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Myelin-oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is a recently identified autoimmune 
disorder that presents in both adults and children as CNS demyelination. Although there are clinical phenotypic 
overlaps between MOGAD, multiple sclerosis, and aquaporin-4 antibody-associated neuromyelitis optica spectrum 
disorder (NMOSD) cumulative biological, clinical, and pathological evidence discriminates between these conditions. 
Patients should not be diagnosed with multiple sclerosis or NMOSD if they have anti-MOG antibodies in their serum. 
However, many questions related to the clinical characterisation of MOGAD and pathogenetic role of MOG antibodies 
are still unanswered. Furthermore, therapy is mainly based on standard protocols for aquaporin-4 antibody-associated 
NMOSD and multiple sclerosis, and more evidence is needed regarding how and when to treat patients with MOGAD.

Introduction
Myelin-oligodendrocyte glycoprotein (MOG) constitutes 
a quantitatively minor component (0·05%) of CNS 
myelin1 and is expressed on the outer lamella of the 
myelin sheath.1,2 Although MOG knockout mice display 
normal myelin ultrastructure and no distinctive 
phenotype,3 in humans MOG is thought to be involved 
in completion and maintenance of the myelin sheath 
and in cell–cell communication. MOG has been 
controversially discussed as a putative autoantigen in 
autoimmune CNS demyelinating diseases for decades,4 
but it is well established as an antigenic target in the 
experimental autoimmune encephalomyelitis mouse 
model.5,6 The emergence of protein conformation-
dependent assays7 for the detection of anti-MOG 
antibodies has revealed distinct clinical phenotypes in 
children and adults with CNS demyelination.8,9 Different 
terms have been proposed to characterise patients with 
CNS syndromes associated with the presence of 
anti-MOG antibodies. We will use here the term MOG 
antibody-associated disease (MOGAD), which suggests 
that this is a distinct disorder but does not preclude the 
future incorporation of a yet unidentified clinical 
presentation, and does not imply pathogenicity of the 
antibody itself.

Although there are clinical phenotypic overlaps 
between MOGAD, multiple sclerosis, and neuromyelitis 
optica spectrum disorder (NMOSD) associated with 
anti-aquaporin-4 (AQP4) antibodies (AQP4-NMOSD), 
cumu lative biological, clinical, and neuropathological 
evidence clearly discriminates between these conditions. 
In patients with MOGAD, lesions are characterised by 
inflammatory demyelination, and not astrocytopathy as 
seen in AQP4-NMOSD. The peri vascular deposits of 
activated complement proteins and immunoglobulins 
that are typical for multiple sclerosis lesions are also 
rarely found in patient with MOGAD.10 Furthermore, 
although MOGAD shares some patho logical features 

with multiple sclerosis (eg, demyelination and immune-
cell infiltration), the lesions in MOGAD are characterised 
by perivascular infiltrated MOG-laden macrophages and 
CD4+ T-cell infiltration; by contrast, multiple sclerosis 
lesions are characterised by infiltration by CD8+ T cells.10

There are many unanswered questions related to the 
clinical characterisation of MOGAD and the pathogenetic 
role of anti-MOG antibodies, and more evidence is needed 
regarding who, how, and when to treat. This Personal 
View is based on a focused workshop on MOGAD, 
organised by the European Committee for Treatment and 
Research in Multiple Sclerosis, held in Athens, Greece, 
March 7–9, 2019. Our aim is to review and discuss the 
immunology, pathology, clinical spectrum, and treatment 
of MOGAD.

Clinical features in adults and children
MOGAD accounts for approximately 1·2–6·5% of all 
demyelinating syndromes in adults.11,12 In children 
(<18 years), the frequency of anti-MOG antibody sero-
positivity during a first acute demyelinating syndrome 
is high, with multinational studies from Europe,13–15 
North America,16 and Australia17 identifying these anti-
bodies in about 40% of all acute demyelinating 
syndrome presentations.18 The most common presen-
tations, stratified according to the different demyeli-
nating phenotypes, are summarised in table 1 
(appendix pp 2–5).

