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Abstract

With the rise of Big Data, there has been a significant effort in increasing compute power through GPUs, TPUs, and het-
erogeneous architectures. As a result, many applications are memory bound, i.e., they are bottlenecked by the movement of
data from main memory to compute units. One way to address this issue is through data prefetching, which relies on accurate
prediction of memory accesses. While recent deep learning models have performed well on sequence prediction problems,
they are far too heavy in terms of model size and inference latency to be practical for data prefetching. Here, we propose
clustering-driven compact LSTM models that can predict the next memory access with high accuracy. We introduce a novel
clustering approach called Delegated model that can reliably cluster the applications. For each cluster, we train a compact
meta-LSTM model that can quickly adapt to any application in the cluster. Prior LSTM-based work on access prediction has
used orders of magnitude more parameters and developed one model for each application (trace). While one (specialized)
model per application can result in more accuracy, it is not a scalable approach. In contrast, our models can predict for a
class of applications by trading off specialization at the cost of few retraining steps at runtime, for a more generalizable
compact meta-model. Our experiments on 13 benchmark applications demonstrate that clustering-driven ensemble compact
meta-models can obtain accuracy close to specialized models using few batches of retraining for majority of the applications.
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1 Introduction

This paper is an extended version of the long paper which appeared in
PAKDD’2020—“MemMAP: Compact and Generalizable

Meta-LSTM Models for Memory Access Prediction” [18]. Prefetching is critical in reducing program execution time

through hiding the latency due to data movement. Espe-
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memory)-based deep learning has shown tremendous success
in sequence prediction tasks like text prediction [6], along
with other natural language tasks such as part of speech tag-
ging [14] and grammar learning [ 19]. Since memory accesses
have an underlying grammar similar to natural language,
such models are naturally applicable to learning accesses.
Recent work [7,17,20] has shown that LSTM-based methods
indeed lead to higher accuracy than those used in traditional
prefetchers. For instance, [21] trains one LSTM model for
each application that learns the pattern of past three address
deltas and predict the coming delta. The predicted delta can
be converted back to memory address and can serve as a
temporal reference for a hardware prefetcher.

However, in reality, LSTM-based prefetchers are far from
becoming practical due to their extremely high memory and
computation requirements. For instance, the models pro-
posed in [7] can have more than a million parameters. Such
a large number of parameters (and thus computations) make
it infeasible to implement a prefetcher based on LSTM, as to
be useful, these predictions need to be faster than accessing
the sequence of memory addresses without any prefetching.
Recent work [17] proposes an encoding method that reduces
the size of the LSTM model to few thousands of parameters.
They also show that such high compression can be achieved
without any significant loss in accuracy. As a result, inference
can be fast and models can be retrained quickly on demand,
when there is a drastic change in access patterns. The draw-
back of this approach is that it requires training one model
each for all applications. This is not a scalable solution as
the number of applications grow, the total size of the mod-
els (storage required on the memory controller where these
models will reside) grows linearly, thus defeating the pur-
pose of having compact models. Further, such models do
not apply to applications that have not been seen in train-
ing.

To address these shortcomings in making deep learning-
based prefetchers realistic, we proposed using a small num-
ber of compact meta-models to predict the memory access for
aclass of applications in our prior work [18]. We showed that
the meta-models are sufficient to adaptively and accurately
predict on a diverse set of applications of interest, i.e., these
models can also generalize to applications not seen during
training [18]. However, little attention is given to obtaining
good clustering. In this work, we propose C-MemMAP—
clustering-driven meta-LSTM models for memory access
prediction. It uses a novel clustering approach termed Dele-
gated model (DM) clustering. This approach uses a trained
parametric model, compact LSTM in this work, as a dele-
gate of the original sequence for further clustering task. This
ensures that similarity between traces is defined by simi-
larity in next access prediction, as the LSTM models can
themselves be assumed to be a representation for trace pat-
terns. Our approach makes the ML-based memory access
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prediction more practical and scalable for a prefetcher by
reducing both the number and size of the models. First,
the number of models does not grow when the number of
applications increases. Instead of training one specialized
model for each application, we train a small number of
meta-models based on the application clustering. Second,
we implement doubly compressed LSTM (DCLSTM) [17]
in our meta-model to predict memory access. DCLSTM
reduces the number of model parameters by predicting the
binary representation of the output values, which achieves
a n/logn ratio of compression with negligible accuracy
compromise. As a result, C-MemMAP with compact model
size achieves high adaptability and generalizability at the
cost of a small loss in accuracy and need for few retraining
steps.

