity and interference-
aware. Paragon is derived from robust analytical methods and instead
of profiling each application in detail, it leverages information the
system already has about applications it has previously seen. It uses
collaborative filtering techniques to quickly and accurately classify
an unknown, incoming workload with respect to heterogeneity and
interference in multiple shared resources, by identifying similarities
to previously scheduled applications. Results show Paragon maintains
QoS guarantees for 52% of the applications and bounds degradation
to less than 10% for an additional 33% out of 8500 applications on a
1000-server cluster.

Bu et al. [30] introduce a task scheduling strategy to mitigate
interference and meanwhile preserving task data locality for MapRe-
duce applications. The authors’ strategy includes an interference-aware
scheduling policy, based on a task performance prediction model, and
an adaptive delay scheduling algorithm for data locality improvement.
The interference and locality-aware (ILA) scheduling strategy has been
developed in a virtual MapReduce framework. Effectiveness and effi-
ciency evaluation on a 72-node Xen-based virtual cluster show that
ILA is able to achieve a speedup of 1.5 to 6.5 times for individual jobs
and yield an improvement of up to 1.9 times in system throughput in
comparison with four other MapReduce schedulers.

Zang et al. [31] propose two schedulers: one in the virtualization
layer designed to minimize interference on high priority interactive
services, and one in the Hadoop framework that helps batch processing
jobs meet their own performance deadlines. The authors’ approach uses
performance models to match Hadoop tasks to the servers that will
benefit them the most, and deadline-aware scheduling to effectively
order incoming jobs. The combination of these schedulers allows data
center administrators to safely mix resource-intensive Hadoop jobs with
latency-sensitive web applications, and still achieve predictable perfor-
mance for both. The evaluation shows that both schedulers allow a
mixed cluster to reduce web response times by more than ten fold while
meeting more Hadoop deadlines and lowering total task execution
times by 6.5%.

Chen et al. [12] present CloudScope, a system for diagnosing in-
terference for multi-tenant cloud systems. It employs a discrete-time
Markov Chain model for the online prediction of performance inter-
ference of co-resident VMs. It uses the results to optimally (re)assign
VMs to physical machines and to optimize the hypervisor configuration,
e.g. the CPU share it can use, for different workloads. The authors have
implemented CloudScope on top of the Xen hypervisor and conducted
experiments using a set of CPU, disk, and network-intensive workloads
and a real system (MapReduce). The interference-aware scheduler im-
proves virtual machine performance by up to 10% compared to the
default scheduler, achieving an average error of 9%. The authors claim
that the hypervisor reconfiguration can improve network throughput
by up to 30%.

To address latency-sensitive application issues, such as QoS im-
pact, and overcome limitations in existing offline approaches, Shekhar
et al. [18] present an online, data-driven approach that utilizes Gaus-
sian Processes-based machine learning techniques to build predictive
runtime models of the performance of the system under different
levels of interference. The predictive online models are then used in
dynamically adapting to the workload variability by vertically auto-
scaling co-located applications such that performance interference is
minimized, and QoS properties of latency-sensitive applications are
met. A comparison with a representative latency-sensitive application
reveals up to 39.46% lower tail latency than reactive approaches.

Wang et al. [32] developed data-driven analytical models to es-
timate the effect of interference among multiple Apache Spark jobs
on job execution time in virtualized cloud environments. Next, they
present the design of an interference-aware job scheduling algorithm

12

Journal of Systems Architecture 116 (2021) 102064

leveraging the developed analytical framework. The evaluation of
model accuracy was measured using real-life applications on a 6 node
cluster while running up to four jobs concurrently. Experimental results
show that the scheduling algorithm reduces the average execution
time of individual jobs and the total execution time significantly and
ranges between 47 and 26% for individual jobs and 2 to 13% for total
execution time, respectively.

When addressing interference-aware scheduling, most of the above-
mentioned related studies apply prediction models [12,18,28-30,32],
since they perform scheduling actions based on previously measured
application performance. Many of them also employ online scheduling
strategies [18,28-31], since they keep profiling their job metrics at
runtime to improve scheduling decisions. Our approach is different in
the sense that we classify applications based on their resource usage
and tell the scheduler to avoid similar stress patterns in the same ma-
chine, trying to prevent interference from happening in the first place.
While [14] method uses the same general approach as we do, it uses
fixed customized thresholds for the interference levels and scheduling
decisions are static, valid for the entire application execution. Our
approach applies variable thresholds defined for each resource without
user intervention, and a dynamic ML-driven scheduler that reevaluates
interference among applications during the whole execution. This can
cope much better with applications that have dynamic workloads, the
focus of this work.

7. Conclusion and future directions

Cloud computing has been attracting great attention from the IT
community due to the promise of unlimited computing resource pro-
visioning and the pay-per-use model. Such systems can offer these
benefits through the virtualization technique, allowing large data cen-
ters to dynamically take advantage of their infrastructure while reduc-
ing energy consumption bills. Besides, cloud computing providers ap-
ply resource scheduling policies to manage their hardware efficiently,
improving application performance and user satisfaction. However,
multiple cloud services contending for shared resources generate cross-
application interference among them, and this can lead to severe perfor-
mance degradation. There are several pieces of evidence showing that
interference is related to the performance penalty of application and
may occur depending on the application workload and its variation.