In both adult and children, the frequency of MOGAD is 
phenotype dependent. A single-centre retrospective study 
detected anti-MOG antibodies in the serum of 12 (60%) of 
20 of adults with acute disseminated encephalomyelitis 
either at onset or at follow-up.19 A Danish population-
based prospective study detected anti-MOG antibodies in 
two (4%) of 51 adults with a first episode of optic neuritis,20 
and the multicentre, randomised, placebo controlled 
Optic Neuritis Treatment Trial reported anti-MOG 
antibodies in three (2%) of 177 individuals.21 In anti-AQP4 
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antibody seronegative longitudinally extensive transverse 
myelitis, two retro spective studies reported that 16–23% 
of individuals were anti-MOG antibody seropositive.22,23 
MOG antibodies are identified in up to 64% of children 
with acute demyelinating encephalomyelitis24 and in 
almost all those who relapse after acute disseminated 
ence phalo myelitis (multi phasic acute disseminated ence-
phalo myelitis or acute disseminated encephalo myelitis-
optic neuritis),25–28 but in 33–43% of children presenting 
with optic neuritis14,16,28 and only three (6%) of 50 patients 
with paediatric myelitis.28 Anti-MOG anti bodies were 
identified in 26 (24%) of 110 children with relapsing 
demyelinating syndrome and 26 (54%) of 48 with 
non-multiple sclerosis relapsing demyelination.9 Most 
studies describing the frequency of anti-MOG antibodies 
and the clinical phenotypes associated with them were 
done in tertiary referral centres for neuro inflammatory 

disorders, which might lead to selection bias. This is 
especially relevant when evaluating patients with clinical 
phenotypes such as optic neuritis or myelitis, who might 
be referred to such centres only because of severe or 
atypical presentation. In addition, the first cohorts 
evaluated for anti-MOG antibodies by cell-based assay 
were restricted to patients with monophasic or recurrent 
optic neuritis or myelitis, thus not reflecting the real 
frequency of anti-MOG antibodies across all acute and 
chronic inflammatory demyelinating CNS diseases.29–32 
Clinical phenotypes and paraclinical features stratified by 
age at onset are summarized in table 2.

No racial groups seem to be more or less likely to be 
diagnosed with MOGAD, by contrast with AQP4-
NMOSD which is more common in non-White people. 
An equal number of males and females have MOGAD 
among young children (age <10 years), with a slight 
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Optic neuritis Transverse myelitis Acute disseminated encephalomyelitis

Clinical 
features

Up to 80% of patients, either at onset or during 
the disease course; simultaneous bilateral 
involvement in up to 40%; average high contrast 
visual acuity at nadir counting figures; optic 
nerve head swelling (papillitis); might have 
peripapillary haemorrhage; more steroid 
responsive than in AQP4-NMOSD and multiple 
sclerosis

Spinal cord involvement in 30% of episodes 
at onset and up to 50% during the disease 
course; motor disability might be similar to 
AQP4-NMOSD; urinary, bowel, and erectile 
dysfunction are common; more steroid 
responsive than AQP4-NMOSD and multiple 
sclerosis

Most frequent presentation in children 
(<18 years); only in about 5% of adult 
presentations; seizures at onset observed in up 
to 40% of children with acute disseminated 
encephalomyelitis; MOG antibody associated 
ADEM at higher risk of higher risk of post-
acute disseminated encephalomyelitis epilepsy

Imaging Extensive T2-weighted and gadolinium 
enhancing lesion in the optic nerve or chiasm, 
more evident on orbit MRI; predominates in the 
anterior parts of nerve but might extend to optic 
chiasm; perineural gadolinium enhancement; 
peripapillary retinal nerve fibre layer thinning 
frequent on OCT but clinical-radiological paradox 
(despite severe atrophy of retinal nerve fibre 
layer, visual acuity is preserved); attack related 
retinal nerve fibre layer thinning with temporal 
predominance; microcystic macular in 24%

Initially described as longitudinally extensive 
transverse myelitis but short myelitis in up 
to 40%; involvement of the conus 
medullaris (more frequent than in MS and 
AQP4NMOSD); abnormalities confined to 
grey matter (sagittal line and axial H sign) 
and nerve roots; less frequent gadolinium 
enhancement than AQP4-NMOSD and 
multiple sclerosis; initial spinal cord MRI 
negative in 10% of patients; frequent 
complete resolution at follow-up scan

Large, hazy, and poorly demarcated 
asymmetrical bilateral lesions; deep grey 
matter involvement, most commonly 
affecting the thalamus; lesions might be highly 
enhancing; corpus callosum, brainstem and 
cerebellum involved; frequently associated to 
spinal cord involvement; frequent complete 
resolution at follow-up scan

CSF Rare oligoclonal bands (<10%); presence of 
frequent mild lymphocytic pleocytosis

Rare oligoclonal bands (<10%); presence of 
frequent mild lymphocytic pleocytosis

Rare oligoclonal bands (<10%); presence of 
frequent mild lymphocytic pleocytosis

Risk of 
relapse and 
outcome

Patients aged <45 years at higher risk of relapse 
than older ones (>18 years); permanent visual 
impairment (visual acuity <20/100) rare at 
2 years; reversible visual dysfunction from first 
episode in up to 75%; progressive thinning of 
peripapillary retinal nerve fibre layer (but not of 
the combined ganglion cell and inner plexiform 
layer) might be observed in absence of new 
clinical attacks