Through extensive experiments on PARSEC [1] bench-
mark, which has diverse applications, we demonstrate that
our approach leads to accurate, adaptable, and generaliz-
able prediction access models. Using only three compact
models of size 24K parameters each, we are able to per-
form on par with specialized models for 13 applications.
We envision that in a real system implementation, the mem-
ory controller will run all three models concurrently, and
use the model that produces better accuracy over last few
accesses. Note that, in this paper, our objective is not
to develop a full scale prefetcher, but to design a small
set of highly accurate and compact LSTM-based access
prediction model to enable a realistic prefetcher imple-
mentation. The overall prefetcher architecture utilizing our
model is described in [21]. A prefetcher built on top of our
approach and its hardware implementation will be explored
in future work. Specifically, our contributions are as fol-
lows:

— We improve upon the state-of-the-art compressed LSTM
models for access predictions, eliminating its necessity
of one model per application (trace);

— We propose a clustering-driven meta-learning-based
approach to obtain more general prediction models that
can achieve high accuracy after a small number of
gradient steps and can even generalize to unseen/new
applications;

— We improve our clustering technique from previous work
with a novel Delegated model approach to detect appli-
cations with similar patterns that works reliable as an
upstream of meta-models;

— We experimentally demonstrate that our approach is
accurate, adaptable, and generalizable—with a reduced
number of models, we can achieve the same level of
accuracy as the specialized (one model per application)
approach with a much smaller memory footprint.
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2 Related work

Several prior works have proposed LSTM for memory access
prediction [7,20]. In [15], the authors propose the use of
logistic regression, and decision tree models to enhance
prefetching. The authors in [10] evaluate various machine
learning models on their ability to improve prefetching for
data center applications. Neural networks and decision trees
were shown to achieve the highest performance in this appli-
cation domain. The work in [13], [12], and [8] presents an
extensive evaluation of LSTM for prefetching, achieving
similar performance improvements as the other LSTM-based
approaches. Among the related work, [7] has received signif-
icant attention. Their approach is impractical to be directly
applied for prefetching, and as stated by the authors, is only
a first step towards an LSTM-based prefetcher. They, and
several state-of-the-art machine learning-based access pre-
dictors perform the training on cache misses as it reduces
the size of training. However, an accurate prefetcher will
change the distribution of cache misses and hence invalidate
its own trained model. Secondly, to achieve higher accuracy,
some online training is necessary to learn application spe-
cific patterns. Their models are extremely large to be used
for real-time inference or online retraining. Even after con-
sidering labels for predictions that cover 50% of the data
(leading to a compulsory accuracy loss of 50%), the number
of labels can be of the order of 10K. This, in turn, with a
small hidden layer of size 100 will lead to a model with more
than million parameters. Instead, we propose to use a small
ensemble of highly compact LSTM models.

In [17], a compact LSTM-based prediction model was
proposed. Extremely high compression of LSTM model was
achieved through encoding of the labels (jumps in memory
accesses “deltas”). The approach is based on the observation
that the number of parameters is dominated by the output
layer. Therefore, for label set of size n, they create the out-
put layer with logn nodes each of which can take a O or 1
value. This network is trained to predict a multi-label out-
put with logn labels, which is the binary representation of
the delta instead of a single label (1 out of n) representing
the delta itself. This technique led to around 1000x com-
pression. On the other hand, in the process of compression,
the prediction problem is made harder due to the fact that
all the log n bits need to be predicted correctly for the right
memory access prediction. Yet, the experiments confirm that
the loss in accuracy due to 1000 x compression is negligible.
While training one model for each application is possible
and leads to highly specialized and accurate models [17],
it is not a scalable solution. Further, a specialized model
does not generalize to other applications (see Fig. 2). In this
work, we apply the same compression techniques presented
in [17], but use meta LSTM models to avoid the need for one
model per application. We also propose a clustered meta-

learning-based approach to obtain more general prediction
models that can achieve comparable accuracy as previous
techniques after a small number of gradient steps and can
even generalize to unseen/new applications. This results in a
much smaller memory footprint compared to related work,
allowing its implementation in hardware.

