
Run-time Hardware Reconfiguration of Functional
Units to Support Mixed-Critical Applications

Raphael Segabinazzi Ferreira¹, Jörg Nolte¹, Fabian Vargas², Nevin George¹, Michael Hübner¹
¹Brandenburg University of Technology, Cottbus, Germany

²Electrical Engineering Dept., Catholic University – PUCRS, Brazil
{R.SegabinazziFerreira, Joerg.Nolte, Nevin.George, Michael.Huebner}@b-tu.de

{vargas}@computer.org

Abstract—System reconfiguration of hardware resources has
been done in multiple system domains. Such systems are usually
found in the context of FPGAs, where reconfiguration is done
usually over its primitives (e.g., LUTs, Flip-Flops). Or even in
the context of MPSoC designs, where core management (e.g.,
lock-step operation in multi-core designs) is the most used
approach. However, recent works have shown that configuration
at Functional Units (FUs) granularity might come with benefits.
For example, it can increase the configuration space due to
its finer granularity, and, as a consequence, the options to
deal with problems (e.g., due to aging) in the units itself.
Within this context, this paper presents a system capable to
configure its FUs (e.g., ALUs, multipliers, dividers) into different
operation modes. The system uses an Operating System to control
HW reconfiguration during process switching time and takes
into account the health state of its units in a mixed-criticality
applications scenario. Results show that, within this scenario,
the system is able to reconfigure itself accomplishing health state
modifications of its HW elements.

Keywords—Reconfiguration, Configuration, Functional Units,
Fine-Grained, Mixed-Criticality, Run-time.

I. INTRODUCTION

Systems targeting reconfigurability appear in different do-

mains and contexts. In the context of FPGAs, mostly primi-

tives (e.g., LUTs, Flip-Flops) and partitions based reconfigu-

ration approaches can be found [1] [2].

In the context of Multi-Processor Systems on Chip (MP-

SoC), monitor elements have been added to designs, and,

according to feedback from these monitors, reconfiguration is

performed at core level (either hard- or soft-cores) [3] [4] [5].

Yet other works, in the same context, disable internal elements

of the processors, in order to minimize the amount of time

critical instructions remain in the CPUs internal buffers, which

are usually unprotected [6].

It is, however, known that units inside processor designs

do not equally execute instructions, and, as consequence, do

not age homogeneously [7]. To compensate these effects, fine-

grained management of Functional Units has been proposed

in prior work [8] [9].

Contribution: In this article, we present different operat-
ing mode configurations created to guarantee system mixed

This project has received funding from the European Union's Horizon 2020
research and innovation programme under the Marie Skłodowska-Curie grant
agreement No 722325.

criticality requirements even in the presence of health state

degradation of processor Functional Units (e.g., ALU, mul-

tiplier, divider). Switching between these operation modes is

done at run-time. To do so, an Operating System (OS) was

extended to allow this configuration during process switching

time.

The following sections of this article present, respectively:

its related work (II); a description the FUs health states and

the foreseen criticality levels used as the Reconfiguration

Parameters (III); the operation modes configurations (IV);

how the Reconfiguration Parameters are combined with the

Operation Modes to create the reconfiguration platform (V);

the overall design and its internal blocks (VI); the performed

evaluation of the platform with simulation results (VII); and,

finally, the conclusion of the work is tailored (VIII).

II. RELATED WORK

Shibin et al. [3] presented a multi-core system attached to

a health monitoring infrastructure capable of monitoring pro-

cessor healthiness due to HW instruments placed in different

parts of the processor. The hardware instruments are attached

to the Internal JTAG (IJTAG) infrastructure, and an Operating

System (OS) keeps a database of the health state of each one

of the monitored HW elements. The authors claim that running

on top of this HW infrastructure, an OS can use this database

to better chose processor cores to run its applications.

The work presented by Sadighi et al. [10] proposes a
self-aware and a self-adaptive methodology for autonomous

systems. It mainly establishes operation points and controllable

deviation spaces for possible next operation points to react in

case of system variations. It also suggests different analysis

methods for critical and non-critical tasks.

