
Vol.:(0123456789)1 3

World Journal of Microbiology and Biotechnology (2020) 36:15 
https://doi.org/10.1007/s11274-019-2791-x

REVIEW

Transglutaminases: part I—origins, sources, and biotechnological 
characteristics

Lovaine Duarte1 · Carla Roberta Matte1 · Cristiano Valim Bizarro2 · Marco Antônio Záchia Ayub1 

Received: 14 October 2019 / Accepted: 20 December 2019 / Published online: 2 January 2020 
© Springer Nature B.V. 2020

Abstract
The transglutaminases form a large family of intracellular and extracellular enzymes that catalyze cross-links between pro-
tein molecules. Transglutaminases crosslinking properties are widely applied to various industrial processes, to improve the 
firmness, viscosity, elasticity, and water-holding capacity of products in the food and pharmaceutical industries. However, 
the extremely high costs of obtaining transglutaminases from animal sources have prompted scientists to search for new 
sources of these enzymes. Therefore, research has been focused on producing transglutaminases by microorganisms, which 
may present wider scope of use, based on enzyme-specific characteristics. In this review, we present an overview of the 
literature addressing the origins, types, reactions, and general characterizations of this important enzyme family. A second 
review will deal with transglutaminases applications in the area of food industry, medicine, pharmaceuticals and biomateri-
als, as well as applications in the textile and leather industries.

Graphic abstract
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Introduction

Transglutaminase (EC 2.3.2.13, protein-glutamine gamma-
glutamyltransferase, TGase) is a calcium-dependent enzyme, 
belonging to the class of transferases, which catalyzes the 
acyl-transfer between glutamine residues and a wide vari-
ety of primary amines (Ohtsuka et al. 2000). The reaction 
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product results in stable, insoluble macromolecular com-
plexes (Esposito and Caputo 2004). The formation of iso-
peptide bonds results in both intra- and inter-molecular 
cross-linking of proteins, the latter leading to protein polym-
erization (Griffin et al. 2002).

TGases are known to be widely distributed in nature, 
being found in vertebrates, invertebrates, mollusks, plants, 
and microorganisms (Folk 1980; Shleikin and Danilov 
2011). They are involved in various physiological functions 
such as blood clotting, wound healing and epidermal kerati-
nization, stabilization of photosynthetic complexes in the 
chloroplast, and programmed cell death in plants. Moreo-
ver, TGases are used extensively in the food industry, in 
tissue engineering, as well as in biochemical and biomedical 
research, and textile and leather processing (Griffin et al. 
2002; Heck et al. 2013; Serafini-Fracassini and Del Duca 
2008; Yang et al. 2011; Yokoyama et al. 2004; Zhu and 
Tramper 2008).

The term transglutaminase was first introduced in the lit-
erature by Clarke et al. (1959) when the authors found an 
enzyme showing transamidating properties in the guinea-pig 
liver (Clarke et al. 1959; Folk and Cole 1966). Until late 
1980s, the TGase isolated from guinea-pig and from other 
mammalians blood were the most important sources of this 
enzyme (Clarke et al. 1957).

Mammalian TGases require Ca2+ for activation and show 
a red pigmentation, affecting the appearance of commercial 
products, thus none of these enzymes have ever been com-
mercialized or accepted for industrial applications in food 
production, influencing the search for alternative, convenient 
commercial sources (Beninati et al. 2008; de Góes-Favoni 
and Bueno 2014; Jaros et al. 2006; Yokoyama et al. 2004).

In this context, the objective of part I of this review is to 
present a framework on transglutaminases of mammalian, 
non-mammalian (invertebrates, plants, fungi), and microbial 
origins, with special emphasis on the microbial enzymes 
because of their industrial importance. The properties of 
transglutaminases of Streptoverticillium and Bacillus—two 
of the most important sources of these enzymes—as well as 
the use of recombinant microorganisms for their production, 
are presented in detail. The uses and applications of trans-
glutaminases in the food and biotechnology industries will 
be presented in a second part review on this subject.

Origins

The evolutionary history of TGase is not fully understood. 
However, given the similarities in the catalytic triad and 
the mechanism of transglutaminase reaction, is possible to 
suggests that transglutaminases have an evolutionary rela-
tionship to papain-like thiol proteases whose closest current 
representative is found in domain NlpC/P60. Clustering of 
the transglutaminase-like domains by sequence similarity 
identified a superfamily of proteins homologous to eukary-
otic transglutaminases that are found in all archaea, some 
bacteria and yeast species, and the Caenorhabditis elegans. 
Sequence conservation involves the catalytic triad the trans-
glutaminase. In 1999, Makarova et al. presented a compu-
tational analysis of this superfamily, remaining one of the 
most complete work comparing TGases among prokaryotes 
and eukaryotes. Since then, many more gene sequences of 
TGase have been published and a new phylogenetic tree 
based on the gene sequences are in preparation by our group 
and should be published soon (Anantharaman and Aravind 
2003; Fernandes et al. 2015; Makarova et al. 1999).

