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Teaser This article presents an overview of the potential advantages of zebrafish use for the
discovery of new anti-inflammatory drugs.
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Zebrafish is a small teleost (bony) fish used in many areas of pharmacology

and toxicology. This animal model has advantages for the discovery of

anti-inflammatory drugs, such as the potential for real-time assessment of

cell migration mechanisms. Additionally, zebrafish display a repertoire of

inflammatory cells, mediators, and receptors that are similar to those in

mammals, including humans. Inflammatory disease modeling in either

larvae or adult zebrafish represents a promising tool for the screening of

new anti-inflammatory compounds, contributing to our understanding of

the mechanisms involved in chronic inflammatory conditions. In this

review, we provide an overview of the characterization of inflammatory

responses in zebrafish, emphasizing its relevance for drug discovery in this

research area.

Introduction
Chronic inflammation involves dysregulated and maladaptive responses, encompassed by unre-

mitting inflammation, tissue destruction, and failed attempts at tissue repair, lasting for weeks to

years. The mechanisms implicated in acute inflammation are well defined. However, the exact

processes involved in chronic inflammation remain unknown. Human diseases, such as asthma,

allergy, atherosclerosis, cancer, arthritis, and autoimmune diseases, are examples of chronic

inflammatory conditions that have no cure. This group of diseases is the current focus of research

and development worldwide, aiming to discover new anti-inflammatory drugs, with increased

efficacy and fewer adverse effects [1,2]. Validated preclinical experimental models of inflamma-

tion are crucial to gain further insights into chronic inflammatory diseases, from their patho-

physiology to innovative treatment options.
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Zebrafish is a small teleost that has gained attention in inflam-

mation research during the past few decades. Its popularity in

biomedical research is associated with genetic and physiological

homology with humans as well as the possibility to assess real-time

behavioral and cellular alterations. In vivo models have additional

translational validity over in vitro models, accounting for the use of

zebrafish in inflammation research [3]. The use of zebrafish as an

animal model to study inflammation started during the 2000s,

with a substantial increase in the number of publications from

2011 onwards. A search of the Scopus database returned 1441

results, with an expressive number of publications in 2019 (Fig. 1).

Given the involvement of inflammation in many chronic diseases,

preclinical inflammatory disease modeling in zebrafish is relevant

to gain advances in this area.

In this review, we discuss the zebrafish inflammatory repertoire,

and the main studies using zebrafish as a model of inflammation.

We also highlight pharmacological approaches using zebrafish as

an experimental organism.

Inflammatory cells in zebrafish
The hematopoiesis system of zebrafish is similar to that in other

vertebrates, with several phases of cell differentiation. Hematopoi-

etic stem cells (HSCs) originate from the hemogenic endothelium

of the ventral wall of the dorsal aorta, and a subset of these HSCs

migrate to the caudal hematopoietic tissue (CHT), where several

cell lineages are produced. In the thymus, HSCs generate T lym-

phocytes, whereas in the kidney, HSCs produce erythroid, mye-

loid, and B lymphocytes [4]. However, the adaptive immune

system of zebrafish is not fully functional until the fish develop

from the larval to the adult stage; the first B cells arise only at 20–21
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FIGURE 1

Number of publications per year (1999–2019) based on a search of Scopus with
inflammation OR inflammatory) AND PUBYEAR > 1999 AND (LIMIT-TO (DOCTYPE, ‘

obtained on August 16 2020, based on articles or reviews published in English o
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days post fertilization (dpf). The transparency of the zebrafish

larvae allows real-time visualization of the inflammatory cell

migration (Fig. 2) [5,6]. Thus, the use of larval zebrafish up to

20 dpf is a valuable tool for evaluating the innate immune

responses, which is an advantage of zebrafish over rodent models.

For microbial infections, the inflammatory response is triggered

by recognition molecules, such as Toll-like receptors (TLRs) and

nucleotide-binding oligomerization-domain (NOD)-like recep-

tors. Currently, drugs targeting TLR and NOD signaling are attrac-

tive alternatives for treating chronic inflammation [7,8]. TLR genes

have already been characterized in zebrafish, with a core set of

orthologous genes highly conserved with human TLRs. Overall, 14

distinct TLR types have been identified in zebrafish [9]. The NOD

like-receptors have also been characterized, with five distinct

member orthologous to those in humans [10]. However, even

orthologous receptors might have different functions in humans

and zebrafish. Therefore, in-depth studies of the specific functions

of microbial recognition receptors in zebrafish are still required to

gain further insights into their role in this teleost in relation to

mammals.

