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Abstract
Because of their protein cross-linking properties, transglutaminases are widely used in several industrial processes, including 
the food and pharmaceutical industries. Transglutaminases obtained from animal tissues and organs, the first sources of this 
enzyme, are being replaced by microbial sources, which are cheaper and easier to produce and purify. Since the discovery of 
microbial transglutaminase (mTGase), the enzyme has been produced for industrial applications by traditional fermentation 
process using the bacterium Streptomyces mobaraensis. Several studies have been carried out in this field to increase the 
enzyme industrial productivity. Researches on gene expression encoding transglutaminase biosynthesis were performed in 
Streptomyces lividans, Escherichia coli, Corynebacterium glutamicum, Yarrowia lipolytica, and Pichia pastoris. In the first 
part of this review, we presented an overview of the literature on the origins, types, mediated reactions, and general charac-
terizations of these important enzymes, as well as the studies on recombinant microbial transglutaminases. In this second 
part, we focus on the application versatility of mTGase in three broad areas: food, pharmacological, and biotechnological 
industries. The use of mTGase is presented for several food groups, showing possibilities of applications and challenges to 
further improve the quality of the end-products. Some applications in the textile and leather industries are also reviewed, as 
well as special applications in the PEGylation reaction, in the production of antibody drug conjugates, and in regenerative 
medicine.

Graphic abstract

Keywords  Transglutaminase · Microbial transglutaminases · Protein cross-linking · Food-enhancing enzymes · 
Streptomyces mobaraensis

 *	 Marco Antônio Záchia Ayub 
	 mazayub@ufrgs.br

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11274-019-2792-9&domain=pdf


	 World Journal of Microbiology and Biotechnology (2020) 36:11

1 3

11  Page 2 of 20

Introduction

Starting in 1989, microbial transglutaminases (mTGase) 
have been produced for industrial applications through 
traditional fermentation process using Streptomyces 
mobaraensis bacterium. mTGase is produced by this 
microorganism as an extracellular enzyme, having a 
molecular mass of approximately 38 kDa. This enzyme 
acts in a wide range of pH and temperatures (pH 5.0 to 
8.0, and active in between 40 and 70 °C). S. mobaraensis 
mTGase is Ca2+ independent, and its activation requires 
no special cofactors (Ando et al. 1989; Yokoyama et al. 
2004).

Enzymatic modifications of proteins mediated by 
mTGase have been generally used as tools for improv-
ing the properties of a given target product. These enzy-
matic reactions provide high specificity, occurring under 
gentle reaction conditions, producing no toxic products 
(Fatima and Khare 2018). In recent years, researchers have 
intensified their search for application possibilities of the 
mTGase to obtain methods and products that can alter the 
technological and functional properties of final products, 
not only in the food industry, but also in several biochemi-
cal reactions.

In the first part of this review, we focused on gen-
eral aspects of the origins, reactions, and characteristics 
of transglutaminases of mammals, non-mammals, and 
microbial sources. Some studies on recombinant transglu-
taminases were also covered. In this second-part of the 
review, we highlight the importance of mTGase in four 
major research areas showing potential of applications of 
this enzyme: the food, biotechnology, leather, and textile 
industries.

Food applications

Studies for the application of transglutaminases in food 
technology began in the nineties, after the discovery 
of mTGase in microorganisms such as Streptomyces 
mobaraensis (Streptoverticillium mobaraense) (Ando 
et  al. 1989), Streptomyces cinnamoneum (Duran et  al. 
1998), and Bacillus subtilis (Suzuki et al. 2000). The first 
application of mTGase in food technology was reported 
by Gottmann and Sprössler in 1992 (1992), who reported 
that mTGase could be a cost-effective enzyme to be used 
in food applications. Two decades later mTGases are 
mainly used in the processing of meat, fish, dairy, and 
baking products (Strop 2014). mTGase modifies the func-
tional properties of food proteins by incorporation of 
amines, crosslinking, deamidation, and bonding surfaces 
of foods. However, in protein-containing food systems, 

the cross-linking reaction proceeds prior to other reac-
tions (Santhi et al. 2017). In Table 1 are shown relevant 
aspects of some investigations on the use of mTGase for 
the modification of properties in different foods, accord-
ing to the nature of the protein substrate, the amount of 
enzyme used, and the conditions of enzymatic reactions. 
Understanding mTGase mechanisms of action in altering 
protein properties is of major importance for its industrial 
use, which has not been completely elucidated (Gaspar and 
de Góes-Favoni 2015).

The first industrial scale production of mTGase was per-
formed by the Japanese company Ajinomoto Co., in col-
laboration with Amano Enzyme Co. (Nagoya, Japan). The 
interest of the scientific community in mTGases is demon-
strated by approximately 615 published papers in the last 
five years (Fig. 1a) investigating their applicability, struc-
tural characteristics, and substrate specificities, whereas 
346 of these papers deal with applications in the field of 
Food Science and Technology (Fig. 1b), the area showing 
the greatest interest in this enzyme, as shown in Fig. 1c (Web 
of Science: June 2019).

Meat and seafood products

Microbial tranglutaminases attracted initial interests of 
the food industry due to its ability to mold minced meat 
into a firm steak. The restructure of meat products ensures 
greater firmness causing little loss of quality during cooking 
(Lesiow et al. 2017). The cross-linking of proteins and other 
compounds of the gel system causes changes in the proteic 
fraction of food matrices, leading to improved texture and 
stability in terms of temperature denaturation, emulsifying 
properties, gelation, and increased water-binding capacity 
(Dondero et al. 2006). The mTGase yields a final product 
with retained organoleptic properties similar to conventional 
meat in terms of flavor, texture, appearance, and taste (Hong 
et al. 2016).