In mammalian transglutaminases the catalytic mechanism 
is based on a triad of non-contiguous amino acids, i.e., Cys-
His-Asp, and have the highly conserved active site region 
(GQCWVF) as can be seen in Fig. 1. Microbial transglutam-
inases show no similarity to mammalian transglutaminases, 
although they have the same catalytic triad, with a different 
sequence order, namely Cys-Asp-His (Giordano and Fac-
chiano 2019; Kashiwagi et al. 2002; Whitaker et al. 2002).

Transglutaminase catalyzed reactions

The transamidation reactions catalyzed by TGase, including 
crosslinking, have attracted major research interests because 
of the potential applications in both the food and pharmaceu-
tical industries. Amine incorporation and deamidation reac-
tions are also well recognized because of their importance 
in transglutaminase-mediated post-translational modifica-
tions of proteins (Griffin et al. 2002; Lorand and Graham 
2003; Yokoyama et al. 2004). The mechanism of action of 
TGase is the reversion of the proteolysis reaction catalyzed 
by the thiol proteases (Makarova et al. 1999; Plácido et al. 

Fig. 1   Amino acid sequences 
near the active site of human 
TGases. Band 4.2 does not 
show TGase activity because it 
carries a Cys → Ala substitu-
tion at the active site
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2008) and consists of two steps residue (Fig. 2a). In the first 
step the cysteine thiol group present in the active site of 
the enzyme attacks the side chain of the glutamine residue 
(acyl acceptor) on the protein substrate. In this way, the 
acyl-enzyme complex is formed with concomitant ammo-
nia release. In the second step, reactions may occur in three 
different ways (Eckert et al. 2014; Gundemir et al. 2012; Lai 
et al. 2017; Lorand and Graham 2003; Yang et al. 2011):

	 I	 Crosslinking reaction between a γ-glutamyl contain-
ing peptide substrate and either a ε-amine group from 
a peptide-bound Lys residue (Fig. 2a, step 2, reac-
tion I). This type of reaction is kinetically favored at 
pH > 7 and high substrate concentrations.

	 II	 When transglutaminase promotes the reaction 
between γ-glutamyl containing peptide substrate 
and the available primary amine substrate (such as 
biogenic amines), the enzyme catalyzes the incorpo-
ration of the primary amino group and resulting of a 
γ-glutamyl-amine bond (Fig. 2a, step 2, reaction II).

	 III	 When water acts as the acyl acceptor and the resultant 
hydrolysis reaction yields a glutamic acid (E) residue 
(Fig. 2a, step 2, reaction III).

All TGase may present high specificity in relation to glu-
tamine substrates and low specify when compared to acyl-
acceptor amino group. This acyl-acceptor amino group may 
have two types: the ε-amino group of the peptide lysine or 
the low-molecular primary amine (Shleikin and Danilov 
2011). Figure 2b shows the possible catalytic mechanism 
for microbial transglutaminases (based on S. mobaraensis). 
The amino acid residues of mTGase active site are shown in 
step 1. In step 2, the thiolate ion of Cys producing a nucleo-
philic attack to an acyl donor, the side chain of the Gln resi-
due (substrate 1). In steps 3 and 4, Asp donates a proton to 
the resultant oxyanion intermediate, and an ammonium is 
released. In step 5, an acyl acceptor, such as the side chain 
of the Lys residue (substrate 2), approaches the active site, 
and the side chain of Asp, which is now negatively charged, 
causing a nucleophilic attack to one proton of the acyl accep-
tor. Finally, in steps 6 and 7, the product is released from the 
resultant oxyanion intermediate, and the catalytic reaction is 
finished, and the catalytic site is released for a new reaction, 
returning to step 1 (Kashiwagi et al. 2002). In this mecha-
nism, the Asp residue plays the role of His residue for Factor 
XIII transglutaminases (Pedersen et al. 1994).

Methods for measuring TGase activity

There are many assay methods for measuring TGase activity 
described in the literature (Jeoung et al. 2010; Kobayashi 
et al. 1996; Sokullu et al. 2008). In one of the most used 

methods, mTGase activity can be determined by the for-
mation of Z-glutamyl-hydroxamate-glycine (a detectable 
iron(III) colored complex at 525 nm) using Z-Gln-Gly as 
the amine acceptor substrate and hydroxylamine as amine 
donor. A calibration curve can be constructed using l-glu-
tamic acid γ-monohydroxamate as standard. One unit of 
microbial transglutaminase activity is defined as the amount 
of enzyme causing the formation of 1.0 µmol of hydroxam-
ate per minute, by catalyzing the reaction between Z-Gln-
Gly and hydroxylamine at pH 6.0 and 37 °C (Folk and Cole 
1966; Grossowicz et al. 1950).

Additionally, several fluorescent assay procedures have 
been developed where it is used the increasing fluorescence 
intensity over time for determining enzymatic activity of 
transglutaminase. One of these methods consists of covalent 
coupling of monodansylcadaverine, catalyzed by transglu-
taminase to N,N-dimethylcasein using excitation wavelength 
332 nm and emission wavelength 500 nm. The increase in 
fluorescence is proportional to the transglutaminase activity 
(Lorand et al. 1971).

