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A B S T R A C T

Coffee is a drink prepared from roasted coffee beans and is lauded for its aroma and flavour. It is the third most
popular beverage in the world. This beverage is known by its stimulant effect associated with the presence of
methylxanthines. Caffeine, a purine-like molecule (1,3,7 trymetylxantine), is the most important bioactive
compound in coffee, among others such as chlorogenic acid (CGA), diterpenes, and trigonelline. CGA is a
phenolic acid with biological properties as antioxidant, anti-inflammatory, neuroprotector, hypolipidemic, and
hypoglicemic. Purinergic system plays a key role inneuromodulation and homeostasis. Extracellular ATP, other
nucleotides and adenosine are signalling molecules that act through their specific receptors, namely pur-
inoceptors, P1 for nucleosides and P2 for nucleotides. They regulate many pathological processes, since ade-
nosine, for instance, can limit the damage caused by ATP in the excitotoxicity from the neuronal cells. The
primary purpose of this review is to discuss the effects of coffee, caffeine, and CGA on the purinergic system. This
review focuses on the relationship/interplay between coffee, caffeine, CGA, and adenosine, and their effects on
ectonucleotidases activities as well as on the modulation of P1 and P2 receptors from central nervous system and
also in peripheral tissue.

1. Introduction

Coffee was discovered about 2000 years ago in Ethiopia and it was
likely that the Ethiopians were the first to recognise its energising ef-
fects. Coffee has been consumed for social appointments, time-out,
enhancement of work performance, and overall well-being. Normally,
the type of coffee beverage is strictly associated with the social habits
and the culture of individual countries (Homan and Mobarhan, 2006).
Due to its social and cultural importance, coffee has been studied for a
long time, and some of its compounds have been isolated. Among these,
the alkaloid caffeine was discovered in tea (Camellia sinensis) and coffee
(Coffea arabica) in the 1820s (Ashihara and Crozier, 2001), and the

phenolic compound chlorogenic acid (CGA) was isolated from coffee by
Gorter in 1908 (Feldman et al., 1969). Other compounds found in
coffee that show biological activities include cafestol, kahweol, and
trigonelline (Ludwig et al., 2014a), all of which can affect biological
systems in the body. Consequently, they can be useful in the treatment
of certain illness such as diabetes mellitus (DM), cardiovascular dis-
eases, and Alzheimer's disease (Anwar et al., 2013a; Stefanello et al.,
2016, 2014).

The purinergic system is an important regulatory pathway of dif-
ferent tissues, including the vascular and central nervous system, pan-
creas, and bone. This system consists of nucleosides and nucleotides, as
well as the enzymes and receptors where these molecules bind.
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Purinergic signalling is involved in physiological and pathophysiolo-
gical conditions and alterations in this system may be involved in in-
sulin resistance, vascular injury, platelet aggregation, inflammation,
and cognition (Burnstock, 2013; Gutierres et al., 2014a).

Recent studies have demonstrated the involvement between natural
compounds and the purinergic system. Some compounds, such as an-
thocyanins, caffeic acid, resveratrol, quercetin, caffeine, and CGA, as
well as red wine, grape juice, and coffee, have been shown to regulate
the components of the purinergic system (Abdalla et al., 2014; Anwar
et al., 2013b; Duarte et al., 2012; Gutierres et al., 2012; Maciel et al.,
2016; Schmatz et al., 2013, 2009).

2. Chemical composition of coffee

Of the compounds identified in green coffee, CGAs, caffeine, soluble
fibers, trigonelline, and diterpenes from the lipid fraction are most
likely to exhibit bioactive properties. Other phenolic compounds, such
as lignans and anthocyanins, have been identified in green coffee seed
(Farah and Donangelo, 2006). It is also possible to find minerals such as
magnesium, potassium, copper, calcium, aluminium, and phosphorus in
this beverage (Grembecka et al., 2007; Wei et al., 2012b, 2012a).

The major lipid classes in coffee beans are triacylglicerols, terpene
esters, and sitosterol (Dong et al., 2015), while the carbohydrates in-
clude sucrose, galactose, glucose, and fructose. Phenolic acids are the
main components that contribute to the formation of pigment, taste,
and flavour when coffee beans are roasted (Murkovic and Derler,
2006). Roasted coffee and green beans show some differences in their
composition, because the roasting process destroys a large amount of
the phenolic acids, sucrose, proteins, and trigonelline (Sunarharum
et al., 2014). A study conducted in Greece demonstrated that roasting
reduces the antioxidant activity only in some varieties of coffee, and
this depends on the chemical composition of the coffee. However,
roasting time has been conclusively shown to reduce the antioxidant
activity (Priftis et al., 2015).

The biological activities of coffee have been mainly attributed to
terpenes, alkaloids, and phenolic compounds (Fig. 1). The best-known
terpenes are cafestol and kahweol, which naturally occur as diterpenes,
being present in the lipid fraction. The concentration of these di-
terpenes is influenced by the brewing method. Boiled coffee, such as
Scandinavian- and Turkish-style, contains a higher amount than filtered
or instant coffee (Jeszka-Skowron et al., 2014).

Two types of alkaloids are present in coffee beans, caffeine (1,3,7
trymetylxantine) and trigonelline, as major components. Other me-
thylxanthines occur, including theobromine, paraxanthine, and theo-
phylline. Trigonelline is found in coffee, but caffeine is present in both
coffee and tea (Ashihara et al., 2008). Studies have demonstrated that
the roasting process does not alter caffeine concentration. On the other
hand, trigonelline is degraded during roasting process, producing other
compounds including nicotinic acid (Farah, 2012).

Caffeine is synthesised in plants from xanthosine, a product of the
catabolism of purine nucleotides. It has a protective effect in soft tissue
against predators and may be released in the soil, where it inhibits the
germination of other seeds (Ashihara et al., 2008; Ashihara and Crozier,
2001). Waldhauser and Baumann showed that caffeine could be found
in a complex with polyphenols. In the raw coffee beans a caffeine/CGA
complex is easily found as a well-described crystalline caffeine po-
tassium chlorogenate 1:1 complex, which is formed due to physico-
chemical properties (Waldhauser and Baumann, 1996).

Classically, CGAs make up a family of esters formed between quinic
acid and some trans-cinnamic acids. The most common is 5-O-caf-
feoylquinic acid (5-CQA). It is present in major quantities in almost all
foods and beverages containing CGA family compounds. Furthermore,
due to identity, number, and position of acyl residues, CGAs may be
subclassified into other compounds: 1) monoesters of caffeic acid,
which include caffeoylquinic acids (CQAs), p-coumaroylquinic acids,
and feruloylquinic acids; 2) diesters and triesters that include diCQA
and triCQA; 3) mixed diesters between caffeic and ferrulic acid,
i.e.,caffeoylferuloylquinic acids, found mainly in robusta coffee

Fig. 1. A) Cafestol; B) Kahweol; C) Caffeine; D) Chlorogenic acid.

N. Stefanello et al. Food and Chemical Toxicology 123 (2019) 298–313

299



(Clifford, 2000; Farah and Donangelo, 2006). The roasting process
causes a significant reduction in the concentration of CGAs, but the
majority of CGAs present in roasted coffee can be extracted in home
coffee brewing, however, coffee brews maintained at a high tempera-
ture reduce the concentration of CGAs (Farah, 2012).

Pyrolysis, caramelisation, and Maillard reactions occur during the
roasting process, which change the seed composition. The raw material,
roasting degree and variables such as type and time of roasting, as well
as airflow speed in the roasting chamber interfere in CGA final con-
centration. CGAs suffer many changes during roasting, namely, iso-
merisation, epimerisation, lactonisation, and degradation to low-mo-
lecular weight compounds. Normally, depending on the type of
processing, CGAs may vary from 0.5 to 6 g/100 g dry weight and, if the
roasting process is more intense, CGAs quantity could be less that 1% of
dry matter (Farah, 2012; Ludwig et al., 2014a; Perrone et al., 2008).

During the brewing process, approximately 80% of CGAs are ex-
tracted, resulting in approximately 40–200mg CGAs/serving de-
pending on the varieties of coffee (Ludwig et al., 2014b; Stalmach et al.,
2011). However, maintaining a high temperature reduces the con-
centration of CGAs. On the other hand, caffeine, trigonelline, and ni-
cotinic acid are also soluble in hot water. The concentrations in brewed
coffee prepared with medium roasted coffee vary from 50 to 100mg
caffeine, 40–50mg trigonelline, and approximately 10mg nicotinic
acid (Perrone et al., 2008).

