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A B S T R A C T

Stressful experiences are related to the triggering of anxiety and mood disorders. Tryptophan (amino acid
precursor of serotonin synthesis) emerges as important treatment of these disorders. Here, we evaluate the
effects of pre-treatment with tryptophan (300mg/L) and fluoxetine (50 μg/L) in response to acute stress in
zebrafish. Overall, acute stress decreased the distance traveled, entries and time in top of tank, as well as in-
creased the cortisol levels, demonstrating an anxiogenic behavior. Tryptophan and fluoxetine prevented an-
xiogenic effects. This study showed the importance of tryptophan and fluoxetine in the regulation of stress and
anxiety-like behavior in adult zebrafish. Collectively, our data support tryptophan effects on stress responses in
zebrafish and reinforce the growing utility of this aquatic model to screen CNS therapies.

Stress situations trigger mood and anxiety disorders [1]. Anxiety
disorders have been increased worldwide reaching 264 millions of
people, elevating nearly 14.9% - from 2005 to 2015 [2]. Anxiety dis-
orders have been treated mainly with anxiolytics, which act mainly on
the serotonergic, noradrenergic, dopaminergic and GABAergic systems
[3]. Although anxiolytics present a reasonable clinical response, many
patients do not respond to treatment [4], as well as induce various
adverse effects (e.g., sleepiness, dizziness, ataxia, nystagmus), con-
tributing to poor adherence [5]. Therefore, new therapeutic approaches
are necessary to the treatment of central nervous system (CNS) dis-
orders. For instance, new therapies include the use of regular exercise
(e.g., running [6]), herbal medicines (e.g., Valeriana officinalis [7]) and
dietary interventions (e.g., increased dietary fiber [8]). Considering the
involvement of serotonin in the pathophysiology of stress and anxiety
disorders [9], a possible therapeutic intervention is food supple-
mentation with tryptophan (TRP), an essential amino acid precursor of
serotonin synthesis. The use of TRP supplementation in the diet has
been demonstrated as an important therapy to control of stress re-
sponse, emotional and cognition phenotypes in humans and fishes [9].

However, there are no reports of the effect of TRP pre-treatment on the
acute stress response in zebrafish. Here we evaluate the effects of pre-
treatment with TRP and fluoxetine on response to acute stress in adult
zebrafish.

A total of 72 adults zebrafish (Danio rerio), ∼50/50 male/female
ratio of the wild-type short-fin (SF) strain were housed 1 fish/L in 30-L
tanks equipped with biological filters, under constant aeration and a
photoperiod (14 h light:10 h dark). Water temperature was maintained
at 27±0.6 °C; pH 7.0±0.2, with dissolved oxygen kept at
6.0± 0.1mg/L, total ammonia at <0.01mg/L, total hardness at 6mg/
L, and alkalinity at 22mg/L CaCO3. Animal experimentation reported
here was approved by the Institutional Animal Care Committee
(Protocol #18/2017, University of Passo Fundo, Passo Fundo, Brazil)
and fully adhered to National and International guidelines on animal
experimentation. Animals were exposed to fluoxetine (C17H18F3NO,
fluoxetine hydrochloride, Nova Quimica, São Paulo, Brazil) at con-
centration 50 μg/L, or TRP amino acid (C11H12N202, Infinity Pharma,
Campinas, Brazil) at concentration 300mg/L. The concentrations used
in the study were chosen due to their effective anxiolytic response in
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adult zebrafish (e.g., fluoxetine [10] and TRP (assessed in a con-
centration-response curve, data not shown)). Drugs were administrated
in water and fish were exposed in group (containing 3 fish per tank,
n=12) for 1 h for both treatments, and immediately behavior was
quantified. After behavioral tests, zebrafish were anesthetized by cold
water (2–4 °C) and after the cessation of opercular movements, they
were euthanized by decapitation to evaluate whole-body cortisol levels.

Animals were initially assigned to two experimental groups (non-
stressed or stressed), both groups were randomly subdivided into un-
treated (freshwater) and treated groups (fluoxetine and TRP), totaling 6
experimental groups: control; fluoxetine; TRP; control+ stress; fluox-
etine+ stress; and TRP+ stress (Fig. 1A). The stress protocol consisted
of chasing fish for 2min [10,12]. After chasing, fish from all six groups
were individually tested in the novel tank test to evaluate their anxiety-
like behavior. Fluoxetine has been used as a positive control due its
effects on decreasing anxiety-like behavior and whole-body cortisol
levels in zebrafish [10,12]. The novel tank test was selected here as one

of the most sensitive aquatic paradigms for measuring zebrafish anxiety
behavior. Fish from all experiments were individually tested in the
novel tank apparatus (24 width × 8 depth × 20 height cm). Animals
were recorded for 6min using a Logitech HD Webcam C525 camera
(Logitech, Switzerland). The videos were then analyzed offline using
the ANY-maze® software (Stoelting Co, Wood Dale, USA), calculating
the following behavioral parameters: the total distance traveled (m),
number of entries and time spent (s) in the top zone of the tank, similar
to [13]. Whole-body cortisol was extracted using the method described
previously [14]. The accuracy was tested by calculating the recoveries
from samples spiked with known amounts of cortisol (50, 25 and
12.5 ng/mL), the mean detection of spiked samples was 95%. All cor-
tisol values were adjusted for recovery with the following equation:
cortisol value=measured value × 1.05. Whole-body cortisol levels
were measured using the commercially available enzyme-linked im-
munosorbent assay kit (EIAgen CORTISOL test, BioChem Im-
munosystems). In this study, animal groups were compared using two-