Diversity of transglutaminases

Focus will be given to most studied and used TGases, sub-
divided into mammalian, non-mammalian, and microbial 
transglutaminases.

Mammalian transglutaminases

The animal-like TGases form a large family of intracellular 
and extracellular enzymes with multiple functions. They are 
activated by calcium and produced in a zymogenic form, 
bound by inhibitory subunits, and/or negatively modulated 
by GTP/GDP or ATP (Esposito and Caputo 2004; Fernandes 
et al. 2015; Gundemir et al. 2012; Klöck and Khosla 2012; 
Lorand and Graham 2003).

In mammals, the transglutaminase family comprises nine 
enzymes: TG1 to TG7, factor XIII, and band 4.2, eight of 
which encode active enzymes, whereas one of them (eryth-
rocyte membrane protein band 4.2) lacks enzymatic activity. 
Although the overall primary structure of TGase enzymes 
appears to be different, they are all encoded by a family 
of closely related genes. All mammalian TGase genes have 
been identified and their chromosomal positions have been 
mapped. Alignment of the gene products reveals a high 
degree of sequence similarity, with an identical amino acid 
sequence in the active site (Fig. 1). The nine types of TGases 
of this class and some of their characteristics and functions 
are described in succession below.

Transglutaminase 1 (TG1), also known as keratinocyte 
transglutaminase, is an enzyme responsible for the formation 
of the cornified envelope (CE), acting as a barrier against 
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water loss and protecting against pathogens (Aufenvenne 
et al. 2013; Eckert et al. 2014). Dehydration, fatal in the first 
weeks of life, results from autosomal recessive congenital 
ichthyosis caused by TG1 mutations (Cserhalmi-Friedman 
et al. 2002; Oji et al. 2010).

The most widely distributed and studied TGase is trans-
glutaminase 2 (TG2), also called tissue transglutaminase. 
TG2 is expressed by almost all cell types in the body, being 
active only when bound to calcium. (Eckert et al. 2014; 
Grenard et al. 2001; Lorand and Graham 2003; Mehta and 
Eckert 2005).

The main function of TG2 is transamidation, but recent 
developments show that it is a multifunctional protein act-
ing as a protein disulfide isomerase (PDI), protein kinase, 
scaffold protein, and even as a DNA hydrolase (Fesus and 
Piacentini 2002; Gundemir et al. 2012; Lorand and Graham 
2003). It has been observed that expression and/or enzymatic 
activity is increased in several diseases, including Celiac 
disease, neurodegenerative diseases (e.g., Alzheimer’s or 
Parkinson’s disease), cataract formation, atherosclerosis, 
inflammation, fibrosis, diabetes, autoimmune diseases and 
in highly aggressive forms of cancer (Griffin et al. 2002; Katt 
et al. 2018; Lorand and Graham 2003).

Transglutaminase 3 (TG3) is also known as epidermal 
transglutaminase and is widely expressed in the small intes-
tine, brain, skin, and mucosa (Eckert et al. 2014). Similar to 
TG1, TG3 is predominantly involved in the formation of the 
cornified cell envelope (critical structure for barrier function 
at the outermost layer of the skin epidermis) (Hitomi et al. 
2001; Klöck and Khosla 2012). Studies have revealed that 
the down regulation of the TG3 gene is closely linked with 
a variety of human cancer types, including esophageal and 
oral squamous cell carcinoma (OSCC) (Negishi et al. 2009; 
Uemura et al. 2009).

Transglutaminase 4 (TG4), also known as prostate TG, 
is present in the prostate gland, prostatic fluids, and semi-
nal plasma. The exact function of TG4 in humans is not 
well known, but some recent reports suggest a link between 
increased expression of TG4 and promotion of prostate can-
cer (Jiang and Ablin 2011; Jiang et al. 2009).

Transglutaminase 5 (TG5), also known as transglutami-
nase X, is a recently added member of the TGase family 
(Aeschlimann et al. 1998) and only its limited characteri-
zation at functional and biochemical level has been per-
formed (Candi et al. 2004). Similarly to TG1 and TG3, 

TG5 is expressed in stratified squamous epithelia such as 
the upper layers of the epidermis, and contributes to hyper-
keratosis in ichthyosis and psoriasis patients (Candi et al. 
2002). TG5 inactivating mutations result in a rare pathology 
named Acral Peeling Skin Syndrome (APSS) in which skin 
peeling is strictly limited to the dorsa of the hands and feet 
(Cassidy et al. 2005).

Also called transglutaminase Y, Transglutaminase 6 
(TG6) expression is compartmentalized in the human tes-
tes and lungs, and in the brain of mice (Eckert et al. 2014; 
Liu et al. 2013). Autoantibodies to TG6 were identified in 
immune-mediated ataxia in patients with gluten sensitivity 
and human carcinoma cells with neuronal characteristics 
also express TG6 (Thomas et al. 2013).