Nya et al. [11] proposed a self-aware and a self-expressive
system for fault tolerance. Self-awareness consists of fault

detection and prediction by monitoring systems parameters

such as CPU temperature and execution time of threads. In

addition, the self-expressive part is formed by its recovery

operations.

Segabinazzi and Nolte [8] proposed a mechanism to con-

figure internal processor Functional Units (FUs). It extended

a processor design with new units responsible for catching

specific added commands and configuring its internal units978-1-7281-8731-0/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on September 24,2021 at 20:50:15 UTC from IEEE Xplore. Restrictions apply.

accordingly. The main advantage of this work is its low latency

necessary to perform this configuration.

The work proposed by Segabinazzi et al. [12] presents
a preliminary work of configurable HW schemes for fault

detection and correction over processor units. The main idea

is to enable awareness of the health state of a processor and

its internal units and, at the same time, due to its awareness,

provide optimal configuration of the HW schemes according

to application requirements.

From the best of our knowledge, there are very few works

proposing system configuration at FU level and, at the same

time, considering a full system integration being able to, not

only monitor, but also configure itself at this level. There-

fore, this paper addresses this topic by proposing an OS-

based management system with different operation modes for

configuration of FU.

III. RECONFIGURATION PARAMETERS: CRITICALITY

LEVELS AND FUNCTIONAL UNITS HEALTH STATES

In this work, we are proposing an Operating System (OS)

controlled fine-grained configuration of processor Functional

Units (FUs). Thus, different FUs configurations were defined,

and Operation Modes address each configuration. These con-

figurations were pre-defined to take into account the health

state of the available FUs and to cover, at least, three different

levels of OS processes criticality: ordinary, medium critical

and high critical.

The considered fault model for health state classification

is the intermittent soft faults (e.g., single event transients and

upsets) that becomes more frequent due to aging of electronics

[13] [14]. Consequently, the FUs’ health state classification is

done according to the number of fault detection events caught

by assumed individual fault monitors in the FUs. For that,

thresholds were set for each health state. Note that, in order

to find appropriate numbers for these thresholds, additional

studies are required. So, this process is beyond the scope

of this paper. Therefore, the health states and their symbolic

thresholds are listed below.

• Healthy (0): No events detected at the

FU, or very few events detection below the

MEDIUM HEALTHY THRESHOLD.

• Medium healthy (1): Only very few events detected

above the MEDIUM HEALTHY THRESHOLD but below

the INTERMITTENT THRESHOLD.

• Intermittent (2): Events detection above the

INTERMITTENT THRESHOLD but below the

FAULTY THRESHOLD.

• Faulty (3): Detection of events above the

FAULTY THRESHOLD.

IV. OPERATION MODES CONFIGURATIONS

As stated in section III, different operation modes were cre-

ated to cover the possible combinations of the Reconfiguration

Parameters. Therefore, the configuration for each operation

mode (OpMode) is defined as the following (Table I):

TABLE I
OPERATION MODES AND ITS MEASURES

Operation Mode d.s. FD FC DMR TMR EA
0 - - - - - -
1 - � - - - -
2 - � � - - -
3 - � � � - -
4 - � - - � -
5 � � - � - �

Degraded service (d.s.); Fault Detection (FD);
Double Modular Redundancy (DMR); Fault Correction (FC);
Triple Modular Redundancy (TMR); Error Analysis (EA);

• OpMode 0 - Generic: the FUs are working as usual, no
redundancy and no other mechanism is enabled.

• OpMode 1 - Generic plus fault detection (FD): FUs
working as usual; however, a fault detection mechanism

is enabled at the working FU.

• OpMode 2 - Generic plus fault detection (FD) and cor-
rection (FC): FUs working as usual, but a fault detection

and correction mechanism is enabled at the working FU.

