
Journal of Electronic Testing (2019) 35:9–27
https://doi.org/10.1007/s10836-019-05778-z

Fault Tolerant Soft-Core Processor Architecture Based on Temporal
Redundancy

Paulo R. C. Villa1 · Rodrigo Travessini2 · Roger C. Goerl3 · Fabian L. Vargas3 · Eduardo A. Bezerra4

Received: 29 June 2018 / Accepted: 22 January 2019 / Published online: 4 February 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Embedded soft-core processors are becoming the usual solution to deal with network and data communications inside FPGAs.
However, when developing space-based applications, the designer must consider the effects of ionizing radiation such as
Total Ionizing Dose (TID) and Single-Event Effect (SEE). The majority of techniques for mitigation of Single-Event Upsets
(SEUs) on FPGAs are based on hardware spatial-redundancy. This work presents a fault-tolerance technique, based on the
concept of temporal redundancy, with checkpoints and recovery for soft-core processors. The proposed modified architecture
is aimed at embedded systems for space applications based on FPGAs. Our experimental results show that the Checkpoint
Recovery technique is a valid alternative to traditional spatial-redundancy, especially when considering limited logic area and
power budget present on a satellite. The results present levels of reliability comparable to those of the more conventional
fault-tolerance techniques. Additionally, the proposed approach does not require modifications of the software source code or
compiler.

Keywords Fault-tolerance · Checkpoint recovery · Soft-core processors · FPGAs · Single-event upsets

1 Introduction

Field Programmable Gate Arrays (FPGAs) are not any
longer used exclusively for prototyping of Specific

Responsible Editor: L. M. Bolzani Pöhls

� Paulo R. C. Villa
paulo.villa@veranopolis.ifrs.edu.br

Rodrigo Travessini
rodrigo.travessini@eel.ufsc.br

Roger C. Goerl
roger.goerl@acad.pucrs.br

Fabian L. Vargas
vargas@computer.org

Eduardo A. Bezerra
eduardo.bezerra@ufsc.br

1 Federal Institute of Rio Grande do Sul, Veranópolis, Brazil

2 Electrical Engineering Department, Federal University
of Santa Catarina, Florianópolis, Brazil

3 Electrical Engineering Department, Catholic University -
PUCRS, Porto Alegre, Brazil

4 Electrical Engineering Department, UFSC, Brazil
and LIRMM, Université de Montpellier, Montpellier, France

Integrated Circuits (ASICs) [4, 41]. In fact, they are so
versatile that, for one of the most conservative applications
— satellites — they have been increasingly taking over
the data processing and avionics control [13]. There is
a growing trend in the employment of FPGA on space
applications [19].

Today’s FPGA offer high logic capacity (to implement
a circuit), reasonable operating frequencies and a plethora
of embedded hard-blocks (such as Analog-to-Digital
Converters (ADCs) and Digital Signal Processors (DSPs))
[17]. Several factors have contributed to reach this stage,
mainly the Integrated Circuit (IC) transistor density due
to manufacturing process scaling down [47]. Nonetheless,
ASIC have their place on the market, especially on high-
volume and high-performance applications such as SAMPA
Chip [8].

When considering space applications, future satellite
missions are expected to acquire and process large amounts
of data [37]. Additionally, on-board electronics are required
to be re-programmable after the mission launch and even
further, while still operating. Traditional microprocessors
and ASIC cannot fulfill this requirement entirely, leaving
FPGA as the primary option.

Apart from custom Intellectual Property (IP) blocks
inside the FPGA, it is common to have embedded proces-
sors [3, 20, 24, 28, 55] to handle data and communications.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10836-019-05778-z&domain=pdf
http://orcid.org/0000-0003-0638-2639
mailto: paulo.villa@veranopolis.ifrs.edu.br
mailto: rodrigo.travessini@eel.ufsc.br
mailto: roger.goerl@acad.pucrs.br
mailto: vargas@computer.org
mailto: eduardo.bezerra@ufsc.br


10 J Electron Test (2019) 35:9–27

All this integration can compromise overall system relia-
bility [12, 42]. Given these circumstances, finding a com-
promise between the processing capacity and the level of
reliability against processor failures is important from the
research point of view.

Given the harsh environment satellites are exposed
to, external events can cause the system to malfunction.
Electromagnetic Interference (EMI) and radiation account
for effects that the circuits are susceptible. One of the most
common problems is known as SEE [11, 46], which can
cause temporary or permanent failures in a system, even
with the potential to cause invalidation of the entire system,
in the form of the premature termination of a space satellite
mission, for example.