Transglutaminase 7 (TG7), known as transglutaminase Z, 
is not fully functionally-understood and few data is known 
about the regulation or even the function of the TG7 gene. 
Like TG6, TG7 expression is restricted to testes, lungs, and 
brain (Eckert et al. 2014). Studying the substrate preferences 
of TG7, it was identified a highly reactive substrate sequence 
for TG7 with isozyme-specificity. The knowledge of prod-
ucts that are possibly cross-linked by TG7 will provide more 
information on the physiological significance of this enzyme 
and diseases that may be associated with it (Kuramoto et al. 
2013).

Factor XIII-A, also known as fibrin stabilizing factor, is a 
zymogen and becomes active by thrombin. It is a major con-
tributor to clot formation in the final stages of coagulation. It 
is also important to maintain pregnancy and wound healing. 
In plasma, it circulates as a tetramer composed of two subu-
nits: a subunit A (FXIII-A) and B (FXIII-B), which requires 
calcium and thrombin for activation (Tahlan and Ahluwalia 
2014). It is produced by the liver, although it can also be 
found in the extracellular space and cytoplasm of various 
cells throughout the body (Paragh and Törőcsik 2017). 
Therefore, the therapeutic potential of FXIII includes inva-
sive bacterial infections, systemic sclerosis (scleroderma), 
and tissue repair (in healing of venous leg or myocardial 
ulcers) (Dickneite et al. 2015).

Band 4.2 plays an important role in regulating cell sta-
bility and maintaining membrane integrity. It is the only 
TGase that has no activity because it carries a Cys → Ala 
substitution at the active site, which makes the protein una-
ble to catalyze the reaction (Fig. 1). This inactive TGase is 
found in several tissues and cells, such as bone marrow, in 
erythrocytes, fetal liver, and the spleen (Eckert et al. 2014; 
Mariniello et al. 2008).

Non‑mammalian transglutaminases

The family of TGases has been notably enlarged due to 
the discovery of novel isoforms in vertebrates as well as 
in invertebrates, plants, fungi, and microorganisms. TGase 

Fig. 2   Reactions catalyzed by transglutaminases (TGase). a Scheme 
of the reactions in two steps acyl transfer reaction, where Step I is 
the formation of the intermediate acyl donor-enzyme and ammonia 
release and Step 2 (I) crosslinking, (II) primary amine incorporation, 
and (III) deamination with the free enzyme release. b A hypotheti-
cal catalytic mechanism of mTGase of S. mobaraensis. The residues 
of substrate proteins are Gln (substrate 1, blue) and Lys (substrate 2, 
red). Adapted from Kashiwagi et al. (2002)

◂
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activity was observed in different fishes, showing molecular 
variation among species. It was suggested that TGases may 
be present in eggs and skin of amphibians, in turtle shell, 
in epidermis, erythrocytes, and chicken gizzard (Mariniello 
et al. 2008; Worratao and Yongsawatdigul 2005). Transglu-
taminases are also present in plant tissues of soy, fava beans, 
beet, and orchard apple, whose activities are related to the 
organization of the cell wall, in antibacterial immune reac-
tions, and in photosynthesis (Falcone et al. 1993; Kang and 
Cho 1996; Kashiwagi et al. 2002; Kieliszek and Misiewicz 
2014; Lilley et al. 1998). It was also confirmed that more 
than one transglutaminase may function in one plant, or 
even in one organelle (Sobieszczuk-Nowicka et al. 2009). 
It is presented in Table 1 some important sources of non-
mammalian transglutaminases.

In addition to transglutaminases from bacterial sources 
(mTGase), discussed below, transglutaminase activity was 
also found in fungi and yeasts such as Phytophtora sojae, 
Candida albicans, and Saccharomyces cerevisiae (Brun-
ner et al. 2002; Iranzo et al. 2002; Mazáň and Farkaš 2007; 
Ruiz-Herrera et al. 1995).

Phytophthora sojae is a soybean pathogen that has been 
shown to secrete a Ca2+-dependent TGase (GP42), capable 
of activating defense responses in plants. GP42-related 
proteins are only present in plant pathogenic oomycetes 
belonging to the order of Peronosporales (for example, 
Phytophthora, Hyaloperonospora, and Pythium spp.), and 

in marine Vibrio bacteria. Although GP42 does not share 
primary sequence similarities with known mammalian or 
bacterial TGases, it has a central region that has significant 
similarity to the Group A Streptococcus Mac-1 cysteine 
protease, suggesting the lateral gene transfer between bac-
teria and oomycetes (Del Duca et al. 2014; Reiss et al. 
2011).

In the fungus Candida albicans, it has been suggested 
that the activity of TGase plays an important role in the 
structural organization of the cell wall possibly through 
the establishment of cross-links between structural glyco-
proteins. Activity was detected by incorporation of radio-
active putrescine and most of the activity was present in 
the cell wall. Inhibition of growth by incorporation of cys-
tamine (a TGase inhibitor) was also determined in other 
strains, demonstrating the importance of transglutaminase 
in these species. Cystamine also affected cell morphol-
ogy, whereas the incorporation of high molecular weight 
proteins covalently bound to the cell wall was inhibited 
(Reyna-Beltrán et al. 2018; Ruiz-Herrera et al. 1995).