After the detection of infection, inflammatory cells are

recruited, driving the production of a variety of inflammatory

mediators. The main leukocytes recruited in zebrafish are neutro-

phils, which are the most abundant and the first cells to reach the

injured sites. In addition, the apoptosis or exit of neutrophils has

an important role in the resolution of inflammation and can be a

strategy to treat chronic inflammatory diseases, which can be

screened in zebrafish [6]. Macrophages are present in zebrafish

helping to control inflammation and are involved in organogene-

sis, tissue regeneration, and remodeling. The identification of
tions per year

ear
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FIGURE 2

Green fluorescence emitted by neutrophils in an inflammation induced by
cutting off the apical region of the tail in zebrafish [6].
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subtypes of macrophage in zebrafish highlights the evolutionary

conservation of these cells from fish to mammals [11,12].

Mast cells are a sentinel group that act against infection; they

coordinate the balance between pro- and anti-inflammatory

responses, releasing mediators that activate effector neutrophils

[13]. They were identified in the gill and intestine of zebrafish,

showing structural and functional similarity to mammalian cells

[14]. Eosinophils are granulocytic leukocytes with a conserved role

in the response to helminth antigens and allergens. In zebrafish,

eosinophil granules display peroxidase activity, being negative for

myeloperoxidase without a segmented nucleus [15]. Alternatively,

mammal eosinophils undergo nuclear segmentation during mat-

uration [15,16]. However, zebrafish can be a good model to evalu-

ate the role of these cells in chronic inflammation, because they

are relatively conserved over evolution [15]. In addition, antial-

lergic therapies targeting eosinophils are promising strategies to

suppress excessive inflammation in a series of unmet medical

conditions, such as asthma and atopic dermatitis, for which

zebrafish could be useful as a screening model [17].
Neutrophil Monocyte Mast cell Eo 

FIGURE 3

Morphological representation of different hematologic cells in zebrafish.
Although platelets are known for their role in thrombosis and

wound repair, they recruit other immune cells and have a key role

in inflammation [18]. Zebrafish blood contains mature erythro-

cytes and thrombocytes, which are nucleated, differing from

enucleated human platelets. Nevertheless, the characterization

of platelets suggests that zebrafish thrombocytes are the hemo-

static homologs of mammalian platelets [19]. Therefore, with

staining techniques and genetic tools, zebrafish becomes an ap-

propriate model for evaluating the thrombocyte function under

inflammation.

The two lineages of lymphocytes are present in zebrafish: B and

T cells. B cell development is dynamic and shows sites of change

during development; in addition, their phagocytic activity is low

compared with other teleost species [5]. Some T lymphocyte

subgroups have been characterized in teleosts, but the lack of

selective monoclonal antibodies (mAbs) against zebrafish CD4+

and CD8a + T cells imposes an obstacle to greater advances in this

area. Nonetheless, with the application of cross-reactivity of

monoclonal antibodies, there is evidence for the differentiation

and subspecialization of these cells in zebrafish [20].

The cells of the immune system are pivotal in the inflammatory

response. Their tissue distribution and phenotypes completely

modify inflammatory outcomes. Despite not having a complete

description of immune cells in zebrafish, the major effector cells

have been characterized in this teleost, displaying morphology

and hematopoiesis similarities with both rodents and humans

(Fig. 3). Although further studies are still needed, research focusing

on inflammatory cells can be made using zebrafish, with a relevant

translational value. In this context, research focused on neutrophil

migration in zebrafish revealed novel evidence for cell migration

mechanisms. In addition, advances in imaging tools and the

application of gene-editing technologies (e.g., TALENS and

CRISPR/Cas9) provide an interesting platform for in vivo studies

using zebrafish as an animal model of inflammation.

Mediators and effectors of inflammation in zebrafish
The inflammatory response is regulated by a variety of chemical

mediators derived from plasma, inflammatory cells, and/or in-

jured tissue. Generally, these mediators can be classified into seven

groups according to their biochemical properties: (i) vasoactive

amines; (ii) vasoactive peptides; (iii) complement components;
sinophil Erythrocyte Lymphocyte
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(iv) lipid mediators; (v) cytokines; (vi) chemokines; and (vii)

proteolytic enzymes [21]. Zebrafish is an animal model with

potential for the discovery of mechanisms involving inflammatory

mediators, including the inflammasome activation [22].