Several studies are reported on the use of mTGase in meat 
products. As shown in Table 1, the enzyme can be used in 
a wide range of temperatures, from 10 to 50 °C. Some of 
these studies also show that mTGase supplementation could 
increase the gel strength in meat products and cause positive 
effects on the development of meat proteins of pork, beef, 
chicken, and fish (Ahhmed et al. 2009a, b; Canto et al. 2014; 
Dondero et al. 2006; Feng et al. 2018; Hong and Chin 2010; 
Hong and Xiong 2012; Jira and Schwagele 2017; Monteiro 
et al. 2015; Sorapukdee and Tangwatcharin 2018; Wu et al. 
2016).

Because meat products are highly proteic, the myofibril-
lar proteins have marked influence on the textural quality 
of these products. Actin and myosin, which constitute the 
majority of myofibrillar proteins, are important substrates 
of mTGase and can also be polymerized by its addition, 
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Table 1   Studies with mTGase applied to different protein sources

Group of food Protein substrate Microorganism of TGase Treatment conditions 
(enzyme concentration, 
temperature, and incuba-
tion time)

References

Meat and seafood 
products

Pork myofibrillar protein Activa® TI (S. mobaraensis) 0.5% (w/w); 4 °C; 24 h Hong and Xiong (2012)
Pork myofibrillar protein Activa® TI (S. mobaraensis) 0.2% (w/w); 4 °C; 24 h Hong et al. (2012)
Pork myofibrillar protein Activa® TI (S. mobaraensis) 0.6% (w/w); 4 °C; 24 h Hong and Chin (2010)
Pork leg to manufacture 

dry-cured ham
Activa® EB (S. mobaraensis) 0.1% (w/v); 7 °C; 24 h Romero de Ávila et al. 

(2010)
Beef Activa® TG-K (S. mobaraensis) 0.5% (w/w); 60 °C; 2 h Dondero et al. (2006)
Steak—beef trimmings Activa® TG-B (S. mobaraensis) 1% (w/w); 8 °C; 4 h Sorapukdee and Tang-

watcharin (2018)
Chicken and beef myofibril-

lar proteins
Activa® (S. mobaraensis) 5–6.8% (w/w); 40 °C or 

78 °C, 0.5 h
Ahhmed et al. (2009a)

Tilapia fillets Activa® WM (S. mobaraensis) 0.5% (w/w); 4 °C; 24 h Monteiro et al. (2015)
Fish myofibrillar protein NS 0.1%; 4 °C; 2 h Feng et al. (2018)
White shrimp Activa® TG-K (S. mobaraensis) 0.8 U/g of protein sub-

strate; 25 °C; 2 h
Tammatinna et al. (2007)

Caiman steaks Activa® WM (S. mobaraensis) 1% (w/w); 4 °C; 18 h Canto et al. (2014)
Dairy products α-Lactalbumin concentrate Activa® MP (S. mobaraensis) 10 U/g of protein sub-

strate; 50 °C; 5 h; pH 5
Sharma et al. (2002)

Na-caseinate, Ca-caseinate, 
skim milk powder, con-
densed milk, whole milk 
powder, whey, and milk

Activa® (S. mobaraensis) 1 U/g of protein substrate; 
40 °C, 2 h

Oner et al. (2008)

Paneer (traditional Indian 
milk product)

Activa® (S. mobaraensis) 1 U/g of protein substrate; 
4 °C; 16 h

Prakasan et al. (2015)

Milk Activa® TI (S. mobaraensis) 0.3% (w/w); 84.5 °C; 1 h Rodriguez-Nogales (2006)
Milk Activa® MP (S. mobaraensis) 3 U/g of protein substrate; 

40 °C; 2 h
Domagała et al. (2016)

Milk Activa® TG-B (S. mobaraensis) 7 U/mL of milk proteins; 
30 °C; 3 h

Chen and Hsieh (2016)

Cheese whey protein NS 40 U/g of whey proteins; 
40 °C; 1 h; pH 5

Wen-qiong et al. (2017)

Ice cream Activa® (S. mobaraensis) 4 U/g of protein substrate; 
57 °C; 1.5 h

Rossa et al. (2011)

Cereal based prod-
ucts

Noodle NS 1% (w/w); 30 °C; 0.5 h Wang et al. (2011)
Rice noodle Activa® (S. mobaraensis) 1% (w/w); 40 °C; 2 h Kim et al. (2014)
Rice flour Activa® (S. mobaraensis) 1% (w/w); 30 °C; 1 h Gujral and Rosell (2004)
Wheat gluten hydrolysate Activa® TI (S. mobaraensis) 0.05% (w/w); 55 °C; 1 h 

and 5 °C; 18 h
Agyare et al. (2009)

Bread wheat flour Activa® WM (S. mobaraensis) 8 U/g of protein substrate; 
30 °C; 2 h

Mazzeo et al. (2013)

Damaged wheat flour Activa® (S. mobaraensis) 1.5 U/g of protein sub-
strate; 37 °C; 0.5 h

Bonet et al. (2005)
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thus improving the textural properties of structured meat 
products (Uran and Yilmaz 2018). The addition of mTGase 
also allows for the utilization of raw materials such as colla-
gen and mechanically deboned meat in manufacturing meat 
products, with enhanced nutritive value by supplementation 
with amino acids otherwise deficient in these products (e.g. 
exogenous lysine) (Kieliszek and Misiewicz 2014).

Efforts to reduce the sodium content of meat products is 
an important issue concerning the health of people and to 
attend these demands, the meat industry is focusing on the 
development of techniques to reduce the use of salt in pro-
cessed meat products, without impacting their quality (Atil-
gan and Kilic 2017). Strategies such as the use of mTGase 
can be applied in the manufacture of meat products with low 
salt content to avoid quality deterioration arising from this 
reduction, as suggested by Atilgan and Kilic (2017). These 
authors investigated the effects of mTGase, fibrin/thrombin 
(fibrimex), alginate, and their combinations on the quality 
of reduced-salt cooked meat. Their results indicated that the 
fibrimex/mTGase combination improved the texture proper-
ties of minced beef with low salt content.