3. Caffeine and CGA metabolism

3.1. Caffeine metabolism

The complete absorption of caffeine in humans reaches 99% in
about 45min after its ingestion, occurring in the gastrointestinal tract.
After oral consumption, the peak plasma caffeine concentration is
reached at 15–120min. It crosses the blood–brain barrier (BBB) and
enters all body fluids including serum, milk, saliva, and semen (Crozier
et al., 2011). After 1 h intravenous injection of caffeine, the tissue-to-
blood distribution was approximately 1.0 with a concentration of
3.5 mg/g. Fat and liver showed a ratio less that 1 (Arnaud, 2011). In
smokers, caffeine metabolism is reduced, while there is an increase
during the last trimester of pregnancy and in women taking oral con-
traceptives (Arnaud, 2011; Yu et al., 2016).

Researchers have found that caffeine is extensively metabolised in
the liver (99%) by the cytochrome P450 oxidase enzyme system
(Heckman et al., 2010) to form three major metabolites, 3,7-di-
methylxanthine (theobromine, 12%), 1,7-dimethylxanthine (para-
xanthine, 84%), and 1,3-dimethylxanthine (theophylline, 4%). CYP1A2
is responsible for caffeine demethylation. Paraxanthine is metabolised
in other metabolites by 1) cytochrome P4502A6 (CYP2A6) to form 1,7-
dimethylurate, 2) cytochrome P4501A2 (CYP1A2) to form 1-methyl-
xanthine and, 3) the formation of 5-acetylamino-6-formylamino-3-me-
thyluracil, which is catalysed by N-acetyltransferase. 5-Acetylamino-6-
formylamino-3-methyluracil is an unstable product that may be de-
formylated non enzymatically to 5-acetylamino-6-amino-3-methylur-
acil. 1,7-Dimethylurate is mainly metabolised by the polymorphic en-
zyme CYP2A6 (90%) and about 10% is metabolised by CYP1A2. Part of
1-methylxanthine is metabolised to 1-methylurate by xanthine oxidase
(Arnaud, 2011; Krul and Hageman, 1998).

Researchers have found that caffeine is extensively metabolised by
the liver (99%) by the cytochrome P450 oxidase enzyme system
(Heckman et al., 2010) to form three major metabolites, 3,7-di-
methylxanthine (theobromine, 12%), 1,7-dimethylxanthine (para-
xanthine, 84%), and 1,3-dimethylxanthine (theophylline, 4%). CYP1A2
is responsible for caffeine demethylation. Paraxanthine is metabolised
in other metabolites by 1) cytochrome P4502A6 (CYP2A6) to form 1,7-
dimethylurate, 2) cytochrome P4501A2 (CYP1A2) to form 1-methyl-
xanthine and, 3) the formation of 5-acetylamino-6-formylamino-3-me-
thyluracil, which is catalysed by N-acetyltransferase. 5-Acetylamino-6-

formylamino-3-methyluracil is an unstable product that may be de-
formylated non enzymatically to 5-acetylamino-6-amino-3-methylur-
acil.1,7-Dimethylurate is mainly metabolised by the polymorphic en-
zyme CYP2A6 (90%) and about 10% is metabolised by CYP1A2. Part of
1-methylxanthine is metabolised to 1-methylurate by xanthine oxidase
(Arnaud, 2011; Krul and Hageman, 1998).

The expression of CYP1A2 may influence caffeine metabolism. The
CYP1A2 expression may be influenced by sex, race, genetic poly-
morphisms, disease and these factors could change the concentration of
caffeine in different tissue (Nehlig, 2018). Salinero et al. (2017) re-
ported that 31.3% of the C-allele carriers to CYP1A2 enzyme reported
increased nervousness after caffeine 3mg/kg ingestion (Salinero et al.,
2017). In this sense, Buters et al. (1996) investigated the involvement of
CYP1A2 in the pharmacokinetics and metabolism of caffeine in mice
lacking its expression (CYP1A2−/−) and concluded that the half-life
of caffeine elimination from the blood was seven times longer than in
wild-type mice (Buters et al., 1996). On the other hand, CYP2A6
polymorphisms genotype is also found, however it is not altered by sex,
disease, smoking and race (Nehlig, 2018). Finally, CYP1A1 and CYP1A2
polymorphisms is significantly associated with increased coffee con-
sumption (Sulem et al., 2011).

It is important to note that caffeine and its metabolites are found in
many tissues, due to its high liposolubility, i.e., lung, adipose tissue,
liver, kidney, and the brain. It crosses the BBB due to simple diffusion
and affects the activity of the central nervous system (CNS) (Che et al.,
2012). Kaplan et al. (1989) described a linear relationship between
caffeine and its metabolites in the brain and plasma concentrations
(Kaplan et al., 1989). In all these organs, caffeine can reach out and
exert its effects as an A2A receptor antagonist (Duarte et al., 2009).

3.2. CGA metabolism

Monteiro et al. (2007) pointed to an early absorption of CGA in the
stomach or in the initial intestinal tract, followed by absorption
throughout the small intestine (Monteiro et al., 2007). In addition,
Olthof et al. (2001, 2003) suggested that the uptake of CGA is achieved
in two ways: 1) approximately 33% may be absorbed in the small in-
testine, since small concentrations of intact CGA (0.3%) were found in
urine and, 2) CGA could be hydrolysed by bacteria in the colon and the
products of its degradation could be absorbed (Olthof et al., 2003,
2001). Consistent with this study, Stalmach et al. (2010) showed that
24 h post-ingestion of 200mL of coffee containing 385 ± 4 μmol of
CGA resulted in the appearance of 274 ± 28 μmol of CGA and its
metabolites in the ileal fluid of ileostomy patients, indicating that 30%
is absorbed in the small intestine. In normal subjects, 70% of ingested
CGA passes from the small to the large intestine, where it is metabolised
by colonic microflora (Stalmach et al., 2010).

Studies have demonstrated that all major compounds in coffee are
bioavailable for humans (Farah et al., 2008; Monteiro et al., 2007). 5-O-
caffeoylquinic acid, the major CGA in brewed coffee, represents 40% of
total hydroxycinnamates identified in plasma 4 h after ingestion
(Monteiro et al., 2007). Manach et al. (2004) showed that coffee
polyphenols are able to penetrate tissue. In vitro studies have also
shown that dietary flavonoids can cross the BBB (Manach et al., 2004;
Manach and Donovan, 2004). Many of the components described above
are biologically active and could contribute to the effects associated
with coffee consumption.

4. Physiological and biochemical actions of coffee, caffeine, and
CGA

Epidemiological and experimental studies support the idea that
consumption of regular coffee drinking has health benefits. The re-
lationship between coffee and various diseases holds great interest,
given a large array of the compounds found in the beverage that could
potentially alter the risks of degenerative, progressive, and chronic
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diseases through many biological actions (Caini et al., 2017; Santos and
Lima, 2016; Shimoyama et al., 2013).

4.1. Coffee and metabolic effects

Regular consumption of green/roasted coffee blend may decrease
systolic and diastolic blood pressure as well as glucose concentration,
insulin resistance, triglyceride levels, and percent body fat, which may
be related to the lower leptin and resistin levels in normocholester-
olaemic and hypercholesterolaemic subjects (Sarriá et al., 2018).

A recent study by Takahashi et al. (2017) showed that mice treated
with 0.1% coffee for 17 weeks did not exhibit altered levels of glucose
in the plasma, but did exhibit a reduction in total food and water
consumption during the dark cycle, as well as free fatty acids and tri-
glyceride levels in the plasma of mice. The authors concluded that
coffee consumption had a positive effect on behavioural energy and
lipid metabolism (Takahashi et al., 2017).