To attain mission-level reliability, fault-tolerance must
be considered throughout the entire design of the system,
i.e., from IC layout to software implementation. On the
lower level of abstraction, radiation hardened (rad-hard)
FPGAs can deal with the effects of radiation on the circuit,
assuring minimal conditions to the system to function.
But, for some space programs, such as the case in Brazil,
the acquisition process of radiation hardened (rad-hard)
components is controlled by government agencies as, for
instance, the International Traffic in Arms Regulations
(ITAR) [49] rules1. In addition, rad-hard components are
significantly more expensive than traditional Commercial
Off-The-Shelf (COTS) components.

If we assume an unhardened COTS FPGA, the next level
of abstraction of the system must mitigate possible errors
(i.e., SEEs) from the underlying hardware. Hence, a strong
motivation for developing this work, is the possibility to
introduce fault tolerance to a system with the use of COTS
FPGAs.

On that matter, the LEON3 [2] processor has already been
used in some space missions. Considering the Brazil’sNational
Institute For Space Research (INPE) interest in migrating
from the ERC32 legacy processor2 without having to
redesign the entire code, a soft-LEON3 processor with fault-
tolerance is a good substitution for the rad-hard ERC32.

Considering the aforementioned, this work expands a
previous work [53], presenting in detail the modified
LEON3 processor architecture with fault-tolerance, target-
ing the used of soft-core processors in space applications.

1.1 Objectives and Contribution

Network and data communications inside FPGAs are often
handled with the use of soft-core processors [20, 24, 28, 55].
High-parallel tasks implemented in IP-blocks can be easily

1Given the two major FPGA companies are based on the USA.
2ERC32 is a discontinued radiation-tolerant SPARC V7 processor
developed for space applications.

integrated with processors during the FPGA development
flow. However, when developing space-based applications,
the designer of embedded systems must also consider the
effects of ionizing radiation, mainly in the form of SEUs
[12, 42]. SEUs can affect user flip-flops and memory where
the soft-core processor relies upon to function properly.

The majority of techniques for mitigation of SEUs in
FPGAs are based on hardware spatial-redundancy. Notably,
Triple Modular Redundancy (TMR) is the most common.
When implemented correctly, TMR can mask single-errors
and detect double-errors. But, depending on the level of
implementation for a processor, it can be hard to recover the
faulty unit.

Therefore, an often neglected fault-tolerance approach
in the scope of processors is to use time-redundancy. In
the case of SEUs, when rewriting an erroneous value
inside a processor register, this action can restore the
system correctness [29]. This process is done at the cost of
processing time instead of hardware replication.

In general, this work’s main contribution is a fault-
tolerance technique, based on the concept of temporal
redundancy, with checkpoints and recovery aimed at soft-
core processors. In our approach, the improved architecture
does not require modifications in the software source code
or compiler, and is aimed at embedded systems for space
applications, based on FPGAs.

The research is intended to demonstrate that the
Checkpoint and Recovery (CR) technique is a valid
alternative to TMR and even Dual Modular Redundancy
(DMR). This contribution is especially important when
dealing with determinant constraints for space applications:
limited logic area and power budget. All of these constraints
are allied to reach comparable levels of reliability.

1.2 Text Organization

The remaining of this document is organized as follows:
Section 2 presents the main concepts regarding fault-
tolerance for processors, followed by Section 3 discussing
the related works in the area. Section 4 shows the proposed
modified architecture in detail, while Section 5 detailing the
experiments ran. Lastly, Section 6 concludes this work.

2 Reliability Improvement Strategies
for Microprocessors

This Section presents the main problems and definitions
associated to the space environment when considering
embedded electronic circuits. Also, some of the techniques
used in this context are described with focus on the time
redundant approach. At the end of the Section, some of the
related works are discussed and compared.



J Electron Test (2019) 35:9–27 11

Fig. 1 Radiation effects on
integrated circuits

2.1 Radiation Effects on Electronics

Cosmic radiation is generated by particles emitted from
various sources that may be originated beyond the solar
system. There are three main sources of charged particles
responsible for faults in electronic components, namely:
Cosmic Rays, Solar Winds and Van Allen’s Belt [50].
Cosmic Rays are formed of highly energetic ion nuclei,
these heavy ions represent only 1% of the component of
cosmic radiation, being the remaining 83% protons, 13%
helium nuclei and 3% electrons [10].

These sources of radiation interact with electronics causing
different effects on integrated circuits. In reference [43] the
common radiation effects, that must be mitigated on FPGA,
are presented in the form of a tree, according to Fig. 1.

The SEE is detailed in Section 2.3. The effect called
TID changes the voltage which must be applied to turn the
device on (i.e. shifts the threshold voltage). If the shift is
large enough, the device cannot be turned off, even at zero
volts applied, and the device is said to have failed by going
depletion mode [9].