In [18], the meta-LSTM approach for memory access pre-
diction has been proposed. While in [18] training and testing
sequences for each application are from the same trace, a
model cannot train and test on the same trace in a practi-
cal setting. A practical approach would learn the patterns
through profiling by running the application and then using
the learned patterns in the future reruns to accelerate the
program by prefetching. Also, clustering approaches as well
as their influence in supporting meta-models are not fully
explored. In this work, we extend the meta-model working
scope to the rerun of PARSEC applications. Further, we pro-
pose a Delegated model clustering approach that can learn the
latent patterns from the whole trace. We compared the model
performance under different clustering approaches. Results
show that Delegated model clustering is more reliable when
application configurations change.

3 C-MemMAP approach

We see the problem of access prediction as a sequence pre-
diction problem, where the task is to predict the “delta,” i.e.,
the jump in address with respect to the current address. This
reduces the number of labels, i.e., possible outcomes for the
predictions. Further, it accounts for the fact that often an
application has similar jumps in addresses, even though it
may start from a different memory location. Prior work [7,17]
has taken the same approach of classifying deltas for the same
reasons. Next, we will explain the modeling of C-MemMAP.

Figure 1 illustrates the overall framework of the proposed
C-MemMAP approach. The key component that is respon-
sible for memory access prediction is DCLSTM (doubly
compressed LSTM) models that input the memory access
delta sequence D; from Application A; and output the next
predicted delta A;. To compress the model size, we applied
meta-learning technique on DC-LSTM so that one model
can adapt to more than one application. To maintain the pre-
diction accuracy, we design a clustering step so that each
meta-model handles applications with a similar pattern. We
propose delegated model clustering algorithm that is trained
using weights from offline-trained specialized models. In this
way, we largely reduce the model size with a small loss in
accuracy. We will introduce all the components of the C-
MemMAP framework in detail in the following subsections.
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Fig.1 Overall framework of clustering-driven meta-LSTM models for
memory access prediction

3.1 Binary encoding compression

For an LSTM model to be realistically used for prefetching,
it needs to have low latency and should require small amount
of computation. These factors are closely related to the size
(number of parameters) of the model. The size (number of
parameters) of the simple LSTM model for memory access
prediction is dominated by the dense last layer. Few thou-
sands of output layers may lead to slowing down of inference
due to a large number of parameters in the final layer. [17]
proposed a model compressing approach that uses binary
encoding to highly reduce the dimension of the output dense
layerin a classification model, as is shown in Fig. 3. Applying
this idea to the memory access prediction task, the authors
in [17] proposed doubly compressed LSTM (DCLSTM) that
uses a binary representation of deltas for both the input side
and the output side, instead of using the deltas (jumps in mem-
ory accesses) directly. This approach converts the problem
from a single label (1 out of n) prediction problem to a multi-
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Fig. 3 Using binary encoding to highly reduce the dimension of the
output dense layer in a classification model

label prediction problem (log n labels). Using this technique,
we obtained an LSTM architecture that has 23, 944 parame-
ters.

3.2 Meta-learning

The other dimension of reducing the overhead of memory
access prediction is to reduce the number of models required
for all the applications of interest. While training one model
for each application leads to highly specialized and accurate
models [17], it is not a scalable solution. Further a spe-
cialized model does not generalize to other applications. To
demonstrate this, we trained specialized models as in prior
work [17], and tested them on other applications. Figure 2
shows one such instance, where the model was trained using
the application “Swaption” and then tested on other appli-
cations of PARSEC benchmark. The results clearly indicate
that the models are not generalizable.

Therefore, there is a need for creating a more general
model that can work well for a class of applications, thus
eliminating the size requirement of one model per applica-
tions and possibly generalizing to unseen applications. From
the huge variations in accuracies seen in the plots, it is also
clear that different patterns exist in different applications.
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Algorithm 1 Doubly Compressed LSTM with MAML

1: function MAML- DCLSTM(S)
2:  S: Asetof applications

3:  Initialize 0 and initial parameters «, 8
4:  for k < 11t0 Nepoch do

5: Sample batch of applications A; ~ §
6: for all A; do
7
8:

Sample a batch D of m accesses from A;
Evaluate VoL a,(fp) using D, where L, is the binary
cross-entropy loss
9: Compute the adapted parameters: 6/ < 0 — aVyL 4, (fo)
10: Sample accesses D; from A; for the meta-update
Update® < 0—8Vp ) 4 s La (fo;) using each Diand Ly,
11: return 6

This indicates that one model may not readily apply to all
applications, and instead may require some retraining. With
the goal of obtaining a general model that quickly adapts to a
chosen application, we apply model-agnostic meta-learning
(MAML) [5] to train a meta model that is prepared for fast
adaptation. There are two steps in the process of MAML
training. For the first step, the model learns an initial point 6
for a classifier fy and can be optimized via gradient descent
on loss L7;. The update method is shown in Eq. 1, where o
is the learning rate and 7; refers to the sampled tasks. For the
second step, the model updates the meta-parameters using a
collection of updated model weights 6 via gradient descent
with learning rate 8, as is shown in Eq. 2.

6] = 6 — aVoL7,(fp) e
0=0-BVY Y Lz(fy) )
Ti~p(T)

Applying MAML on our memory access prediction task
for different applications, we sample batches from a set of
applications to train one meta-LSTM model (Algorithm 1).
First, we sample a set of applications and from each we
prepare a batch of memory accesses. This batch is used to
calculate loss and update adapted parameters from meta-
parameters. Then from this mixed set of applications, a batch
is prepared to compute the loss which is used to update
the meta-model parameters. At termination, a meta-model
is obtained which can adapt to all the tasks used in this train-
ing with few retraining steps.

3.3 Clustering

While in the ideal scenario, we would like one meta-model
to be enough, in reality, the application traces may vary dras-
tically, making it difficult for one model to adapt to all the
applications. Instead, we propose to use a small ensemble
of meta-models that can cover all the applications. Our intu-
ition is that it is better to have similar applications for one
meta-model, and so we train one meta-model for each set of

similar applications. We compare two clustering approaches
to detect the sets of similar applications: 1) our previous
approach of soft-DTW k-means clustering, and 2) proposed
Delegated model clustering.

3.3.1 Soft-DTW K-means clustering

We construct the similarity matrix of the given set of appli-
cation traces using soft-DTW [4] and then apply k-means
to cluster the memory accesses. Soft-DTW is a differen-
tiable approximation of DTW (dynamic time warping) as
is shown in Eq. 3, where X is a sequence with length n, Y is
asequence with lengthm, m = [m, ..., mx]is a path, where
7 = (i, ji) satisfies:

— boundary condition: 0 < iy < n,0 < jy < m, my =
©0,0),andrg =(n—1,m—1)

— monotonicity condition: ix_1 < ix, jki—1 < Jk

— continuity condition: iy —ix—1 <1, jr — jx—1 < 1

A smoothing parameter y is introduced to the original min
operation in DTW to create a generalized min operator, as is
shown in Eq. 4. It can acquire better minima due to its bet-
ter convexity properties in processing time-series data. As
a pre-processing step, we convert the memory accesses into
decimal values. Then, they are standardized through subtract-
ing the mean and dividing by the standard deviation. These
standardized trace chunks are fed into a k-means clustering
algorithm that uses soft-DTW to calculate the distance.

f 2
soft-DTW,, (X, Y) = soft- rrjl_[ln Z ”Xi’ Y; ” 3)
(i, j)em
soft—n;in (ar,...,ay) = —Vlogze—ai/y )

1

3.3.2 Delegated model clustering

We propose a novel Delegated model (DM) clustering
approach based on the assumption that the clustering of
sequences can be achieved by the clustering of trained para-
metric models (delegated models). For each application, the
trained specialized model (see Sect. 4.2) has learned the pat-
terns from the trace and the information is stored in the
model weights. Thus, the specialized DCLSTM models can
serve as delegated models and they represent the original
memory traces in the further clustering step. The Delegated
model clustering algorithm is shown in Algorithm 2. We
concatenate the different types of weights in DCLSTM mod-
els and use principal component analysis (PCA) to reduce
the dimension. K-means is applied to cluster the dimension-
reduced model weights as the last step. DM clustering has
some advantages compared to the sequence-based soft-DTW
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K-means approach. First, for long sequences like memory
traces, DTW requires a large memory space and a long fitting
time. As a result, we need to sample pieces of sequence from
the whole trace. In contrast, our approach is based on LSTM
that processes a sequence recurrently, which considerably
saves the memory space and thus can deal with much longer
sequences. Second, model weights directly reflect the latent
attributes of the sequence for the target task of prediction
while DTW can only compare the shape of pieces; this makes
Delegated model method can better fit the rerun of applica-
tions under different configurations. DM approach can be
generalized to other problems, and the delegated model can
also be various types of models, such as RNN, GRU, and
TCN [3,9].