Likewise, in order to determine whether cross-linking 
of proteins by TGase would be important for Saccharomy-
ces cerevisiae growth, TGase cystamine inhibitor has been 
used. Addition of this compound to the growth medium 
reduced the growth rate of S. cerevisiae proportionally 
to the concentration of the inhibitor by altering the cell 
morphology, indicating that TGase may be involved in the 
formation of the cell wall (Iranzo et al. 2002).

Table 1   Non-mammalian transglutaminases

NA data not available

Organism Common name Species Optima temperature and pH, 
molecular weight

References

Fishes Alasca Pollack NA 85 kDa Seki et al. (1990)
Red sea bream Pagrus major pH 9.0–9.5, 78 kDa Yasueda et al. (1994)
Japanese oysters Crassostrea gigas 40 °C, 84 kDa; 25 °C, 90 kDa; 

pH 8
Kumazawa et al. (1997)

Tropical tilápia Oreochromis niloticus 37–50 °C, pH 7.5, 85 kDa Worratao and Yongsawatdigul 
(2005)

Threadfin bream TB, Nemipterus sp. pH 7.5, 66 kDa Piyadhammaviboon and Yong-
sawatdigul (2009)

Four different fish species (Big-
eye snapper, Indian oil sardine, 
Tilapia and Common carp)

NA Range 73–95 kDa Binsi and Shamasundar (2012)

Invertebrates Shrimp Marsupenaeus japonicus 85 kDa Chen et al. (2005)
Antarctic krill Euphausia superba 0–10 °C, pH 8.0–9.0 Zhang et al. (2017)
Crayfish Pacifastacus leniusculus 4–22 °C Sirikharin et al. (2018)
Mythimna separata larvae Noctuidae, Lepidoptera 6–42 °C, pH 7.5, 3.5 KDa Zhang et al. (2018)

Plants Tubers of Jerusalem artichoke Helianthus tuberosus NA Serafini-Fracassini et al. (1988)
Maize Zea mays NA Villalobos et al. (2004)
Rosemary Rosmarinus officinalis L 55 °C, pH 7.0 El-Hofi et al. (2014)
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Microbial transglutaminases

Bacterial TGases, here treated as microbial transglutami-
nases (mTGases), are part of an extensive transglutaminase 
family. Although catalyzing the same reactions, mTGases 
have shown to possess very little sequence similarity to 
any mammalian TGases (Oteng-Pabi and Keillor 2013). 
Although the biological function of transglutaminases in 
microorganisms is unclear, it is known to be a cell wall-
associated enzyme and it is suggested that this enzyme may 
be involved in cross-linking surface proteins from air hyphae 
and spores of some Streptomyces, in addition to the forma-
tion of crosslinking between cell wall proteins in Candida 
albicans and Saccharomyces cerevisiae and spore coat pro-
teins in Bacillus subtilis (Chater et al. 2010; Kobayashi et al. 
1998; Strop 2014).

The production of mTGases were first reported by Ando 
et al. in 1989 for the microorganism Streptoverticillium 
mobaraense, which was later classified as Streptomyces 
mobaraensis (Ando et al. 1989; Zhang et al. 2010). In con-
trast to many other TGases, the microbial isoforms are not 
regulated by calcium or guanosine-5′-triphosphate (GTP), 
which makes these proteins very useful in the food industry 
because proteins, such as milk caseins, soybean globulins, 
and myosins, are sensitive and easily precipitated by Ca2+ 
(Strop 2014; Yokoyama et al. 2004). In addition, they have 
broader substrate specificity, lower deamidation activity, and 
can be low-costly mass produced by traditional fermentation 
technologies (Kashiwagi et al. 2002; Mariniello et al. 2008; 
Ohtsuka et al. 2006).

Since 1998, the enzyme has been recognized as a safe 
substance (GRAS) for human ingestion by the FDA (Food 
and Drugs Administration), making mTGases very attrac-
tive for the food industry (Gaspar and de Goes-Favoni 2015; 
Kieliszek and Misiewicz 2014).

After an extensive search in more than 5000 isolates of 
microbial origin, Streptoverticillium sp. strain S-8112 proved 
to be the first bacterium producing transglutaminase (Ando 
et al. 1989). From this finding, this microbial TGase has 
been the main source of applicable enzyme. Several studies 
looking for mTGase activities in microorganisms were car-
ried out and some are listed in the Table 2, however, these 
activities were mostly identified in strains of Streptomyces 
and Bacillus genera (Jiang et al. 2017). Microbial transglu-
taminases of commercial interest which had their known 
structures will be discussed below in more detail.

Structure of transglutaminase of Streptomyces mobaraensis

The mTGase isolated from Streptomyces mobaraensis 
is secreted through the membrane as a zymogen (pro-
mTGase) and is activated by a proteolytic processing. To 
activate the original zymogen, S. mobaraensis also secretes 

two proteases that are responsible for the cleavage of the 
N-terminal pro-peptide (Zotzel et al. 2003a, b). Its pro-
region with 45-residue N-terminal is essential for efficient 
protein folding, secretion, and suppression of the enzymatic 
activity (Yurimoto et al. 2004). It folds into an L-shape and 
covers the active-site, blocking the substrates from access-
ing it, thus the site must be cleaved to allow mTGase to be 
rendered functional (Rachel and Pelletier 2013).