Both radiation effects (SEE and TID) need to be taken into
consideration when designing systems for space applica-
tions. However, each of them has different approaches to be
mitigated, and they are also connected with the underlying
technology/topology of the system (e.g., Flash memories
are more susceptible to TID while Static Random Access
Memory (SRAM) are more vulnerable to SEEs).

2.2 Fault, Error and Failure

For this section, the concepts are in agreement with [7], the
relationship between fault, error, and failure, in the form of
a chain of threats, can be seen according to Fig. 2.

For instance, in a processor, one of the outputs of an
Arithmetic Logic Unit (ALU) may remain stuck at a specific

logic level. In this example, the fault is a bit that cannot be
not change. The error is a result of the failure (a sum with
the wrong value for example). The failure is when another
processor unit uses the erroneous result, propagating the
problem to the rest of the system.

2.3 Single Event Effects

Errors caused by radiation, known as SEE, can be classified
as soft-errors and hard-errors, and subdivided into the
following [10]:

– Soft-Errors

– Single-Event Transient (SET)
– Single-Event Upset (SEU)
– Multiple Cell Upset (MCU)
– Multiple Bit Upset (MBU)
– Single-Event Function Interrupt (SEFI)

– Hard-Errors

– Single-Event Latch-up (SEL)
– Single-Event Gate Rupture (SEGR)

The effect called SET occurs when a high energy particle
reaches a certain point in the circuit, with the ability to
change the output of a transistor. This changes the signal
level for a period (in the order of nano/picoseconds), causing
a glitch. As the name implies, it is transient, that is, there is
a double transition (0 - 1 - 0 or 1 - 0 - 1) within this space of
time. The effect of the SET is shown in Fig. 3, where a fault
is indicated in the upper left AND gate, the transition of the
output can be perceived in the third logical port, where the
undesired effect occurs.

SEUs occur on the assumption that the particle reaches
an element of memory by changing the stored data. The
SEU is not considered permanent because, in the next write
operation of the memory element affected, the wrong value

Fig. 2 Error Propagation - Relationship cause/effect between fault, error and failure



12 J Electron Test (2019) 35:9–27

Fig. 3 SET Example

will be replaced. However, if the memory element is read-
only from the system, the error can be propagated to the
rest of the circuit and thus be considered a permanent error.
Another situation of occurrence of SEUs is in the case where
the SET propagates until it reaches a memory element,
storing the undesired value.

When more than one SEU happens in a circuit, the effect
is called the MCU. In case it occurs in elements that make
up a larger register, it is then an MBU.

2.3.1 Fault-tolerance Techniques

The techniques for fault tolerance constitute a research topic
in the area of systems reliability, and it is a well-established
subject in the computing field [21, 29]. It is important to
say that there are no 100% fault-tolerant systems [10, 21];
several factors are involved, and therefore there will always
be a variable that can not be predicted or controlled.

In the specific case of embedded systems for space
applications, fault tolerance is not only a necessity but an
indispensable design requirement to increase the chances of
success of a mission.

Fault tolerance techniques commonly use the concept
of redundancy, which can be defined as the existence
(logical or physical) of more than one resource needed to
perform the action that must be fault tolerant. Although the
word redundant, when used in the context of computational
systems, can represent the idea of physical replication of
components, there are four basic types of redundancy [29]:

– Hardware: The most natural concept to replicate
hardware and use it whenever a fault is identified.

– Software: To be used for software failures, there may be
two or more code snippets running to prevent failure.

– Information: When redundant data is added to the basic
information, like Hamming codes in registers, for fault
tolerance.

– Time: Use redundancy in time to tolerate failures, i.e.,
perform the same activity two or more times, one after
the other, to ensure a correct result.

Examples of hardware redundancy can be simple
implementations - such as the addition of circuits’ replicas,
one of which is used as the primary circuit and the remaining
redundant. When the fault is detected, the logic is switched
to use one of the redundant circuits. This type of technique
is known as static hardware redundancy. The correct output
(fault-free) is selected through a majority voter. The TMR
technique can be applied at several levels of abstraction,
such as architecture (the ALU within a processor) or at
lower levels in the system.

In the case of software redundancy, it is possible to have
variations at all levels, such as data, program flow control,
and hybrid combinations. For example, we perform the
same task for two different software versions with the same
objective. If there is a divergence of results, an action is
taken.

For information redundancy, the most explicit example
would be to add data to information of interest, to identify,
mask, and tolerate errors. The data coding technique, known
as a checksum, calculates the data (as an xor operation)
and adds the result to its end before transmitting or using
it. Once coded, one must make the same calculation and
compare with the attached result, in which case, if there is a
divergence, the failure can be identified.