After looking for related-studies in literature, we have evaluated
how this topic has been covered recently and discovered that there
are still research opportunities to explore regarding dynamic resource
scheduling strategies and workload variation patterns. In this paper, we
have begun to analyze dynamic resource scheduling issues based on the
interference profile through the proposal of an ML-driven classification
scheme. First, we have run experiments to investigate how hardware
resources behave in different situations. After, we have applied an in-
terference classification method using Unique and Segmented formats,
concluding that interference levels can change over time in applications
with dynamic workloads. Afterward, we have compared both classifica-
tion formats and discovered that a workload-aware fine-grained classi-
fication scheme could present an improvement in scheduling decisions
by 22%, on average.

Although Ludwig et al. static classification method [14] resulted in
placements with better overall results than state-of-the-art, executing
that method over applications with significant workload variations
could produce unrepresentative classification estimates, as we showed
with our Segmented format experiments. Based on these findings, in
this work, we propose and evaluate a dynamic interference-aware
application classifier based on machine learning techniques. Results
show that our solution is able to improve scheduling decisions by
27%, on average, when compared to other approaches, thereby re-
ducing cross-application interference at the application level in cloud
computing infrastructures. Therefore, we can conclude that workload
distribution is an important aspect that should be taken into account
by interference-aware scheduling policies. Thus, we highlight that an
interference-aware classification scheme that better represents work-

V. Meyer et al.

load variability can significantly reduce the interference overhead,
improving resource utilization while reducing violations of Service
Level Agreements.

In future work, we expect to evaluate the influence of applica-
tion interference over time. We are interested in investigating the
use of time-series segmentation algorithms, such as online change
point detection to monitor and process data from applications as it
becomes available. The goal is to detect structural changes in the data
at runtime, identifying the best moment to trigger scheduling decisions,
instead of using regular intervals.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgment

This study was financed in part by the Coordenacdo de Aper-
feicoamento de Pessoal de Nivel Superior - Brazil (CAPES) - Finance
Code 001. This work has been partially supported by the project
“GREEN-CLOUD: Computacdo em Cloud com Computacgéo Sustentavel”
(#16/2551-0000 488-9), from FAPERGS and CNPq Brazil, program
PRONEX 12/2014. Also, this work was achieved in cooperation with
HP Brasil Indtstria e Comércio de Equipamentos Eletrénicos LTDA.
using incentives of Brazilian Informatics Law (Law n° 8.2.48 of 1991).

References

[1] V. Priya, C.S. Kumar, R. Kannan, Resource scheduling algorithm with load
balancing for cloud service provisioning, Appl. Soft Comput. 76 (2019) 416-424,
http://dx.doi.org/10.1016/j.as0c.2018.12.021, URL http://www.sciencedirect.
com/science/article/pii/S1568494618307105.

Y. Amannejad, D. Krishnamurthy, B. Far, Detecting performance interference
in cloud-based web services, in: 2015 IFIP/IEEE International Symposium on
Integrated Network Management, IM, 2015, pp. 423-431, http://dx.doi.org/10.
1109/INM.2015.7140319.

V. Meyer, R.R. Righi, V.F. Rodrigues, C.A.D. Costa, G. Galante, C. Both, Pipel:
Exploiting resource reorganization to optimize performance of pipeline-structured
applications in the cloud, Int. J. Comput. Syst. Eng. (2019) http://dx.doi.org/
10.1504/1JCSYSE.2019.10015444.

C.T. Joseph, K. Chandrasekaran, IntMA: Dynamic Interaction-aware resource
allocation for containerized microservices in cloud environments, J. Syst. Archit.
111 (2020) 101785, http://dx.doi.org/10.1016/j.sysarc.2020.101785, URL http:
//www.sciencedirect.com/science/article/pii/S1383762120300758.

Z. Zhou, J.H. Abawajy, F. Li, Analysis of energy consumption model in cloud
computing environments, in: Advances on Computational Intelligence in Energy:
The Applications of Nature-Inspired Metaheuristic Algorithms in Energy, Springer
International Publishing, Cham, 2019, pp. 195-215, http://dx.doi.org/10.1007/
978-3-319-69889-2_10, (Ch. 1).

M.G. Xavier, M.V. Neves, F.D. Rossi, T.C. Ferreto, T. Lange, C.A.F. De Rose,
Performance evaluation of container-based virtualization for high performance
computing environments, in: 21st Euromicro International Conference on Paral-
lel, Distributed, and Network-Based Processing, PDP, 2013, pp. 233-240, http:
//dx.doi.org/10.1109/PDP.2013.41.

L.C. Jersak, T. Ferreto, Performance-aware server consolidation with adjustable
interference levels, in: 31st Annual ACM Symposium on Applied Computing, SAC
’16, ACM, New York, NY, USA, 2016, pp. 420-425, http://dx.doi.org/10.1145/
2851613.2851625, URL http://doi.acm.org/10.1145/2851613.2851625.

M.G. Xavier, Data Processing With Cross-application Interference Control via
System-level Instrumentation (Ph.D. thesis), Pontifical Catholic University of Rio
Grande do Sul, Porto Alegre, Brazil, 2019.

Y. Zhao, R. Calheiros, G. Gange, J. Bailey, R. Sinnott, SLA-based profit op-
timization resource scheduling for big data analytics-as-a-service platforms in
cloud computing environments, IEEE Trans. Cloud Comput. (2018) 1, http:
//dx.doi.org/10.1109/TCC.2018.2889956.