Vasoactive amines
Many biological effects of mast cells, basophils, and platelets are

mediated by biogenic amines that are released from cytoplasmic

granules, which in turn act on blood vessels and smooth muscle,

causing increased vascular permeability, and vasodilation or va-

soconstriction, depending on the context. Members of this class of

mediators include histamine and serotonin (5-HT), which act by

binding to distinct receptors on target cells. Given that 5-HT

receptors are ubiquitously expressed, it is difficult to associate a

unique receptor with inflammation. 5-HT exerts its immunomod-

ulatory effects by inducing chemoattraction and cytokine secre-

tion [23]. Two receptors of this family, 5-HT1 and 5-HT2, were

identified in zebrafish [24,25]. Other 5-HT receptors, such as 5-HT4

and 5-HT7, have an important role in inflammation in mammals

[23], but they have not been characterized in zebrafish. Recent

evidence suggests that 5-HT displays an important role in the

peripheral immune system. Platelets, mast cells, antigen-present-

ing cells, and T cells are likely to synthesize, transport, store, and/

or respond to 5-HT, as indicated by a series of studies in mammals

[26]. To the best of our knowledge, there is no study relating and/or

identifying 5-HT and its receptors in zebrafish immune cells.

However, a role for 5-HT in the regulation of immune cells has

been reported in another teleost model [27]. Moreover, 5-HT

immunoreactive paraneuronal cells were identified during caudal

fin regeneration in zebrafish. This is an indicative of the relevance

of 5-HT in zebrafish inflammation, opening new possibilities to

the use of this teleost in preclinical inflammation research [28].

Histamine mediates physiological and pathological processes

associated with neuroinflammation and neurodegenerative dis-

eases [29]. Histamine induces immunomodulatory effects via the

activation of four G-protein-coupled receptors, being the H1 the

main subtype associated with allergic responses [30]. In zebrafish,

H1, H2, and H3 receptors are expressed by different cells, but

histamine is not expressed in peripheral tissues of zebrafish. By

contrast, the histamine concentration in the brain is in the same

range as in other vertebrates [31,32]. This feature in zebrafish can

be particularly useful for exploring the role of histamine in the

brain and the action of drugs in this system, without any influence

of peripheral mechanisms. However, Hrh4, a promising receptor

in the development of anti-inflammatory drugs, does not appear

to have an orthologous gene in zebrafish [32], generating some

limitations in this model. It might be that the functions that

overlap between the H1 and H4 receptors in humans are only

performed by the H1 receptor in zebrafish. Therefore, an evalua-

tion of anti-H1 receptor strategies in this animal model could

provide initial insights into their therapeutic and neurotoxicolo-

gical actions.

Vasoactive peptides
Vasoactive peptides are autacoids with actions in various tissues,

especially on vascular smooth muscle cells. This class includes

vasoconstrictors, vasodilators, and peptides with mixed effects.

Substance P is released from sensory neurons and can itself cause
2204 www.drugdiscoverytoday.com
mast cell degranulation; in zebrafish; it is encoded by tac1 [21,33].

Vasoactive peptides can be generated by proteolytic processing of

inactive precursors in the extracellular fluid, such as fibrin degra-

dation products. The presence of highly conserved orthologs of

the fibrinogen chains in zebrafish is related to the coagulation

cascade and inflammation process, the function of which is similar

to that in mammals [21,34,35]. In an inflammatory situation, pain

sensation has an important physiological role by alerting the

organism to the abnormal state of the damaged tissue. In this

case, bradykinin affects the vasculature and has potent proalgesic

effects. Single-copy genes exist for each of the bradykinin recep-

tors, namely B1 and B2, in zebrafish [21,36]. With vasoactive

peptides similar to mammals, zebrafish represents a good animal

model for testing fibrin/fibrinogen inhibitors and bradykinin re-

ceptor antagonists, which are potential alternatives for treating

neuroinflammation and inflammatory pain, respectively.

Complement components
The complement system mediates several major effector functions

and modulates adaptive immune responses. Many components of

the complement system and the signaling pathways known from

mammals are highly conserved in zebrafish [37]. The mammalian

anaphylatoxins C3a, C4a, and C5a display relevant effects on

inflammatory responses. They promote granulocyte and mono-

cyte recruitment, inducing mast cell degranulation, thereby af-

fecting the vasculature [21]. The complement receptors C5aR1 and

C3aR1 are highly upregulated in zebrafish during early cardiac

regeneration, as observed in other species [38]. The presence of

eight genes encoding C3 in the zebrafish genome expressed in

different tissues was reported, unlike mammals, in which comple-

ment factors are secreted predominantly in the liver. Research into

endotoxin-induced expression also revealed the differential regu-

lation of C3 in distinct organs [39]. However, little is known of the

role of anaphylatoxins in zebrafish. Thus, further research explor-

ing complement members and their physiological roles in zebra-

fish is required.

Lipidic mediators
Lipidic mediators are derived from phospholipids and can be

released when damage occurs in the cell membrane, thus generat-

ing arachidonic acid from phospholipids, via phospholipase A2.

Subsequently, by the action of the lipoxygenases and cyclooxy-

genases, leukotrienes, thromboxanes, and prostaglandins are pro-

duced, causing vasodilation, hyperalgesia, and fever.