Studies have demonstrated lower risk of type 2 DM in those who
consume two or more cups of coffee per day (Ding et al., 2014; Hitman,
2014; Wedick et al., 2011). Coffee consumption could not decrease the
risk of type 2 DM in subjects with negative lifestyle habits, i.e., cigarette
smoking, lower physical activity, obesity, and alcohol consumption
(Muley et al., 2012; Patja et al., 2005; Shi et al., 2013). Furthermore, a
Netherlands cohort study reported that those who consumed at least
seven cups of coffee per day had a lower relative risk of 50% to de-
veloping type 2 DM when the researchers compared with those who
ingested two cups of coffee or less. The same could be observed in a
study with men, which showed that there was a reduction of 54% in
developing diabetes in those men that drank at least six cups of coffee
per day when compared with men who did not drink coffee, while
women who drank ≤6 cups of coffee per day had a lower risk (29%) in
relation to those who did not consume (Ludwig et al., 2014a; van Dam,
2008). Furthermore, the inverse association has been similar for both
caffeinated and decaffeinated coffee as concluded by van Dam (2006) in
a prospective cohort study in younger and middle-aged women. These
observations suggested that other coffee components rather than caf-
feine may affect the development of type 2 DM. In fact, coffee has some
substances, e.g., CGAs, quinic acid, trigonelline, and the lignin secoi-
solariciresinol that can interfere with glucose metabolism (Van Dam,
2006).

Johnston et al. (2003) found that both decaffeinated and caffeinated
coffee modulated glucose uptake, with CGA as the compound re-
sponsible for blocking glucose transport in the intestine (Johnston et al.,
2003). In addition, 1 g of CGA and 500mg of trigonelline were also able
to reduce the early glucose and insulin responses during the glucose
tolerance test in overweight men (Van Dijk et al., 2009). In an experi-
mental study using diabetic rats, treatment with 250mg/kg of caffeine
for 5 weeks decreased blood glucose, TGs, and total cholesterol levels in
serum (Yamauchi et al., 2010). Similarly, type 1 diabetic rats treated
with CGA (5mg/kg) for 45 days showed a reduction in plasma glucose
levels. A reduction in thiobarbituric acid reactive substances (TBARS)
and hydroperoxide levels as well as an increase in the antioxidant en-
zyme activities in the liver and kidney was observed (Karthikesan et al.,
2010). CGA also inhibits glucose-6-phosphatase enzyme in the liver and
interferes with glucose absorption in the intestine of rats (Hemmerle
et al., 1997; Higdon and Frei, 2006). Concluding, these results are
consistent with the suggestion that CGA may play a role in the
homeostatic regulation of glucose levels contributing to the potential
effects of coffee in diabetic status.

4.2. Coffee and cardiovascular effects

The relationship between coffee ingestion and cardiovascular dis-
eases has also been documented in the literature (Bonita et al., 2007;
Ding et al., 2014). Grioni et al. (2015) showed that the risk of coronary
heart disease was significantly greater for those whose intake was more

than two cups per day of Italian-style coffee when compared with those
who drank one cup per day (30mL). Moreover, those who drank high
quantities of coffee per day were younger, had higher energy intake,
were more likely to smoke, and were also less likely to have normal
weight and hypertension (Grioni et al., 2015). An increase in the risk of
myocardial infarction was observed in those men that consumed fil-
tered coffee in a study with 375 subjects (Nilsson et al., 2010). On the
other hand, Andersen et al. (2006) concluded that an intake of 1–3 cups
of coffee per day has a protective effect on total death and death from
cardiovascular and other inflammatory diseases in a group of post-
menopausal women (Andersen et al., 2006). In addition, consumption
of filtered caffeinated coffee was not associated with cardiovascular
disease in women in one study (Lopez-Garcia et al., 2011).

In addition of this idea, experimental studies have described that
coffee and caffeine can induce many effects in the vascular system
(Riksen et al., 2009). The following alterations were demonstrated by
coffee consumption: the administration of coffee had preventive effects
on arterial occlusive thrombus formation in mice (Toda et al., 2010)
and inhibited platelet aggregation in rats (Bhaskar and Rauf, 2010;
Stefanello et al., 2016), and these effects were not associated with
caffeine. Furthermore, coffee consumption was negatively associated
with the protein CHI3L1, which has an important role in the activation
of the innate immune system, demonstrating that coffee has anti-in-
flammatory effect contributing with the reduction of atherosclerosis
plaque formation (Cornelis et al., 2018; Loftfield et al., 2015). In ad-
dition, Zhang and Zhang (2018) demonstrate in a meta-analysis study
that coffee consumption was associated with a reduction in serum C-
Reactive Protein (Zhang and Zhang, 2018). Also, a randomized, acute,
crossover, intervention study with healthy male adults, found that
coffee polyphenol consumption reduced the hyperglycemia and im-
proved vascular endothelial function in healthy humans (Jokura et al.,
2015). These findings demonstrate that coffee consumption has a range
of beneficial effects that could contribute to the reduction of the risk of
cardiovascular diseases.

On the other hand, caffeine could have a different effect. Stefanello
and co-authors have demonstrated that caffeine 15mg/kg for 30 days
did no reduce the platelet aggregation in diabetic rats (Stefanello et al.,
2016), although other research demonstrated that at high doses caffeine
leads to the upregulation of A2 receptors on the platelet surface, re-
ducing aggregation (Varani et al., 2000). Other data showed that the
intake of 70mg/kg of caffeine for 7 days increased diastolic blood
pressure in young adults (Cavalcante et al., 2000). Similar results ob-
tained by Temple et al. (2010) showed that acute caffeine administra-
tion (50, 100, and 200mg) in adolescents decreased heart rate and
elevated diastolic blood pressure in a dose-dependent manner (Temple
et al., 2010). However, other findings reported that caffeine increased
endothelium-dependent vasodilation (T. Umemura et al., 2006). The
effects of coffee and/or caffeine alone on the cardiovascular system are
still not clear. However, it is important to consider that the different
effects depend on the type, amount of coffee ingested, and the time and
frequency of consumption (Kanno et al., 2013; Mostofsky et al., 2012).

The effects of coffee on human health are depended on many fac-
tors. In summary, coffee consumption appears to have positive and
negative effects on cardiovascular risk, according to epidemiological
and animals studies. However, it is clear that moderate consumption up
to 3 cups of coffee per day provides possible beneficial effects, while
higher consumption up to 6 cups of coffee per day could have negative
contributions to the development of cardiovascular diseases. In addi-
tion, roasting process, coffee varieties, frequency of consumption,
quantity consumed, and beverage preparation interfere with bioactive
compounds concentration in coffee and in consequence influence, more
or less, the reduction of the risk of developing cardiovascular diseases.

4.3. Coffee and neurological effects

Many actions of coffee in the CNS have been attributed to the
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presence of caffeine. It has been well established that caffeine has sti-
mulating effects in the brain, resulting in heightened alertness and
arousal. This compound also improves performance on cognitive tasks
and modulates antioxidant parameters in the brains of young subjects
(Abreu et al., 2011; Aoyama et al., 2011). A study with non-smoking
women demonstrated that caffeine intake was associated with a larger
size of the hippocampus (Perlaki et al., 2011).

Caffeine is well-known as a specific antagonist of adenosine re-
ceptors and in many experimental conditions, neuroprotective effects
have been demonstrated. Caffeine offers significant neuroprotection;
epidemiological studies have showen that there is a reduction of
Parkinson's disease with caffeine consumption (Ascherio et al., 2004; Qi
and Li, 2014) and caffeine or moderate coffee consumption decrease the
risk of Parkinson's disease (Ascherio et al., 2001). Nevertheless, this
lower risk is not related with caffeine effects in the motor symptoms
(Postuma et al., 2017). In experimental models, there is evidence that
20mg/kg caffeine has reduced negative effects of 6-OHDA-lesioned rats
(Machado-Filho et al., 2014) and chronic caffeine consumption (1 g/L)
prevented the degeneration of dopamine cell bodies in the substantia
nigra of 1-methyl-4-phenyl1,2,3,6-tetrahydropyridine (MPTP)-induced
Parkinson's disease in rats (Sonsalla et al., 2012). These protective ef-
fects seems to be linked with A2AR (Xu et al., 2016). Furthermore,
caffeine is related with suppression of lipopolysaccharide-induced
neuroinflammation (Brothers et al., 2010; Kang et al., 2012).