The S. mobaraensis mTGase forms a simple monomer 
showing overall dimensions of 65 × 59 × 41 Å, made up of 
≈ 331 amino acids, with a molecular mass of ≈ 37 kDa and 
the isoelectric point at pH 8.9 (Ando et al. 1989; Kashiwagi 
et al. 2002). The tertiary structure of mTGase has a disk-like 
structure with a central groove having the active-center with 
a Cys-Asp-His triad, which is the key to the cross-linking 
efficiency (Griffin et al. 2002; Kashiwagi et al. 2002; Liu 
et al. 2006).

Structure of transglutaminase of Bacillus subtilis

A lesser-known bacterial transglutaminase from Bacillus 
subtilis was described in 1996. It has been strongly sug-
gested that B. subtilis transglutaminase (bTG) form Ɛ-(Ƴ-
glutamyl)lysine bonds and it is implicated in the protection 
of the bacterium by causing the cross-linking of coat pro-
teins on the surface of a spore (Kobayashi et al. 1996). The 
coat contributes to spore protection against several physical 
and chemical hazards, antagonist bactericidal enzymes, and 
also by playing a key role in the ability of the spore to moni-
tor its immediate environment and to activate germination 
(Plácido et al. 2008).

The bTG is not related to the mammalian or other micro-
bial transglutaminases, except for their counterparts in 
Bacillus species and some other highly related spore-form-
ers. This enzyme functions through a catalytic dyad formed 
by Cys116 and Glu187 or Glu115 and the cysteine residue 
is required for the activity of bTG in vitro and in vivo. It 
also has a NlpC/P60 catalytic core, thought to represent the 
ancestral unit of the cysteine protease fold (Fernandes et al. 
2015; Liu et al. 2014a).

In vitro, bTG is able to cross-link proteins such as BSA 
or α-casein (Kobayashi et al. 1998). The 20 kDa spore coat 
protein (GerQ) has been identified as a physiological sub-
strate for bTG (Ragkousi and Setlow 2004; Zilhão et al. 
2005). Recently, a study has allowed to screen a library of 
random highest affinity glutamine substrate sequences for 
bTG (Oteng-Pabi et al. 2018).

With a protein molecular weight of 28 kDa, bTG is ≈ 
10 kDa smaller than other mTGases and shows little struc-
tural homology with the S. mobaraensis mTGase. The 
optimal temperature and pH for bTG activity are 60 °C 
and 8.2, respectively. Additionally, bTG is expressed as a 
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mature peptide, unlike mTGase, which exists as pro-enzyme 
(Oteng-Pabi et al. 2018).

Recombinant microbial transglutaminases

The industrial enzyme market was evaluated at around US$ 
6.1 billion in 2017 and it is expected to reach US$ 8.5 bil-
lion by 2022 (Ferrer et al. 2015). Much of this production is 
concentrated in enzymes for the food industry. More than 55 
different enzyme products are used in the food processing 
industry and the number is permanently increasing, related 
to the discovery of new food enzymes (Fernandes 2010).

Aiming to develop innovative, sustainable, and economi-
cally competitive production processes, there is an increas-
ing need for new, more versatile and improved enzymes. 
Novel researches in molecular genetics and cell biology over 
the past four decades has reconfigured enzyme production. 
The majority of industrial enzymes are already coming from 
recombinant sources produced in bacteria, fungi and yeasts 
(Adrio and Demain 2014; Olempska-Beer et al. 2006). Sev-
eral studies have been focused in the gene expression of 
mTGase in Streptomyces lividans, Corynebacterium glu-
tamicum, Yarrowia lipolytica, Streptomyces platensis, and 
Escherichia coli, as described below (Date et al. 2004; Lin 
et al. 2004, 2006a; Liu et al. 2015; Mu et al. 2018b; Rickert 
et al. 2015; Salis et al. 2015; Washizu et al. 1994). Table 3 
shows some of the recombinant transglutaminases treated 
in this section, showing details of construction and culture 
information.

Streptomyces lividans

One of the earliest works on recombinant mTGase expres-
sion was presented in 1994 when the Streptoverticillium 
mobaraense gene was cloned and expressed in Streptomyces 
lividans 3131 under the control of a tyrosinase promoter, 
yielding an active and mature enzyme. However, the secre-
tion level of mTGase in S. lividans 3131 was very low, 
less than 0.1 mg/L, not suitable for industrial applications 
(Washizu et al. 1994).

The gene mTGase from Streptoverticillium ladakanum 
B1 was cloned and expressed in Streptomyces lividans JT46 
using an endogenous promoter. The revealed result of immu-
noblotting of SDS-PAGE indicated that the recombinant 
mTGase was not correctly processed (Lin et al. 2004). Fol-
lowing ahead with this study, the same group of researchers 
cloned and expressed the gene of mTGase of Streptomyces 
platensis M5218 in Streptomyces lividans JT46, with a 3.3-
fold increase in enzyme activity in relation to that from the 
wild S. platensis M5218 strain (Lin et al. 2006b).

