
GADIS: A Genetic Algorithm for Database Index
Selection

Priscilla Neuhaus, Julia Couto, Jonatas Wehrmann, Duncan D. Ruiz and Felipe Meneguzzi
School of Technology, PUCRS - Pontifícia Universidade Católica do Rio Grande do Sul - Porto Alegre, Brazil

Email: [priscilla.neuhaus, julia.couto, jonatas.wehrmann]@edu.pucrs.br, [duncan.ruiz, felipe.meneguzzi]@pucrs.br

Abstract—Creating an optimal amount of indexes, taking
into account query performance and database size remains a
challenge. In theory, one can speed up query response by creating
indexes on the most used columns, although causing slower data
insertion and deletion, and requiring a much larger amount of
memory for storing the indexing data, but in practice, it is very
important to balance such a trade-off. This is not a trivial task
that often requires action from the Database Administrator. We
address this problem by introducing GADIS, A Genetic Algorithm
for Database Index Selection, designed to automatically select
the best configuration of indexes adaptable for any database
schema. This method aims to find the fittest individuals for
optimizing both query response time, and disk required for the
indexed data. We evaluate the effectiveness of GADISthrough
several experiments we developed based on a standard database
benchmark, compare it to three baseline indexing strategies, and
show that our approach consistently leads to a better resulting
index configuration.

Index Terms—Database, Indexing, Artificial Intelligence, Ge-
netic algorithms, Learning system.

I. INTRODUCTION

Creating indexes is the main action to improve database
query performance [7, Chap. 15], since the indexes are
the most used technique to speed up queries response [9].
However, it is important to properly choose the columns
to be indexed, given that it also affect time to insert and
update data and increase disk consumption. The Database
Management Systems (DBMS) optimizer is responsible for
analyzing queries and choosing the most efficient way to
access information. The goal of an optimizer is to find options
for running a given query and evaluate the cost of each choice,
so that the chosen one would provide the best performance for
retrieving the data.

Achieving the best indexing configuration for a database
is not a trivial task [6]. Ideally, all the frequently queried
columns should be indexed for a faster data retrieval. However,
it is quite complex to find a balanced trade-off between
performance and storage required. It is quite often the case
when the cost-based optimizer is not able to find a proper
solution, requiring the DBA to make a final decision on the
database architecture regarding indexing strategies.

In this paper we developed GADIS, an approach based on
Genetic Algorithms (GA) to help finding an optimal index
configuration. We use two fitness functions: 1) an optimization
objective to maximize the database performance considering
INSERT, DELETE and SELECT queries; and 2) designed to

optimize the query response time by search for faster index
configurations when compared to the initial one.

We perform a set of experiments using TPC-H, a well
known database benchmark [11], and we compare our results
with three baseline approaches: (i) the initial index configura-
tion; and (ii) indexes derived from a random-search algorithm.
Results show that GADIS outperforms the baselines, allowing
for better index configuration on the optimized database.
Finally, we observe that our approach is much more prone
to find a proper solution that the competitive methods.

II. BACKGROUND

A. Genetic Algorithms

Holland [3] developed the concept of Genetic Algorithm
inspired by the evolutionist theory. GA simulates the principles
of biological evolution by repeatedly modifying a population
of individual using rules modelled on reproduction and gene
combinations. In this simulation of evolution, it leverages
the best genes from the fittest individuals of a population to
continue across the next generations. GA models individuals in
terms of their genome, typically represented as strings of bits.
Each generation replaces the previous population by its fittest
offspring, where fitness is computed by a fitness function that
assigns a score to each individual. Fitness typically measures
how well an individual solves the problem at hand. The algo-
rithm initializes with a random population and works through
selection, crossover, and mutation. That process continues
until the optimize criterion is satisfied or a certain number of
generations is reached. Due to its random nature, GA improves
the chances of finding a global solution.

B. TPC-H Benchmark

TPC 1 is a a non-profit corporation that produces database
benchmarks. We chose TPC-H because it models a busi-
ness database having realistic ad-hoc queries. TPC-H has a
database schema, a workload and performance metric tests.
The database size varies according to a constant named scale
factor (SF). The workload is composed of 22 queries of
varying complexity, and 2 refresh functions, that simulate data
insertions and deletions in the two larger tables (orders
and lineitens). In the performance test, the benchmark
executes a power test and then a throughput test. The power