Algorithm 2 Delegated model Clustering

1: S: A set of applications

2: C: Clusters of applications

3: function DM- CLUSTERING(S)

4 for Application A; in S do

5: Train a doubly compressed LSTM as the delegated model D M;
6: DMW,; < model weights matrix of DM;
7

8

9

Weight dimension reduced to d: DM Wid <~ PCA(DMW;,d)

Clustering to k sets: C < k-means(DM W, k)
return C

The parameter k (number of clusters, i.e., number of meta-
models) of k-means is chosen based on the memory available
for storing the access prediction models.

3.4 Ensemble meta-learning

We consider the meta-model obtained for each cluster as a
representative of a class of applications. In real implementa-
tion, all k£ (one for each of the k clusters) meta-models will
work in parallel to predict the memory accesses, and as more
of the memory trace is seen, with few retraining steps, we
will be able to identify which of the k models is more accu-
rate. That model will be chose to continue inference, until the
accuracy drops below a desired level. In that scenario, paral-
lel retraining for all k meta models will resume. We believe
that such retraining and switching between meta-models is
essential as the program may go through a drastic change in
access pattern. Similar concept of online retraining has been
considered in [17].

Algorithm 3 Doubly Compressed LSTM with cluster based
MAML

1: function C- MAML- DCLSTM(S)

2:  Clustering applications in S into a collection of sets {Si}f?=l
3 fori < 1tokdo

4: 6; < MAML-DCLSTM(S;)

5 return {0; }

@ Springer

4 Experiments
4.1 Datasets

We conducted extensive experimentation on the PARSEC
benchmark [1], which was specifically chosen because of
its diverse set of applications. The Intel Pin [11] tool was
used to obtain memory access traces for each application.
As mentioned earlier, instead of actual memory locations,
we transform the memory traces to sequences of deltas by
subtracting consecutive hexadecimal memory address and
converting them to integer. The reason for this is to allow
the model to predict memory locations for any future exe-
cution of the same application, since the relative memory
differences are expected to stay consistent [7,17].

We evaluate the performance of all models using two
branches of memory traces generated from PARSEC bench-
mark:

— Consistent configuration. Assume for a single applica-
tion, the configuration does not change during running
or when restarted. In this case, we split a trace for model
training, testing, and retraining.

— Inconsistent configuration. Assume that the configuration
of an application will be different during running or when
restart. In this case, we generate different pieces of traces
by rerunning the benchmark under different configura-
tions. The training set and testing set are from different
traces under inconsistent configurations. The retraining
is processed using the increasingly seen data from the
testing trace.

4.2 Model settings

We used the doubly compressed LSTM (DCLSTM) archi-
tecture as described in [17]. It has an embedding layer with
10 units, followed by an LSTM layer with 50 units, followed
by a dense layer with 50 units, and 15 outputs to represent
up to 2! most frequent deltas. We also used a dropout of
10%, look back window 3 (i.e., takes last three access pre-
dictions as input), 20 training epochs, a batch size 256, and
50-50 train/test split. We used sigmoid activation function
and binary cross-entropy loss function. This architecture is
trained differently by different models as described below!.

— Specialized: This is the DCLSTM model trained for one
application. Ideally, this would be the best performing
model, but it cannot be generalized. We will use the accu-
racies obtained from the specialized model as reference
to compare other models on the given applications that
are trained to adapt to multiple applications.

! The code is available at: https://github.com/MemMAP/C-MemMAP.
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(a) C1: Soft-DTW k-means clustering

Fig.4 Clusters obtained from PARSEC benchmarks

— Concatenated: This DCLSTM model is trained by simply
concatenating the training traces from all applications.

— MAML-DCLSTM: This is a meta-model where the
weights are learned using Algorithm 1.