Finally, temporal redundancy is the repetition of the
computation of the same task over time, with the results of
each of the repetitions being compared, to be able to identify
the fault. The most common temporal redundancy is called
rollback recovery technique, and is done by performing
checkpoints during the execution of a program, at specific
intervals. Assuring that these points do not contain errors,
in the event of a failure, the system can return to the last
checkpoint and redo the execution.

The technique of interest in this work is based on
the concept of inspection points called Checkpoints.
Checkpoint and recovery can be done in computer systems,
such as processors, simply by saving the state of interest
and, if an error is detected, return to that state to redo the
execution.

Considering that there is no single taxonomy for
fault tolerance techniques, this section was intended to
demonstrate one of the possible approaches to the subject.

2.3.2 Checkpoint Recovery (CR)

The CR technique is a classic fault-tolerance technique,
which enables computing systems to execute correctly even
when affected by transient faults [25, 44]. The works
based on the technique of CR are traditionally classified
according to the level of abstraction implemented by the
system. This classification is divided into techniques that
make changes to software-only or hardware-only [15].



J Electron Test (2019) 35:9–27 13

While software solutions are cheaper from the perspective
of implementation, purely hardware based have a very
low overhead potential in the execution time of the same
software. It is also possible to have a combination of both,
denominated hybrid (hardware and software).

Although the concept of the technique is simple, several
problems arise with the implementation, especially when
taking into account the essential details of the development,
such as level of abstraction, transparency for the end-user,
number of checkpoints, at what point in the program to
checkpoint, etc.

2.3.3 Checkpoint Recovery Overhead

Like all redundancy-based techniques, there is an associated
overhead, whether temporal or physical. In the case of
the CR technique applied to a processor, the overhead
is associated with the additional execution time of the
program, while there are no errors. In other words, the
amount of time when the system is blocked from execution
to perform a checkpoint. Figure 4 illustrates the additional
execution required on a system with CR. The execution of
the program with the CR has points where it is necessary
to perform the checkpoint, represented in grey tone in the
figure. When execution is interrupted to the checkpoint, the
same program suffers an addition at runtime.

3 RelatedWorks

The works developed by [27] and [32] present combined
fault-tolerance techniques applies to the LEON3 soft-core
processor for FPGAs.

Keller and Wirthlin [27] use five different SEU
mitigation variations: no SEU mitigation, TMR alone,
TMR with Block-RAM (BRAM) scrubbing, TMR with
Configuration-RAM (CRAM) scrubbing, and TMR with
both BRAM scrubbing and CRAM scrubbing. Both fault
injection and neutron radiation testing were conducted.
Improvement is measured in terms of sensitivity reduction
for fault injection and cross section reduction for neutron

Fig. 4 CR overhead

radiation testing when compared to the unmitigated
design. The results from both fault injection and radiation
testing demonstrate that each variation of SEU mitigation
techniques improve the SEU sensitivity of the LEON3, and
that improvement increases as more mitigation techniques
are combined. When compared to the unmitigated design,
SEU sensitivity is improved from 16 to up 50 times. The
full mitigated version comes at a cost of 4.7 times increase
in area of the FPGA.

In reference [32] authors implement a hybrid fault-
tolerant LEON3 soft-core processor in a Xilinx Artix-7
FPGA and evaluate its error detection capabilities through
neutron irradiation and fault injection. The error mitigation
approach combines the use of Single-Error Correction /
Double-Error Detection (SEC-DED) codes for memories,
a hardware monitor to detect control-flow errors, software-
based techniques to detect data errors and configuration
memory scrubbing with repair to avoid error accumulation.
Radiation test results show an improvement of 4.13
times for the hardware-only mitigation techniques. Fault-
injection test includes the software hardened approach in
combination to hardware and have an average 20 times
better improvement. Both results are compared against the
unmitigated variant of the processor.

Li et al. [31] propose a transient-fault countermeasure
called RELI, which is a fine-grained CR approach for
Application Specific Instruction Processor (ASIP)-based
embedded processors. RELI is supposed to be the first
to realize CR at the basic-block level by leveraging
custom instruction design. To implement RELI, an ASIP
design flow based on one of the existing commercial
tool (ASIPmeister), generate the Register-Transfer Level
(RTL) description of the resultant processors with RELI
functionality. The costs concerning execution time, area,
and power are reduced significantly compared to existing
techniques.

The augmented processor (i.e., RELI processor) allows
CR to be executed at a finer granularity than other works,
such that the checkpoint data size is reduced. Assembly
code from MiBench benchmark suite [22], compiled using
SimpleScalar toolset is used to generate the comparisons.
The experimental results show that the fault-free execution
time overhead is 0.76 percent on average. In the fault
injection test, for the worst case, the recovery time is 62
cycles. RELI costs 44.4 percent area and 45.6 percent
leakage power overhead on average (for the TMSC65nm
technology), and 79.3 and 77.8 percent in the worst case
found in SPEC-INT2006 and MiBench suites.