Good or full recovery from the onset attack 
in 60% younger patients (<18 years); around 
20% of patients had permanent motor 
disability at 2 years (disability status scale 
>3·0); irreversible motor disability at last 
follow-up was explained by disability at 
onset attack in 68·4% patients who reached 
DSS 3.0 and 87·5% who reached disability 
status scale EDSS 6.0; permanent bowel, 
bladder, and erectile dysfunction are 
frequent despite good motor recovery

Up to 50% of children (<18 years) will relapse 
after acute disseminated encephalomyelitis; 
phenotype at relapse might be multiple 
disseminated encephalomyelitis, or acute 
disseminated encephalomyelitis-optic neuritis; 
a small proportion of children (<18 years) will 
have a single relapse within 3 months; 
behavioural and cognitive problems might 
occur after acute disseminated 
encephalomyelitis and are more common in 
relapsing group (up to 50%); up to 10% 
(predominantly very young children [ younger 
than 7 years]) can develop a leukodystrophy-like 
phenotype with large confluent highly 
enhancing lesions and significant brain atrophy 
over time

Other, less common, phenotypes have also been reported in patienst with MOG-Ab; (1) isolated brainstem involvement in about 7% of adults and 30% of children (younger 
than 18 years; postrema syndrome is rare); (2) cortical (unilateral or bilateral) encephalitis with or without white matter involvement; (3) cranial neuropathies or mixed 
central and peripheral syndromes; (4) features of chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids; (5) pseudotumour 
cerebri-like, associating bilateral papillitis to elevated CSF opening pressure. For references and information, please see appendix (pp 2–5). MOG=myelin-oligodendrocyte 
glycoprotein. AQP4-NMOSD=anti-aquaporin-4 antibody-associated neuromyelitis optica spectrum disorder. OCT=optical coherence tomography. EDSS=expanded disability 
status scale. ADEM=acute disseminated encephalomyelitis

Table 1: Main clinical and paraclinical features in anti-MOG antibody-associated disease
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female predominance (less than in patients with AQP4-
NMOSD) in older post-pubertal children and adults.33 No 
definitive evidence has linked MOGAD with other 
autoimmune diseases or specific malignancy. Although 
an HLA association, similar to other autoantibody 
associated disease might be expected, a study of 43 Dutch 
patients with MOGAD showed no significant HLA 
association.34 As in other genetic and acquired white 
matter diseases, there is an age-dependent phenotype in 
MOGAD:35 Younger children are more likely to have 
brain involvement compared with older children and 
adults.36,37 Similar to multiple sclerosis, both the severity 
of the attacks and the recovery from attacks are also 
age-dependent, with worse severity and more complete 
and faster recovery in children.38 The risk of relapse is 
lower in children, with most remaining monophasic.16 
Less than 10% of children who relapse (typically very 
young children [<7 years]) develop a leukodystrophy-like 
phenotype, with large confluent highly enhancing lesions 
on MRI and substantial brain atrophy over time.35 These 
children have poor outcomes, with permanent cognitive 
and motor disabilities.35 Younger children (<7 years) are 
more likely to have symptomatic brain involvement 
compared with older children and adults.37

Cohort studies and case reports have shown that the 
disease course is heterogeneous. The number of clinical 
relapses itself does not accurately explain disability 
accrual at the individual level, possibly because of 
individual differences in the susceptibility for myelin 

damage and mechanisms of remyelination and repair. 
For instance, children younger than 9 years are more 
likely to have severe brain pathology, with higher lesion 
load detected on conventional imaging, than children 
aged 9 years and older;37 nevertheless, recovery from 
acute attacks appears faster than in older children and 
adults. This finding might not be disease specific and 
was also observed in a comparison between adult and 
children with multiple sclerosis showing that every 
10 years of age reduced recovery on the expanded 
disability status scale by 0·15 points.39 It is estimated that 
about 40% of adults40,33 and 30%18 of children28 with 
MOGAD present with a second clinical attack within 
5 years.

Approximately 60% of adult patients develop permanent 
neurological deficits, including motor and visual 
symptoms41 and about 50% of children with relapsing 
MOGAD and brain involvement develop cognitive 
problems.37 Prediction of disability based on characteristics 
of the first attack remains elusive. Early studies suggested 
that high anti-MOG antibody titres could predict further 
clinical events,15 but more recent data indicate that 
patients might remain seropositive for many years and 
not relapse, and even patients who become seronegative 
could still relapse (and become seropositive at time of 
relapse).16 Antibody titres, even when measured longi-
tudinally, did not clearly correlate with disability 
outcomes.8 Similarly, baseline MRI parameters are not 
predictive of risk of relapse or disability.16,33
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Children Adults