Alzheimer's disease also shows neuroinflammation condition. In this
sense, caffeine (0,3 g/L) prevented spatial memory deficits in model of
Alzheimer's disease -like tau pathology (Laurent et al., 2014), as well as
this alkaloid reduced other memory deficits, as demonstrated by
(Arendash et al., 2006; Chu et al., 2012; Cunha and Agostinho, 2010);
its mechanism could be related with AChR modulation or it could be
related with the upregulation of A2A caused by caffeine (Espinosa et al.,
2013; Fabiani et al., 2018). Furthermore, there is an inverse association
between caffeine consumption and the incidence of Alzheimer's disease
(Dall’Igna et al., 2007). This relation would be linked with caffeine
effects on aging. Prediger et al. (2005) related that caffeine participates
in reversing aged-related cognitive olfactory decline in rats (Prediger
et al., 2005). In addition, caffeine prevents aged-related memory im-
pairment reducing oxidative stress and modulating adenosine receptors
(Leite et al., 2011).

Others studies have demonstrated that caffeine (10mg/kg) may
counteract proapoptotic effects 6 and 24 h following phenobarbital
injection in new-born rats (Endesfelder et al., 2017) and caffeine (1 g/L)
may prevent memory deficits in adult rats caused by a single convulsive
episode in early life (Cognato et al., 2010). Moreover, caffeine protects
the neonatal mouse brain against decreasing brain atrophy and al-
terations in motor function following hypoxia-ischemia induction
(Winerdal et al., 2017). We can emphasize that synaptotoxicity is re-
duced by caffeine in different experimental models as convulsive epi-
sode (Cognato et al., 2010), model of Machado-Joseph disease
(Gonçalves et al., 2017, 2013), and streptozotocin-induced DM (Duarte
et al., 2012). Finally, an inverse association between consumption of
caffeinated beverages, including coffee and tea, and the risk of glioma
development in humans was observed (Holick et al., 2010; Perlaki
et al., 2011). In this way, caffeine consumption may be helpful in the
prevention of cognitive deficits in neurodegenerative diseases.

In addition to the effects of caffeine, other compounds found in
coffee, such as CGA, may also alter neural function. Previous studies in
animal models have shown that CGA improved memory impairment in
scopolamine-induced amnesia (Kwon et al., 2010); stimulated neurite
extension (Ito et al., 2008); affected locomotor activity in mice (Ohnishi
et al., 2006); induced anxiolytic and antioxidant effects in Swiss mice
(Bouayed et al., 2007) and antinociceptive effects in diabetic rats
(Bagdas et al., 2014). Also, a rat model of focal cerebral ischemia re-
perfusion was protected by CGA treatment (Miao et al., 2017). These
observations suggest that coffee compounds might be promising can-
didates for the treatment of neurodegenerative diseases (Fig. 2).

Moreover, CGA and caffeine may protect cells from the damage
caused by hyperglycemia in streptozotocin (STZ; 60mg/kg)-induced
diabetic rats. In this context, Stefanello et al. (2014) demonstrated that
caffeine (15mg/kg) reverted the increase in acetylcholinesterase
(AChE) activity and partially restored delta-aminolevulinic acid dehy-
dratase (δ-ALA-D) and Na+, K+-ATPase activities in type 1 diabetic
rats. Furthermore, caffeine consumption (1 g/L) for 7 months had a
potential neuroprotective effect, preventing synaptic dysfunction and
astrogliosis as well as memory impairment in type 2 diabetic mice
(Duarte et al., 2012; Stefanello et al., 2014). In addition, CGA (5mg/kg)
treatment for 30 days protected against brain alterations, such as:
prevented the increase in AChE activity; partially restored δ-ALA-D and
Na+,K+-ATPase activities; prevented lipid peroxidation; improved
memory; and decreased the anxiety-like behaviour in rats (Stefanello
et al., 2014).

4.4. Coffee, caffeine, and oxidative stress

Studies from literature have reported the antioxidant effects of
coffee (Choi et al., 2018; Martini et al., 2016; Viana et al., 2012).
Evidences suggest that coffee substances are involved in this beneficial
effect by increasing the endogenous antioxidant defenses (Martini et al.,
2016; Metro et al., 2017). Caffeine and other molecules present in
coffee seeds or coffee itself may be acting as “free radical sinks”, cap-
turing reactive species generated during heating.

Experimental investigations have supported the hypothesis that
caffeine may be partly responsible for the antioxidant effects described
for coffee. Caffeine was effective in protecting the mice lens against
oxidative damage induced by iron (Varma et al., 2010). The antioxidant
action of caffeine has been attributed to increase of glutathione (GSH)
levels and its ability to scavenge reactive oxygen species (ROS), parti-
cularly the ·OH (Varma et al., 2010).

In fact, other studies in vivo also have shown that caffeine can
control GSH metabolism. Intraperitoneal injection of caffeine (10mg/
kg) into male C57BL/6 mice significantly increased total GSH levels in
the hippocampus (Aoyama et al., 2011). Metro et al. (2017) also
showed that caffeine 5mg/kg (in two daily doses for seven consecutive
days) improved plasma levels of GSH and total antioxidant capacity,
besides decreasing lipid hydroperoxides and malondialdehyde levels in
healthy male volunteers. Evidences suggest that the improved GSH le-
vels could be explained by the increase in cysteine uptake in the pre-
sence of caffeine (Aoyama et al., 2011). In addition, Souza et al. (2013)
showed that when rats were treated with buthionine sulphoximine (a
GSH inhibitor synthesis), the protective effect of caffeine was decreased
in a model of pentylenetetrazol-induced seizure (Souza et al., 2013).

Animals that received a diet supplemented with brewed coffee (3%
and 6%), and the corresponding doses of 0.04% and 0.08% caffeine
after weaning showed a decrease in lipid peroxidation, and an increase
in GSH levels and in the activities of the glutathione reductase and
superoxide dismutase in the brain (Abreu et al., 2011). The impact of
caffeine in antioxidant system also has been associated to adenosine
receptors. These receptors are the main molecular targets of caffeine
and previous reports have shown that they are involved in the regula-
tion of ROS production (Almeida et al., 2003; Narayan et al., 2001).

Low caffeine doses (0.5–10mg/kg) may modulate oxidative stress in
many experimental conditions, such as menopause (Caravan et al.,
2016), seizures (Souza et al., 2013), acute and chronic stress (Kasımay
Çakır et al., 2017), Alzheimer's disease (Laurent et al., 2014; Prasanthi
et al., 2010) and exercise protocols (Barcelos et al., 2014; Vieira et al.,
2017). Caffeine (6mg/kg) administered orally during 21 or 42 days
prevented the increase in the malondialdehyde levels in blood and
hippocampus and improved the GSH/GGSG ratio in ovariectomized rats
(Caravan et al., 2016). Similarly, the same caffeine dose also increased
the GSH levels and decreased the lipid peroxidation in brain of rats
submitted to experimental model of seizure (Souza et al., 2013). Be-
sides, caffeine (10mg/kg) diminished ·OH production in striatum of
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rats treated with 3,4-methylenedioxymethamphetamine (Górska et al.,
2014).

The results about the antioxidant effects of caffeine in experimental
stress models are controversial. Caffeine (3mg/kg i.p.) was capable to
decrease the NO levels, lipid peroxidation, and improve superoxide
dismutase activity in brain of rats submitted to stress protocols
(Kasımay Çakır et al., 2017). On the other hand, using a restraint stress
protocol, Noschang et al. (2009) showed that caffeine at dose of 1.0 g/L
(in drinking water) during 40 days only increased the superoxide dis-
mutase and catalase activities in cerebral cortex of non-stressed animals
(Noschang et al., 2009).

Studies also have shown neuroprotective effects of caffeine asso-
ciated with its antioxidant properties against memory impairment in
aging (Costa et al., 2008; Costenla et al., 2010) in experimental models
of neurodegenerative diseases such as Alzheimer's and Parkinson's
diseases (Arendash et al., 2006); for reviews see (Chen and Chern,
2011; Cunha and Agostinho, 2010). Caffeine administered in the
drinking water in low (0.5 mg/day) and high (30 mg/day) doses for 12

weeks reduced Aβ40 and Aβ42 levels in rabbit hippocampus in a model
of Alzheimer's disease. However, only the dose of 30mg/kg was cap-
able to reduce ROS generation and reverse GSH depletion in hippo-
campus induced by this experimental condition (Prasanthi et al., 2010).
In other protocol of Alzheimer's disease, caffeine administered in
drinking water (0.3 g/L) was capable to restore gene expression of Nrf2,
a transcription factor involved in the response to oxidative stress of the
brain in THY-Tau22 mice (Laurent et al., 2014) (Fig. 3).