• OpMode 3 - Double modular redundancy (DMR) plus
fault detection (FD) and correction (FC): DMR scheme

in the FUs plus an extra fault detection and correction

mechanism enabled at the working FUs.

• OpMode 4 - Triple modular redundancy (TMR) plus fault
detection (FD): TMR scheme in the FUs plus a fault

detection mechanism at the working FUs.

• OpMode 5 - Degraded service (d.s.) - Double modular
redundancy (DMR) plus fault detection (FD) and error

analysis (EA): DMR scheme in the FUs plus individual

fault detection mechanism in the FUs to help on right

answer decision in case of divergence in the outputs of

the FUs.

V. OPERATION MODES AND THE RECONFIGURATION

PARAMETERS

A configurable system was defined by combining the

Reconfiguration Parameters (process criticality and the FUs

health state) and the Operation Modes configurations. The

possible configurations were outlined in such a way that each

process has a set of possible operation modes to run according

to its critical level and FUs healthy states. A summary of

the possible configurations is presented in Table II. The left

column shows the Operation Mode; the top row states the

process criticality; and the numbers populating the middle of

the table represent the FUs states (healthy (0), medium healthy

(1), intermittent (2) and faulty (3)) required for operating

in each of the parameters combination. First, for Ordinary

processes, the operation mode can be either 0 or 1 in case

the FUs are still in the healthy (0) state. If no more FUs

are in this state, but at least one is in the medium healthy

(1), the process can run in the operation mode 2. However,

once there is no more healthy (0) or medium healthy (1) FUs,

the process must be executed in operation mode 3. Secondly,

medium criticality processes start running in operation mode

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on September 24,2021 at 20:50:15 UTC from IEEE Xplore. Restrictions apply.

3 and keep running in this mode until at least two FUs are

still in the healthy (0) state. If this condition does not satisfy

anymore, then the process must run in operation mode 4. After

switching to operation mode 4, if one of the FUs becomes

faulty (3), the process must run now in operation mode 5.

Finally, High Critical processes must run in operation mode

4. The process will only switch to operation mode 5 if one of

the FUs becomes faulty (3).

TABLE II
FUNCTIONAL UNITS STATES FOR OPERATION MODES AND PROCESS

CRITICALITIES

Process Criticality
Operation Mode Ordinary Medium High
0 (one FU required) (0) - -

FU
s

St
at

e1 (one FU required) (0) - -
2 (one FU required) (1) - -
3 (two FUs required) (2,2) (0,0) -
4 (three FUs required) - (1,1,0),...,(2,2,2) (0,0,0),...,(2,2,2)
5*(two FUs required) - (1,1,3),(2,2,3) (0,0,3),(1,1,3),(2,2,3)

* Degraded service

VI. OVERALL DESIGN

The general design is composed of the HW and the SW

layer, which consists of an OS running over a processor

design (Fig. 1). The processor design was, however, mod-

ified to enable configuration of its Functional Units (FUs).

This configuration can be controlled by the new commands

added as extensions to the original processor Instruction Set

Architecture (ISA). On the top level, there is an OS running its

services and multiple application processes, each of them with

its criticality level. The following sections will go through the

HW and SW layers and explain each block in detail.

Fig. 1. General overview of the design and its internal elements.

A. Hardware Layer

The HW layer in Fig. 1 consists of the processor design and

its extensions. The proposed approach is illustrated directly

on a selected case-study: the Plasma processor, which is a

synthesizable 32-bit RISC microprocessor that runs MIPS

Fig. 2. Status register (stats reg) bits description: bits 0, 1 and 2 indicate
the status of each of the functional units: FU1, FU2 and FU3, respectively;
bit 3 and 4 to fault detection (FD) and correction (FC) mechanism and bit 5
to error analysis (EA) configuration. The remaining bits were left for future
expansions.