In reference [45] is presented another work, aimed at
the embedded processor internal registers. The register data
dependency is used to minimize the register file traffic
required by the register file CR. The proposed logging CR



14 J Electron Test (2019) 35:9–27

scheme, named RECORD, considers various register data
dependencies, which can potentially identify and eliminate
the redundant executions of register file checkpointing at
runtime. This approach is supposed to be the first to realize
a hardware-based logging checkpointing mechanism, which
strategically utilizes the first processor executions to
diminish the additional checkpointing operations at runtime,
for embedded processors. RECORD is implemented in
an ASIP to evaluate the proposed scheme for embedded
processors. The technique presents a lower register file
traffic and better dynamic power saving with little hardware
and performance overhead when compared to other works.

In reference [16] is proposed a Dual-Core Lock
Step (DCLS) approach to increase the dependability of
hard-core processors embedded in programmable SoC,
which combines the programmable logic with the high-
performance hard-core processor. The DCLS is a dual-core
ARM Cortex-A9 processor embedded into the Zynq-7000
APSoC. It is a novel implementation of lockstep in the dual-
core Cortex-A9. ARM provides some processor’s versions
with built-in lockstep, such as Cortex-R5 processor, which
could be configured to application reliability.

Two versions of the technique are compared with the
unhardened Cortex-A9 processor. The first uses only the
BRAMs to store the checkpoint data, and the second uses
the external DDR memory as secondary storage for the
checkpoint data. Area results show an increase of 100% for
the processor and memories. As for the execution time, three
matrix multiply programs are evaluated. Being the longer
the execution time, lower is the time overhead. The BRAM
version has an increase of 26%, and the DDR version has a
47% increase on the total clock cycles for the 20x20 matrix.
The further work by the authors in [16] shows that up to 91%
of the bit flips injected in the ARM registers are mitigated
by the proposed technique.

The work presented in [54] present a design flow that
can be used by designers to mitigate radiation-induced
errors affecting processor IP cores embedded in FPGA-
based SoCs for systems that have to be deployed in
harsh environments. The design flow used the concepts of
lockstep, checkpoint with rollback recovery, and on-demand
configuration memory scrubbing (in case of SRAM-based
FPGAs) to provide a balance between resources overhead
and fault tolerance. The flow can be automated, reducing
the total development costs, while increasing the quality of
the resulting product. The authors provide a prototypical
implementation of a design environment, supporting the
proposed flow, and applied it to the design of a system using
a Leon processor IP core.

The time overhead for this implementation ranges from
17% to 54%, depending on the software executed. In
the fault injection campaign, 10,000 random SEEs were
injected, 84% of them became latent or detected and

corrected; 15% triggered errors in the system (the authors
modified the instruction trap of the processor to perform a
rollback), and the configuration memory scrubber handled
the last 1%.

All strategies focused on processors presented in this
section require modification to software and/or compiler in
addition to the hardware. We propose a pure hardware-based
solution to deal with SEUs. In our approach, there is no need
to rewrite — or even recompile — the original software
source code. The fault-tolerance technique is performed in
the modified architecture.

4 Proposed Checkpoint Recovery Technique

The CR technique works by saving checkpoints considered
safe during the execution of a processor [29]. Whenever an
error is detected, a rollback to the last known safe state is
performed, namely recovery. To better understand the CR
technique, Fig. 5 depicts a hypothetical scenario: after a
checkpoint (Ck) is performed at t = 2, instructions In+1,
In+2 and In+3 are executed. At time t = 6 the error is
detected, causing the recovery to occur. After recovery, the
three instructions are executed in the same fashion and the
fault is overwritten with the right result.

If the SEU occurs in an element of the circuit, and, if the
element is overwritten with the correct value after the SEU
is identified, the error can be corrected. Therefore, the CR
technique, which repeats the operation of a point considered
safe, is a reasonable solution.

The following subsections present in detail the imple-
mentation of the CR technique.

4.1 Constraints and Assumptions

Before we advance into more details about the proposed
technique implementation, some of the design decisions
made need to be explained. We consider the environment
to be the space, more precisely, an embedded FPGA on
satellites. Up to Low Earth Orbit (LEO), the expected
radiation dose is around 0.1 krad/year, meaning a five-year
mission can have ∼0.5 krad dose [38]. The Geosynchronous
Earth Orbit (GEO) can also be considered once it has a
dose rate of ∼10 krad/year, but the selected FPGA has to
withstand this dose.

Fig. 5 Checkpoint Recovery Technique Scenario



J Electron Test (2019) 35:9–27 15

For that reason, the FPGA hardware is flash-based, in our
case the Microsemi ProASIC3e FPGA [34]. In this type of
FPGA, the configuration memory is not affected by SEUs
[52].