— C-MAML-DCLSTM: This is a meta-model obtained
from Algorithm 3. Instead of training with all the appli-
cations, this is trained with applications that belong to the
same cluster. Three such models were trained based on
the three clusters obtained from PARSEC. For our exper-
iments, we have chosen k = 3 based on the assumption
that three meta-models work in parallel in a system. We
discuss two clustering approaches in Sect. 3.4. For consis-
tent configuration traces, the two clustering approaches
agree with each other. For inconsistent configuration
traces, while the soft-DTW k-means clustering keeps the
same, Delegated model shows a different result. The clus-
tering results are shown in Fig. 4, where C1 refers to
soft-DTW k-means clustering and C2 refers to delegated
model clustering.

4.3 Results

The goal of our experiments is to show that our cluster-based
compact meta-LSTM models are: (a) Accurate—produce
accuracy comparable to specialized models; (b) Adaptable—
quickly adapt, i.e., specialize themselves for the given
application; and (c) Generalizable—adapt to high accuracy
even when the application was never seen before. We eval-
uate the performance of the proposed approach using two
branches of traces introduced in Sect. 4.1: consistent config-
uration traces and inconsistent configuration traces.
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(b) C2: Delegated Model clustering

4.3.1 Consistent configuration

Under the same configuration, adaptability and generalizabil-
ity are decoupled and can be evaluated separately. Also, since
two clustering approaches agree on the same results, we can
focus on the general improvement acquired from clustering
and ignore the influence of different clustering methods.
Figure 5 shows the accuracy results of all the meth-
ods under consistent configuration. The specialized model
serves as a reference for the ideal accuracy we wish to
achieve. For concatenated model, MAML-DCLSTM and C-
MAML-DCLSTM, we compared the model performance
before retraining (pre-update) and after retraining (updated)
by specific trace. In the experiment for pre-update models,
we use 200K accesses for training and the next 200K for test-
ing. For retraining, we use unseen 200K accesses of specific
trace to retrain the existing pre-update models to get updated
models for each trace. Then, we test them with the next 200K
accesses in the trace. As shown in Fig. 5, the accuracies
of all pre-update models are improved after retraining. In
most cases (11 out of 13), MAML-DCLSTM models achieve
higher accuracy than concatenated models, even when they
start with lower pre-update accuracy. This shows that the
meta-model learns fast with a more general initialization. C-
MAML-DCLSTM models gain a similar level of raises as
MAML-DCLSTM. Due to the higher similarity of traces
in the same cluster, C-MAML-DCLSTM models usually
have higher pre-update accuracy. As a result, in 9 traces, C-
MAML-DCLSTM outperform MAML-DCLSTM and in 3
traces they perform similarly. Overall, C-MAML-DCLSTM
results in accuracies close to the specialized models in 9 out of
13 traces. While for some applications the accuracy drops are
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notable, the performance is still better than the non-neural-
network methods (e.g., Last Access Prediction and Naive
Bayes) explored in [17]. Besides, with the increase in seen
data and the continued retraining, the accuracy will grow and
approach the specialized models.

Figure 6 shows how retraining starting from various mod-
els improves the accuracy as more of the trace is seen under
consistent configuration. Note that, specialized models are
used for reference, and we do not performing any retraining
for them. We used 256 memory accesses for a batch of train-
ing and calculated test accuracy on the next 10K samples
in rolling windows. Retraining is performed beginning from
the weights of the neural network from the previous training
batch. Based on the plots, although both MAML and con-
catenated models have similar result on some applications,
the accuracy per batch on other traces such as Blackscholes,
Ferret, and Streamcluster indicates that MAML-DCLSTM
model learns faster than concatenated model, and C-MAML-
DCLSTM performs better than MAML-DCLSTM. One can
see that the relationship between these three models is clear
for stable applications, while the others fluctuate a little. It
seems that both C-MAML-DCLSTM and MAML-DCLSTM
models can adapt to the stable applications rapidly and C-
MAML-DCLSTM has the best adaptability. There are some
challenging traces such as Vips and X264 on which even spe-
cialized model failed to achieve high accuracy. It is possible
that the memory accesses of these applications vary consid-
erably, and so prediction is extremely hard. In four out of 13
applications, the accuracy of C-MAML-DCLSTM is signif-
icantly less than specialized model. Improved clustering and
more meta-models may be necessary for improving on these
traces.