TABLE III
OPERATION MODES AND THEIR EQUIVALENT STATUS REGISTER

(stats reg) VALUES.

bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
Operation Mode EA FC FD FU 3 FU 2 FU 1 stats reg

0 0 0 0 0 0 1 0x0001
0 0 0 0 0 1 0 0x0002
0 0 0 0 1 0 0 0x0004
1 0 0 1 0 0 1 0x0009
1 0 0 1 0 1 0 0x000A
1 0 0 1 1 0 0 0x000C
2 0 1 1 0 0 1 0x0019
2 0 1 1 0 1 0 0x001A
2 0 1 1 1 0 0 0x001C
3 0 1 1 0 1 1 0x001B
3 0 1 1 1 0 1 0x001D
3 0 1 1 1 1 0 0x001E
4 0 0 1 1 1 1 0x000F
5 1 0 1 0 1 1 0x002B
5 1 0 1 1 0 1 0x002D
5 1 0 1 1 1 0 0x002E

Fault detection (FD); Fault correction (FC); Error analysis (EA);

I(TM) user mode instructions except for unaligned load and

store operations [15]. The extensions mentioned earlier are

presented below:

1) Functional Units and its Fault Monitors: The original
design was extended by adding enough Functional Units to

enable, when necessary, Triple Modular Redundancy (TMR)

over them. Also, to enable individual awareness of the health

state, simple fault detection and correction schemes were

added to each functional unit.

2) Status Registers: These registers reflect the overall status
of the system. For that, first, a status register was created

(stats reg), this register represents the running operation
mode and shows the current status of the HW mechanisms

and the FUs (’1’ - on, ’0’ - off). As can be noticed from

Fig. 2, bits 0, 1 and 2 save, respectively, the status of the

FU 1, 2 and 3; bits 3 and 4 represent, respectively, the fault

detection (FD) and correction (FC) mechanism; and finally, bit

5 represents the error analysis (EA). Thereby, each operation

mode is represented by a set of values in this 16-bit status

register which is translated in Table III. Finally, one additional

register per FU was also created (units regs), which is used
to keep track of fault detection and correction events.

3) Reconfiguration Logic: This is the control logic to

perform FUs configuration. It consists of the prior reconfigu-

ration mechanism proposed in [8]. Its logic is responsible for

catching reconfiguration commands and enable or disable FUs

according to the captured command. The mechanism extends

the original processor design by adding new elements, such

as the Pre-Decoder which is responsible for decoding the

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on September 24,2021 at 20:50:15 UTC from IEEE Xplore. Restrictions apply.

added commands (ISA-extensions) and perform the adequate

action. Due to the considerably low latency required for FU

reconfiguration, this mechanism becomes suitable for run-time

usage.

B. Software Layer

Any Operating System configured to run over the architec-

ture of the described design can be enabled to operate the

Reconfiguration Mechanism explained in the section VI-A,

only very few extensions are required for that. Therefore, the

Plasma-RTOS was configured and, with less than a hundred

lines of code in ”C” programming language, extended to oper-

ate the mechanism. This operating system was prior created by

Steve Rhoads to run over the Plasma CPU. Its implementation
supports interrupts, threads, semaphores, mutexes, message

queues, timers, heaps, and pre-emptive context switching [15]

[16].

The result of this implementation is presented in the SW

layer of the Fig. 1, and the main components of the extended

operating system that participate in the reconfiguration process

are the following:

1) Process Data Structures: These are operating system
structures which were extended to save the process criticality

and its required operation mode.

2) Operating System Processes Interface: To be able to
save criticality level and operation mode of the processes,

the operating system interface to create new processes was

extended. So, a criticality and an initial operation mode can be

individually attributed at the process creation time. Moreover,

an interface to read and update the processes operation mode

at run-time was also created.

3) Process switching mechanism: within the operating sys-
tem services, the mechanism to switch processes was extended

to check the operation mode attributed to the process which

is going to be resumed, and send the command to the Recon-

figuration Mechanism to configure the HW appropriately.