Prostaglandin E2 (PGE2) leads to the resolution of trauma-elicited

inflammation in zebrafish via the activation of its receptor EP4,

with the subsequent stimulation of 15-lipooxygenase and lipoxin

A4 release [40]. This latter pathway is part of the lipid resolution

machinery, involving the removal of neutrophils from the inflam-

matory site. Most lipid mediators are produced by zebrafish cells

and are widely involved in inflammatory changes observed in this

teleost [41,42].

Cytokines
Cytokines are key modulators of inflammation, acting via complex

signaling pathways, and participate in acute and chronic inflam-

mation. Their effects can be autocrine, paracrine, or endocrine and

their roles in cellular communication go beyond the immune
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system [43]. Interleukins (IL) bind to specific membrane receptors

and have a pivotal role in intercellular communication. Tumor

necrosis factor (TNF) is a multifunctional cytokine produced by

immune cells that induces proinflammatory responses during

infection, acting in diverse cellular events, such as cell survival,

proliferation, and differentiation. Interferons (IFNs) are released in

response to pathogens, mainly viruses, besides having antitumor

actions. Colony-stimulating factors (CSF) have essential functions

in the differentiation and proliferation of hematopoietic cells.

Finally, transforming growth factors (TGFs) are mainly involved

in cell proliferation [12,13,43–46]. Comparing zebrafish cytokines

with human cytokines, we observe a low amino acid sequence

identity. However, the identification and characterization of cyto-

kines in zebrafish revealed both similar function and structure to

that in mammals, supporting the use of zebrafish inflammation

models. Table 1 summarizes the similarities between 31 zebrafish

cytokines from different families compared with those in humans.

This is relevant given the growing number of molecules targeting

cytokines as new strategies to treat chronic inflammatory diseases.

Thus, zebrafish might be useful for the initial screening of cyto-

kine-based molecules and for testing either the potential efficacy

or toxicity of those compounds.
TABLE 1

Amino acid sequence identity between the zebrafish cytokine and 

Cytokine Percentage of identity amino acid
sequence corresponding
to human cytokine

Seque

Zebra

IL-1b 24.24% NP_99
IL-4 19.62% CAL48
IL-6 18.44% NP_00
IL-8/Cxcl8 33% XP_00
IL-10 29.12% AAI63
IL-11a 21.55% CAI61
IL-11b 19.09% CAI61
IL-12a (IL-12 p35) 17.84% BAD2
IL-12b (IL-12 p40) 24% AAI64
IL-13 17.58% BAG50
IL-15 22% AAI62
IL-17_5 31.36% AAI15
IL-17_3 25.24% BAD7
IL-17_4 52.53% AAI62
IL-21 16.46% ABM4
IL-22 15.35% BAD7
IL-23 p19 18.90% CBM4
IL-26 17.03% AAI63
IL-34 24.23% BAM7
IFN type I 22.63% AAM9
IFN-b 22.63% BAD2
TNF-a 25.93% AAR06
TNF-b 25.40% AAR06
CSF1a 17.29% CAP58
CSF1b 12.06% CAP58
CSF3a 19.01% CAQ6
CSF3b 22.58% ABX57
TGF-b1 42.21% AAI62
TGF-b2 78.50% AAQ1
TGF-b3 73.36% AAW6
a Percentages obtained by alignment using UniProt Proteome [121].
Chemokines
Indispensable for immune cell migration, the chemokines are a

group of inflammatory mediators that act under both inflamma-

tory and normal physiological conditions. The four groups in this

class are the CXC, CC, C and CX3C chemokines [47]. For zebrafish,

33 chemokine receptors and 89 chemokine genes have been

identified so far. However, functional characterizations were per-

formed only for Cxcl12a, Cxcl12b, Ccl19, and Cxcl8 (Il8), for

which there are conserved counterparts in mammals [48]. The

importance of these inflammatory mediators opens the possibility

of using zebrafish as an organism model to test chemokine-based

therapeutic strategies [49]. Genetic and biochemical characteriza-

tion of the remaining zebrafish chemokines is needed to further

explore all the advantages that this model can offer.

Proteolytic enzymes
The last inflammatory group of mediators discussed here are the

proteolytic enzymes, also termed peptidases, proteases or protei-

nases, which are molecules that break the peptide bond between

protein amino acids. They have important roles in various pro-

cesses, including host defence, tissue remodeling, and leukocyte

migration. Given their intrinsic biological activities, this group of
the corresponding human cytokinea