<10 years 10–17 years All Children 18–39 years 40–59 years ≥ 60 years All adults

Female to male ratio33,38 Similar Similar Similar Slightly more 
female

Slightly more 
female

Slightly more 
female

Slightly more 
female

Presentation at onset8,28,3637

Optic neuritis 20–30% 50–60% 20–60% 50–65% 50–65% 50–70% 50–70%

Transverse myelitis 15–20% 15–20% 15–20% 20–40% 20–40% 20–40% 20–40%

Acute disseminated 
encephalomyelitis

50–60% 20–30% 20–60% <8% <8% <8% <8%

Brainstem demyelination <10% <10% <10% <10% <10% <10% <10%

Patients relapsing at 2 years8,15,33 NA NA 40% NA NA NA 40–44%

Risk of relapse*38 Very low Low Low Moderate Moderate Very low Moderate

Mean annualised relapse rate (SD)38 0·17 (0·31) 0·28 (0·38) 0·23 (0·35) 0·39 (0·62) 0·31 (0·52) 0·15 (0·27) 0·35 (0·58)

CSF oligoclonal bands54,55 <5% <12% <10% <10% <10% <10% <10%

Motor disability (reaching 
EDSS 3·0)†33,38

<10% <10% <10% 20–30% 20–35% 30–40% 20–40%

Visual acuity disability (reaching 
visual acuity 0·2)†38

<10% <10% <10% <10% 10–20% 10–20% <20%

Bladder, bowel, and erectile 
dysfunction or all three33

NA NA 20% NA NA NA 28–46%

Annualised relapse rate was calculated as number of relapses per year before treatment (excluding index event) and on-treatment only in patients with at least 6 months follow-up 
after initiation of treatment. Relapses were analysed for up to 2 years before initiation of therapy and for the duration of the time on therapy. No data are evaluable on the risk of 
relapse and bladder, bowel, and erectile dysfunction or all three stratified to the different age groups. We have therefore included a reference for all children and all adults. Refrain 
from drawing definitive conclusions regarding visual acuity disability and bladder, bowel, and erectile dysfunction or all three in children due to probable recall bias. Very low=lower 
risk than the reference category. Low risk=0–30% higher risk than the reference category. Moderate risk=30–60% higher risk than the reference category. EDSS=expanded disability 
status scale. NA=not aplicable. *Age group <10 years old is the reference category. †Based on cohorts of patients with a median follow-up between 2 and 4 years.

Table 2: Demographic, clinical, and laboratory differences according to age at onset in myelin-oligodendrocyte glycoprotein antibody-associated disease
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Biomarkers
Assays for anti-MOG antibody detection
Over the last 10 years, great efforts have been made to 
improve anti-MOG antibody detection techniques.42 More 
consistent results were obtained when the substrate for the 
tests were recombinant antigens expressed on live cells. As 
glycosylation and conformation of the MOG protein play a 
key role in anti-MOG antibody recognition,43–46 surface 
expression of the full-length human MOG protein (usually 
α-1 isoform, 218 aminoacids) expressed typically on human 
embryonic kidney (HEK293) cells7 is used to detect patho-
genic anti-MOG antibodies accurately. The immuno-
pathology in MOGAD is summarised in the figure and the 
panel. Their titres are higher during the acute attack in 
young children than in adolescents or adults32 but more 
likely to become negative after the attack.16 Timing of 
testing is important as antibody titres fluctuate and can 
decrease over months from presentation, and some 
patients can subsequently be tested negative.16 A higher 
cutoff for seropositivity and use of specific secondary 
antibodies to IgG1 or IgG-Fcγ47 increases specificity 
(ranging from 99·6% to 100%).48 The use of anti-IgG 
(heavy and light chain) secondary antibodies is a matter of 
debate. It was previously shown that using IgG (heavy and 
light chain) secondary antibodies could cross react with 
anti-MOG-IgM, which can be found in healthy controls.47 
However, two studies showed that IgG (heavy and light 
chain), IgG1, and IgG-Fcy antibodies were similar, and no 
IgM binding was observed.49,50 These discrepancies could 
be due to differences in assay methods. Of note, 
the sensitivities and specificities reported in all these 
studies15,16,47–51 were evaluated in the research setting, and 
applicability remains to be evaluated in the clinical context. 
In a recent large multicentre comparative study, anti-MOG 
antibody cell-based assays showed excellent agreement 
with each other for high positive and negative samples, but 
low positive or borderline samples were more frequently 
discordant.51 Such titres represent an undefined group of 
patients and are likely to affect the sensitivity and specificity 
of the results across all anti-MOG antibody testing 
laboratories. Each credited laboratory uses a specific cut off 
for positivity. As with any test, low positive or borderline 
results are more frequently discordant and should be 
evaluated as such.