4) Monitor Process: The purpose of this process is to keep
track of any change which may happens in the health state of

the FUs due to, for instance, wear out caused by normal aging

or by harsh environment conditions (e.g. high temperature

and humidity). As a consequence, the time interval between

two executions of this process can be relaxed. Therefore, this

process will quickly run time to time, by definition set to one

process time slice (∼ 25ms), and check the FUs health state
by reading the FUs Status Registers (units regs) available
under the HW extensions. If any change is detected, a new high

priority process is triggered to update the attributed Operation

Modes of each application process.

5) Update OpMode Process: This process is triggered by
the Monitor Process to update the operation mode of the other

processes upon a detection of any change in the FUs health

state.

6) Application Processes: These are application processes
running on top of the operating system. As already mentioned,

each one of these processes has an individual attributed

operation mode due to its criticality level.

7) OS context and ISR Operation mode: Every routine

executed within the OS context is considered as high critical.

Therefore, the very beginning of the Interrupt Service Routine

(ISR) was modified to reconfigure the system to the OpMode 4

(the one with TMR and FD scheme), and, after the execution,

reconfigure the design again to the upcoming process.

It is important to notice that the Monitor and the Update

OpMode process are also considered critical, therefore, exe-

cuted in OpMode 4.

VII. EVALUATION

As already explained in the previous sections, the HW layer

of the proposed system was implemented over the Plasma

processor design. And the extended Operating System running

over the platform is the Plasma-RTOS, which was previously

created to run over the Plasma-CPU [15]. The Plasma-RTOS

kernel needed to be extended by less than a hundred lines

of code to support the Reconfiguration Mechanism. Thus,

extending other OSs would also be possible with very little

effort, featuring a good portability property.

The original processor design has one ALU, one multiplier

and one shifter as its functional units. These units together

sum up about to 60% of the total area usage of the whole

design. So, it means that, at least, 60% of the original area

of the processor design can be programmed to be under the

reconfigurable scheme proposed in this paper. Thus, this is the

area percentage that can be configured under TMR scheme,

hence, improving fault tolerance of the whole design as such.

Concerning the latency necessary for the reconfiguration.

The platform took advantage of the low latency inherited by

the previous work [8]. To perform the reconfiguration of the

FUs the platform needs only one clock cycle, which was deci-

sive in this platform since reconfiguration is performed in run-

time. Effectively, to perform reconfiguration at every process

switching time, and including all the necessary SW to take

the decisions concerning right operation modes, the platform

deterministically took 25 clock cycles, which represents about

to 5% of the whole process switch operations.

The full system was simulated using Xilinx Vivado simu-

lator. And part of this simulation is in the wave chart pre-

sented in Fig. 3. This simulation consists of three application

processes and the Monitor process. The signals represent,

from top to bottom, the clock signal (clk), the status reg-
ister (stats reg[15 : 0]), and the remaining signals mean
when each of the equivalent processes is running. As can

be noticed, the application processes are running in sequence

and under its own configured operation mode: the ordinary

process (Process1 ordinary) is running in the OpMode 1;
the medium criticality process (Process2 medium) in the
OpMode 3; and the high critical one (Process3 High) in
the OpMode 4 (the one with TMR and FD scheme). The

process to update the operation modes (UpdateOpMode) does
not run in this simulation due to no error events. Finally,

the Monitor process (Monitor process) runs shortly between
every process switching as it is highlighted by the red arrows

in the Fig. 3, the detail of this situation is illustrated by

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on September 24,2021 at 20:50:15 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Full system execution, it is running 3 different application processes and 1 monitor process.

Fig. 4. Process switching time: switching between two application process
and the Monitor process.

Fig. 4. At the process switching time, the Interrupt Service

Routine (ISR) first switches to OpMode 4, executes its internal

operations and resumes the Monitor process, which is also

executed in OpMode 4. After checking the state of the FUs,

the process sleeps, and the system switches again to the OS

context. In this context, it checks and configures the design to

the required operation mode of the process that is going to be

resumed. After finished the HW configuration, the next process

is resumed (in the case observed in Fig. 4: the Ordinary

process is then configured to run in the OpMode 1).