However, for restructured meat in which fat can interfere 
with meat binding, it is essential to evaluate the grading level 
of formulated beef trimmings to enhance product quality or, 
at least, to avoid the minimum detrimental impact on prod-
uct quality. The research of Sorapukdee and Tangwatcharin 
(2018) indicated that the most suitable raw beef for produc-
ing restructured steaks without detrimental effect on prod-
uct quality, was beef trimmings containing up to 17% fat 
treated with 1% (weight fraction) of mTGase Activa TG-B. 

At this level of enzyme addition, both the sensory quality 
and increased tenderness were positively affected.

Dairy products

Improving the quality and functionality of the dairy prod-
ucts is been considered of paramount importance for better 
appreciation by people in a scenario of competitive dairy 
market. One of the most promising strategies to promote 
bio-functionality properties of dairy products is the cross-
linking of milk proteins with transglutaminase. The use of 
mTGase can be a successful strategy to improve dairy prod-
ucts nutritional and technological characteristics, at the same 
time reducing the costs production by decreasing the amount 
of fat and stabilizer in the final product (Taghi Gharibzahedi 
et al. 2018). This enzyme has the ability to form intra- and 
intermolecular covalent crosslinks between two amino-acid 
residues in the structure of milk proteins. Both casein and 
whey α-lactalbumin and β-lactoglobulin are excellent acyl 
donors and/or acceptors substrates for transglutaminase, 
although some differences between them apply in relation to 
the crosslinking reaction (Færgemand and Qvist 1997; Oner 
et al. 2008; Rodriguez-Nogales 2006; Rossa et al. 2011). 
According to a study by Chen and Hsieh (2016), in a cascade 
reaction, mTGase catalyzes the cross-linking of κ-casein 
(κ-CN) and β-casein (β-CN) before it proceeds to cross-
link the serum albumin (AS), α-lactalbumin (α-LA), αs1-
casein (αs1-CN), αs2-casein (αs2-CN), and β-lactoglobulin 
(β-LG) moieties, as shown in Fig. 2. In this particular case, 
the caseins appear to be readily cross-linked because of 
their flexible, random-coil structures and the absence of 

Table 1   (continued)

Group of food Protein substrate Microorganism of TGase Treatment conditions 
(enzyme concentration, 
temperature, and incuba-
tion time)

References

Leguminous prod-
ucts

Soy protein TGase was purified from the 
culture medium of Streptover-
ticillium cinnamoneum subsp. 
cinnamoneum IFO12852

0.05% (w/v); 55 °C; 1 h Babiker (2000)

Soy protein isolate Activa® WM (S. mobaraensis) 0.08% (w/v); 50 °C; 0.4 h Song and Zhang (2008)

Legume protein isolate NS 0.05% (w/v); 55 °C; 1 h; 
pH 7.5

Salma et al. (2010)

Black soybean packed tofu Activa® (S. mobaraensis) 1% (w/w); 55 °C; 0.5 h Chang et al. (2011)

Soy‐based cream cheese NS 2.6% (w/w); 50 °C; 24 h Ting-Jin et al. (2011)

Soy protein isolate Activa® (S. mobaraensis) 0.5% (w/v); 50 °C; 1 h Jin et al. (2013)

Soybean protein NS 10 U/g of protein substrate; 
37 °C; 3 h; pH 7.5

Song and Zhao (2014)

NS not specified
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any disulphide bonds in the αs1-CN and β-CN (Færgemand 
and Qvist 1997; Oner et al. 2008; Rodriguez-Nogales 2006; 
Rossa et al. 2011). Due to their compact globular structures, 
whey proteins tend to cross-link less efficiently. The β-LG is 
more susceptible and show a higher cross-linking rate than 
α-LA, but the β-LG is able to cross-link with the reduction 
of its disulphide bonds, whereas α-LA can be cross-linked 
without the reduction (Rodriguez-Nogales 2006; Rossa et al. 
2011).

The benefits brought about by the application of mTGase 
in dairy products include increased gel strength and 
improved storage stability and viscosity (Domagała et al. 
2016). When mTGase is added to the system, it enhances 
heat-resistance and firmness of gel. Yogurt, a milk gel 
formed by acidic fermentation mediated by lactic-acid bac-
teria, has the disadvantage of serum separation upon change 
of temperature or physical impact. The addition of mTGase 
to yogurt can avoid this problem because mTGase improves 
the water holding capacity of the gel (Yokoyama et al. 2004). 
Ice creams treated with mTGase result in more consistent 
end-products, showing better aeration and foam stability. 
The mTGase also makes it possible to produce ice cream and 
cheese with low fat contents or reduced content of non-fat 
solids (Gaspar and de Góes-Favoni 2015; Yokoyama et al. 
2004). The addition of mTGase during cheese preparation 
may increase the moisture content altering the palatability 
and the yield of different cheese products. In relation to 
surface texture of curds, ice-creams, milk and cheeses, it 
is noticed an improvement in the creaminess, homogeneity, 
smoothness, and consistency after mTGase is used in the 
production process (Wen-qiong et al. 2017).

Cereal based product

The first positive effects of mTGase application in baking 
was reported by Gottmann and Sprössler (1992). The appli-
cations of mTGase in cereal proteins, particularly wheat pro-
teins (globulins, glutenins, gliadins, and prolamins), have 
attracted huge interest from the bakery industry (Mazzeo 
et al. 2013). The cross-links formed between the wheat pro-
teins by the action of mTGase greatly influenced the charac-
teristics of the products, determining the quality, functional 
and rheological properties of these systems, such as stabil-
ity, elasticity, resilience, and water adsorption, with proper 
pore size along with adequate dough volume (Bonet et al. 
2005; Gerrard et al. 1998; Gujral and Rosell 2004; Scarnato 
et al. 2017). The cross-linking reaction of mTGase promotes 
aggregation and polymerization, leading to the formation 
of polypeptide networks showing differentiated viscoelastic 
properties (Bonet et al. 2005; Gujral and Rosell 2004).