It is important to consider that antioxidant properties of caffeine
have also been demonstrated (León-Carmona and Galano, 2011), but
the vast majority of studies have reported antioxidant effects for caf-
feine in situations where some event triggered oxidative stress. Of note,
the dose and schedule of administration (acute, subchronic, and
chronic) may be responsible for the discrepancies between studies.
Although the beneficial/neuroprotective properties of caffeine may
involve antioxidant effects, more studies are necessary to investigate
through which mechanisms caffeine exerts its antioxidant effects in the
absence of agents that promote oxidative stress.

Fig. 2. Effect of caffeine and chlorogenic acid (CGA) on the central nervous system. Caffeine is an antagonist of adenosine receptors and can attenuate dopaminergic
toxicity, decrease inflammation, and upregulate A1 receptors. Moderate caffeine administration suppresses brain amyloid-β production. CGA improves memory
impairment, affects locomotor activity, and exerts anxiolytic and antioxidant effects.
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5. Impact of coffee, caffeine, and CGA in purinergic signalling

5.1. Purinergic system

5.1.1. Adenosine as a neuromodulator
Neuromodulation is related with synaptic or hormonal stimulation

leading to alteration in the electrical properties in response to in-
tracellular changes. It requires that an endogenous substance once re-
leased from pre- or post-synaptic sites is able to modify the release or
action of the neurotransmitter. Over the past years, this concept has
changed mainly due to advances in our knowledge on the role of glial
cells in the functioning of synapses. On the neuronal side, in several
regions of the brain, astrocytes participate of synapses in a structure
defined as the tripartite synapses (Araque et al., 1999; Halassa et al.,
2007). The participation of astrocytes in synaptic transmission as active
players was reinforced by studies showing the presence of synaptic
vesicles and a wide range of substances that can be released from these
cells (Bezzi et al., 2004; Montana, 2004).

The presence and release of adenosine from almost all eukaryotic
cells as well as the broad expression and distribution of its receptors
throughout the brain places this nucleotide as an important neuromo-
dulator in the CNS. Adenosine is not considered a neurotransmitter
since it is not stored and released from synaptic vesicles. Otherwise,
adenosine is generated by intracellular metabolism of adenosine
monophosphate (AMP) and transported to the extracellular medium by
bi-directional facilitated diffusion transporters. In the extracellular
medium, adenosine can also be formed by the synaptic release of ade-
nosine triphosphate (ATP), which is converted into adenosine by the
sequential action of ectonucleotidases (Zimmermann, 2006). Astrocytes
have been associated with the regulation of adenosine levels in the
synaptic clefts (Martín et al., 2007; Studer et al., 2006). The adenosine
in the synaptic cleft has been associated with ATP breaking derived
from astrocytes via a cascade of ectonucleotidases, under physiological
conditions (Pascual et al., 2005).

The first evidence of the inhibitory action of adenosine was de-
scribed in experiments using the neuromuscular junction. This study
sought to evaluate the effects of cyclic AMP on neurotransmitter release
and adenosine was simply used to increase cyclic AMP in the CNS.
However, adenosine surprisingly inhibited the transmitter release and
theophylline, which was used as an inhibitor of phosphodiesterase,
prevented it (Ginsborg, 1964). The concept was reinforced with further
experiments that found the release of ATP together with acetylcholine
(Simonato et al., 2006), to be similar to adenosine (Ribeiro and
Sebastião, 1987; Ribeiro and Walker, 1973). This effect was soon

understood because a cascade of ectoenzymes degrade ATP into ade-
nosine (Zimmermann, 2006) in the synaptic cleft (Ribeiro and
Sebastião, 1987).

5.1.2. Adenosine receptors
Response mediated by adenosine is associated with activation of

specific cell-surface G-protein coupled receptors, which are classified
into four subtypes: A1 receptor (A1R), A2AR, A2BR, and A3R
(Fredholm et al., 1994). The first adenosine receptors cloned, A1R and
A2AR, came from a library of orphan receptors from the dog thyroid
(Libert et al., 1991; Maenhaut et al., 1990); and were also cloned from
rat and human (Furlong et al., 1992; Mahan et al., 1991). A2BR was
cloned from the rat brain (Stehle et al., 1992) whereas the fourth re-
ceptor, A3, was more unexpected (Zhou et al., 1992). Apart from the
structural variability of A3Rs among mammals, adenosine receptors
have been cloned from several mammalian and non-mammalian species
and their expression appears to be well conserved among mammals.
Adenosine receptors were divided into two broad groups: A1Rs and
A3Rs that negatively couple to adenylate cyclase and A2ARs and A2BRs
that positively couple to adenylate cyclase.

The inhibitory A1R is the most abundant adenosine receptor, which
is functionally coupled to members of the pertussis-toxin-sensitive fa-
mily of G proteins (Gi1, Gi2, Gi3, and Go). It promotes activation of
membrane and intracellular proteins such as adenylate cyclase,
Ca2+and K+ channels, and phospholipase C (Palmer and Stiles, 1995).
The general distribution of A1Rs is similar between rodents and humans
(Fastbom et al., 1987; Schindler et al., 2001; Svenningsson et al., 1997).
A1R is distributed throughout the brain with the highest expression in
neurons of the hippocampus, cerebellum, cortex, and striatum (Mahan
et al., 1991; Reppert et al., 1991). It is important to note that A1R is
widely found in the excitatory synapses being located in the presynaptic
and postsynaptic neurons from hippocampus, as demonstrated by
Rebola et al. (2003a,b) and Tetzlaff et al. (1987) (Rebola et al., 2003b;
Tetzlaff et al., 1987). The presence of A1Rs was also detected in other
cell types in the brain such as astrocytes (Cristóvão-Ferreira et al.,
2013), microglia (Gebicke-Haerter et al., 1996), and oligodendrocytes
(Othman et al., 2003).

The mRNA expression of A2AR has been predominantly found in the
striatum and is selectively expressed in encephalin-containing striato-
pallidal neurons (Augood and Emson, 1994; Fink et al., 1992;
Svenningsson et al., 1997). Lower levels are also found in extrastriatal
areas, such as the lateral septum, cerebellum, cortex, and hippocampus
(Burnstock et al., 2011; Cunha, 2001). In fact, a more discrete expres-
sion of A2ARs can also be found in neurons from the neocortex and

Fig. 3. Effect of caffeine (▲), coffee
(●), and CGA (♦) on components of the
antioxidant system and in oxidative
stress. Caffeine treatment restores re-
active oxygen and nitrogen species.
Caffeine (1 g/L) alone increases catalase
and superoxide dismutase (SOD) activ-
ities. Coffee drinking increases glu-
tathione (GSH) levels as well as reduces
lipid peroxidation and oxidative DNA
damage. CGA prevents hydroxyl radical
formation by iron chelation.
Abbreviations: NOS: nitric oxide syn-
thase; GSH-Px: glutathione peroxidase;
GSSG: reduced glutathione; and GR:
glutathione reductase.
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limbic cortex (Lopes et al., 2004; Rebola et al., 2005). In addition to
neurons, A2AR has also been identified in astrocytes (Cristóvão-Ferreira
et al., 2013), microglia (Gebicke-Haerter et al., 1996; Landolt, 2008),
and blood vessels throughout the brain (Dunwiddie and Masino, 2001).

Due to their lower abundance in the brain, the role of A2BRs and
A3Rs has received considerably less attention. Thus, the role of ade-
nosine in the brain is believed to be mediated by a controlled activation
of A1 and A2A receptors (Fredholm et al., 2005). Both were first de-
fined in the 1970s, based on the ability of methylxanthines such as
theophylline and caffeine to act as antagonists (Fredholm, 1985).