S.K. Roy, R. Devaraj, A. Sarkar, K. Maji, S. Sinha, Contention-aware optimal
scheduling of real-time precedence-constrained task graphs on heterogeneous
distributed systems, J. Syst. Archit. 105 (2020) 101706, http://dx.doi.org/10.
1016/j.sysarc.2019.101706, URL http://www.sciencedirect.com/science/article/
Ppii/S1383762119305132.

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91]

[10]

13

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Journal of Systems Architecture 116 (2021) 102064

Y. Zhao, R.N. Calheiros, A.V. Vasilakos, J. Bailey, R.O. Sinnott, Profit maxi-
mization and time minimization admission control and resource scheduling for
cloud-based big data analytics-as-a-service platforms, in: Web Services — ICWS
2019, Springer International Publishing, Cham, 2019, pp. 26-47.

X. Chen, L. Rupprecht, R. Osman, P. Pietzuch, F. Franciosi, W. Knottenbelt,
CloudScope: Diagnosing and managing performance interference in multi-tenant
clouds, in: 2015 IEEE 23rd International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems, 2015, pp. 164-173,
http://dx.doi.org/10.1109/MASCOTS.2015.35.

V. Meyer, M.G. Xavier, D.F. Kirchoff, R. da R. Righi, C.A.F.D. Rose, Performance
and cost analysis between elasticity strategies over pipeline-structured applica-
tions, in: International Conference on Cloud Computing and Services Science,
CLOSER, INSTICC, SciTePress, 2019, pp. 404-411, http://dx.doi.org/10.5220/
0007729004040411.

U.L. Ludwig, M.G. Xavier, D.F. Kirchoff, I.B. Cezar, C.A.F. De Rose, Optimizing
multi-tier application performance with interference and affinity-aware place-
ment algorithms, Concurr. Comput.: Pract. Exper. (2019) e5098E5098, http:
//dx.doi.org/10.1002/cpe.5098, cpe.5098, URL https://onlinelibrary.wiley.com/
doi/abs/10.1002/cpe.5098.

W. Igbal, A. Erradi, A. Mahmood, Dynamic workload patterns prediction
for proactive auto-scaling of web applications, J. Netw. Comput. Appl. 124
(2018) 94-107, http://dx.doi.org/10.1016/j.jnca.2018.09.023, URL http://www.
sciencedirect.com/science/article/pii/S1084804518303102.

R. Nathuji, A. Kansal, A. Ghaffarkhah, Q-clouds: Managing performance in-
terference effects for QoS-aware clouds, in: Proceedings of the 5th European
Conference on Computer Systems, EuroSys 10, ACM, New York, NY, USA, 2010,
pp. 237-250, http://dx.doi.org/10.1145/1755913.1755938, URL http://doi.acm.
org/10.1145/1755913.1755938.

Q. Zhang, L. Cheng, R. Boutaba, Cloud computing: state-of-the-art and research
challenges, J. Internet Serv. Appl. 1 (1) (2010) 7-18, http://dx.doi.org/10.1007/
s13174-010-0007-6.

S. Shekhar, H. Abdel-Aziz, A. Bhattacharjee, A. Gokhale, X. Koutsoukos, Per-
formance interference-aware vertical elasticity for cloud-hosted latency-sensitive
applications, in: 2018 IEEE 11th International Conference on Cloud Computing,
CLOUD, 2018, pp. 82-89, http://dx.doi.org/10.1109/CLOUD.2018.00018.

S. Zhuravlev, S. Blagodurov, A. Fedorova, Addressing shared resource contention
in multicore processors via scheduling, in: Proceedings of the Fifteenth In-
ternational Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XV, Association for Computing Machinery,
New York, NY, USA, 2010, pp. 129-142, http://dx.doi.org/10.1145/1736020.
1736036.

S.K. Garg, A.N. Toosi, S.K. Gopalaiyengar, R. Buyya, SLA-based virtual machine
management for heterogeneous workloads in a cloud datacenter, J. Netw. Com-
put. Appl. 45 (2014) 108-120, http://dx.doi.org/10.1016/j.jnca.2014.07.030,
URL http://www.sciencedirect.com/science/article/pii/S1084804514001787.

S. Chen, S. GalOn, C. Delimitrou, S. Manne, J.F. Martinez, Workload character-
ization of interactive cloud services on big and small server platforms, in: 2017
IEEE International Symposium on Workload Characterization, IISWC, 2017, pp.
125-134, http://dx.doi.org/10.1109/1ISWC.2017.8167770.

A.N. Toosi, C. Qu, M.D. de Assuncao, R. Buyya, Renewable-aware geographical
load balancing of web applications for sustainable data centers, J. Netw. Comput.
Appl. 83 (2017) 155-168, http://dx.doi.org/10.1016/j.jnca.2017.01.036, URL
http://www.sciencedirect.com/science/article/pii/S1084804517300590.

AM. Sampaio, J.G. Barbosa, R. Prodan, PIASA: A power and interference
aware resource management strategy for heterogeneous workloads in cloud data
centers, Simul. Model. Pract. Theory 57 (2015) 142-160, http://dx.doi.org/10.
1016/j.simpat.2015.07.002, URL http://www.sciencedirect.com/science/article/
pii/S1569190X15001069.