Fig. 1. Effects of tryptophan and fluoxetine on stress responses in zebrafish. Panel A shows a schematic summary of the study experimental design (stress stimulus
was fish exposure to net chasing by 2min). Panel B shows the behavioral effects of acute stress and treatment (fluoxetine or tryptophan) tested in the 6-min novel
tank test (n=11–12 per group). Panel C shows whole-body cortisol effects of acute stress and treatment (fluoxetine or tryptophan) (n=5–6 per group (each "n"
stands for a pool of two fish). Data are expressed as mean+ standard error of mean (SEM) and assessed by Two-way ANOVA followed by the Tukey test and
significance as *p< 0.05, **p<0.01, ***p<0.001, respectively.
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way ANOVA (factor 1: treatment (fluoxetine or TRP) and factor 2: stress
or not), followed by the Tukey post-test for significant data. P was set as
< 0.05 in all analyses. All animals tested were included in final ana-
lyses, without the attrition or outlier removal. The data normality was
assessed by the Kolmogorov-Smirnov test.

Zebrafish exposure to acute stress decreased the distance traveled,
entries and time in the top of the tank compared to not stressed animals
(Fig. 1B). Interestingly, zebrafish treated with TRP or fluoxetine pre-
vented the anxiogenic effect - a decrease of time in top of tank - induced
by acute stress (Fig. 1B). The acute stress increased cortisol levels;
whereas TRP and fluoxetine prevented this effect (Fig. 1C). Overall,
TRP and fluoxetine present an anxiolytic effect, alleviating behavioral
and endocrine effects of acute stress. We demonstrated for the first time
that pre-treatment with TRP reduces anxiety-like behavior in zebrafish
exposed to acute stress, similarly to fluoxetine. Acute stress increases
anxiety-like behavior and aggression, while social interaction is re-
duced in zebrafish [10]. In addition, these behavioral phenotypes are
modulated by fluoxetine [10]. Acute stress has also been demonstrated
by reduced locomotor activity (e.g., distance traveled) in zebrafish
[15]. Fluoxetine and TRP did not prevent the locomotor effects induced
by acute stress on distance traveled and entries to the top of the tank,
similar to zebrafish chronically exposed to fluoxetine [16]. Fluoxetine
and TRP prevented the increase of cortisol levels caused by acute stress.
Zebrafish exposure to stress (e.g., unpredictable chronic stress (UCS),
social isolation) reduced levels of serotonin and its metabolite 5-hy-
droxyindoleacetic acid (5-HIAA) [17]. Meanwhile, zebrafish treated
with fluoxetine prevented behavioral and endocrine effects caused by
UCS [16], as well as zebrafish treated with the 5-HTP demonstrated
anxiolytic effect, elevating serotonin levels in the brain [11].

Despite the relationship between the serotonergic system and the
stress reactivity is well established [18], the serotonergic system and
the stress reactivity role of TRP supplementation are not yet clear. TRP
is a precursor for 5-HT, and it also metabolized by kynurenine pathway
which initiated by the TDO2 (tryptophan 2,3-dioxygenase) [19]. Mice
with a genetic disruption of TDO2 present lower anxiety-like behavior
[20], as well as TDO2 expression is increased in the hippocampus when
administered pro-inflammatory mediators and stress hormones [21].
Similarly, TRP depletion causes anxiogenic response and increases the
rate of panic attacks after CO2 challenge in humans [22]. In addition,
TRP supplementation demonstrated to act as a coadjuvant in anxiety
disorders treatments, since mice exposed to TRP restriction and corti-
costerone supplementation showed anhedonia, reduced motivation to
explore a novel environment, dopamine and serotonin levels in pre-
frontal cortex, as well as an increased hypothalamic brain-derived
neurotrophic factor (BDNF) [23]. Thereby, TRP supplementation is a
useful therapy to reduce cortisol levels, stress responsiveness and eating
disorder (e.g., serotoninergic genetic disorder (polymorphism in 5-HT
transporter gene (5-HTTLPR)) in neuroticism patients) [24].

Furthermore, the anxiolytic effect caused by TRP supplementation
may result from modulation on the gut-brain axis [25]. The gut mi-
crobiota plays a role in tryptophan metabolism and consequently in the
production of serotonin (e.g., enterochromaffin cells) [25]. In addition,
zebrafish has been used as a useful experimental model in studies in-
volving gut-brain relationship [26]. For example, zebrafish treated with
diet containing the probiotic, Lactobacillus rhamnosus, increased the
expression of tryptophan (tph1a, tph1b, tph2) and serotonin (5-hydro-
xytryptamine receptor 1A (htr1aa), solute carrier family 6 member 4
(slc6a4a) genes [27]. Likewise, supplemented with probiotic, Lactoba-
cillus plantarum, also increased the expression of serotonergic (slc6a4a)
gene in brain and demonstrated anxiolytic behavior [28].

In summary, there are several additional potential implications of
our study. For instance, TRP and fluoxetine induced anxiolytic effects,
as well as prevented behavioral and endocrine effects caused by acute
stress (Fig. 1). Finally, our data are also in agreement with effects de-
monstrated by TRP and fluoxetine in rodents and humans such as
therapies to stress disorders, suggesting zebrafish behavioral and

endocrine models as a promising tool to drug discovery of stress dis-
orders.
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