nce number reference (Genbank; Entry Uniprot) Refs

fish Human

8009.2; E6N152 AAM88883.1; P01584 [122,123]
253.2; D1YSM1 AAH70123.1; P05112 [124]
1248378.1; H9A0J9 AAK48987.1; P05231 [125]
9305130.1; A0A0G2KYH9 AAH13615.1; P10145 [126]
038.1; Q5EFQ8 AAA80104.1; P22301 [127]
346.1; Q494Q5 AAH12506.1; P20809 [128]
347.1; Q494Q4 AAH12506.1; P20809 [128]
6596.1; Q6F3R0 AAK84425.1; P29459 [129]
577.1; Q0V941 AAG32620.1; P29460; [129]
536.1; B3IWZ9 AAH96139.1; P35225 [130]
843.1; Q15KG7 AAI00964.1; P40933 [131]
082.1; Q5TKT0 AAH67505.1; Q16552 [132]
2788.1; Q5TKT2 AAH69152.1; Q9P0M4 [132]
897.1; Q5TKT1 AAH36243.1; Q8TAD2 [132]
6913.1; A1YYP5 AAH69124.1; Q9HBE4 [133]
2867.1; Q5TLE4 AAK62468.1; Q9GZX6 [134]
1294.1; L0N860 AAQ89442.1; Q9NPF7 [129]
119.1; Q5TLE5 AAH66270.1; Q9NPH9 [134]
5187.1; L8AZT5 AAH29804.1; Q6ZMJ4 [135]
5448.1; Q8AY12 EAW58611.1; P01563 [136]
0663.1; Q75S22 EAW97180.1; P01579 [137]
286.1; Q6T9C7 CAA26669.1; P01375 [12]
286.1; Q1JQ40 CAA26670.1; P01374 [138]
787.1; A9JRD6 AAH21117.1; P09603 [139]
788.1; B0UYR0 AAH21117.1; P09603 [139]
4749.1; B8ZHI7 AAK62469.1; P09919 [45]
823.1; B5L332 AAK62469.1; P09919 [45]
366.1; Q7ZZU7 AAH22242.1; P01137 [140]
8012.1; Q7SZV4 AAH99635.1; P61812 [141]
6727.1; Q66I23 AAC79727.1; P10600 [142].

www.drugdiscoverytoday.com 2205
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enzymes has a multitude of biotechnological applications [21,50].

Proteases can be divided into four groups, according to the essen-

tial catalytic component: (i) cysteine proteases; (ii) serine pro-

teases; (iii) aspartic proteases; and (iv) metalloproteinases.

The cathepsins belong to the cysteine protease family, leading

to tissue damage and triggering chronic inflammation, which

could represent an attractive therapeutic strategy [51]. Cathepsin

L gene (ctsl), later named ctslb, was reported in zebrafish as ctsla and

ctslc genes. Both genes have a highly conserved structure com-

pared with humans, but they present a distinct exon organization

related to earlier evolution [52]. Lepage and Bruce characterized

the zebrafish calpain system genes in embryos, and compared the

expression with mammals, observing that capns1a and capns1b

have high sequence identity to human capsn [53]. The cysteine

protease family also encompasses caspases, which cleave protein

substrates into aspartate residues and are involved in a range of cell

signaling processes implicated in health and disease [54]. Al-

though 12 caspase genes have been identified in humans, 19

distinct caspase genes are present in zebrafish, with casp2, casp3a,

casp8a, casp9, and casp20 being strongly expressed in the develop-

ing nervous system. Notably, casp6a and casp19a have a dynamic

expression pattern that changes during zebrafish larval develop-

ment [55].

Serine proteases are also involved in the production of proin-

flammatory cytokines, leading to the activation of immune cells.

Several diseases are related to the dysregulation of these enzymes,

including skin and lung inflammation, neuroinflammation, and

arthritis [56]. The trypsin gene was cloned in zebrafish, and

demonstrated homology to sequences seen in other vertebrate

species [57]. Four proteinase-activated receptors (PARs) genes are

present in zebrafish, which are homologs of mammalian PAR1–3.

The zebrafish PAR-1 is a thrombin receptor and PAR-2b is a trypsin

receptor [58]. Thrombin has a pivotal role in hemostasis and is

generated from prothrombin, for which zebrafish share 53% ami-

no acid identity with humans [19]. Other serine protease families

expressed in zebrafish include kallikreins [59], elastases [60],

matriptases [61], and subtilisins [62]. Members of the aspartic

proteases also occur in this animal model, such as renin and

cathepsin D [63,64], as well as a series of metalloproteinases

[65,66]. There are a few drugs targeting proteases currently avail-

able in clinics. The development of new drugs using this thera-

peutic target has adverse effects caused by the nonspecificity of the

compound. Although zebrafish has orthologous proteases, they do

not always have the same specificity as the human enzyme, as

observed in other animal models. By contrast, studies using a

combination of cell models and/or cells from patients, with zebra-

fish as an animal model, could be useful in early screening, mainly

for the identification and functional characterization of proteases

that are currently unknown.