Although the configuration memory on the ProASIC3e is
susceptible to TID, a dose of up to 30 krad seems not to affect
the FPGA implemented circuit [26]. The use of SRAM-
based FPGA, at the present stage, have not been considered,
mainly because the configuration memory is highly sensitive
to SEEs. Once the configuration memory is affected, the
underlying implemented hardware (in our case, the soft-core
processor) can behave erroneously. The error mitigation of
configuration memory is a vast field of study with specific
techniques, that could be integrated into this work.

The assumed fault model that is being mitigated is the
SEE, more precisely its subtype SEU. Literature shows that
SEU is the predominant failure when considering proces-
sors [30, 40]. Also, we assumed in our fault model that only
single-faults can occur. Depending on the operation fre-
quency in use, the likelihood of an SET can be considered
negligible, given the current technologies [5].

For the CR technique, the granularity of the checkpoints
(i.e. how often checkpoints are performed) need to be
taken into consideration, once it introduces overhead in the
processor execution. We perform a checkpoint after every
write operation to the main memory, similarly to [54]. This
approach assumes that up to that point, if the error-detection
mechanism did not identify the error, the state of the system
has not been compromised. Another possible approach that
could be used, presented by [39], is to save a checkpoint
before the occurrence of a jump instruction in the execution
of the program.

Once we are dealing with SEUs, the main storage system
is vital to keep the system running. Since the program runs
on the main memory, if it presents errors the processor
can misinterpret the instructions. For that matter, the main
memory is assumed to be external and protected by an Error
Detection And Correction (EDAC) technique. Furthermore,
the cache memories are disabled for two reasons: they are
additional area susceptible to SEUs, and since we are using
writes to the main memory as reference points, the caches
can interfere on the processor synchronization.

Also, like any other technique of fault-tolerance, there
are two stages to implement fault-tolerant systems: Error-
detection and Error-correction. These are two separated
phases, which most methods integrate them into one single
scheme. e.g. the TMR approach works by voting the
majority of results and masking the disagreeing information.
The voting process can be seen as the error-detection
stage, and thus the masking is the error-correction. With
this in mind, we propose the use of the CR technique to
detect errors, by executing twice every slice of instructions
(comprised between two checkpoints) and performing a

third execution of the slice to correct a possible detected
error. Nonetheless, other error detection schemes are
implemented to be compared.

4.2 Test Vehicle

The LEON3 [2] is the processor chosen as the target system
of this work, due to the significant acceptance in the scope
of space applications. It is a synthesized model, described in
VHDL, of a 32-bit processor, 7-stage pipeline, compatible
with the SPARC V8 architecture, made available by the com-
pany Aeroflex Gaisler, under the GNU GPL license. The
source code is free to use for research and educational purposes
and is distributed as part of the GRLIB IP library [1].

LEON3 is very configurable, being easily integrated
into SoCs, accepting the multiprocessing configuration (up
to four CPUs) and a wide variety of peripherals. More
specifically, the LEON3 CPU core is based on a seven-
stage pipeline, and may include other processing modules,
such as a floating-point unit. In addition, a unit called
Debug Support Unit (DSU) is integrated with the processor,
which is also connected to the Advanced Microcontroller
Bus Architecture (AMBA) bus, to aid in debugging the CPU.

The GRLIB provides several designs, including different
FPGA vendors. These designs have a common characteristic
of a single VHDL file for the top entity (leon3mp.vhd)
and another file for the configuration of the processor
(config.vhd). The top entity contains the instantiation of
the leon3s that comprises the processor and its internal
components. The VHDL code is very modular, with each
component within separate file.

Since the same entity responsible for the cache it
is also responsible for the AMBA interface, it will
always be instantiated inside the LEON3 processor. When
the cache memory is disabled, the internal Finite State
Machine (FSM) bypasses the cache memory access. The
main components comprising the proc3 entity and the

Fig. 6 PROC3 Connections Overview



16 J Electron Test (2019) 35:9–27

Fig. 7 Different Architectures Used for Error Detection: (a) bus-based DMR, (b) bus-based TMR, and (c) single-processor time-redundant

relationship between the Integer Unit (IU3) and the Cache
Controller/AMBA Interface are depicted in Fig. 6.

4.3 Implemented Error-Detection Approaches

To perform the rollback in the processor, the CR hardware
needs to be aware of the error, thus an error-detection
must be implemented. There are several error-detection
techniques in the literature. This study does not primarily
aim at the detection of a SEU (i.e., error detection), as it can
be considered another field of study by itself. Instead, we
used fault tolerance techniques, which have fault-detection
as their starting point. Three techniques have been used: the
classical TMR [33]; a bus-based DMR approach [18]; and
a time-redundant execution. The Fig. 7 presents the three
architectures used in the experiment.