Anti-MOG antibodies are now rarely found in patients 
with typical multiple sclerosis using cell-based assays. 
Only one (0·4%) of 244 patients with multiple sclerosis 
was found to be anti-MOG antibody positive by live-cell-
based assay in a multicentre study.52 Accordingly, 
two cross-sectional studies reported no detection of 
anti-MOG antibodies in 200 patients with progressive 
multiple sclerosis53 and in two (<1%) of 685 patients with 
relapsing or progressive multiple sclerosis from 
two tertiary centres.11 It is exceptionally rare for any 
patient to have serum antibodies to both MOG and 
AQP4.8,42 Patients who are anti-MOG antibody positive 
with clinical and paraclinical features discordant or 

uncommon for MOGAD must be closely monitored to 
determine the positive predictive value of this antibody 
for clinical management. This is particularly relevant in 
adults with suspected multiple sclerosis, in whom 
testing of all patients with suspected demyelinating 
disease would result in many borderline results and 
probably false positives. With the absence of established 
criteria for MOGAD, diagnosis in antibody-positive 
patients with atypical presentation rests on the rigour of 
the test method and the expertise of the clinician.

One half of patients with MOGAD present with 
pleocytosis (predominantly lymphocytes and monocytes) 
with cell numbers that tend to be higher than in multiple 
sclerosis.54,55 Severity of pleocytosis correlates more 
strongly with the rostral extent of lesions in people with 
acute disseminated encephalomyelitis or longitudinally 
extensive transverse myelitis than it does in people with 
optic neuritis.8 Oligoclonal bands and a positive IgG index 
are found in less than 15% of people with MOGAD, 
mainly during attacks.54,55 Similar to patients with AQP4-
NMOSD, CSF cytokine profile is elevated during an acute 

Figure: Proposed model for immunopathology of anti-MOG antibody-associated disease and potential 
treatment strategies
(A) The trigger for anti-MOG antibody production is unknown, but the autoimmune induction is thought to occur in 
the peripheral immune system. Although post-infection autoimmunity is a probable trigger, no disease-specific 
pathogens have been identified. Potential mechanisms for post-infectious autoimmunity, either in isolation or in 
combination, include molecular mimicry, bystander activation, epitope spreading, B-cell receptor mediated 
co-capture of antigens, and polyclonal activation of B cells. (B) In addition to anti-MOG antibodies and anti-MOG 
antibody-producing cells (B cells98 and plasma cells), antigen-specific T follicular helper cells are also probably 
involved. As human anti-MOG antibodies are mainly of the IgG1 phenotype, T follicular helper cells are required for 
differentiation of B cells into plasma cells that produce MOG antibodies. (C) B cells, plasma cells, and autoantibodies 
have to cross the blood–brain barrier to interact with their autoantigen, and mediate their pathogenic effects. 
Anti-MOG antibodies might enter the CNS when the blood–brain barrier is damaged after binding to Fc receptors and 
release from endothelial cells. (D) Once in the CNS, anti-MOG antibodies presumably bind MOG (dark blue circles) 
expressed on myelin (yellow ovals) where they lead to myelin injury (red flash) and subsequent demyelination.56,97 In 
parallel, anti-MOG antibodies and plasma cells might also enhance activation of cognate MOG-specific CD4+ T cells 
or myelin basic protein-specific T effector cells and macrophages in the CNS.99 Indeed, there is an increase of 
proinflammatory cytokines (IL-6, IL-17, G-CSF, and TNFα) as well as B cell cytokines and chemokines (BAFF, APRIL, 
CXCL13 and CCL19) in the CSF of patients with anti-MOG antibody-associated disease, compared with CSF from 
healthy controls.56 MOG=myelin-oligodendrocyte glycoprotein. MG-CSF=granulocyte colony stimulating factor. 
TNF=tumour necrosis factor. IL=interleukin. BAFF=B cell activating factor. APRIL=a proliferation inducing ligand.
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attack compared with that in patients with multiple 
sclerosis.56 Finally, the usefulness of anti-MOG antibody 
detection in the CSF is not yet fully evaluated. When 
paired samples are analysed, there is a good concordance 
between serostatus and CSF status (ie, most CSF-positive 
patients are seropositive), but not all seropositive patients 
are CSF-positive, and only a small proportion are 
seronegative and CSF-positive.57