Gerrard et al. (1998) were the first researchers who used 
the mTGase in white bread. These authors suggested that the 
enzyme could have beneficial effects during the manufacture 

Fig. 1   Publications on microbial tranglutaminases in the last 5 years 
(2015–2019): a the general bulk of publications on mTGase; b pub-
lications covering applications in Food Science and Technology; 
c study areas of the web of science database that research mTGase 
(data as November, 2019)
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of bread, comparable to those produced by traditional 
chemical oxidant improvers. Scarnato et al. (2017) showed 
that using low amounts of mTGase, positive effects were 
observed on aspects of crumb and crust of bread, as well as 
in the rheological properties and physico-chemical proper-
ties of the dough. The release of some peptides from gluten 
obtained through the activity of mTGase can also influence 
the modulation of bread microbiota during the storage and 
consequently increase the final product shelf-life (Scarnato 
et al. 2017).

Another application of mTGase in the bakery industry 
is related to the production of pasta and instant noodles. 
In 1996, research by Sakamoto et al. (1996) showed that 
the treatment of noodles and pasta with mTGase prevented 
the deterioration of texture upon cooking and improved the 
strength of the products, even when low-grade flours were 
used in the manufacture, reducing the costs of production 
(Sakamoto et al. 1996; Yokoyama et al. 2004).

Soybean products

Soy protein isolate (IPS) is widely used as an important 
ingredient in Asiatic diets and in general processed foods 
due to its nutritional value and functional properties. IPS 
consists of glycinin (11S) and β-conglycinin (7S), which 
account for approximately 70% of its total protein content. 
These globulins are good substrates for mTGase activity 
(Qin et al. 2016; Song and Zhao 2014). Tang et al. (2005) 
investigated the use of mTGase on the properties and 
microstructures of IPS films molded with various plasti-
cizers (glycerol, sorbitol, and 1:1 mixtures of glycerol and 

sorbitol). The cross-linking treatment by mTGase produced 
an effective method to improve the films cast properties of 
all tested plasticizers.

Tofu, a typical soybean curd product, is prepared by the 
coagulation of soybean proteins with the addition of Ca2+ 
and Mg2+ and/or glucono-δ-lactone. Coagulation or gelation 
of soymilk is the most important step in the production of 
tofu. A popular food in many countries, tofu shelf life is gen-
erally very short because its softness and smooth texture that 
prevents its sterilization. The introduction of mTGase in its 
processing produces an edge of texture control and enhances 
its quality, yielding a product with better consistency and 
silky texture and ability to tolerate temperature fluctuations 
(Chang et al. 2011).

Finally, proteins from sources other than soy can be cova-
lently linked to soy protein by mTGase to produce combina-
tions showing novel functionalities. For instance, conjuga-
tion of milk caseins or soybean globulins with ovomucin (an 
egg white glycoprotein), has shown to improve the emulsify-
ing activity of the combined protein when compared to both 
isolated proteins (Kato et al. 1991; Yokoyama et al. 2004).

Food coating and edible films

The research to produce protein films as an alternative to 
petroleum-based polymeric materials has been receiving a 
great deal of attention in the food industry. Protein films can 
be used as coatings on fresh fruits and vegetables to increase 
the shelf life of these products. These films are non-toxic, 
natural, health safe, biodegradable, and might be edible. 
Protein edible films produced by the cross-linking action 

Fig. 2   Representation of the cross-linking reaction of milk proteins 
induced by mTGase. a The milk proteins without mTGase action 
are schematized; b the preference of mTGase for β-CN and κ-CN; 

c cross-linking occurs with all milk proteins with time. Adapted 
from Chen and Hsieh (2016)
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of mTGase present structural homogeneity, have a smooth 
surface, are mechanically resistant, and are gas-permeable 
(Porta et al. 2016). In the work to Rossi Marquez et al. 
(2017), apple weight losses during storage was significantly 
reduced, approximately 80%, after 10 days when the samples 
were coated with whey protein grafted film with pectin and 
transglutaminase. Similarly, this grafted film was able to 
prevent weight loss of potato and carrot samples until the 
6th day of storage.

The research carried out by Fernandez-Bats et al. (2018) 
showed that it was possible to obtain mesoporous silica 
nanocomposite bioplastics prepared by using bitter vetch 
(Vicia ervilia) proteins crosslinked by mTGase, which 
showed improved gas and water vapor barrier properties. 
The prepared material showed antimicrobial and antifungal 
activities, possibly increased by nisin addition to the film-
forming solutions, suggesting their potential application as 
an active bio-preservative packaging to improve the shelf 
life of a variety of different food products.

Health aspects concerning the use 
of transglutaminase in food industry

Because of increased applications of mTGase in food, 
important health concerns appeared, pressuring the need for 
regulations to inform people on the safety when consum-
ing products containing this enzyme. In 1998, Motoki and 
Seguro (1998) showed that the only difference between food 
containing mTGase-modified proteins and native proteins 
was the number of links between glutamine and lysine resi-
dues (G–L). This chemical modification is also present when 
proteic foods are heated, for example, in cooking, generating 
the G–L bond. In this respect, humans have been ingest-
ing foods rich in G–L residues since the discovery of fire 
and cooking. Although not scientifically demonstrated, the 
safety of the G–L modified linkage can be assumed by the 
long-term consumption of the G–L moiety in cooked foods 
(Motoki and Seguro 1998). On the other hand, Bernard et al. 
(1998) studied the mutagenesis and toxicity risk presented 
by the addition of mTGase in food preparations, tested in 
experimental animals. Their results suggest that the acute 
toxicity of the enzyme seems to be relatively low, since it 
was not observed any mortality, morbidity, or signs of toxic-
ity at doses of 2 g/kg body weight.