The mTGase obtained from Streptomyces hygroscopicus 
WSH03-13 was cloned into plasmid pIJ86 and has been NA

 d
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expressed in S. lividans TK24. Based on deletion analysis, 
it was identified a negative element in the mTGase puta-
tive promoter, and the deletion of this element increased 
the mTGase production by up to 81.3%. Combining opti-
mization of the gene codons and deletion of the negative 
promoter element, the recombinant S. lividans TK24 pro-
duced mTGase activities of up to 5.73 U/mL and a maxi-
mum productivity of 0.14 U/mL/h (Liu et al. 2016).

Corynebacterium glutamicum

It has been shown that C. glutamicum ATCC 13869 is effi-
ciently able to secrete the pro-mTGase from S. mobaraense 
IFO13819, when it is coupled to signal peptides derived 
from the cell surface proteins of Corynebacterium. Moreo-
ver, when a protease (SAM-P45) from Streptomyces albog-
riseolus is co-secreted by C. glutamicum, the pro-domain 
is then processed, and the enzyme is converted into active-
form mTGase. The maximum yield of the active form was 
142 mg/L (Kikuchi et al. 2003). Replacing the pro-region 
of transglutaminases of Streptomyces mobaraensis by the 
pro-region of transglutaminases of Streptomyces cinna-
moneus for the production of mTGase in C. glutamicum, 
increased secretion of mTGase by 23% compared to that 
using the native pro-region (Date et al. 2004).

Screening for the secretion of pro-mTGase, 16 strains 
of coryneform bacteria were tested and it was discovered 
that most of them secreted pro-transglutaminase. The 
Corynebacterium ammoniagenes ATCC6872 was the best 
producing strain, with about 2.5 g/L pro-transglutaminase 
over a 71 h culture in a jar fermentor (Itaya and Kikuchi 
2008).

In order to improve mTGase secretion on a recombinant 
Corynebacterium glutamicum strain, it was performed a 
metabolic flux analysis involving 13C isotope-labeling 
experiments (13C-MFA). The strategy for enhancing 
mTGase secretion was developed and its effectiveness was 
confirmed. It was also checked that the increase in the flux 
to the tricarboxylic acid (TCA) cycle might result in an 
increase in the NADH/NAD+ ratio, which is believed to 
be one of the reasons for the decrease in mTGase yields. 
In addition, with the aim of decreasing the NADH/NAD+ 
ratio, lactate production was increased by raising the pH 
level in the culture, successfully increasing mTGase pro-
duction (Umakoshi et al. 2011).

Further improvements on mTGase production in the 
heterologous host C. glutamicum could be achieved by the 
use of more powerful promoters. The mTGase secreted by 
Streptomyces mobaraense, expressed in Corynebacterium 
glutamicum ATCC, was optimized by the promoter exchange 
tac for tac-M, with mTGase activity of 5.2 U/mL for the first 
and 6.7 U/mL for the second construct (Liu et al. 2014b).NA
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Yarrowia lipolytica

In one remarkable research, Streptomyces hygroscopicus 
pro-mTGase was efficiently expressed in Yarrowia lipol-
ytica, without the need for antibiotic markers. The gene was 
cloned into integrative vectors monocopy and multicopy. A 
recombinant promoter drove the obtained expression and 
secretion using a XPR2 pre-sequence as a signal peptide. 
The highest yield of extracellular pro-mTGase was achieved 
by the recombinant multicopy construct, with 5.3 U/mL of 
mTGase. In order to improve mTGase properties, asparagi-
nes in two predicted Asn-linked glycosylation sites (Asn160 
and Asn355) of pro-mTGase were mutated to glutamines. 
Thereby, the mTGase yield of variant was increased to 35.3 
U/mL by using a glycerol feeding strategy in a 3 L fermenter 
(Liu et al. 2015).

Escherichia coli

Escherichia coli has been by far the most important bac-
terium for cloning research. One of the earliest cloning of 
mTGase was performed in 1994, when mTGase from Strep-
toverticillium was chemically synthesized and inserted in the 
vector pIN-III with the ompA signal peptide and expressed 
in E. coli. Although the induced gene product was identi-
cal to the native enzyme, the activity was low (Takehana 
et al. 1994). In another attempt to overexpress mTGase, the 
gene from Streptoverticillium was chemically synthesized 
by fusion to a bacteriophage T7 gene 10 leader peptide (260 
amino acids), using an inducible expression vector. The 
mTGase gene was expressed producing inclusion protein 
bodies in the E. coli cytoplasm. It was necessary to solu-
bilize the protein with subsequent proteolytic cleavage to 
achieve enzyme activity of mTGase (Kawai et al. 1997).

Using the pro-domain engineering, it was possible to 
achieve good expression levels of soluble and fully active 
mTGase from Streptomyces mobarensis in the cytoplasm of 
E. coli. Through an alanine-scan of the mTGase pro-domain 
and the insertion of the 3C protease cleavage site, it was pos-
sible to achieve expression levels of 30 to 75 mg/L of fully 
active mTGase (Rickert et al. 2015).

mTGase from Streptomyces hygroscopicus H197 was 
mutated by cleaving a specific 84 bp fragment and expressed 
in plasmid pET32a + in E. coli Rosetta cell, aiming to 
achieve high stabilities and activities. The purified mutant 
showed 0.22 U/mg and 0.69 U/mg mTGase activities before 
and after activated by trypsin, respectively, compared to the 
wild mTGase 0.16 U/mg and 0.54 U/mg activity under the 
same conditions (Wan et al. 2017).