Imaging biomarkers
Brian and spinal cord MRI
Brain MRI in MOGAD can be abnormal in more than 
50% of patients, regardless of the clinical presentation.8 
In general, brain lesions are more wide spread in children 
than in adults, reflecting a higher disease burden. In 
addition to the deep white and grey matter lesions found 
in acute disseminated ence phalomyelitis-like presen-
tations, brainstem lesions are found in up to 40% of 
patients with MOGAD, frequently involving the pons 
and middle cerebellar peduncles.9,58–60 Interestingly, in a 
discriminant analysis using only routine clinical scans 
obtained on different MRI machines, anti-MOG and 
anti-AQP4 antibody related diseases could not be 
distinguished, but displayed different imaging character-
istics from multiple sclerosis:58 lesions were poorly 
demarcated, fewer in number, and so-called Dawson 
fingers or lesions adjacent to the body of lateral ventricles 
were less frequent.58,61 Other studies have suggested that 
the involvement of cerebellum, brainstem, or both as a 
part of a multifocal CNS episode is more likely to indicate 
the presence of anti-MOG antibodies when compared 

with multiple sclerosis, but not with anti-AQP4-positive 
patients.62 Dramatic lesion resolution on MRI, sometimes 
within a month of presentation, is not rare in MOGAD.59 
Patients with MOGAD are less likely to develop clinically 
silent MRI lesions than are patients with multiple 
sclerosis.63

Although initially thought to be associated predo-
minantly with white matter disease, both adults64,65 and 
children24,66,67 with MOGAD can experience cortical 
encephalitis and seizures. Brain MRI in these patients 
can be normal or have reversible cortical changes 
occasionally with leptomeningeal enhancement.64 Reports 
of isolated seizures (with normal brain MRI) during the 
first episode of what later turned out to be MOGAD in 
children66 and reports of aseptic meningoencephalitis 
and pseudotumour cerebri-like presentations68 highlight 
that normal conven tional imaging should not preclude 
the diagnosis of MOGAD and that contrast-enhanced 
scans can increase the diagnostic yield in symptomatic 
patients.64

Spinal cord MRI findings in MOGAD such as the 
presence of longitudinally extensive T2 lesions, spanning 
at least three vertebral segments on sagittal sequences, 
or the hyperintensity of grey matter on axial sequen-
ces (longitudinally extensive transverse myelitis), can 
resemble those commonly seen in AQP4-NMOSD.69 
MRI features suggesting a diagnosis of MOGAD rather 
than AQP4-NMOSD or multiple sclerosis are involve-
ment of the conus medullaris, abnormality confined to 
grey matter (sagittal line and axial H sign) and nerve 
roots, and scarcity of or minimal gadolinium enhance-
ment.69 Occasionally, large lesions might be associated 
with mild clinical impairment, a clinical-radiological 
paradox, particularly in children.35

MRI of the optic nerves can show extensive T2 
hyperintensity and T1 gadolinium enhancement that 
predominates in the anterior portion of the nerve. These 
features together with severe swelling of the optic nerve 
head with or without haemorrhage on fundoscopy can 
help differentiate MOGAD from episodes of optic neuritis 
in AQP4 NMOSD and multiple sclerosis. Perineural 
oedema is another radiological finding in up to half of 
patients with MOGAD with optic neuritis.70–72

Optical coherence tomography
Patients usually display a thickening of the peripapillary 
retinal nerve fibre layer, probably due to optic disc 
swelling during the acute phase of an optic neuritis 
attack.73 Subsequently, the peripapillary retinal nerve fibre 
layer progressively thins, which is greater in the temporal 
quadrants. Although findings are still inconsistent, on 
average, optic neuritis associated with anti-MOG anti-
bodies causes less retinal damage than optic neuritis 
associated with anti-AQP4 antibodies.74 In affected eyes, 
longitudinal optical coherence tomography has found a 
decrease of the peripapillary retinal nerve fibre layer but 
not of the combined ganglion cell and inner plexiform 

Panel: Proposed immunopathology of myelin-
oligodendrocyte glycoprotein (MOG)-antibody associated 
disease

• Human anti-MOG antibodies are typically of the IgG1 
isotype42

• The hypothesis of their pathogenic potency was derived 
from a monoclonal mouse antibody against MOG93

• The transfer of this monoclonal antibody to rodents that 
already have complement-dependent experimental 
autoimmune encephalomyelitis enhances 
demyelination94

• Studies looking at the effect of anti-MOG antibodies both 
in-vivo and in-vitro reveal primary demyelination95 with 
loss of the microtubule cytoskeleton in oligodendrocytes, 
resulting in altered axonal expression of proteins96

• The study of presence of CD4+ T cells in lesions from 
patients with anti-MOG antibody-associated disease, and 
data from rat models, suggest that T cells are important in 
pathogenesis10, 97