V. Meyer, U.L. Ludwig, M.G. Xavier, D.F. Kirchoff, C.A.F. De Rose, Towards
interference-aware dynamic scheduling in virtualized environments, in: D.
Klusacek, W. Cirne, N. Desai (Eds.), Job Scheduling Strategies for Parallel
Processing, Springer International Publishing, Cham, 2020, pp. 1-24.

A. Shah, F. Wolf, S. Zhumatiy, V. Voevodin, Capturing inter-application inter-
ference on clusters, in: IEEE International Conference on Cluster Computing,
CLUSTER, 2013, pp. 1-5, http://dx.doi.org/10.1109/CLUSTER.2013.6702665.
L. Thamsen, I. Verbitskiy, S. Nedelkoski, V.T. Tran, V. Meyer, M.G. Xavier,
O. Kao, C.A.F. De Rose, Hugo: A cluster scheduler that efficiently learns to
select complementary data-parallel jobs, in: Euro-Par 2019: Parallel Processing
Workshops, Springer International Publishing, 2020, pp. 519-530.

R.C. Chiang, H.H. Huang, TRACON: Interference-aware scheduling for data-
intensive applications in virtualized environments, in: Proceedings of 2011
International Conference for High Performance Computing, Networking, Storage
and Analysis, SC ’11, ACM, New York, NY, USA, 2011, pp. 47:1-47:12, http://dx.
doi.org/10.1145/2063384.2063447, URL http://doi.acm.org/10.1145/2063384.
2063447.

http://dx.doi.org/10.1016/j.asoc.2018.12.021
http://www.sciencedirect.com/science/article/pii/S1568494618307105
http://www.sciencedirect.com/science/article/pii/S1568494618307105
http://www.sciencedirect.com/science/article/pii/S1568494618307105
http://dx.doi.org/10.1109/INM.2015.7140319
http://dx.doi.org/10.1109/INM.2015.7140319
http://dx.doi.org/10.1109/INM.2015.7140319
http://dx.doi.org/10.1504/IJCSYSE.2019.10015444
http://dx.doi.org/10.1504/IJCSYSE.2019.10015444
http://dx.doi.org/10.1504/IJCSYSE.2019.10015444
http://dx.doi.org/10.1016/j.sysarc.2020.101785
http://www.sciencedirect.com/science/article/pii/S1383762120300758
http://www.sciencedirect.com/science/article/pii/S1383762120300758
http://www.sciencedirect.com/science/article/pii/S1383762120300758
http://dx.doi.org/10.1007/978-3-319-69889-2_10
http://dx.doi.org/10.1007/978-3-319-69889-2_10
http://dx.doi.org/10.1007/978-3-319-69889-2_10
http://dx.doi.org/10.1109/PDP.2013.41
http://dx.doi.org/10.1109/PDP.2013.41
http://dx.doi.org/10.1109/PDP.2013.41
http://dx.doi.org/10.1145/2851613.2851625
http://dx.doi.org/10.1145/2851613.2851625
http://dx.doi.org/10.1145/2851613.2851625
http://doi.acm.org/10.1145/2851613.2851625
http://refhub.elsevier.com/S1383-7621(21)00052-7/sb8
http://refhub.elsevier.com/S1383-7621(21)00052-7/sb8
http://refhub.elsevier.com/S1383-7621(21)00052-7/sb8
http://refhub.elsevier.com/S1383-7621(21)00052-7/sb8
http://refhub.elsevier.com/S1383-7621(21)00052-7/sb8
http://dx.doi.org/10.1109/TCC.2018.2889956
http://dx.doi.org/10.1109/TCC.2018.2889956
http://dx.doi.org/10.1109/TCC.2018.2889956
http://dx.doi.org/10.1016/j.sysarc.2019.101706
http://dx.doi.org/10.1016/j.sysarc.2019.101706
http://dx.doi.org/10.1016/j.sysarc.2019.101706
http://www.sciencedirect.com/science/article/pii/S1383762119305132
http://www.sciencedirect.com/science/article/pii/S1383762119305132
http://www.sciencedirect.com/science/article/pii/S1383762119305132
http://refhub.elsevier.com/S1383-7621(21)00052-7/sb11
http://refhub.elsevier.com/S1383-7621(21)00052-7/sb11
http://refhub.elsevier.com/S1383-7621(21)00052-7/sb11
http://refhub.elsevier.com/S1383-7621(21)00052-7/sb11
http://refhub.elsevier.com/S1383-7621(21)00052-7/sb11
http://refhub.elsevier.com/S1383-7621(21)00052-7/sb11
http://refhub.elsevier.com/S1383-7621(21)00052-7/sb11
http://dx.doi.org/10.1109/MASCOTS.2015.35
http://dx.doi.org/10.5220/0007729004040411
http://dx.doi.org/10.5220/0007729004040411
http://dx.doi.org/10.5220/0007729004040411
http://dx.doi.org/10.1002/cpe.5098
http://dx.doi.org/10.1002/cpe.5098
http://dx.doi.org/10.1002/cpe.5098
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5098
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5098
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5098
http://dx.doi.org/10.1016/j.jnca.2018.09.023
http://www.sciencedirect.com/science/article/pii/S1084804518303102
http://www.sciencedirect.com/science/article/pii/S1084804518303102
http://www.sciencedirect.com/science/article/pii/S1084804518303102
http://dx.doi.org/10.1145/1755913.1755938
http://doi.acm.org/10.1145/1755913.1755938
http://doi.acm.org/10.1145/1755913.1755938
http://doi.acm.org/10.1145/1755913.1755938
http://dx.doi.org/10.1007/s13174-010-0007-6
http://dx.doi.org/10.1007/s13174-010-0007-6
http://dx.doi.org/10.1007/s13174-010-0007-6
http://dx.doi.org/10.1109/CLOUD.2018.00018
http://dx.doi.org/10.1145/1736020.1736036
http://dx.doi.org/10.1145/1736020.1736036
http://dx.doi.org/10.1145/1736020.1736036
http://dx.doi.org/10.1016/j.jnca.2014.07.030
http://www.sciencedirect.com/science/article/pii/S1084804514001787
http://dx.doi.org/10.1109/IISWC.2017.8167770
http://dx.doi.org/10.1016/j.jnca.2017.01.036
http://www.sciencedirect.com/science/article/pii/S1084804517300590
http://dx.doi.org/10.1016/j.simpat.2015.07.002
http://dx.doi.org/10.1016/j.simpat.2015.07.002
http://dx.doi.org/10.1016/j.simpat.2015.07.002
http://www.sciencedirect.com/science/article/pii/S1569190X15001069
http://www.sciencedirect.com/science/article/pii/S1569190X15001069
http://www.sciencedirect.com/science/article/pii/S1569190X15001069
http://refhub.elsevier.com/S1383-7621(21)00052-7/sb24
http://refhub.elsevier.com/S1383-7621(21)00052-7/sb24
http://refhub.elsevier.com/S1383-7621(21)00052-7/sb24
http://refhub.elsevier.com/S1383-7621(21)00052-7/sb24
http://refhub.elsevier.com/S1383-7621(21)00052-7/sb24
http://refhub.elsevier.com/S1383-7621(21)00052-7/sb24
http://refhub.elsevier.com/S1383-7621(21)00052-7/sb24
http://dx.doi.org/10.1109/CLUSTER.2013.6702665
http://refhub.elsevier.com/S1383-7621(21)00052-7/sb26
http://refhub.elsevier.com/S1383-7621(21)00052-7/sb26
http://refhub.elsevier.com/S1383-7621(21)00052-7/sb26
http://refhub.elsevier.com/S1383-7621(21)00052-7/sb26
http://refhub.elsevier.com/S1383-7621(21)00052-7/sb26
http://refhub.elsevier.com/S1383-7621(21)00052-7/sb26
http://refhub.elsevier.com/S1383-7621(21)00052-7/sb26
http://dx.doi.org/10.1145/2063384.2063447
http://dx.doi.org/10.1145/2063384.2063447
http://dx.doi.org/10.1145/2063384.2063447
http://doi.acm.org/10.1145/2063384.2063447
http://doi.acm.org/10.1145/2063384.2063447
http://doi.acm.org/10.1145/2063384.2063447