Zebrafish and mechanisms of inflammation resolution over the

past few years, the modulation of pro-resolution pathways has

become a promising strategy for treating inflammatory diseases in

the place of traditional anti-inflammatory drugs. This premise is

supported by the primary physiological role of the inflammatory

response [67]. The resolution of inflammation encompasses the

cessation of leukocyte infiltration, accompanied by a switch of

chemical mediators, and uptake of apoptotic neutrophils and

cellular debris. Specific pools of lipid mediators coordinate the
2206 www.drugdiscoverytoday.com
resolution process, including prostanoids, leukotrienes, lipoxins,

and resolvins [68]. So far, few studies have addressed the charac-

terization of resolution mediators and their receptors in zebrafish.

Five prostanoid receptors, (EP2a e EP2b, EP4a, EP4b, and EP4c) were

identified in zebrafish, with EP4a and EP4b being very close geneti-

cally to, and with drugs acting similarly as on, human receptors

[69]. Resolvin E1 binds to the BLT1 receptor and mediates the

resolution of inflammation [67]. The biochemical characterization

of three Blt receptors was carried out in zebrafish, including a Blt1

ortholog of human BLT1, with low homologies to human and

mouse BLT1 (�40%), but with similar functions [70]. Nevertheless,

the visualization of the cellular components of inflammation and

the possibility of genetic manipulation offered by zebrafish makes

this animal model suitable for studies involving the resolution of

inflammation [71]. For this reason, different groups have used this

model for screening drug libraries, with a special focus on neutro-

phil-targeting compounds [72–74]. Both transporter proteins [the

solute carrier (SLC) and ATP-binding cassette (ABC)] have been

identified in zebrafish neutrophils, providing an ideal model to

identify novel strategies to modulate neutrophil fates and inflam-

mation solving [75].

Zebrafish inflammation modeling
Compelling evidence indicates the importance of zebrafish for

inflammation research, considering the cellular and molecular

pathways sharing similarity to humans. Therefore, several models

of inflammation using zebrafish have been developed over the past

few years. An advantage of zebrafish is the option to use the larval

and/or the adult phase of this teleost. As described for rodents,

zebrafish inflammation can be induced by physical, chemical, or

biological stimuli.

During the larval stage, it is usual to induce physical injury via a

tail fin amputation; this can be performed using a 24-gauge needle

cutting, or more accurately with a cryostat, commonly at 72 h post

fertilization. The procedure must be conducted under aseptic

conditions, because infection-induced inflammatory responses

can be a confounding factor in this experimental paradigm. After

anesthesia with 0.02% tricaine, the larvae are aligned in agarose-

coated Petri dishes for partial amputation of the tail fin. The

transection is performed by using the posterior section of the

ventral pigmentation gap in the tail fin, as an anatomical refer-

ence, under a stereomicroscope. Other physical stimuli used to

induce inflammation in zebrafish include ultraviolet exposure and

electroablation. Either model induces a massive inflammatory

response, being valuable for preclinical analysis of inflammation

in zebrafish larvae [76,77].

In adult zebrafish (� 6 months), similar protocols of physical

damage are adopted. Before fin amputations, the fish must be

anesthetized with 0.1% tricaine and placed on a soft and humid

surface. For the cut, a razor blade can be used and �50% of the

caudal fin of zebrafish is amputated. After the surgery, the fish is

allowed to recover in tanks placed in an incubator set at 33 �C, to

facilitate regeneration [78]. Fin regeneration and the expression of

inflammatory markers can be examined at different time points

after amputation, and the effects of pharmacological treatments

can be assessed. In this case, adult zebrafish have even more

benefits, permitting the simultaneous analysis of several lesions.

This animal model has an extraordinary regenerative capacity,
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especially in the case of neuronal lesions. Brain injuries can be

carried out after anesthesia with a needle pushed through a nostril

[79], directly inserted into the brain in the area of interest, such as

the telencephalon [80]. Alternatively, a nonpenetrating diffuse

injury to the brain can be induced by using the weight drop model

[81]. This injury leads to the activation of microglia and leuko-

cytes, leading to acute neuroinflammation [82]. Of interest, the

model of spinal cord injury secondary to surgical procedures

allows the evaluation of many processes involved in regeneration,

such as inflammation, cell death, cell migration, cell proliferation,

and neurogenesis [83]. Other protocols of physical injury-induced

inflammation in zebrafish have been described, such as optic nerve

crush [84], ventricular resection [85], hypoxia/reoxygenation car-

diac injury [86], and traumatic bone injury [87].

Despite the wide applicability of physical injury models of

inflammation in zebrafish, these approaches are timeless, requir-

ing individual manipulation and special equipment, precluding

their use in large-scale screening protocols. In addition, physical

injuries can compromise the evaluation of some behavioral tasks.