• MOG-specific B cells have been identified in the peripheral 
blood from patients with anti-MOG antibody-associated 
disease, defined by the presence of anti-MOG antibodies 
in the serum98
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layer in the absence of new clinical attacks,73 in contrast to 
the reduction of both layers observed in optic neuritis 
associated with ant-AQP4 antibodies or multiple sclerosis 
over time.74,75 In non-affected eyes, subclinical neuroaxonal 
retinal damage has been found with a decrease in 
thickness of the ganglion cell and inner plexiform layer.74 
Conflicting results have been reported regarding the 
peripapillary retinal nerve fibre layer in this subgroup of 
patients with non-affected eyes.73,76 Subclinical chiasmal 
or optic nerve inflam mation are the most probable 
explanation. Similar to the MRI paradox, a clinical-
radiological discordance has also been observed with 
optical coherence tomography, in patients with MOGAD 
whom preserved visual acuity despite severe atrophy of 
the retinal nerve fibre layer77 compared with to optic 
neuritis in patients with multiple sclerosis or AQP4-
NMOSD, in which retinal nerve fibre layer thickness and 
visual acuity frequently correlate.78–80

Treatment
Attack treatment
There are currently no randomised control trials or 
evidence-based guidelines for the acute treatment of 
MOGAD relapses. There is no evidence that anti-MOG 
antibody positivity should influence acute attack treatment 
and most neurologists treat these patients according to 
the demyelinating phenotypes. Importantly, in most 
circumstances, anti-MOG antibody results are not available 
within the first few days of acute presentation, and thus do 
not guide immediate therapies.

Observational studies show that patients with MOGAD 
are highly sensitive to corticosteroids and can achieve 
complete and dramatic symptom remission after a short 
course of intravenous steroids.26,33,63,81 First line immuno-
therapy therefore consists of intravenous methyl-
prednisolone (30 mg/kg per day or 1 g per day, for 
3–5 days). Treatment escalation is warranted for patients 
who do not improve after intravenous methylprednisolone 
or individuals with a severe attack such as complete loss 
of vision, paralysis, or severe encephalopathy requiring 
admission to intensive care. In the absence of evidence 
directly related to MOGAD, the treatment algorithm 
proposed for CNS demyelination18 is followed in most 
expert centres, adapted to local clinical practice or age 
group. Escalation therapies include plasma exchange 
(five exchanges on alternative days), immunoadsorption, 
intravenous immunoglobulins (total of 2 g/kg over 2 or 
5 days), or plasma exchange followed by intravenous 
immunoglobulins.18 As is the case in AQP4-NMOSD,82 
we anticipate that time to initiation of acute treatment is 
a predictor of long-term outcome.

The decision for how long and whether to wean the 
patient from corticosteroids is debated. The choice 
depends on the severity of the attack, the risk of flare-up if 
weaning from steroids is too early, and timing and mode 
of action of the chosen relapse treatment and maintenance 
therapies. Classically, in adults with MOGD, some centres 

proposed the use of 1 mg/kg per day for 3 months and 
then progressive tapering over the next 3 months.63 In a 
study of 59 patients with MOGAD, of the 146 episodes 
treated with oral prednisolone taper, most of the 
103 subsequent episodes occurred towards the end of the 
taper or shortly after prednisone cessation.63 For children 
(<16 years), the prolonged use of oral corticosteroids is 
also debated. Some paediatricians among the authors of 
this Personal View apply a protocol similar to the one 
used for adults, with 3–6 months of oral steroids (akin to 
protocols used in rheumatological conditions); other 
paediatricians among the authors alternatively think that 
the steroids course should be less than 4 weeks to avoid 
side- effects and propose use of intravenous immuno-
globulins for 3 to 6 months.

Chronic treatment for relapse prevention
The accumulation of disability in patients with antibody-
mediated diseases, such as MOGAD, is thought to be 
primarily relapse related. Because of the risk of disability 
due to incomplete relapse recovery, identifying patients 
at risk for relapse, and treating those with relapses, is the 
focus of current management. The clinical differentiation 
between true relapse, disease rebound (during steroid 
wean or shortly after discontinuation of steroids), and 
pseudo-relapses secondary to intercurrent infection 
illness is challenging. Clinical history and examination, 
preferably in specialist centres, are important when 
making treatment decisions.

Currently there are no predictors of relapse risk and 
long-term outcome. Because around 70% of paediatric 
patients with MOGAD will have a monophasic outcome,16 
the decision to initiate chronic immuno suppression in 
paediatric patients is more controversial than in adults. 
Currently, with the absence of natural history studies and 
the known infectious risks of current immunosuppressive 
agents, most clinicians would start treatment only after 
a second event. The decision regarding continuous 
immunotherapy for relapse prevention is typically 
influenced by several factors: response to treatment of 
the initial attack; severity of the initial attack; risk of 
short-term disability (associated with the first episode or 
accumulation of episodes); risk of short-term and long-
term immuno suppression; and age.