There have been some evidences of increased nutritional 
properties of foods enzymatically modified by mTGase. 
According to studies conducted by Xing et al. (2016), the 
addition of mTGase to soy extract in preparation of tofu lead 
to modifications of proteins that increased the perception of 
satiety and reduced the allergenicity towards soy proteins. In 
another application concerning allergenicity, shrimp prod-
ucts processed using mTGase showed reduced allergenicity 

due to glycosylation of proteins catalyzed by this enzyme 
(Yuan et al. 2017).

Concerning bakery products, Zhou et al. (2017a) have 
shown that mTGase can effectively transamidate gliadin 
peptides and gluten proteins, thus concluding that mTGase 
lowered the allergenicity and immunogenicity caused by 
wheat flours. The resulting peptides are barred to cross intes-
tinal mucosa where they initiate the celiac immunological 
activity. These results demonstrate a potential strategy to 
prevent cereal toxicity in celiac disease (Zhou et al. 2017b). 
However, multiple mTGase linked proteins are immunogenic 
in celiac disease patients. In the study conducted by Lerner 
and Matthias (2015), the authors indicate that the use of this 
enzyme can further increase antigenic load presented to the 
immune system and increase the risk for gluten-sensitive 
populations. In a recent research, Matthias et al. (Matthias 
et al. 2016) have suggested that mTGase increases immu-
nogenicity in children with celiac disease because mTGase 
antibodies correlates to intestinal damage in the same degree 
as transglutaminase human tissue antibodies. Authors sug-
gested that further investigation is necessary to elucidate the 
role of anti-mTGase antibodies in this disease.

Although scientific findings reported in the literature 
regarding the safety of the use of mTGase in foods can be 
classified as inconclusive, the FDA has approved the use of 
mTGase as a “Generally Recognized as Safe—GRAS” for 
food applications since 1998. This enzyme is considered an 
adjunct of technology and it is not regarded as an ingredient, 
and therefore does not need to be listed in the composition of 
ingredients of the commercial product (Romeih and Walker 
2017; Taghi Gharibzahedi et al. 2018).

Biotechnology applications of mTGase

The biotechnological applications of transglutaminases are 
one of the fastest growing areas on mTGase research. Classi-
cal applications of transglutaminases in biomedical research 
include PEGylation, the production of antibody–drug con-
jugates, tissue engineering, regenerative medicine, and the 
production of microparticles for enteric delivery of sub-
stances of interest in the food and pharmaceutical industry. 
Finally, we will be briefly reviewing the use of transglutami-
nases in the treatment of textiles and leather.

Enzymes immobilization mediated 
by mTGase‑catalyzed bioconjugation

Protein immobilization in solid supports has been used as 
a technique for biotechnological applications of enzymes, 
offering several advantages over the use of free forms, such 
as easing separation from reaction media and the possibil-
ity of reuse (Duarte et al. 2017; Mateo et al. 2007; Matte 
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et al. 2014; Rodrigues et al. 2013). In general, proteins 
bound to functional groups on supports show high stabil-
ity due to reduced protein loss to the medium. The immo-
bilization of proteins through covalent bond formation 
has been routinely carried out using chemically-activated 
supports or chemical cross-linking reagents (Mateo et al. 
2007). However, because the presence of multiple func-
tional groups on protein surfaces, proteins are in general 
randomly attached onto supports, resulting in the reduc-
tion of total enzymatic activity. Several techniques have 
been devised to preserve the activity of biomolecules upon 
immobilization, among them the immobilization using 
mTGase as site-specific binding (Tominaga et al. 2004). 
The immobilization mediated by transglutaminase-cata-
lyzed bioconjugations offers the advantage of improved 
selectivity and compatibility with sensitive biological sys-
tems relative to traditional chemical methodologies (Wang 
et al. 2019).

The mTGase is unique in catalyzing the acyl transfer 
reaction between a primary amine and the γ-carboxyamide 
group of glutamine (Gln) residues in peptides and proteins. 
When the ɛ-amino group of lysine (Lys) residues in protein 
acts as an acyl acceptor, cross-linking of proteins becomes 
possible through the ɛ-(γ-Gln)Lys bond, resulting in the for-
mation of a new γ-glutaminyl covalent link (Kamiya et al. 
2003; Li et al. 2018; Motoki and Seguro 1998; Wang et al. 
2019). The mTGase displays broad acyl-acceptor substrate 
specificity, enabling the use of a variety of scaffolds with 
primary amine groups as solid supports, such as the polysac-
charide chitosan and gelatin (Li et al. 2018).

The study of Tominaga et al. (2004) demonstrated site-
specific immobilization via covalent attachment of recom-
binant alkaline phosphatase with a specific peptide linker 
by mTGase. To allow the mTGase-mediated site-specific 
immobilization, a solid support of casein-coated polyacrylic 
resin was designed to display mTGase recognition sites on 
its surface. It was found that this immobilization exhibited 
much higher specific activity, with higher stability upon 
repeated use than the biocatalyst prepared via chemical 
modification.

Wang et al. (2019) reported the controlled, site-specific 
and covalent cross-linking of an engineered enterokinase 
on amine-modified magnetic nanoparticles via mTGase-
catalyzed bioconjugation for the development of the ori-
ented-immobilized enzyme. A glutamyl (Gln-donor tag) 
was genetically incorporated into the C-terminus of enter-
okinase. An amide linkage was formed between the glutamyl 
group of Gln tag and the primary amines of the support via 
the covalent immobilization catalyzed by mTGase. Upon 
the site-specific immobilization, approximately 90% enter-
okinase activity was retained, and the biocatalyst exhibited 
more than 85% of initial enzymatic activity reusable stability 
over a month (Wang et al. 2019).