Thus, a series of chemical zebrafish models of inflammation has

been validated. D’Alençon et.al. [88] proposed a model of chemical

inflammation induced by copper sulfate that induces infiltration

of leukocytes to neuromasts within 20 min, according to the

evaluation of zebrafish in the larval stage. The intraperitoneal

injection of the algae-derived product carrageenan leads to ab-

dominal edema in zebrafish, accompanied by an increase in TNF

levels and inducible nitric oxide synthase (iNOS) expression [89]. A

model of enterocolitis was proposed based on the rectal adminis-

tration of oxazolone in adult zebrafish [90]. Tris(1,3-dichloro-2-

propyl) phosphanovote (TDCIPP) is a chemical compound usually

used in flame retardants, pesticides, and plasticizers, but can also

be used to induce hepatic inflammation in zebrafish [91].

Given the number and variety of inflammatory diseases caused

by pathogens, specific protocols of infection-related inflammation

in zebrafish have been used for preclinical assays. In most cases,

inflammation is induced by lipopolysaccharide (LPS), a wall com-

ponent of all Gram-negative bacteria. LPS causes a series of immu-

nological responses in zebrafish, and can be used in larvae by

exposure in water or injection [6,92]. When used for immersion or

injection, LPS can also be applied to adult zebrafish [93]. Addi-

tional models of infection using different bacteria strains shed new

light on the mechanisms involved in host–pathogen interaction,

accounting for the growing use of zebrafish in preclinical infection

studies [94].

The development of methods that mimic chronic inflammation

in zebrafish is important because most chronic inflammatory

diseases still lack effective pharmacological therapies. Adult zebra-

fish knocked out for Sirt1 exhibit an upregulation of the genes

encoding IL-1b, IL-6, and TNF, correlating with chronic inflam-

mation and intestinal atrophy, thereby increasing proapoptotic

events [95]. The first zebrafish embryo chronic inflammation

mutant was obtained through the insertion of the hepatocyte

growth factor activator inhibitor 1 (hai1) gene, resulting in a

phenotype with typical alterations featuring chronic inflamma-

tion [96]. By using a different approach, it was proposed that

notochord infection of zebrafish larvae causes prolonged inflam-

mation, and this could be a new model to study cellular and

molecular mechanisms related in cartilage and/or bone chronic
inflammation [97]. Zebrafish have also been proposed for screen-

ing new strategies to manage chronic inflammatory bowel dis-

eases, such as ulcerative colitis and Crohn’s disease, by exposing

embryos to dextran sodium sulfate (DSS) or trinitrobenzene sul-

fonic acid (TNBS). Both chemical agents are also used to induce

chronic intestinal inflammation in rodents for screening new anti-

inflammatory drugs [98]. Interestingly, Kulkarni et al. validated a

model of multiple sclerosis by inoculating the myelin oligoden-

drocyte protein (MOG) in adult zebrafish, which resulted in the

fish displaying the mains signs and symptoms of this neuroim-

mune disease [99].

Effects of anti-inflammatory drugs on zebrafish
inflammation
Zebrafish models of inflammation are responsive to treatment

with classical steroidal and nonsteroidal anti-inflammatory drugs

(NSAIDs), emphasizing the applicability of this organism in in-

flammation research. For instance, in a model of chronic alcohol

intake in adult zebrafish, the NSAID mefenamic acid was able to

prevent cognitive deficits by regulating acetylcholinesterase brain

activity, confirming the effects of mefenamic acid against neuroin-

flammation [100]. Another NSAID, indomethacin, displayed neu-

roprotective effects in the model of pentylenetetrazole-induced

seizures in zebrafish larvae, likely by modulating the proinflam-

matory genes il1b and cox2b [101]. The benefits of NSAIDs, such as

aspirin, were demonstrated in a nociception model induced by

acetic acid exposure using zebrafish larvae [102]. Aspirin also

displayed analgesic effects in a model of painful-like behavior

induced by tail fin clipping in adult zebrafish [103]. Additionally,

pretreatment with nonsteroidal agents, namely indomethacin or

diclofenac sodium, ameliorated the nociception behavior elicited

by formalin or acetic acid in adult zebrafish, respectively [104,105].

Recently, an automated method named the ‘Fish Behaviour Index’

was developed to detect nociceptive changes in adult zebrafish,

based on general activity and distance swum after mechanical or

chemical noxious stimuli [106]. In this experimental paradigm,

the NSAID flunixin displayed dose-related analgesic effects in

zebrafish submitted to tail fin clipping. These pieces of evidence

indicate that zebrafish can also be a reliable model for the assess-

ment of new potential analgesic drugs.