V. Meyer et al.

[28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

C. Delimitrou, C. Kozyrakis, Paragon: QoS-aware scheduling for heterogeneous
datacenters, SIGPLAN Not. 48 (4) (2013) 77-88, http://dx.doi.org/10.1145/
2499368.2451125, URL http://doi.acm.org/10.1145/2499368.2451125.

Q. Zhu, T. Tung, A performance interference model for managing consolidated
workloads in QoS-aware clouds, in: 2012 IEEE Fifth International Conference on
Cloud Computing, 2012, pp. 170-179, http://dx.doi.org/10.1109/CLOUD.2012.
25.

X. Bu, J. Rao, C.-z. Xu, Interference and locality-aware task scheduling for
MapReduce applications in virtual clusters, in: Proceedings of the 22Nd Inter-
national Symposium on High-Performance Parallel and Distributed Computing,
HPDC 13, ACM, New York, NY, USA, 2013, pp. 227-238, http://dx.doi.org/10.
1145/2493123.2462904, URL http://doi.acm.org/10.1145/2493123.2462904.
W. Zhang, S. Rajasekaran, T. Wood, M. Zhu, MIMP: Deadline and interference
aware scheduling of hadoop virtual machines, in: 2014 14th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing, 2014, pp. 394-403,
http://dx.doi.org/10.1109/CCGrid.2014.101.

K. Wang, M.M.H. Khan, N. Nguyen, S. Gokhale, Design and implementation of
an analytical framework for interference aware job scheduling on apache spark
platform, Cluster Comput. 22 (1) (2019) 2223-2237, http://dx.doi.org/10.1007/
5s10586-017-1466-3.

S. Gollapudi, Practical Machine Learning, Packt Publishing Ltd., 2016.

S. Athmaja, M. Hanumanthappa, V. Kavitha, A survey of machine learning
algorithms for big data analytics, in: International Conference on Innovations
in Information, Embedded and Communication Systems, ICIIECS, 2017, pp. 1-4,
http://dx.doi.org/10.1109/ICIIECS.2017.8276028.

A. Mathur, G.M. Foody, Multiclass and binary SVM classification: Implications
for training and classification users, IEEE Geosci. Rem. Sens. Lett. 5 (2) (2008)
241-245, http://dx.doi.org/10.1109/LGRS.2008.915597.