Figure 7 shows the comparison of how generalizable the
models are. We split the applications in the same cluster into
the training (Bodytrack, Canneal, Dedup, Facesim, Fluidan-
imate, Freqmine, Swaptions, Vips) and test sets (Raytrace
and Streamcluster), the training set was used to build the
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meta-model using C-DCLSTM-MAML and concatenated
model, and then, we tested on the test applications to compare
the performance of these two models for generalizability.
We collected batches of 256 memory accesses for train-
ing and calculated test accuracy on next 10K samples in
rolling windows. We performed retraining starting from the
weights of the neural network from the previous training
batch. The performance of C-MAML-DCLSTM improved
after several memory accesses for both Raytrace and Stream-
cluster, which demonstrates that it can quickly generalize to
unseen applications in the same cluster. Although the test
accuracy for concatenated model did increase after several
memory accesses in the case of Raytrace, it performed poorly
in the case of Streamcluster. Furthermore, the C-MAML-
DCLSTM model can obtain accuracy close to specialized
models using only a small number of batches.

4.3.2 Inconsistent configuration

Each application rerun three times under different configu-
rations and generate traces T'1, 72, and T3. We use T'1 and
T2 as training traces and 7 3 as the testing trace. The perfor-
mance of a model under inconsistent configuration reveals
both its adaptability and generalizability. Due to the cluster-
ing difference between the two approaches (Sect. 3.4), the
influence of clustering approach can be explored under this
set of experiments.

Figure 8 shows the accuracy results of all the methods
under inconsistent configuration traces. Though a special-
ized model is still trained and tested by a single application,
the training and testing traces are different. The inconsis-
tency leads to generally lower accuracies than the consistent
configuration results. For the concatenated model, 2 train-
ing traces of all applications, each with 100k deltas, are
concatenated as the training data. For MAML-DCLSTM,
all training traces are fed into one meta-model as different
tasks. For C1/C2-MAML-DCLSTM, there are k (k = 3)
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meta-models and the training traces under the same cluster
are fed into the corresponding models. C1 means the clus-
ters acquired from the sequence-based soft-DTW k-means
approach, and C2 means the clusters acquired from the Dele-
gated model approach. We compared the model performance
before retraining (pre-update) and after retraining (updated)
by testing trace. We show the geometric mean of all the model
performance in GM. GM shows that C2-MAML-DCLSM
has the best performance for both pre- and post-updated,
while the concatenated model has the lowest mean accuracy.
However, there is a flaw in using the geometric mean of all
applications to compare the performance of models. The two
clustering results (C1 and C2) have different minor clusters
(application member < 3) that achieve high accuracies. This
results in higher influence of these applications in computing
mean. Therefore, we show the geometric mean of only the
common applications in the largest cluster for both C1 and C2
in GM-C. CM-C shows that C2-MAML-DCLSTM achieves
15% higher accuracy than CI-MAML-DCLSTM, who even
shows lower accuracy than MAML-DCLSTM without clus-
tering. This result demonstrates that the clustering approach

@ Springer

is vital in C-MAML-DCLSTM performance and an inap-
propriate clustering even hinders the meta-model training.
Delegated model clustering (C2) extracts abstract informa-
tion from the whole trace and is more reliable to cluster rerun
traces under inconsistent configuration.

Figure 9 shows one epoch retraining using unseen traces
under inconsistent configurations. The retraining batch size
and other settings are the same as consistent configura-
tion experiments. Specialized models are still used for
reference. From the plots, we can observe that, in many
cases, C2-MAML-DCLSM shows higher starting points
(Dedup, Facesim, and Freqmine) or achieves higher accura-
cies more quickly (Blackscholes, Bodytrack, Canneal, Ferret,
and Raytrace) than concatenated models. This illustrates that
C2-MAML-DCLSM adapts faster than concatenated mod-
els. CI-MAML-DCLSTM performs best only for X264. In
some cases (Fluidanimate and Freqmine) it performs even
worse than MAML-DCLSTM without clustering. This per-
formance drop caused by inappropriate clustering is also
observed and discussed in the accuracy evaluation shown
in Fig. 8. We can also observe that the adaptability process
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of the concatenated model is much slower from the curves
of Canneal, Fluidanimate, Raytrace, and Vips. After 50-100
batches of retraining, the curves of different models converge
to similar patterns, which shows that the advantage of C-
MAML-DCLSTM is more significant at the beginning stage
of retraining due to its high adaptability and generalizability.