In the work of Synowiecki and Wołosowska (2006), a 
β-glucosidase from Sulfolobus shibatae was immobilized 
on silica gel modified with 3-aminopropyl-triethoxysilane 
using transglutaminase as a cross-linking factor, and the 
immobilization process did not influence the optimum 
pH and temperature of substrate hydrolysis (Synowiecki 
and Wołosowska 2006). On the other hand, Bechtold et al. 
reported the preparation of protein G-soybean peroxidase 
conjugate catalyzed by mTGase with yields calculated to be 
only about 0.1%, suggesting the difficulty in controlling the 
reaction when using native proteins (Bechtold et al. 2000).

PEGylation

At the end of the 1960s, Davis proposed the idea of con-
jugating PEG [poly (ethylene glycol)] to a protein, i.e., to 
“PEGylate” a protein (Davis 2002; Hoffman 2016). Since 
then, the PEGylation is considered one of the most suc-
cessful methods to prolong the circulatory half-life and 
reduce the in vivo immunogenicity of therapeutic proteins, 
among many other applications in pharmacology (Pasut and 
Veronese 2012).

PEG is biocompatible, lacks immunogenicity and anti-
genicity, is soluble in water and other organic solvents, is 
readily cleared from the body, and has high mobility in solu-
tion and, more important, it is not toxic, making this the pol-
ymer of choice for bioconjugations. PEG use was approved 
by the FDA in the early 1990s (Bhattarai et al. 2005; Harris 
and Chess 2003; Mariniello et al. 2014; Roberts et al. 2002). 
Thus, a number of protein/PEG conjugates, are available in 
the market such as for the treatment of chronic hepatitis C 
(PEGinterferon α-2a and α-2b), for the treatment of acute 
lymphoblastic leukaemia (mPEG-L-Asparaginase), to treat 
severe combined immunodeficiency (SCID) disease (mPEG-
Adenosine Deaminase), and to treat acromegaly (PEG-viso-
mant) (Banerjee et al. 2012).

Chemical strategies used for the PEGylation of pro-
teins produces random derivatives of lysine (Lys) residues, 
leading to heterogeneity and decreased bioactivity of the 
products (da Silva Freitas et al. 2013). Instead, the use of 
transglutaminase for the covalent attachment of PEG mol-
ecules to pharmaceutical proteins shows stringent substrate 
specificity, and site specific modification or PEGylation of 
the Gln residues bound to the proteins on the substrates can 
be obtained. (Fontana et al. 2008).

Because transglutaminases have partial selectivity to the 
carboxamide substrate, they are interesting options for the 
PEGylation of proteins. However, for the reaction to occur, 
the carboxamide must be in the flexible part of the protein 
molecule. (Dozier and Distefano 2015; Fontana et al. 2008). 
Consequently, mTGase has been intensively used to site-
specifically incorporate mPEG–NH2 to the reactive Gln resi-
due of proteins (da Silva Freitas et al. 2013). The reactive 
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Gln residues modified by mTGase must locate at the disor-
dered protein regions and satisfy its sequence requirement. 
As many target proteins lack the reactive Gln residues that 
can satisfy the structural and the sequence requirement of 
mTGase, its use is limited (da Silva Freitas et al. 2013; Mero 
et al. 2009). Several researches have been developed in this 
area and some of them are listed in Table 2.

So far, only a limited number of researches has been car-
ried out on mTGase-mediated protein modification at the 
level of Lys residues. One of them is the work, of Zhou 
et al. (2016b), who linked carboxybenzyl-glutaminyl-glycine 
(CBZ-QG) to mPEG amine to form CBZ-QG-mPEG for the 
PEGilation of cytochrome C.

The hydroxyethyl starch (HES), which is a biodegradable 
derivative of starch, can be an alternative to PEG as blood 
plasma volume expander and in the design of drug delivery 
systems (Treib et al. 1999). It has been reported the use 
of HES conjugation using mTGase to produce fully bio-
degradable polymer–drug and polymer–protein conjugates 
(Besheer et al. 2009).

Antibody drug conjugates (ADCs)

Another promising technology is the use of mTGase to 
attach antibodies to diverse compounds in order to produce 
antibody–drug conjugates (ADC). ADC are emerging thera-
peutic agents in the treatment of cancer, using antibodies 
to selectively deliver a cytotoxic compound to tumor cells, 
thus improving the therapeutic index of chemotherapeutic 
agents, and showing better safety potential than nontargeted 
cytotoxics (Anami et al. 2017; Strop et al. 2013). One of the 
major challenges in the development of ADC is the applica-
tion of suitable linkers to conjugate drugs to antibodies (Yao 
et al. 2016). The ADC have been largely manufactured by 
using chemical conjugation methods, generally resulting in 
heterogeneous mixtures of ADC having different physical 
and pharmacokinetic properties of the proposed ones (Axup 
et al. 2012; Dennler et al. 2014; Junutula et al. 2008; Okeley 
et al. 2013; Shen et al. 2012; Strop et al. 2013; Xiao et al. 
2013; Zuberbühler et al. 2012).

An alternative strategy to the chemical modification of 
ADC is the use of mTGase because the enzyme will prevent 
the formation of these heterogeneous mixtures. Moreover, it 
is possible to introduce appropriate amine containing linkers 
making the mTGase able to conjugate structurally diverse 
probes and drugs (Ohtsuka et al. 2000). Strop et al. (2013) 
investigated how the conjugation site influences the stability, 
toxicity and efficacy of ADC obtained by mTGase reaction 
and whether these differences could be directly attributed to 
the binding position. By designing a “glutamine label”, 90 
sites were tested to attach several compounds and 12 sites 
showing a high degree of conjugation were found.