Although this is not a focus of this review, over-the-counter

anti-inflammatory drugs have been detected in the environment,

indicating the relevance of ecotoxicological studies for this group

of drugs. Indeed, zebrafish is a reliable model to assess the potential

aquatic ecotoxicity of pharmaceutical products. For instance, the

acute exposure of zebrafish embryos to the NSAID diclofenac

elicited a reduction in lipid peroxidation, an effect that was

significant only at a low concentration of 0.03 mg/l [107]. There

were no adverse effects of chronic exposure of zebrafish larvae to

diclofenac in concentrations up to 320 mg/l, despite a slight

reduction in growth at doses as low as 10 mg/l [108]. Diclofenac

and ibuprofen (5–500 mg/ml) led to a decrease in hatching and

motor activity, according to an evaluation of zebrafish embryos

from 6 to 120 hpf. However, neither morphological defects nor

increased mortality rates were observed for either drug in this

study [109]. Alternatively, an investigation testing sublethal con-

centrations of diclofenac (from 0.4–7 mg/l) revealed distinct toxic

effects for diclofenac in embryo and early-life stages of zebrafish
www.drugdiscoverytoday.com 2207
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development [110]. In addition, studies demonstrated that non-

steroidal agents alter sex differentiation in zebrafish, primarily

through inhibition of COX-2 [111]. Altogether, these studies

suggest that zebrafish is also a useful experimental model to

predict the environmental effects of NSAIDs.

The exposure of 3-day-old zebrafish larvae to the glucocorticoid

beclomethasone prevented neutrophil migration induced by tail

fin amputation. This effect involved the modulation of Il8 and

Cxcl18b genes, which are implicated in the chemoattraction of

neutrophils. Alternatively, beclomethasone failed to alter the

macrophage influx or the expression of macrophage recruit-

ment-related genes, namely Ccl2 and Cxcl11aa [112]. In this model

of trauma-induced inflammation, the administration of beclo-

methasone inhibited the differentiation of macrophages into

the M1 proinflammatory phenotype and reduced the upregulation

of several inflammatory genes elicited by tail amputation

[112,113]. The steroidal drug dexamethasone was able to lessen

both cell migration and mortality rate in a lethal inflammation

model induced by LPS injection into the yolk of 3-dpf zebrafish

larvae [114]. Dexamethasone also alleviated leukocyte migration

and apoptosis taxes in the hearts of breakdance mutant zebrafish

submitted to heart cryoinjury inflammation [115]. Therefore,

zebrafish models recapitulate the main signs of inflammation,

including pain, and these responses are sensitive to marketed

anti-inflammatory drugs. In this regard, inflammation models

in zebrafish have been used for the screening of innovative and

repurposed agents with anti-inflammatory potential, presenting

predictive validity [2,116].

Concluding remarks and perspectives
Zebrafish presents a complex immune system featuring mamma-

lian characteristics [117]. The machinery involved in inflamma-

tion is also greatly developed in this organism, with the

identification of a series of inflammatory mediators and receptors

underlying inflammatory responses [118,119]. Zebrafish has also

been demonstrated to be useful to study the mechanisms of

resolution, mainly by characterization of real-time neutrophil

migration patterns. Modeling inflammatory diseases in zebrafish

is an interesting way to increase our understanding of the intricate

mechanisms implicated in chronic inflammatory diseases, open-

ing new avenues for the identification of efficacious and safe

pharmacological strategies to treat inflammation-related unmet

clinical needs. Acute models of inflammation in zebrafish are well
2208 www.drugdiscoverytoday.com
established, but additional models of chronic inflammation need

further validation, which continues to be a challenge in this area.

In this regard, additional studies characterizing the mediators and

receptors switching inflammation to resolution in zebrafish are

required. Furthermore, the development of selective antibodies

would enable an in-depth characterization of inflammatory

responses in zebrafish at the protein level. Finally, the possibility

to evaluate the effects of biologicals, such as anti-TNF strategies, in

zebrafish could be addressed by generating new mutant strains of

zebrafish, via new genetic tools, such as TALENS and CRISPR-Cas9

technologies. Considering the evidence presented in this review, it

is tempting to propose this animal model as a relatively lower cost

and potentially higher throughput screening strategy. Addition-

ally, using zebrafish for testing inflammation-targeted compound

libraries provides clear advantages over cell culture strategies,

enabling the detection of adverse effects in a whole organism.

Nonetheless, it will be imperative to adopt the principles of 3Rs

when using zebrafish as an organism model in inflammation

research [120]. Accordingly, refinement procedures must be

adopted to maximally reduce the stress, and to improve animal

well-being, regardless of whether working with larvae or adult

zebrafish. It will also be relevant to perform sample size calculation

a priori, to keep the number of animals per group as low as possible.

Finally, replacement of zebrafish by using in vitro techniques or

bioinformatics is also desirable, depending on the stage of drug

development.
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