4.4 Discussion
4.4.1 Sensitivity of hidden dimension

In the experiments above, we set the hyper-parameter of
the hidden dimension of LSTM as 50. This configuration
is inherited from work [17] because the LSTM layer with 50
units is enough for the LSTM models to achieve high per-
formance while keeping a compact size. This configuration
is suitable for the updated models because the retrained C-
MemMAP will converge to the specialized model after
retraining from our observation from Fig. 6. However, the
sensitivity of pre-updated C-MemMAP models influences
more to the adaptability process since it determines the ini-
tial state of retraining.

Figure 10 illustrates the predicting accuracy of the pre-
updated meta-models at various hidden dimensions. Hidden
dimension size at 10, 20, 30, 40, 50, 60, and 70 is tested.
Results show that the predicting accuracy increases fast from
dimension 10 to dimension 50, and then, the curves are sig-
nificantly flattened at the dimension of 60 and 70. This result
demonstrates that hidden dimension at 50 not only guaran-
tees a satisfactory final accuracy but also provides a high
initial point for model adapting from retraining.

4.4.2 LSTM versus GRU

In the proposed C-MemMAP model, we used LSTM as
the recurrent layer. Gated recurrent units (GRUs) is another
commonly used variation of recurrent neural networks, intro-
duced in 2014 by Kyunghyun Cho et al. [2], which can also
be applied to our approach replacing the LSTM layer. Fig-
ure 11 illustrates the effect of replacing the LSTM layer with
a GRU layer. We found that the two versions produce nearly
identical results.

4.4.3 Partial accuracy

The prediction output of our approach is in the format of
encoded 16-bit binary values. An advantage of this format is
that we are allowed to use only upper n bits of the predic-
tions if that part provides higher accuracy. From the hardware
point of view, memory fetching is executed in the unit of
cache lines so the lower bits of a memory access address
are naturally ignored in prefetching. Figure 12 shows a case
study of how the partial accuracy and confidence decrease
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Fig. 11 GRU version of C-MemMAP models acquire similar perfor-
mance compared to LSTM version

with the increase in prediction bits. The result is based on
the application Blacksholes and we define the confidence of
upper n bits as Eq. 5:

Confidence(n) = [ | P (vprea () = Yiest(B) | X. M) (5)
b=1

where P (ypred(b) = Vest(P) | X, M) is the probability of

correct prediction at bit b given the input X and model M.
From Fig. 12, we observe that the accuracy and prediction

confidence is high in the upper 8 bits, but both drop rapidly
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Fig. 12 Prediction accuracy and confidence decrease with the increase
of prediction bits for application Blackscholes

for bits longer than 10. This feature supports our hypothesis
that by using only upper bits of the prediction, the predictor
can achieve higher accuracy, which will lead to more useful
prefetches in a practical system.

5 Conclusions

We have proposed C-MemMAP, a clustering-driven meta-
model approach to predicting memory accesses, a central
aspect of prefetchers, necessary to improve memory per-
formance. We addressed the impracticality of current deep
learning models in prefetching due to their high storage
requirement. We improved upon the state-of-the-art, which
although does provide compact LSTM models, it requires
one model for each application. Such an approach does not
scale to large number of applications. It also does not gener-
alize to applications not seen before. While it is possible
to train one model for all applications, the accuracy was
typically lower. We propose to use a clustering-driven meta-
learning approach, where the applications are first clustered
and then a meta-model is trained for each cluster. We intro-
duce a novel Delegated model clustering approach that uses
the weight matrices of trained LSTM models as delegates
of the original traces for the further clustering step. Our
approach exploits the trade-offs between total model size,
accuracy, and retraining steps. We showed that three models
(with 3 x 24 K parameters) can achieve high accuracy quickly
for 13 diverse applications. We show that our approach is
accurate for majority of applications in the benchmarks, it
adapts quickly with retraining of only one epoch with increas-
ing number of accesses, and it can generalize to applications
that were not seen during training. Experiments under incon-
sistent configuration show that Delegated model is reliable

in supporting meta-models and shows 15% higher accuracy
than soft-DTW k-means. In future work, we will explore
the hardware implementation of our approach to support a
prefetcher.
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