Figure 7a uses a bus-based DMR to detect errors and
inform to the CR module to perform the rollback on
both processors. Figure 7b is a classic TMR where it
always detects single errors and masks single-faults using
a majority voter. Figure 7c employs the time redundant
approach that executes twice every slice of code. In this
case, the CR module saves the address and data that is going
to be written on the main memory on the first attempt.
After, rollback is performed, and the second address and
data generated are compared with the ones saved in the
first execution. When there is a match, the memory write
operation is performed and a new checkpoint is saved,

advancing the code execution to the next slice. If the values
do not match, the second execution address and data are
also stored by the CR hardware and another rollback is done
to have a third execution of the code. This way, the CR
hardware can use the result of three executions to perform a
simple majority vote (similarly to the TMR) and write to the
main memory the correct value. In the case of three different
executions, an error signal is raised, similar to the voter error
on TMRs approach, bringing the processor to a halt.

4.4 Implemented Checkpoint Recovery Approach

During its normal operation, the processor creates check-
points, which represent consistent states that can be
restored. The checkpoints are a copy of the current pro-
cessor state, more specifically the content of the pipeline
registers. Any changes to the register file since the last
consistent checkpoint are saved. The granularity of the
checkpoints was designed, in such way that one checkpoint
is created every time the processor executes an instruction
that performs writes in the main memory. Since the main
memory is the reference, instruction and data caches were
disabled on the processor configuration. Even though the
absence of cache in the processor degrades overall perfor-
mance (regarding execution time), it also introduces another
point of failure for SEUs.

To implement the CR technique, the LEON3 hardware
was modified. The first step was to find all the registers on

Fig. 8 Modified PROC3 unit
with CR Control Unit



J Electron Test (2019) 35:9–27 17

the pipeline that holds the current state of the processor. In
more detail, the IU3 unit has VHDL processes, comprising
the entire pipeline that needed to be saved. Despite the
fact that the instruction and data caches were disabled,
there are FSMs that control the communication between
the Integer Unit (IU) and the AMBA bus, and need to
be checkpointed as well. A single checkpoint signal is
connected to all modules involved. When the main memory
write is detected, it causes the checkpoint by copying all the
data to redundant registers.

In Fig. 8 the modified proc3 unit is presented with
the internal connections to the IU3 and Cache Control
units, the requests to perform the checkpoint or recovery
is done through a dedicated set of signals (indicated in the
chkp/recov signal on the figure).

The register file, likewise, needs to be taken into
consideration when recovering the processor state. In order
to do so, a fourth port was added to the register file to
perform a read on the register that is currently being written.
This way the old value can be saved in a memory stack. On
the recover event, the stack is dumped back into the register
file, bringing it back to its safe state (last checkpoint).
This process was made inside the leon3x unit and is
presented in Fig. 9. The Register File Checkpoint Unit is
responsible for multiplexing the connections between the
proc3 unit and the modified 4-port register file. In the
normal operation, the fourth-port address bus is connected
to the write port address, meaning that when a write
operation is performed, the fourth port data output the
register value being overwritten. This data value, along with
the address, is then pushed into the stack by the Checkpoint
Unit. In the event of a new checkpoint, the stack memory is
flushed since all values inside the register file are supposed

Fig. 9 Modified LEON3X unit with Register-file Checkpoint Unit and
Stack Memory

to be correct. If an error is detected, the recovery process is
activated and the Checkpoint Unit initiates to perform writes
to the Register-file. The address and data are pushed out of
the stack and written to the Register-file. When the stack is
empty, the recovery process of the Register-file is finished.

To perform a recovery on the aforementioned system, the
processor needs to be halted for a period of time. This time is
required to write the registers back into the Register-file, and
recover the IU3’s pipeline. In order to do so, a second AHB-
master unit is connected to the AMBA bus. Its function is
to request the AMBA-bus, through an write request, forcing
the LEON3 processor into a halt state. While the second
AHB-master owns the AMBA bus, the recovery process is
done. This unit is part of the CR implementation.

Going into detail, the top-level VHDL file
(leon3mp.vhd) of the design on the GRLIB instantiates
the unit leon3s. This unit is a wrapper to the aforemen-
tioned leon3x unit, with a few connections to gnd and
vcc.

4.5 DMR and Time-redundant Implementation

The implementation of the DMR and Time-redundant
approaches have different fault-detection schemes, while
the former is based on transactions on the AMBA bus, the
latter compares the pair address/data being written to the
main memory.