Reconfiguration is done at every process switch operation,

and the proper operation mode for each process is maintained

up to date by the Monitor process, which wakes up, by def-

inition, every ∼ 25ms (equivalent to one process time slice).
This time is very programmable, and can be even more relaxed

to match any scenario conditions, since this Monitor process

aims to track health state changes of the FUs mainly caused

by wear-out induced by normal aging or severe environment

conditions (e.g., high temperature and humidity). However,

once we have implemented interrupt-driven error signaling (as

foreseen future work), reconfiguration and operation modes

update can be performed at ISR level. Thus, it will enable the

system to react on faults within few (3 to 4) clock cycles

to rise Interrupt Request signal (IRQ) and approximately a

hundred clock cycles depending on the processor to manage

a fault at OS level.

A further evaluation was performed, and Fig. 5 shows

the platform simulation for a series of simulated errors

by increments in the units status registers (units regs[<
FU index >]) which account for fault detection events. As
already explained, in this work we are considering interment

soft faults which increases in number as the electronics

start to age [13]. Moreover, the error simulation is done

in such a way that the FUs change their attributed health

states, so the operation mode attributed to each process

also changes following the modes stated in Table II. For

this simulation, the thresholds were configured as follows:

the MEDIUM HEALTHY THRESHOLD to 10 (0x0A) faults,

the INTERMITTENT THRESHOLD to 100 (0x64) and the

FAULTY THRESHOLD to 1000 (0x3E8). The signals in the

figure represent, from top to bottom, the clock signal (clk),
the status registers (stats reg), the processes Monitor, Update
Operation Mode, application processes Ordinary, Medium and

High, and, finally, the units registers: units regs[0] represent-
ing the events in the FU 1, the units regs[1] in the FU 2

and the the units regs[2] in the FU 3. As it is highlighted
in the figure by the arrows and the dotted squares, once

the events detected in a specific FU reach one of the health

state thresholds, the UpdateOpmode process is triggered to
attribute a new operation mode to each of the application

processes taking into account the new FU state. As a result, the

further execution of the application processes is executed using

this new operation mode configuration. The corresponding

operation mode for each stats reg value shown in the Fig. 5
is translated in Table III.

VIII. CONCLUSION

This article presented a fully integrated platform capable of

performing OS controlled reconfiguration of processor internal

Functional Units (FUs) within a mixed-criticality processes

scenario. As stated in the Evaluation section (VII), at a cost

of a few clock cycles, the system was able to configure its

FUs according to the criticality requirements of processes

running over the Plasma-RTOS. Moreover, the SW routines

were capable of, in run-time, evaluate FUs healthiness and,

upon an FU health state modification, update the operation

mode and the FUs attributed to each process. Finally, a quick

analysis of the original processor design shows that a great part

of the design is covered by the FUs. Therefore, any measure

to tolerate faults applied to these units, like the TMR scheme

used in this paper, does improve the fault tolerance of the

entire design as such.

REFERENCES

[1] B. Janßen, F. Kästner, T. Wingender, and M. Huebner, “A dynamic
partial reconfigurable overlay framework for python,” in Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 10824 LNCS,
pp. 331–342, Springer Verlag, 2018.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on September 24,2021 at 20:50:15 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Faults simulation performed over the platform, the units status register (units reg) is incremented time to time simulating fault detection in the FUs.
Numbers in the wave chart are is hexadecimal notation.

[2] P. M. B. Rao, A. Amouri, S. Kiamehr, and M. B. Tahoori, “Altering
LUT configuration for wear-out mitigation of FPGA-mapped designs,”
in 2013 23rd International Conference on Field Programmable Logic
and Applications, FPL 2013 - Proceedings, 2013.

[3] K. Shibin, S. Devadze, A. Jutman, M. Grabmann, and R. Pricken,
“Health Management for Self-Aware SoCs Based on IEEE 1687 In-
frastructure,” IEEE Design & Test, vol. 34, pp. 27–35, 12 2017.