5.1.2.1. Ectonucleotidases. Adenine nucleotides and adenosine levels
are controlled by a complex pathway of cell surface-localised
enzymes named ectonucleotidases. Four families of ectonucleotidases
are able to hydrolyse nucleoside triphosphates, diphosphates, and
monophosphates to nucleosides: ecto-nucleoside triphosphate
diphosphohydrolases (E-NTPDases), ecto-nucleotide pyrophosphatase/
phosphodiesterases (E-NPPs), alkaline phosphatases, and ecto-5′-
nucleotidase. General aspects of these enzyme families are briefly
described below.

5.1.2.1.1. E-NPPs. The E-NPPs constitute a family of proteins with
broad substrate specificity and catalyse the hydrolysis of pyrophosphate
and phosphodiester bonds in nucleic acids, nucleotide sugars, (di)
nucleotides, as well as in choline phosphate esters and
lysophospholipids (Goding et al., 2003; Stefan et al., 2005). These
enzymes are involved in the recycling of these nucleosides, purinergic
signalling, and control of pyrophosphate levels. Other suggested roles
include involvement in insulin receptor signalling, modulation of ecto-
kinase activity, and bone calcification (Goding et al., 2003).

Seven genes encode NPPs, but only three NPPs (NPP1-3) demon-
strate relevant (40–50%) sequence similarities at the protein level. NPP
isoforms are type II transmembrane glycoproteins characterised by a
large extracellular domain, intracellular N-terminal domain, and a
single transmembrane domain (Cimpean et al., 2004). A catalytic do-
main, a cysteine-rich region, a putative C-terminal “EF-hand” motif,
and active site are part of the extracellular domain (Sakagami et al.,
2005). NPP activity is characterised by divalent cation dependence,
strong alkaline pH optimum, inhibition by glycosaminoglycans, KM for
p-Nph-5′-TMP hydrolysis in the micromolar range, as well as for the
ability of ATP, ADP, and AMP to competitively inhibit p-Nph-5′-TMP
hydrolysis (Laketa et al., 2010).

NPP1 (plasma cell differentiation antigen-1, PC-1) is expressed in
the capillaries of the brain (Goding et al., 2003) and in rat C6 glioma
cells (Grobben et al., 1999), and correlation between astrocytic tumor
grade and increased NPP1 expression has been observed (Aerts et al.,
2011). NPP2 (ATX, autocrine motility factor) and NPP3 (gp130RB13−6,
B10, phosphodiesterase 1β) are expressed in choroid-plexus epithelial
cells (Fuss et al., 1997) and likely contribute to the secretion of cerebral
spinal fluid. Moreover, NPP2 can produce lysophosphatidic acid, an
important molecule for cerebral maturation and this enzyme is in-
creased in frontal cortex of Alzheimer patients (K. Umemura et al.,
2006). Studies have shown the elevated expression of NPP3 in solid
Walker 256 mammary tumors (Buffon et al., 2010) and in immature
astrocytes (Goding et al., 2003). It was found that the maturation
process could increase NPP1 mRNA whereas age seems to decrease
NPP3 mRNA. In the developing cerebral cortex, cerebellum, hippo-
campus, olfactory bulb, and striatum the NPP2 mRNA was char-
acterised. E-NPP activity has been related to the neutrophils, caudo-
putamen, cerebral peduncle and hypothalamus (Langer et al., 2008).

5.1.2.1.2. Alkaline phosphatases. Alkaline phosphatases (APs) are
non-specific phosphomonoesterases, which catabolise nucleosides, 5′-
tri-, di-, and monophosphates as well as release inorganic phosphate. In
the catalytic site of these enzymes there are three metal ions (two Zn
and one Mg), which are essential for the enzyme activity (Millán,
2006). Mammalian APs are membrane-bound enzymes with peak of
activity at alkaline pH values; APs show specific activity and KM values

when compared with other species. L-amino acids and peptides are AP
inhibitors by an uncompetitive mechanism (Millán, 2006). Five
isoforms of APs have been recognized in mice (Narisawa et al.,
2007). These APs help to regulate extracellular ATP concentration
and localised extracellular pH at the sites of bone reabsorption and
mineralisation through P2Y-dependent regulation of osteoclast and
osteoblast function (Kaunitz and Yamaguchi, 2008).

Tissue non-specific alkaline phosphatase (TNAP) is anchored
through a glycosylphosphatidyl inositol group in the plasma membrane
(Fonta et al., 2005). Studies have demonstrated that the most promi-
nent TNAP catalytic activity is associated with blood vessels, the
choroid plexus, and the meninges (Langer et al., 2008). In addition,
TNAP is identified in the thalamus, olfactory bulb, cerebral cortex,
caudoputamen, hypothalamus, colliculus, and cerebellum (Langer
et al., 2008). Levamisole, a TNAP inhibitor, blocked the ATP hydrolysis
to adenosine in neuron-glia signalling through the A2A receptor
(Doengi et al., 2008), indicating TNAP is important to nucleotide sig-
nalling.

5.1.2.1.3. E-NTPDases. The E-NTPDase family is composed by
several members with differences in tissue distribution, cellular
localisation and substrate specificity. These enzymes catabolise
nucleoside 5′-triphosphates and nucleoside 5′-diphosphates with
specific preference for each type of nucleotide.

Cell-surface members of E-NTPDase family are highly glycosylated
proteins with molecular masses ∼70–80 kDa, which show close im-
munological cross-reactivity and may exist either in monomeric or in
higher homo-oligomeric (dimeric or tetrameric) states (Zimmermann,
2000). These enzymes contain two transmembrane domains at the N-
and C-terminus with a central hydrophobic region with five highly
conserved sequence domains known as “apyrase conserved regions”
(ACR); ACR1 and ACR4 domains show common sequence homology
with members of the actin/HSP70/sugar kinase superfamily (Robson
et al., 2006; Yegutkin, 2008).

E-NTPDases have an alkaline optimum pH and millimolar con-
centrations of either Ca2+ or Mg2+ can stimulate catalytic activity
(Zimmermann, 2006). Several physiological or pathological stimuli are
able of modifying E-NTPDase activity. These events are critical for the
mammalian CNS, and their responses may change throughout devel-
opment, such as seizures and epilepsy (Cognato et al., 2011), hormonal
alterations (Bruno et al., 2005a), stress (Horvat et al., 2010), and no-
ciceptive response (Bruno et al., 2005b).

Eight different E-NTPDase genes encode members of the NTPDase
protein family. These enzymes are integral membrane proteins and
their active sites are located in the plasma membrane (NTPDases1–3
and 8) or in the lumen of Golgi complex and endoplasmic reticulum
(ER) (NTPDases4–7). NTPDase4 is localised to the Golgi apparatus
(UDPase) (Wang and Guidotti, 1998) and to lysosomal/autophagic
vacuoles (LALP70), respectively (Biederbick et al., 2000). NTPDase5
and NTPDase6 are localised to the ER or Golgi apparatus, but can also
be released in soluble form from transfected cells (Belcher et al., 2006).

Some ectonucleotidases have similar membrane topology and
amino acids sequences; then, NTPDase1–3 and 8 show catalytic sites
facing the extracellular milieu and two membrane spanning domains
(Ivanenkov et al., 2008; Robson et al., 2006). These enzymes use sev-
eral substrates with different preference and product pattern formation.
NTPDase1 hydrolyses ADP as well as ATP, whereas there is a preference
to hydrolyse ATP over ADP to NTPDases3 and 8. NTPDase 2 has a
higher ability to hydrolyse nucleoside triphosphates. The substrate
preference order by NTPDase4 and 5 is UDP > GDP > CDP and for
NTPDase 6 is GDP > IDP > UDP. NTPDase7 (LALP1) is located in
intracellular vesicles preferring nucleoside triphosphates (Robson et al.,
2006).

Members of the E-NTPDase family were sequenced and NTPDase1
was identified as the cell activation antigen CD39 (Maliszewski et al.,
1994). Experimental studies using purified and cloned soluble apyrase
(ATP-diphosphohydrolase) from potato tubers confirmed the homology
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of this enzyme with human CD39 (Handa and Guidotti, 1996).
E-NTPDases1–3 are expressed in the mammalian brain and mediate

the termination of ATP signalling in the synaptic cleft (Burnstock et al.,
2011; Zimmermann, 2006) and hydrolysis of nucleoside tri- and di-
phosphates occur in all cell types of the nervous system (Langer et al.,
2008; Zimmermann, 2006).