1TPC: http://www.tpc.org/DOI reference number: 10.18293/SEKE2019-135

TABLE I
GA DEFINITIONS APPLIED IN THE CONTEXT OF THE DBMS

GA
Definition DBMS Application

Gene 0 if the column is not indexed; 1 otherwise
Individual a database state represented by a vector that refers the

columns of the schema
Population collection of database states
Parents two database states selected to be combined and next create

a new database state
Mating
pool

a collection of parents that are used to create the next
population

Fitness a function that tells us how good each database state is by
running the benchmark

Mutation a way to introduce variation in our population by randomly
swapping the genes (0 - 1) of two individuals

Elitism a way to carry the best individuals into the next generation

test (POWER@SIZE), calculates how fast the system com-
putes answers to single queries. It executes a function to
insert data, then it runs all queries in parallel, then it ex-
ecutes another function to delete data. The throughput test
(THROUGHPUT@SIZE) measures how many queries were exe-
cuted in the elapsed time for parallel query streams to simulate
multiple users. It computes the ratio between the total number
of queries and the total time spent to run the queries. TPC-
H also presents the query-per-hour metric (QPHH), obtained
from the geometric mean of power and throughput test. It
captures the overall performance level of the system, both for
single-user and multi-user mode.

III. METHOD

We already saw that indexes can speed up the data access.
However, when we create or delete indexes we must verify
which combination of indexes is the best one for queries
selection. Specifically, for optimizing the TPC-H database,
there are 245 possible combinations for column indexing.
Our approach is based on GAs trained directly on a running
database, designed to evolve individuals that represent the
whole index structure (i.e., all the columns on the database).
We map GA definitions to the DBMS context in Table I.

A. Individual Representation

We use a straightforward individual representation that is
based on binary vectors. In this strategy, each vector position
denotes whether a column is indexed or not. Formally, we
represent an individual as a binary vector x, where |x| = C
and C is the number of all columns in the whole database
schema. Hence, xi denotes whether the ith column should be
indexed by the DBMS. Naturally, both primary and foreign
keys are always indexed, and therefore not affected by any
crossover, mutation or additional random-based action on x.

The initial population with n individuals is randomly created
by sampling bits from an uniform distribution. Each bit
corresponds to a specific gene having two possible actions:
create or drop one index. Each individual is a concatenation
of the binary representation of all columns from all tables.
TPC-H contains 61 columns across 8 tables, with 16 primary

and foreign keys indexed by default. From the remaining
columns, only 24 are used on the benchmark queries. Hence,
each individual is comprised by C = 24 mutable genes,
which generates a search space containing 224 = 16, 777, 216
possible combination of indexes.

B. Fitness Function

During the evolutionary process, we use a fitness function
to estimate the degree of adaptation to the environment for
each individual in the population. We first use the QPHH as
fitness function that aims to optimize the performance for
running queries while being computationally cheaper for data
insertion and removal. We also propose a simpler approach,
which optimizes the speed-up time for running all the 22 select
queries in the benchmark.

More specifically, we want to find an individual represented
by a genome that is capable of achieving high QPHH, but
using the very least memory as possible. Formally, let Q(x),
H(x) and P(x) be the functions that estimate the QPHH,
THROUGHPUT@SIZE and POWER@SIZE for a given x. Note
that the estimate of P(x) is calculated by running all the
queries in the benchmark, including delete and insert ones that
are quite slow in heavily indexed databases. Thus, a database
in which most of the columns are indexed would most likely
yield lower POWER@SIZEvalues. The QPHH-based fitness
function would be hereby referred as Q(x), calculated by
Eq. 1.

Q(x) =
√
P(x)×H(x) (1)

Our second fitness function optimize the time performance
for running the SELECT queries in the benchmark. In this case,
we want to find individuals that are capable of retrieving data
efficiently, without considering data insertion and removal.
This is achieved by optimizing the speed-up of the current
individual when compared to a baseline one, namely, the initial
state of the database. In this case, we refer to the function that
calculates the total query time for a given individual as T (x).
Finally, the speed-up-based fitness function is given by

S(x) = T (xI)

T (x)
(2)

where xI denotes the individual for the initial state of the
database. Therefore, individuals with lower values of T (x)
have higher fitness values than those that take more time to
run the benchmark. In this case, we are necessarily optimizing
the database storage requirements for index data. In summary,
the proposed fitness functions are two-fold: (i) Q(x), which
optimizes the performance for INSERT, DELETE and SELECT
commands, and by transitivity, it also helps to lower memory
requirements for indexes; and (ii) T (x) that directly optimizes
the running time for all queries.