The active mTGase expression of S. mobaraensis in E. 
coli by one constitutive system was devised without the use 
of a downstream proteolytic cleavage processing, obtained 
by constructing a synthetic operon with a pro-domain 

encoding gene and a gene encoding the mTGase thermo-
stable variant, both sequences paired with a previous PelB 
secretory sequence. The expressed products of this investi-
gation were segregated in the periplasm, making easier the 
correct folding of the enzymes and reducing the formation 
of inclusion bodies (Javitt et al. 2017).

Developing novel designs of enzymes took two differ-
ent types of synthetic components to be simultaneously 
incorporated into mTGase from S. mobaraense, through 
the engineering of thermostable variants and expressed in 
E. coli. The first amino acid, 3-chloro-l-tyrosine, was incor-
porated into mTGase in response to in-frame UAG codons 
to impute an increase thermostability of the enzyme. With 
this, the half-life was 5.1-fold longer than that of the wild-
type enzyme at 60 °C. In sequence, this mTGase variant was 
further modified by incorporating the α-hydroxy acid ana-
logue of NƐ-allyloxycarbonyl-l-lysine (AlocKOH), specified 
by the AGG codon, at the end of the N-terminal inhibitory 
peptide, which led to the overall stabilization of the enzyme 
(Ohtake et al. 2018).

Pichia pastoris

The first transglutaminase cloned in Pichia pastoris was 
the transglutaminase from Zea mays. This TGase was first 
expressed in E. coli, but the recombinant TGase was mainly 
found as inclusion bodies and the activity of the obtained 
protein was low (Carvajal et al. 2010). Researchers have 
since shift to clone Z. mays TGase sequences in P. pastoris 
using well-characterized yeast expression vectors, producing 
a soluble protein. Showing a fast growth rate, when coupled 
with high cell-density fermentation for secreting proteins 
that can be purified from the culture medium, P. pastoris is 
a promising cloning system for basic laboratory research and 
for industrial manufacturing (Weinacker et al. 2013). The 
expressing of Z. mays TGase in P. pastoris GS115, using 
the vector pPIC9K produced specific activities of 0.321 U/
mg and mass yields of 4.4 mg/L (Li et al. 2014). Modifi-
cation of codon bias of P. pastoris optimized TGase pro-
duction and specific activities reached 0.89 U/mg (Li et al. 
2013). By applying the Plackett–Burman (P–B) design and 
the response surface methodology (RSM) using the same 
expression model, authors found 1.1 U/mL of TGase activ-
ity and mass yields of 7.6 mg/L of TGase (Li et al. 2017).

In a recent study, the TGase gene from Streptomyces fra-
diae was cloned and expressed in Pichia pastoris GS115, 
showing enzyme activity of approximately 0.70 U/mL, prov-
ing that mTGase can be heterogeneously expressed (Yang 
and Zhang 2019).

Under the control of the constitutive GAP promoter using 
Pichia pastoris, Türkanoğlu Özçelik et al. (2019) expressed 
the microbial pro transglutaminase (pro-MTGase) from 
Streptomyces mobaraensis. The obtained enzymatic activity 
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was calculated as 37,640 U/L for large-scale production 
(Türkanoğlu Özçelik et al. 2019).

Bacillus subtilis

Bacillus subtilis is a Gram-positive, non-pathogenic strain 
and is generally recognized as safe (GRAS). Its physiol-
ogy is well investigated, and, for its genetic manipulation, 
a variety of tools and vectors are available. Moreover, B. 
subtilis does not produce endotoxins, which is an advantage 
in downstream processing (de Boer Sietske and Diderichsen 
1991; Schallmey et al. 2004). Two different secretion sys-
tems were constructed for cloning and secretion of mTGase 
from S. mobaraensis in B. subtilis. One involves inducible 
expression, under the control of the promoter P lac and the 
other containing a constitutive expression under the control 
of the promoter P hpaII. With peptides signals fused to the 
mTGase gene, it was possible to secrete pro-mTGase into the 
medium. After proteolysis of the pro-domain with trypsin, 
the concentrations of transglutaminase were: 63 mg/L for the 
constitutive system and 54 mg/L for the inducible system, 
showing enzymatic activities as high as 29 U/mg (Mu et al. 
2018a).

Conclusion

Transglutaminases remain as one of the most important and 
complex family of enzymes, possessing varied structures 
and functions in mammalians, non-mammalian eukaryotes, 
and in bacteria. In recent years, several studies have been 
performed in relation to gene expression of transglutami-
nases, in order to gain versatility and to obtain more stable 
enzymes for broader industrial applications. Reduction of 
costs of production are essential aiming their application on 
a larger scale in industrial sectors such as in food production 
and biotechnological products.
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