A two-step chemo-enzymatic approach, where mTGase 
binds a spacer entity that is reactive to the antibody, and 
subsequently reacts with the antimitotic toxin monomethyl 
auristatin E (MMAE), produced the highly homogeneous 
trastuzumab-MMAE conjugate with DAR (Drug-Antibody 
Ratios) of 2 (Dennler et al. 2014). Some ADC currently in 
use in clinical development based on target antigens using 
tranglutaminase are: PF-06664178, Trop-2 ADC, RN927C 
(Phase I, for treatment of ovarian cancers, non-small cell 
lung cancer and breast cancer—site-specific transglu-
taminase tag, AcLys-VC-PABC linker) and PF-06647020, 
h6M24-vc0101, PTK7-targeted ADC (Phase I, for treat-
ment of non-small-cell lung carcinoma, triple-negative 
breast cancer and ovarian cancers—transglutaminase tag 
(LLQGA) located at the C-terminus of the antibody heavy 
chain, cleavable VC-PABC-linker) (Damelin et al. 2017; 
Nejadmoghaddam et al. 2019; Sachdev et al. 2016; Strop 
et al. 2016).

Several other investigations have been reported on the 
production of monoclonal antibodies using mTGases and 
are well documented in recent works (Dennler et al. 2014; 
Farias et al. 2014; Grünberg et al. 2013; Jeger et al. 2010; 
Lhospice et al. 2015; Siegmund et al. 2015; Spidel et al. 
2017; Strop et al. 2013).

Tissue engineering and regenerative medicine

The term Tissue Engineering (TE) was first introduced in 
1993 by Langer and Vacanti (1993) to describe an inter-
disciplinary field encompassing cell biology, material 
science, chemistry, molecular biology, engineering, and 
medicine, with the objective of developing advanced bio-
logical tissues and organs. These engineered biological 
materials are intended to maintain, improve, or restore 
functionalities of natural tissues combining scaffolds, 
cells and/or bioactive molecules (Griffith and Swartz 
2006; Langer and Vacanti 1993; Lee et al. 2014; O’Brien 
2011). The potential applications are being investigated in 
the field of tissue engineering of bones, cartilage, cardiac 
system, pancreas, and the vascular system, among others 
(Zhu and Tramper 2008). The main bulk of research in 
this area has been focused in the development of bioma-
terials capable of mimicking the structure and composi-
tion of the extracellular matrix. Such biomaterials must 
present biocompatibility and biodegradability and should 
not be toxic. In addition, the production and processing of 
biomaterials must be easy and scalable. Because hydro-
gels have high plasticity and high moisture content they 
have been the most important biomaterials employed 
in tissue engineering (Polak 2010; Toh and Loh 2014). 
Hydrogels can be formed from gelatin, collagen, chitosan, 
hyaluronic acid, and sodium alginate, as well as synthetic 
materials such as polylactide, polylactic-co-glycolic acid 
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copolymer, polyethylene glycol, polycaprolactone, and 
polyacrylamide (El-Sherbiny and Yacoub 2013). Gela-
tin is a protein derived from the hydrolysis of collagen 
with characteristics of biodegradability and cell adhe-
sion capacity, considered as GRAS material by the FDA 
and it has a long history of safe use in food products, 
pharmaceuticals and cosmetics (Elzoghby et al. 2012). 
Unfortunately, owing to a lack of mechanical strength 
and sensitivity to in vivo enzymes, the biomedical appli-
cations of gelatin is limited being necessary to increase 
its physical performance and to strengthen its resistance 
against enzymes hydrolyses (Zhao et al. 2016). To achieve 
this goal, crosslinks are usually introduced in biomate-
rials such as collagen mediated by mTGase, replacing 
physical methods like dehydrothermal drying (DHT) and 
UV-irradiation, among others, and chemical crosslinking 
mediated by glutaraldehyde, formaldehyde, and 1-ethyl-
3-(3-dimethylaminopropyl)-carbodiimide (EDC). The 
physical methods produce weak bonds that have a high 
risk of degradation, whereas the chemical methods use 
often toxic compounds that must be removed from hydro-
gels before being applied (Stachel et al. 2010; Yang et al. 
2018). Therefore, the substitution of these methods by the 
enzymatic application of mTGases in order to generate 
hydrogels are among the most promising technologies to 
obtain biomaterials, since the mTGase-mediated process 
presents no risk of toxicity and eases the preparation of 
the materials, showing high mechanical stabilities (Mil-
czek 2018). There is a plethora of research showing the 
use of transglutaminases to produce hydrogels, some of 
them listed in Table 3.

In 1986, Charles Hull described for the first time the 
technique of 3D bioprinting, which has since been used 
to produce a large variety of scaffolds in different tissue 
engineering areas. The term 3D bioprinting is used to 
describe the precise layering of cells, biologic scaffolds, 
and biologic factors with the goal of building a biologi-
cal tissue (Bishop et al. 2017). The vascularization of 3D 
scaffolds is crucial for their functionalities, assuring the 
delivery of nutrients and oxygen to tissues, promoting cell 
proliferation and subsequent development of the new tis-
sue (Castells-Sala et al. 2013). The main techniques used 
in tissue engineering by 3D bioprinting are stereolithog-
raphy, extrusion-based, laser-assisted and inkjet-based 
printing (Derakhshanfar et al. 2018), and a sample of the 
investigations using 3D printing for tissue engineering 
with the use of transglutaminase are listed in the Table 3. 
In this technique, a great variety of polymers, hydrogels, 
bioceramics, among other biomaterials, have been used. 
Natural biological materials, such as cells, can also be 
employed in 3D bioprinting (Tappa and Jammalamadaka 
2018).