E-NTPDase1 is localised at the surface of endothelial vessels in the
CNS and is strongly expressed in microglia (Braun et al., 2000). E-
NTPDase2 is associated with progenitor cells in the adult rodent brain
(Braun et al., 2003) and is expressed in muscularised vessels (Robson
et al., 2005), cultured astrocytes (Wink et al., 2006), non-myelinating
Schwann cells, and other glial cells of the central and peripheral ner-
vous systems (Robson et al., 2006). E-NTPDase3 is expressed in various
brain regions (Vorhoff et al., 2005). This enzyme acts as a pre-synaptic
regulator of extracellular ATP levels in the brain and E-NTPDase3 may
coordinate multiple homeostatic systems such as sleep–wake and
feeding behaviours (Belcher et al., 2006).

Interestingly, E-NTPDase8 shares its main functional properties with
E-NTPDase3 rather than E-NTPDase1 or E-NTPDase2. E-NTPDase8 is
expressed in the liver, kidney, and jejunum, but its expression level is
very low in the brain (Bigonnesse et al., 2004). The involvement of
NTPDase8 in the control of nucleotide concentrations in hepatocytes,
the regulation of bile secretion, and/or nucleoside salvage may be as-
sociated to the expression of this enzyme in bile canaliculi and blood
vessels of the liver (Fausther et al., 2006; Robson et al., 2006).

NTPDases can be altered by several pathological conditions, such as
demyelination and hyperhomocysteinemia. Studies demonstrated that
the antioxidant treatment could modulate these changes and the altered
oxidative stress parameters in these conditions (Fernandes Zanin et al.,
2010; Schetinger et al., 2007). An increase in CD39 expression in pla-
telets of hypercholesterolemic patients has been associated with an
increase in ATP and ADP hydrolysis. There is a correlation between
increase in CD39 activity and enhanced oxidative stress parameters,
suggesting that there is an association between the inflammatory re-
sponse, pro-oxidative state and hypercholesterolemia (Gutierres et al.,
2014b; Medeiros Frescura Duarte et al., 2007; Schetinger et al., 2007).

5.1.2.1.4. Ecto-5′-nucleotidase. Ecto-5′-nucleotidase (lymphocyte
surface protein CD73; E.C. 3.1.3.5) is a glycosylphosphatidylinositol-
anchored enzyme that belongs to a superfamily of
metallophosphoesterases with a binuclear metal center (Koonin,
1994). The main role of ecto-5′-nucleotidase is the hydrolysis of a
variety of nucleoside 5′-monophosphates such as AMP, CMP, UMP,
IMP, and GMP to their respective extracellular nucleosides (Colgan
et al., 2006). AMP is the most efficiently hydrolysed nucleotide, since
the KM values are in the low micromolar range (50 μM). Thus, ecto-5′-
nucleotidase, by extracellular AMP hydrolysis to adenosine formation,
plays an important role in subsequent activation of P1 adenosine
receptors (Dunwiddie and Masino, 2001). Ecto-5′-nucleotidase was
found to be an ortholog of bacterial 5′-nucleotidases according to the
primary sequence homology (Koonin, 1994). Seven human 5′-
nucleotidases have been found, five 5′-nucleotidases were located in
the cytosol, one attached to the plasma membrane, and the last one in
the mitochondrial matrix (Yegutkin, 2008). Ecto-5′-nucleotidases show
apparent molecular masses of 60–70 kDa with 548 amino acids. The
membrane-bound form of 5′-nucleotidase exists as a dimer, while the
soluble form can exist as a dimer or tetramer (Dunwiddie and Masino,
2001; Zimmermann, 2000). The enzyme has a broad tissue distribution,
with abundant expression in the kidney, brain, liver, colon, heart, lung,
and human placenta (Yegutkin, 2008; Zimmermann et al., 2012). Ecto-
5′-nucleotidase is predominantly found in endothelium of vascular
vessels such as the aorta, carotid, and coronary artery (Koszalka et al.,
2004). Ecto-5′-nucleotidase may reveal a variety of different functions,
depending on its cell and tissue expression. Like other surface-located
enzymes, ecto-5′-nucleotidase has been implicated in non-enzymatic
functions such as T-cell activation and cell–cell adhesion. In addition,
this enzyme, together with other ectonucleotidases, inactivates

signalling nucleotides that act on P2X and P2Y receptors and thus
adenosine can bind to the P1 receptors.

Adenosine is an endogenous purine associated with a neuromodu-
latory role mainly with neuroprotective actions in pathological condi-
tions (Dunwiddie and Masino, 2001). Adenosine produced by ecto-5′-
nucleotidase also plays a crucial role in cell survival and differentiation
of neural cells (Burnstock et al., 2011). It is important to note that this
enzyme is collocated with A2AR and CD73-mediated formation of ex-
tracellular adenosine is related with activation of A2AR in striatum and
A1R in hippocampus (Augusto et al., 2013; Ena et al., 2013; Rebola
et al., 2003a). Ecto-5′-nucleotidase is transiently active within synaptic
clefts during development and regeneration (Cunha, 2001; Langer
et al., 2008). Age-related alterations were also observed for ecto-5′-
nucleotidase activity in the CNS. For example, ecto-5′-nucleotidase
activity was 5-fold higher in the hippocampus of aged rats compared
with young rats (Cunha, 2001). In addition, alterations in ecto-5′-nu-
cleotidase activity were observed in the CNS in pathological and phy-
siological conditions, indicating the relevance of this enzyme for brain
pathophysiology (Burnstock and Novak, 2012; Leite et al., 2011;
Schetinger et al., 2007).

5.2. Caffeine effects on the purinergic system

5.2.1. Adenosine receptors and caffeine
Caffeine is the psychostimulant substance most consumed world-

wide. The antagonism of adenosine receptors contributes to our un-
derstanding of the stimulant effects of caffeine in the brain. Caffeine
antagonises adenosine action at pre- and postsynaptic sites in both A1
and A2A receptors in moderate and low doses, decreasing the adenosine
inhibitory effect. The blockade of adenosine A1 and A2A receptors can
be attained with amounts ranging from 40 to 180mg of caffeine, levels
that can be present in one cup of coffee (Fredholm et al., 1999). Con-
centrations of caffeine many times higher than those required for the
blockade of adenosine receptors exert other effects on cell signalling
such as calcium release, inhibition of phosphodiesterase, and γ-ami-
nobutyric acid A receptor (Daly, 2007; Fredholm et al., 1999).

A recent study by Cruz et al. (2017) demonstrated that 500mg/kg
caffeine promotes an increase in A1 and A2A mRNA expression after 4 h
of exposure in zebrafish larvae (Cruz et al., 2017). In addition, caffeine
consumption (1 g/L in the drinking water starting 2 weeks before STZ
challenge) showed preventive STZ-induced memory impairment and
neurodegeneration and upregulation of A2AR (Espinosa et al., 2013). A
study with anxiety-related behaviour has demonstrated that caffeine
(1.0 g/L) attenuated anxiety throughout life in rats (Ardais et al., 2016)
and this effect could be related with increase of A1R in the hippo-
campus (Ardais et al., 2014). Finally, maternal consumption of caffeine
during pregnancy and lactation can be related with effects on neuronal
development and adult behaviour of their offspring. Silva et al. (2013)
have suggested that this effect seems to be related with A2AR antag-
onism, promoted by caffeine, since A2AR-mice pups reproduced this
alteration on brain development (Silva et al., 2013). In addition, Robins
et al. (2016) showed that repeated exposure to caffeine plus alcohol
during adolescence causes neurochemical and behavioural alterations,
which is not observed when caffeine is administrated alone (15mg/kg)
in mice (Robins et al., 2016).

5.2.2. Ectonucleotidases and caffeine
There are few studies on xanthine effects on ATPases and ectonu-

cleotidases. Previous studies have shown that both theophylline and
caffeine competitively inhibited the 5′-nucleotidase in cardiac tissue,
though theophylline looks as if being a more potent agent. This in-
hibitory effect on 5′-nucleotidase may not be connected with actions on
phosphodiesterase enzyme, since some inhibitors of phosphodiesterase,
such as dipyridamole and papaverine, did not affect the 5′-nucleotidase
activity (Heyliger et al., 1981). Studies have also shown a significant
inhibition of rabbit renal 5′-nucleotidase (EC 3.1.3.5), cyclic nucleotide
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phosphodiesterase (EC 3.1.4.17), and adenosine deaminase (EC 3.5.4.4)
by theophylline, though only at millimolar concentration (Fredholm
et al., 1978). Furthermore, a significant inhibition of 5′-nucleotidase
from rat brain by different xanthine derivatives has been observed
(Fredholm et al., 1978; Jensen and Jacobsen, 1987). In contrast,
theophylline caused an increase of Ca2+/Mg2+-ATPase activity from
crude synaptosomal membranes in the hippocampal region (Lachowicz
et al., 1983).