S. Sotiriadis, N. Bessis, R. Buyya, Self managed virtual machine scheduling
in cloud systems, Inform. Sci. 433-434 (2018) 381-400, http://dx.doi.org/10.
1016/].ins.2017.07.006, URL http://www.sciencedirect.com/science/article/pii/
S0020025517308277.

L. Sant’ana, D. Carastan-Santos, D. Cordeiro, R.D. Camargo, Real-time scheduling
policy selection from queue and machine states, in: 2019 19th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, CCGRID, IEEE
Computer Society, Los Alamitos, CA, USA, 2019, pp. 381-390, http://dx.doi.
org/10.1109/CCGRID.2019.00052, URL https://doi.ieeecomputersociety.org/10.
1109/CCGRID.2019.00052.

S.S. Gill, P. Garraghan, V. Stankovski, G. Casale, R.K. Thulasiram, S.K. Ghosh,
K. Ramamohanarao, R. Buyya, Holistic resource management for sustainable and
reliable cloud computing: An innovative solution to global challenge, J. Syst.
Softw. 155 (2019) 104-129, http://dx.doi.org/10.1016/j.jss.2019.05.025, URL
http://www.sciencedirect.com/science/article/pii/S0164121219301098.

M. Xu, C.Q. Wu, A. Hou, Y. Wang, Intelligent scheduling for parallel jobs in
big data processing systems, in: 2019 International Conference on Computing,
Networking and Communications, ICNC, 2019, pp. 22-28, http://dx.doi.org/10.
1109/ICCNC.2019.8685520.

J. Fang, M. Wang, Z. Wei, A memory scheduling strategy for eliminating
memory access interference in heterogeneous system, J. Supercomput. 76 (2020)
3129-3154, http://dx.doi.org/10.1007/s11227-019-03135-7.

S.S. Manohar, H.K. Kapoor, Dynamic reconfiguration of embedded-DRAM caches
employing zero data detection based refresh optimisation, J. Syst. Archit.
100 (2019) 101648, http://dx.doi.org/10.1016/j.sysarc.2019.101648, URL http:
//www.sciencedirect.com/science/article/pii/S1383762119304552.

Y. Zhou, S. Samii, P. Eles, Z. Peng, Scheduling optimization with partitioning
for mixed-criticality systems, J. Syst. Archit. 98 (2019) 191-200, http://dx.doi.
org/10.1016/j.sysarc.2019.07.007, URL http://www.sciencedirect.com/science/
article/pii/$1383762119301511.

D. Eklov, N. Nikoleris, D. Black-Schaffer, E. Hagersten, Bandwidth bandit:
Quantitative characterization of memory contention, in: Proceedings of the 2013
IEEE/ACM International Symposium on Code Generation and Optimization, CGO,
2013, pp. 1-10, http://dx.doi.org/10.1109/CG0.2013.6494987.

K.J. Matteussi, C.F.R. Geyer, M.G. Xavier, C.A.F. De Rose, Understanding and
minimizing disk contention effects for data-intensive processing in virtualized
systems, in: 2018 International Conference on High Performance Computing
Simulation, HPCS, 2018, pp. 901-908.

L. Savoie, Inter-Job Optimization in High Performance Computing (Ph.D. thesis),
The University of Arizona, 2019, URL http://hdl.handle.net/10150/634303.

C. Iorgulescu, R. Azimi, Y. Kwon, S. Elnikety, M. Syamala, V. Narasayya,
H. Herodotou, P. Tomita, A. Chen, J. Zhang, J. Wang, Perflso: Perfor-
mance isolation for commercial latency-sensitive services, in: 2018 USENIX
Annual Technical Conference, USENIX ATC 18, USENIX Association, Boston,
MA, 2018, pp. 519-532, URL https://www.usenix.org/conference/atc18/
presentation/iorgulescu.

14

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Journal of Systems Architecture 116 (2021) 102064

A. Ali-Eldin, J. Tordsson, E. Elmroth, M. Kihl, Workload Classification for
Efficient Auto-Scaling of Cloud Resources, Tech. Rep., Umed University, Depart-
ment of Computing Science, 2013, p. 36, URL https://webapps.cs.umu.se/uminf/
reports/2013/013/part1.pdf.

W. Zhang, S. Wang, W. Wang, H. Zhong, Bench4Q: A QoS-oriented E-
commerce benchmark, in: IEEE 35th Annual Computer Software and Applications
Conference, 2011, pp. 38-47, http://dx.doi.org/10.1109/COMPSAC.2011.14.

V. Meyer, D.F. Kirchoff, M.L. da Silva, D.R. César A. F., An interference-aware
application classifier based on machine learning to improve scheduling in clouds,
in: 2020 28th Euromicro International Conference on Parallel, Distributed and
Network-Based Processing, PDP, 2020, pp. 80-87, http://dx.doi.org/10.1109/
PDP50117.2020.00019.

D. Meyer, E. Dimitriadou, K. Hornik, A. Weingessel, F. Leisch, e1071: Misc
functions of the department of statistics, probability theory group, 2019, R
package version 1.7-2, URL https://CRAN.R-project.org/package=e1071.

R Core Team, R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria, 2018, URL https://www.
R-project.org/.