Transglutaminase‑crosslinked microparticles 
for enteric delivery

The microencapsulation technique is widely used in the 
fields of food, pharmaceuticals, and biotechnology in order 
to preserve physicochemical and sensorial attributes and to 
produce control-released compounds. Microencapsulation is 
obtained by the use of various techniques, such as spray dry-
ing, cooling, extrusion coating, fluidized bed coating, lipo-
some retention, inclusion complexation, centrifugal extru-
sion, and rotational suspension separation, techniques that 
are chosen based on final product characteristics and costs 
(Desai and Park 2005). Recently, another technique has been 
described, the complex coacervation, which produces high 
encapsulation efficiencies, and has since been widely used 
in food and pharmaceutical industries, because it does not 
require harsh production conditions (temperature, pressure, 
pH, etc.) (Tello et al. 2016). This technique uses a combina-
tion of encapsulating agents of opposing charges to create 
electrostatic attraction between two molecules, and other 
interactions, such as hydrogen bonds and hydrophilic inter-
actions, that also contribute to the formation of complexes 
(Ach et al. 2014). As the nature of these bonds is weak, there 
is the need to strengthen the interactions between polymers. 
For this purpose, mTGase has been used as a cross-link-
ing agent showing promising results (Sanchez and Renard 
2002). In Table 4 is presented a summary the microencapsu-
lation and complex coacervation techniques found in litera-
ture involving the use of microbial transglutaminase.

Transglutaminase applications in textile 
industry

The textile finishing industry has been the focus of consid-
erable criticism because it uses traditional chemical treat-
ments in wool processing, which is perceived as highly 
damaging to the environment. Unfortunately, the alter-
native enzymatic processes using proteases can cause an 
excessive loss of fabric weight and yarn strength. There-
fore, the use of transglutaminases in treatments of wool 
and leather fabrics has become extensively explored in 
order to develop appropriate technologies based on the 
use of this enzyme. It has been found that mTGase is capa-
ble of recovering properties of wool and silk treated with 
chemicals and enzymes used at different processing stages, 
such as cleaning, carding, bleaching, combing, drawing, 
spinning, and twisting (Tesfaw and Assefa 2014). Wool 
fabrics treated with Streptomyces hygroscopicus mTGase 
showed recovered fiber structures that were damaged dur-
ing protease treatments (Du et al. 2007). The application of 
Guinea pig liver transglutaminase or the mTGase isolated 
from Streptoverticilium mobaraense in wool processing 
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resulted in the reduction of the propensity of wool yarn 
or fabric to shrink, and to improve yarn resistance, sug-
gesting that transglutaminases can remediate the negative 
effects of proteolytic processing of the wool (Cortez et al. 
2004). Mojsov (2017) showed that the characteristics of 
wool fabric pretreated with proteolytic enzymes and trans-
glutaminase is comparable to untreated wool fabric. The 
author points to the following benefits of treating wool 
with mTGase: improvement in fabric softness, increased 
absorption characteristics, and resistance to pilling and 
retraction of the felting (Mojsov 2017).

Wool garments industrialized using fabrics treated with 
mTGase are likely to have increased resistance to domes-
tic washing. Biological detergents containing proteases can 
cause irreversible damage to the fiber, leading to loss of 
fabric strength, shape, and color fading (Cortez et al. 2005). 
However, combining the advantages of using both proteases 
and transglutaminases in a simultaneous enzymatic treat-
ment of wool, resulted in the development of a bioprocess 
for machine washable wool with insignificant fiber damage 
(Gaffar Hossain et al. 2008). Casein incorporated to wool 
mediated by mTGase was used as a surface coating mate-
rial for smoothing the texture of the wool fiber by coating 
or filling the damaged scales in wool yarn (Cui et al. 2011).

Finally, excellent antibacterial properties were obtained 
when Ɛ-Poly-l-lysine (Ɛ-PL), which is a natural biomacro-
molecule having a broad spectrum of antibacterial activity, 
was grafted onto the wool fiber via mTGase, showing 97% 
bacteriostasis to Escherichia coli (Wang et al. 2010).

Transglutaminase applications in leather 
processing

The process of filling, which is the introduction of materi-
als into the voids between leather fibers in order to smooth 
surface irregularities is considered one of the most important 
steps in leather processing, used to increase material qual-
ity. Common materials used as fillers are glucose, flour, and 
gum, as well as enzyme-modified gelatin and casein, the last 
two being cross-linked with leather proteins by the action 
of mTGase (Zhu and Tramper 2008). Experimental results 
showed that fillers incorporated by mTGase were firmly 
bound to the leather and would not be easily removed dur-
ing further processing (Taylor et al. 2006).

Finally, the use of gelatin-sodium caseinate modified by 
mTGase was investigated regarding subjective aspects of 
leather (visual aspects, touch, etc.), as well as for its mechan-
ical and structural properties. The application of mTGase 
improved the subjective aspects, without significantly affect-
ing the mechanical properties such as tensile strength and 
elongation at break (Liu et al. 2011).Ta
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Conclusion

We addressed the several uses of microbial transglutami-
nases in the food, pharmaceutical, and biotechnology 
industries. The applications of mTGase have important 
implications for the development of these industries, pro-
ducing new products at low cost, improving the application 
and quality of food, pharmaceuticals, and other goods such 
as wool and leather, designed for improving human life in 
a more sustainable way. mTGases became crucial to pro-
duce processed meat and seafood products, dairy products, 
bread, noodle, soybean products, and to produce coating 
and edible films. In more sophisticated fields, mTGase 
has become relevant in PEGylation, antibody drug conju-
gates, tissue engineering, regenerative medicine, produc-
tion of microparticles for enteric delivery, directly impact-
ing health products and services. Due to its importance 
and value aggregation to final products, research on the 
applications of mTGases is ever growing, showing many 
possibilities to produce new materials and improving the 
quality of the existing ones. Further research should focus 
on the bioprocess technology to reduce production costs of 
mTGases and enhance their biochemical properties.
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