[4] A. Baldassari, C. Bolchini, and A. Miele, “A dynamic reliability
management framework for heterogeneous multicore systems,” in 2017
IEEE International Symposium on Defect and Fault Tolerance in VLSI
and Nanotechnology Systems (DFT), pp. 1–6, IEEE, 10 2017.

[5] A. Kulkarni, D. Stroobandt, A. Werner, F. Fricke, and M. Hübner,
“Pixie: A heterogeneous Virtual Coarse-Grained Reconfigurable Ar-
rayfor high performance image processing applications,” CoRR,
vol. abs/1705.01738, 2017.

[6] X. Iturbe, B. Venu, J. Penton, and E. Ozer, “Work-in-progress: A ”high
resilience” mode to minimize soft error vulnerabilities in ARM Cortex-
R CPU pipelines,” in Proceedings of the 2017 International Conference
on Compilers, Architectures and Synthesis for Embedded Systems Com-
panion, CASES 2017, Association for Computing Machinery, Inc, 10
2017.

[7] M. A. Skitsas, C. A. Nicopoulos, and M. K. Michael, “DaemonGuard:
Enabling O/S-Orchestrated Fine-Grained Software-Based Selective-
Testing in Multi-/Many-Core Microprocessors,” IEEE Transactions on
Computers, vol. 65, pp. 1453–1466, 5 2016.

[8] R. Segabinazzi Ferreira and J. Nolte, “Low latency reconfiguration
mechanism for fine-grained processor internal functional units,” in 2019
IEEE Latin American Test Symposium (LATS), (Santiago/CL), 2019.

[9] F. Muhlbauer, L. Schroder, and M. Scholzel, “A fault tolerant dynam-
ically scheduled processor with partial permanent fault handling,” in
2018 IEEE 19th Latin-American Test Symposium, LATS 2018, vol. 2018-
January, pp. 1–6, 4 2018.

[10] A. Sadighi, B. Donyanavard, T. Kadeed, K. Moazzemi, T. Muck,
A. Nassar, A. M. Rahmani, T. Wild, N. Dutt, R. Ernst, A. Herkersdorf,
and F. Kurdahi, “Design methodologies for enabling self-awareness in
autonomous systems,” in Proceedings of the 2018 Design, Automation
and Test in Europe Conference and Exhibition, DATE 2018, 2018.

[11] T. D. Nya, S. C. Stilkerich, and C. Siemers, “Self-aware and self-
expressive driven fault tolerance for embedded systems,” in 2014 IEEE
Symposium on Intelligent Embedded Systems (IES), pp. 27–33, 1 2014.

[12] R. Segabinazzi Ferreira, N. George, J. Chen, M. Hübner, M. Krstic,
J. Nolte, and H. T. Vierhaus, “Configurable Fault Tolerant Circuits and
System Level Integration for Self-Awareness,” in 2019 22nd Euromicro
Conference on Digital System Design (DSD) (Work in Progress Session),
2019.

[13] J. Henkel, L. Bauer, N. Dutt, P. Gupta, S. Nassif, M. Shafique,
M. Tahoori, and N. Wehn, “Reliable On-chip systems in the nano-era:
Lessons learnt and future trends,” in Proceedings - Design Automation
Conference, 2013.

[14] H. Hong, J. Lim, H. Lim, and S. Kang, “Lifetime reliability enhancement
of microprocessors: Mitigating the impact of negative bias temperature
instability,” ACM Computing Surveys, vol. 48, 9 2015.

[15] OpenCores.org, “Plasma - most MIPS I(TM) Overview,” in
https://opencores.org/projects/plasma, visited Dec. 6th, 2019.

[16] S. Rhoads, “Plasma Real-Time Operating System,” in
http://plasmacpu.no-ip.org:8080/rtos.htm, visited Dec. 6th, 2019.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on September 24,2021 at 20:50:15 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