S. Landset, T.M. Khoshgoftaar, A.N. Richter, T. Hasanin, A survey of open source
tools for machine learning with big data in the hadoop ecosystem, J. Big Data
2 (1) (2015) 24, http://dx.doi.org/10.1186/s40537-015-0032-1.

V. Meyer, D.F. Kirchoff, M.L. da Silva, C.A.F. De Rose, Interference-aware
application classifier for dynamic scheduling in cloud infrastructures, J.
Syst. Archit. (2021) http://dx.doi.org/10.24433/C0.3183391.v1, https://www.
codeocean.com/.

H. Abdi, L.J. Williams, Principal component analysis, WIREs Comput. Stat. 2 (4)
(2010) 433-459, http://dx.doi.org/10.1002/wics.101, URL https://onlinelibrary.
wiley.com/doi/abs/10.1002/wics.101.

C. Ferri, J. Hernédndez-Orallo, R. Modroiu, An experimental comparison of perfor-
mance measures for classification, Pattern Recognit. Lett. 30 (1) (2009) 27-38,
http://dx.doi.org/10.1016/j.patrec.2008.08.010, URL http://www.sciencedirect.
com/science/article/pii/S0167865508002687.

M.A. Maniar, A.R. Abhyankar, Validity index based improvisation in repro-
ducibility of load profiling outcome, IET Smart Grid 2 (1) (2019) 131-139,
http://dx.doi.org/10.1049/iet-stg.2018.0108.

A. Al-Sinayyid, M. Zhu, Job scheduler for streaming applications in heteroge-
neous distributed processing systems, J. Supercomput. (2020) http://dx.doi.org/
10.1007/511227-020-03223-z.

H. Zhou, Q. Li, W. Tong, S. Kausar, H. Zhu, P-Aware: a proportional multi-
resource scheduling strategy in cloud data center, Cluster Comput. 19 (2016)
1089-1103, http://dx.doi.org/10.1007/5s10586-016-0593-6.

J. Krzywda, V. Meyer, M.G. Xavier, A. Ali-Eldin, P. Ostberg, C.A.F. De Rose,
E. Elmroth, Modeling and simulation of QoS-aware power budgeting in cloud
data centers, in: 2020 28th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing, PDP, 2020, pp. 88-93, http://dx.doi.
org/10.1109/PDP50117.2020.00020.

Vinicius Meyer received his bachelor’s degree in Computer
Engineering from the Univates University in 2014 and his
master’s degree in Applied Computing from the Unisinos
University in 2016. Currently, he is a Ph.D. student in
Computer Science at the Pontifical Catholic University of
Rio Grande do Sul (PUCRS), working mainly with dynamic
resource scheduling based on cross-application interfer-
ence. His research interests are Distributed Systems, Cloud
Computing, Machine Learning and Simulated Environments.

Dionatra Kirchoff was born in Brazil in 1990. He received
the B.E degree from the Faculdade Meridional (IMED, Passo
Fundo, Brazil, 2013). He holds a specialist degree in Gov-
ernance of Information Technology based on international
standards from the University of Vale do Rio dos Sinos
(UNISINOS, Sdo Leopoldo, Brazil, 2015). Also, he has an
M.Sc. in Computer Science from the Pontifical University
Catholic of Rio Grande do Sul (PUCRS, Porto Alegre, Brazil,
2019). Since 2019 he is a Ph.D. candidate at the same
university. His main areas of research interest are Resource
Management, Cloud Computing, and Machine Learning.