The acute administration of 30mg/kg caffeine promoted an en-
hancement of both ATP and ADP hydrolysis in synaptosomes of the
hippocampus and striatum, respectively. However, chronic caffeine
exposure of 0.3 and 1 g/L in drinking water for 14 days was unable to
modify NTPDase and 5′-nucleotidase activities in rat hippocampal and
striatal synaptosomes (Souza da Silva et al., 2003). On the other hand,
caffeine altered nucleotide hydrolysis and ectonucleotidase expression
in the hippocampus of rats (in the first 3 weeks of post-natal life) after
maternal caffeine consumption (Da Silva et al., 2012). Thus, it seems
that high acute concentrations of caffeine can modulate the ectonu-
cleotidase pathway, which could produce an increase in adenosine le-
vels to counteract the antagonist actions of caffeine.

Mate is an infusion of the ground and dried leaves of Ilex para-
guariensis St. Hil. (Aquifoliacea), popularly known as yerba mate. One
of the reasons to consume it is because it is a xanthine-containing
beverage. The ingestion of I. paraguariensis could contribute to an in-
crease in antioxidant defences against free radicals (Schinella et al.,
2000). Chronic ingestion of aqueous extracts of I. paraguariensis by rats
for 15 days significantly, decreased AMP, ADP and ATP hydrolysis in
serum. Thus, it seems that this beverage can change the nucleotidase
pathway, modulating the balance in purine levels, which can induce
relevant effects in the cardiovascular system, since I. paraguariensis has
a hypotensive role (Görgen et al., 2005). It has been also shown that
caffeine blocks the increase in ecto-5′-nucleotidase activity and the
vasodilator response induced by rosuvastatin, impairing the clinical
benefit of statins, particularly in conditions of ischemia (Meijer et al.,
2010). (see Table 1).

Previous epidemiological report have observed that caffeine can
adversely affect calcium absorption, decrease bone mineral density and
increase the risk of bone fracture. Caffeine significantly downregulated
Cbfa1/Runx2, collagen I, and alkaline phosphatase expressions in rat
bone marrow-derived mesenchymal stromal cells; these genes and
proteins are expressed in osteogenesis, indicating that caffeine plays
important role in osteogenesis (Zhou et al., 2010).

Besides its effects in osteogenesis, caffeine has been associated with
the development of diabetes. Duarte et al. (2012) showed that caffeine
consumption per se could increase serum insulin in NONcNZO10/LtJ
diabetic mice after 20 weeks. On the other hand, its positive effects

have also been described, i.e., caffeine (15mg/kg) administered for 30
days attenuated the alterations promoted by hyperglycemia by partially
restoring brain Na+/K+-ATPase activity (Stefanello et al., 2014), as
well as by restoring NTPDase and ecto-5′-nucleotidases activities in
platelets. In addition, caffeine consumption prevented synaptic degen-
eration and astrogliosis in the hippocampus of STZ-induced diabetic
rats (Duarte et al., 2009). Caffeine consumption (1 g/L) for 20 weeks
restored memory performance and prevented synaptic dysfunction and
astrogliosis in type 2 diabetic mice (Duarte et al., 2012).

5.3. Effects of CGA on the purinergic system

A study recently published by Stefanello et al. (2016) showed CGA
as an anti-aggregant agent. When platelets from diabetic rats were
stimulated with agonist ADP, platelet aggregation was significantly
reduced by CGA treatment for 30 days (Stefanello et al., 2016). More-
over, Fuentes et al. (2014) demonstrated that CGA inibihits platelet
activation by the A2A receptor/adenylate cyclase/cAMP/PKA signal-
ling pathway. This study showed through molecular modeling that CGA
has a structure compatible with the active site of the adenosine A2A
receptor, acting as an agonist. Consistent with this, administration of
200mg/kg CGA in vivo inhibited arterial thrombosis formation in mice
(Fuentes et al., 2014). These data suggest that CGA and coffee may be
used to protect against the damage of the cardiovascular system ob-
served in diabetes. (see Table 1).

5.4. Other compounds in coffee

We also have to give attention to caffeic acid effects, since it is a
compound widely found in coffee. Studies using 5-caffeoylquinic and
caffeic acids have demonstrated a decrease in the risk of inflammation
and cardiovascular diseases (Anwar et al., 2013a; Bonita et al., 2007).
In fact, Anwar et al. (2013) showed that ATP and AMP hydrolysis in
platelets was decreased, while caffeic acid (10, 50, and 100mg/kg)
promoted an increase in ADP hydrolysis after 30 days of treatment.
They also showed that in platelets, the E-NPP and adenosine deaminase
activities were increased by 10–100mg/kg caffeic acid treatment.
These findings suggest that the adenine nucleotide hydrolysis in pla-
telets may be associated with beneficial effects of caffeic acid in car-
diovascular diseases. In addition, 10, 50, and 100mg/kg of caffeic acid
for 30 days induced a significant reduction in platelet aggregation,
using ADP (5 μM) as an agonist. Based on this as well as other studies,
Anwar and colleagues suggested that caffeic acid may interfere with the
purinoreceptores P2Y1 and P2Y12 (Anwar et al., 2013a). (see Table 1).

Table 1
Effects of caffeine, caffeine sources, and caffeic acid on nucleotide hydrolysis in different experimental protocols.

Drug Nucleotide Dose, period, and route of administration Effect Tissue Animal model Reference

Caffeine ATP 30mg/kg – i.p. ↑ Hippocampus Adult rat 215
ADP 30 mg/kg– i.p. ↑ Striatum Adult rat 215
AMP 30 mg/kg– i.p. No Striatum and hippocampus Adult rat 215
ATP 0.3–1 g/L for 14 days – drinking water No Striatum and hippocampus Adult rat 215
ADP 0.3–1 g/L for 14 days– drinking water No Striatum and hippocampus Adult rat 215
AMP 0.3–1 g/L for 14 days– drinking water No Striatum and hippocampus Adult rat 215

Ilex paraguariensis ATP 15 days –drinking water ↓ Serum Adult rat 218
ADP 15 days –drinking water ↓ Serum Adult rat 218
AMP 15 days –drinking water ↓ Serum Adult rat 218

Caffeine and diabetes ATP 15mg/kg for 30 days –gavage ↓ Platelets Adult rat 7
ADP 15mg/kg for 30 days –gavage ↓ Platelets Adult rat 7
AMP 15mg/kg for 30 days –gavage ↓ Platelets Adult rat 7

Caffeic acid ATP 10, 50, and 100mg/kg for 30 days –gavage ↓ Platelets Adult rat 5
ADP 10, 50, and 100mg/kg for 30 days –gavage ↑ Platelets Adult rat 5
AMP 10, 50, and 100mg/kg for 30 days –gavage ↓ Platelets Adult rat 5

i.p., intraperitoneal.
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6. Concluding remarks

Further studies evaluating the role of caffeine in the modulation of
nucleotide levels in several conditions, such as brain development,
ageing, and neurodegenerative diseases, could contribute to a better
understanding of the neuroprotective effects induced by this xanthine
compound.

In addition, CGA is described as a promising compound for the
treatment of many diseases mainly linked with inflammation and may
act on purinergic modulation. Other compounds found in coffee may
have similar effects as trigonelline, which acts in the prevention of
disease of the CNS and diabetes. On the other hand, cafestol and kah-
weol raise serum concentrations of cholesterol, triacylglycerol, and
alanine aminotransferase in humans. These compounds contribute to
the global effects of coffee.

The effects of coffee are controversial. In addition to caffeine and
CGA, many other phenolic compounds may be present in coffee and
exhibit biological activities. Therefore, additional studies with animal
models and humans are necessary to clarify the mechanism by which
they are acting.
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