C. Selection

Our approach uses the popular and effective tournament
method as selection technique, developed by Horn et al. [8]. It
is a strategy for selecting the fittest candidates from the current
generation in a GA. The process initiates with two candidate

points selected randomly from the current population, that
compete for survival in the next generation. The next step
is to compile points randomly to compose a tournament set,
where each member is compared with other members. We
need to specify the size of the tournament set as a percentage
of the total population. Hence, the tournament set size implies
the degree of difficulty in surviving. If the tournament size
is larger, weak candidates have a smaller chance of getting
selected as it has to compete with a stronger candidate. We
use the selection pressure to determine the rate of convergence
of the GA. This is a probabilistic measure of a candidate like-
lihood of participation in a tournament. Here, the convergence
rate is proportional to the selection pressure, and the GA is
capable of identifying optimal or near-optimal solutions over
a wide range of selection pressures. The tournament selection
works either for positive or negative fitness values.

D. Crossover and Mutation

After obtaining the individual from selection method, we
apply the crossover genetic operator on population. In this
phase, two individuals exchange information to produce the
offspring. Both crossover and mutation occur only with respect
to some probability previously defined. The main goal of
the use of crossover is to make it possible for the genes of
two individuals to generate an improved individual. Higher
crossover values lead to in-depth exploitation of the current
population individuals, but constraining the exploration of the
search space. We employ the two-point operator [10], that
determines two random crossover points to mark at which
points of the two parents will occur the split. Next, the tails of
their two parents are swapped to get a new offspring, which
would integrate the population. It is important to define the
crossover probability (cp), which controls the frequency of
the application of the crossover operator on the individuals.
For instance, when using cp = 1.00, crossover is applied over
the entire population. On the other side, when cp = 0.00, the
entire new generation is made from exact copies of individuals
from old population (which can suffer mutation as well).

The next step is the mutation operator, that introduces
random changes into the characteristics of the individuals.
Mutation plays a critical role in GA, as crossover leads
the population to converge by making the individuals in the
population alike. Mutation reintroduces genetic diversity back
into the population. In this phase, we need to set the mutation
probability and the mutation rate. The first parameter sets the
chance of each individual to be mutated, whilst the second
one refers to the number of genes that would be changed.

Frequently, the mutation rate is rather small and depends
on the length of the individuals. Therefore, new individuals
produced by mutation will not be very different from the
original one. Since we set each individual as a bit vector, the
mutation operator is responsible to change the bit value of 1
to 0 or vice-versa. We also provide some experiments using a
linear decay for the mutation probability. Such a decay allows
for larger exploration during the initial generations, increasing

the genetic diversity, while allowing for in depth exploitation
during the latter stages of the optimization procedure.

IV. EXPERIMENTAL SETUP

We carried out all experiments in hardware with Intel(R)
Xeon(R) Platinum 8175M CPU @ 2.50GHz, 30GiB RAM and
Non-Volatile memory controller (SSD), running Ubuntu Linux
16.04. We used DEAP [2], an open-source Python package, to
implement the genetic algorithm. To evaluate all approaches,
we use the TPC-H benchmark with scale factor of 1GB. We
run the performance test and calculate the POWER@SIZE and
THROUGHPUT@SIZE metrics for each execution of TPC-H.
Then we calculate the QPHH for each individual (Q(x)).

A. Baselines

For evaluating our approaches we defined three main
baseline strategies for database indexing. We compared our
approach with the following strategies: (1) TPC-H initial
state (only primary and foreign keys are indexed); (2) results
achieved via a random-search algorithm that optimizes the
proposed fitness functions. We run the random search using the
same number of individuals as in our optimization algorithm.

B. Evaluation Measures

In our experiments, we run the final evaluation using a
different set of query streams to the database, in order to make
sure that our GA was not overfitting the training examples.
First, we set the best indexing configurations found during the
whole training phase, in order to run the complete benchmark.
For quantitative evaluation, we used QPHH and the storage
required by the index data (in MB).

C. Parameters

The first three experiments were designed to optimize the
fitness function Q(x), in order to maximize the QPHH metric.
The two latter ones focused on minimizing the second fitness
function, namely the benchmark runtime given by T (x). For
all experiments we used a initial population of 50 individuals,
evolved during 50 generations, with mutation rate of 0.05 and
elite size of 4. Parameters such as fitness function, mutation
probability (mp), crossover probability (cp) and mutation de-
cay (md) are defined as follows: GADIS-[Q, mp=0.9, cp=0.8,
md=0.05] and GADIS-[T , mp=0.9, cp=0.6]. The complete
training procedure for each of those experiments (including
random search) took about a week.