http://dx.doi.org/10.1145/2499368.2451125
http://dx.doi.org/10.1145/2499368.2451125
http://dx.doi.org/10.1145/2499368.2451125
http://doi.acm.org/10.1145/2499368.2451125
http://dx.doi.org/10.1109/CLOUD.2012.25
http://dx.doi.org/10.1109/CLOUD.2012.25
http://dx.doi.org/10.1109/CLOUD.2012.25
http://dx.doi.org/10.1145/2493123.2462904
http://dx.doi.org/10.1145/2493123.2462904
http://dx.doi.org/10.1145/2493123.2462904
http://doi.acm.org/10.1145/2493123.2462904
http://dx.doi.org/10.1109/CCGrid.2014.101
http://dx.doi.org/10.1007/s10586-017-1466-3
http://dx.doi.org/10.1007/s10586-017-1466-3
http://dx.doi.org/10.1007/s10586-017-1466-3
http://refhub.elsevier.com/S1383-7621(21)00052-7/sb33
http://dx.doi.org/10.1109/ICIIECS.2017.8276028
http://dx.doi.org/10.1109/LGRS.2008.915597
http://dx.doi.org/10.1016/j.ins.2017.07.006
http://dx.doi.org/10.1016/j.ins.2017.07.006
http://dx.doi.org/10.1016/j.ins.2017.07.006
http://www.sciencedirect.com/science/article/pii/S0020025517308277
http://www.sciencedirect.com/science/article/pii/S0020025517308277
http://www.sciencedirect.com/science/article/pii/S0020025517308277
http://dx.doi.org/10.1109/CCGRID.2019.00052
http://dx.doi.org/10.1109/CCGRID.2019.00052
http://dx.doi.org/10.1109/CCGRID.2019.00052
https://doi.ieeecomputersociety.org/10.1109/CCGRID.2019.00052
https://doi.ieeecomputersociety.org/10.1109/CCGRID.2019.00052
https://doi.ieeecomputersociety.org/10.1109/CCGRID.2019.00052
http://dx.doi.org/10.1016/j.jss.2019.05.025
http://www.sciencedirect.com/science/article/pii/S0164121219301098
http://dx.doi.org/10.1109/ICCNC.2019.8685520
http://dx.doi.org/10.1109/ICCNC.2019.8685520
http://dx.doi.org/10.1109/ICCNC.2019.8685520
http://dx.doi.org/10.1007/s11227-019-03135-7
http://dx.doi.org/10.1016/j.sysarc.2019.101648
http://www.sciencedirect.com/science/article/pii/S1383762119304552
http://www.sciencedirect.com/science/article/pii/S1383762119304552
http://www.sciencedirect.com/science/article/pii/S1383762119304552
http://dx.doi.org/10.1016/j.sysarc.2019.07.007
http://dx.doi.org/10.1016/j.sysarc.2019.07.007
http://dx.doi.org/10.1016/j.sysarc.2019.07.007
http://www.sciencedirect.com/science/article/pii/S1383762119301511
http://www.sciencedirect.com/science/article/pii/S1383762119301511
http://www.sciencedirect.com/science/article/pii/S1383762119301511
http://dx.doi.org/10.1109/CGO.2013.6494987
http://hdl.handle.net/10150/634303
https://www.usenix.org/conference/atc18/presentation/iorgulescu
https://www.usenix.org/conference/atc18/presentation/iorgulescu
https://www.usenix.org/conference/atc18/presentation/iorgulescu
https://webapps.cs.umu.se/uminf/reports/2013/013/part1.pdf
https://webapps.cs.umu.se/uminf/reports/2013/013/part1.pdf
https://webapps.cs.umu.se/uminf/reports/2013/013/part1.pdf
http://dx.doi.org/10.1109/COMPSAC.2011.14
http://dx.doi.org/10.1109/PDP50117.2020.00019
http://dx.doi.org/10.1109/PDP50117.2020.00019
http://dx.doi.org/10.1109/PDP50117.2020.00019
https://CRAN.R-project.org/package=e1071
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
http://dx.doi.org/10.1186/s40537-015-0032-1
http://dx.doi.org/10.24433/CO.3183391.v1
https://www.codeocean.com/
https://www.codeocean.com/
https://www.codeocean.com/
http://dx.doi.org/10.1002/wics.101
https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.101
https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.101
https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.101
http://dx.doi.org/10.1016/j.patrec.2008.08.010
http://www.sciencedirect.com/science/article/pii/S0167865508002687
http://www.sciencedirect.com/science/article/pii/S0167865508002687
http://www.sciencedirect.com/science/article/pii/S0167865508002687
http://dx.doi.org/10.1049/iet-stg.2018.0108
http://dx.doi.org/10.1007/s11227-020-03223-z
http://dx.doi.org/10.1007/s11227-020-03223-z
http://dx.doi.org/10.1007/s11227-020-03223-z
http://dx.doi.org/10.1007/s10586-016-0593-6
http://dx.doi.org/10.1109/PDP50117.2020.00020
http://dx.doi.org/10.1109/PDP50117.2020.00020
http://dx.doi.org/10.1109/PDP50117.2020.00020

V. Meyer et al.

Matheus L. Da Silva received the B.S. degree from Univer-
sity from Passo Fundo, Brazil, in 2017, and the master’s
degree in computer science from the Pontifical Catholic
University of Rio Grande do Sul, Brazil, in 2020, where he
is currently pursuing the Ph.D. degree with the Computer
Science Graduate Program. His research interests include
Parallel and Distributed Processing and Edge Computing.

15

Journal of Systems Architecture 116 (2021) 102064

César A.F. De Rose has a B.Sc. degree in Computer
Science from PUCRS, a M.Sc. in Computer Science from
PGCC/UFRGS and a Doctoral degree from Karlsruhe Insti-
tute of Technology (KIT - Karlsruhe, Germany). In 1998 he
joined the School of Technology at PUCRS as an associate
professor and member of the Resource Management and Vir-
tualization Group (Full Professor since 2012). His research
interests include several aspects of resource management,
including dynamic provisioning and allocation, monitoring
and profiling techniques, scheduling and optimization in
parallel and distributed environments (Cluster, Grid, Cloud)
and virtualization. In 2009 he founded PUCRS High Perfor-
mance Computing Laboratory (LAD-PUCRS) being nowadays
senior researcher.

	ML-driven classification scheme for dynamic interference-aware resource scheduling in cloud infrastructures
	Introduction
	Background and state-of-the-art
	Applications with dynamic workloads
	Performance interference
	Interference-aware scheduling
	Machine learning algorithms
	SVM
	K-means

	Interference of dynamic workloads
	Profiler and setup environment
	Resource analysis
	Cache
	CPU
	Memory
	Disk
	Network
	General remarks

	Impact on response time

	Workload interference classification
	Classification analysis
	Impact on interference overhead

	ML-driven interference-aware application classifier
	Classifier design
	Interference profiling
	Training dataset
	Classification process

	Classifier evaluation
	Dataset analysis
	Model validation

	Comparison with state-of-the-art

	Related work
	Conclusion and future directions
	Declaration of competing interest
	Acknowledgment
	References