No clinical trials have been done for patients with 
MOGAD and the current literature reports real-world 
clinical data, which are not optimal for evaluation of 
treatment efficacy. Data from the six largest retrospective 
studies on treatment of relapsing MOGAD37,63,81,83–85 
revealed that, at a median of 9–16 months after the start 
of treatment, the number of relapse free patients 
was 20 (69%) of 29 patients on intravenous immuno-
globulin monotherapy, 30 (47%) of 63 on mycophenolate 
mofetil, 21 (39%) of 55 on azathioprine, and 47 (50%) of 
94 on rituximab. Of note, although anti-CD20 therapy 
seems to show some effect, it appears to be less 
efficacious than in AQP4-NMOSD.86 In AQP4-NMOSD, 
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relapses mostly occur when the biological effect of 
rituximab decreases, whereas patients with MOGAD can 
relapse despite absent B cells.

A human being cannot be alive without B cells.86,87 
Importantly, time to treatment efficacy is highly variable 
between different immunotherapies, and needs to be 
taken into account.

First-line injectable multiple sclerosis treatments 
(interferon-beta and glatiramer acetate) were shown to 
be ineffective in preventing relapses in both adults85 and 
children37 with relapsing MOGAD, with no change in 
annual relapse rate. Although conceptually the use of 
natalizumab might prevent autoreactive T cells from 
accessing the brain, in case reports of natalizumab use 
in six patients with suspected multiple sclerosis but 
finally diagnosed with MOGAD, severe relapses were 
reported in five patients.37,81 There are only anecdotal 
reports for use of alemtuzumab, dimethyl fumarate, 
and fingolimod, precluding judgment of treatment 
efficacy.

Conclusions and future directions
The keys to improving outcomes in MOGAD are 
(1) making early diagnosis based on accurate and repro-
ducible detection of anti-MOG antibodies, (2) improving 
understanding of the disease mechanisms that lead to 
relapses and disability accumulation, and (3) establishing 
treatment protocols. There are currently no formal 
criteria for the diagnosis of MOGAD. Once established 
and validated, these should improve time to diagnosis 
and diagnostic accuracy criteria.

In view of the phenotypical heterogenicity of MOGAD, 
a key question is whether patients with anti-MOG 
antibodies presenting with NMOSD, acute disseminated 
ence phalo myelitis, or cortical encephalitis might have 
different pathobiology driving their disease and should 
therefore be treated differently. To provide further 
evidence on the mechanisms involved in MOGAD, it is 
essential to improve our in-vivo and in-vitro models. 
Human-derived oligodendrocyte cultures, rodent models 
expressing humanised MOG, or animal models with 
MOG proteins that have a higher homology to human 
MOG than rodents (eg, rhesus monkeys) will provide a 
better basis to investigate the pathogenic mechanisms. 
The metho dological challenge of measuring antigen 
specific CD4+ T-cells and B-cells, which are most likely 
present in the blood of patients with MOGAD at low 
frequency, are big obstacles that will have to be overcome 
to address frequency and phenotype of these cells.88,89 
These studies are important to better understand the 
mechanisms behind the development of an autoimmune 
response to MOG and might pave the way for antigen 
specific immune therapies.

With the rarity of the condition, multicentre inter-
national studies evaluating initial therapy and intensified 
therapies are required to determine their safety and 
efficacy. One approach would be to standardise treatment 

protocols across centres, similar to the approach used in 
oncology. Alternatively, the use of heterogeneous 
treatment proto cols across centres might be a method for 
capturing real world data, without indication bias, as 
recently done in a study comparing clinical outcomes of 
escalation versus early intensive disease-modifying 
therapy in patients with multiple sclerosis.90 Repurposing 
of medi cations tested for other antibody-mediated 
conditions with similar pathological mechanism might 
be explored while specific drugs are developed for 
MOGAD. Use of data from the randomised control trials 
for NMOSD and subanalysis of the treatment response 
in patients with anti-MOG antibodies (some were 
included in MNOSD trials as patients seronegative for 
AQP4 antibodies)91,92 would be a quick approach to 
evaluate the efficacy of anti-interleukin-6 receptor 
antibodies and anti-CD19 antibodies. However, the 
numbers of patients are likely to be small and the trials 
were not powered for these analyses. Preliminary results 
from a phase 2 trial of rozanolixizumab (anti-FcRn) 
showing improvements in functional outcome measures 
in patients with myasthenia gravis and anti-acetylcholine 
receptor antibodies might also prove beneficial in 
MOGAD, as these conditions share similarities in terms 
of immunopathology.100 Finally, in anticipating the launch 
of a randomised control trial in MOGAD, there is an 
urgent need to identify disease-specific biomarkers of 
outcomes and treatment response.
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