V. RESULTS

Figure 1 shows the performance of our approaches during
the training phase. The chart shows values of QPHH as fitness
for all evolved individuals; and the second chart depicts values
of time required to run the test benchmark (only with SELECT
queries), by using our second fitness function, namely T (x).
GADIS have shown to be much better in terms of consistency,
once it can find several good database configurations with
ease when comparing to the baseline. It is clear that both
GADIS-[Q] GADIS-[T] present similar performance during

0 200 400 600 800 1000
Individual

1900

2000

2100

2200

2300

2400

2500

QP
HH

QPHH
Random

0 200 400 600 800 1000
Individual

80

85

90

95

100

Ti
m

e
(s

)

QPHH
Time
Random

Fig. 1. QPHH and Time during training procedure.

TABLE II
RESULTS IN TERMS OF QPHH, TIME AND INDEX SIZE

Methods QPHH Time Index Size

Initial State 1678 149.3s 599 MB
Random Search 1864 145.3s 1196 MB
GADIS-[Q] 2631 71.2s 1193 MB
GADIS-[T] 3077 60.6s 1600 MB

the training phase, thought the latter presents itself as a much
faster approach.

Table II shows quantitative results in terms of QPHH, Time
and Index Size for each one of the approaches. Note that
the best performing approach as measure in QPHH and Time
is achieved by GADIS-[T]. Additionally, both versions of
GADIS were able to achieve top results in all used metrics.
GADIS-[Q] also requires roughly the same disk space when
compared to the baseline, though with 40% better QPHH per-
formance.

VI. RELATED WORK

In the past years, other researchers have used GA to
improve database performance. Korytkowski et al. [4] present
an automatic way to find the best set of indexes for a database,
using GA. Different from our approach, their fitness function
is based on time spent in insert operations and a single query,
and they make experiments with just one table.

Pedrozo et al. [5] modelled an index tuning architecture
applied to hybrid storage environments using GA to create
indexes in the DBMS. They also use TPC-H benchmark to
evaluate their approach, but unlike us, they did not apply the
performance test provided by the benchmark.

Boronski et al. [1] propose a model to optimize the response
time of a set of queries by creating indexes in a relational
database. Unlike us, they use the response time of each group
of queries to measure their performance and then compare it
with the Oracle advisor.

VII. CONCLUSIONS

In this paper we developed a Genetic Algorithm-based
approach for automatic index selection in databases called
GADIS. This approach can find database configurations that
outperform all the baselines in most of the scenarios, while
saving storage requirements. We have observed that the train-
ing procedure of GADIS is very consistent, which allows us to
find proper database configurations within only a few genera-
tions. In addition, GADIS is easily suited to be implemented on
any database system. The main limitation of our work is that
to find a good solution one has to run several distinct database
configurations and evaluate them by using a benchmark. Such
a procedure is somewhat costly, and required about a week
of processing to optimize the indexes for the used database.
For future work, we plan to improve GADIS so we can learn
general rules for database agnostic indexing using metadata
rather than performing a per-database optimization.

REFERENCES

[1] R. Boronski et al., “Relational database index selection algorithm,” in
CN, A. Kwiecień et al., Eds. Springer, 2014, pp. 338–347.

[2] F.-A. Fortin et al., “DEAP: Evolutionary algorithms made easy,” Journal
of Machine Learning Research, vol. 13, pp. 2171–2175, jul 2012.

[3] J. H. Holland, Adaptation in natural and artificial systems: an intro-
ductory analysis with applications to biology, control, and artificial
intelligence. MIT press, 1992.

[4] M. Korytkowski et al., “Genetic algorithm for database indexing,” in
ICAISC, L. Rutkowski et al., Eds. Springer, 2004, pp. 1142–1147.

[5] W. G. Pedrozo et al., “An adaptive approach for index tuning with
learning classifier systems on hybrid storage environments,” in HAIS.
Springer, 2018, pp. 716–729.

[6] E. Petraki et al., “Holistic indexing in main-memory column-stores,” in
SIGMOD. ACM, 2015, pp. 1153–1166.

[7] R. Ramakrishnan et al., Database Management Systems, 3rd ed.
McGraw-Hill, Inc., 2003.

[8] J. rey Horn et al., “A niched pareto genetic algorithm for multiobjective
optimization,” in CEC, vol. 1, Citeseer. IEEE, 1994, pp. 82–87.

[9] P. Rob et al., Database Systems Design, Implementation and Manage-
ment, 5th ed. Course Technology Press, 2002.

[10] W. M. Spears et al., “An analysis of multi-point crossover,” in Founda-
tions of genetic algorithms. Elsevier, 1991, vol. 1, pp. 301–315.

[11] A. Thanopoulou et al., “Benchmarking with TPC-H on off-the-shelf
hardware,” in 14th International Conference on Enterprise Information
Systems. Springer, 2012, pp. 205–208.