For the DMR implementation, there is a module that
compares transactions on the AMBA bus. Figure 10 depicts
the main connections of the LEON3 in order to achieve
the same results presented by [18]. The modification here
are the ones presented to get the CR technique running
inside of each LEON3 processor (presented in the section
above). Note that the controller of the CR technique is in
the top-level, along with the instantiation of both processors.
Whenever the outputs do not match, a signal error is raised,
the controller request the AMBA bus, and when it granted,
it sends a recovery signal to both processors. After the
recovery, both processors continue to run the program.

The time redundancy is obtained by using the CR
mechanism, to run each interval between checkpoints twice.
In order to do so, the main connections of the LEON3 Time-
redundant are depicted on Fig. 11. Figure 11a presents the
top level instantiation of the LEON3 and the AHB unit to the
AMBA bus, and Fig. 11b presents the modifications made
inside the already modified proc3 unit (Fig. 8). Note that
Fig. 11b is a detailing of the LEON3 unit in Fig. 11a, that
includes the modified leon3x unit with the CR control logic
and a write mux to the main bus.

On the first run, the processor saves the information
of the memory write instruction, but does not allow it to
proceed, bypassing the memory write enable signal (Write
Mux on Fig. 11b). Then, a rollback is performed, and the



18 J Electron Test (2019) 35:9–27

Fig. 11 Detailing of the LEON3
time redundant connections

processor executes all instructions from the last checkpoint.
When the second run reaches the memory write instruction,
the CR mechanism compares address and data to the ones
stored from the first run, if they are equal, the main memory
is written and the process repeats, otherwise, the fault is
detected and a mismatch is signalised.

Since the checkpoints are based on memory write,
both techniques presented here (DMR and Time-redundant)
monitor the AMBA write signal coming from the processor,
whenever it raises to high, the checkpoint is performed
overwriting the old one.

4.6 Checkpoint Recovery Hardware Considerations

Each checkpoint is an image of the state of the system
considered safe. Such checkpoint is a form of data
redundancy. In our case, the data redundancy is comprised
of the processor pipeline and register file modifications.
As aforementioned, not only the iu3 unit and the register
file that contain information but also, the units icache,
dcache, and acache. Table 1 presents the amount of data
in bits for each unit and the size of the stack for the register
file address and data.

Fig. 10 Detailing of the LEON3 DMR connections

The iu3 unit individually has the major quantity of data
(2502b) since it is a copy of the entire LEON3 processor
pipeline. The stacks summed account for 2560 bits since
they are 64 positions of 8 bits for the address and 64
positions of 32 bits for the data. Both stacks can be easily
protected against errors using an Error Correction Code
(ECC) based on the requirement, ranging from parity to
extended-hamming or Cyclic Redundancy Check (CRC).

The other components’ checkpoint data can be protected
in a similar form, but preferentially with the use of
signatures (such as checksums) since there are different
registers widths. It would be possible to read the entire
checkpoint as a string of bits and calculate a signature to
confirm integrity.

Another weak point is the checkpoint hardware control
and its components. This hardware is also susceptible to
SEUs that could cause the system to malfunction. The
checkpoint hardware is mostly comprised of combinational
logic and the amount of data stored is relatively low when
compared to the entire SoC. Since combinational logic is
not affected by SEUs and the stored data can be further
mitigated, at this stage, we consider that it would not be
affected.

Lastly, it is important to mention that there are no
modifications outside the LEON3 RTL code. This means
the same code, compiled to the original LEON3, can be run

Table 1 Checkpoint storage data size

Component Bits

iu3 2502

icache 323

dcache 830

acache 34

stack data 2048

stack addr 512



J Electron Test (2019) 35:9–27 19

seamlessly on our architecture. The only difference is how
the code is going to be executed and recovered (in case of
an error).

5 Experimental Results

In this section, we describe the adopted simulation method,
test setup, and benchmarks used in our tests to obtain
simulation results. We use the fault definition according to
[7]. All results here described, have been based on premises
from Section 4.1.

5.1 SimulationMethod

[56] presents an extensive survey that compare the different
techniques for fault injection, and summarizes their
advantages and limitations.According to our objectives,
the fault injection technique chosen had to meet a set of
characteristics such as: full access to the entire processor
design without being intrusive, a good time resolution
and high observability. To run our tests, the LEON3
processor was simulated using the Modelsim tool. The main
disadvantage of this technique is that it is time consuming,
as simulation time is substantially longer than real time
execution. This limitation combined with the high number
of experiments required to obtain enough confidence in the
results, imposed an upper bound in the size of the workload
running in the processor during the experiments.

The fault injection was performed according to the
pseudo-algorithm presented in Fig. 12. The fault injection
script reads all LEON3’s IU registered signals (memory
elements). For each signal, a new simulation is run (line 2).
In each simulation, a random time is picked (line 3) and ran.
After the runtime, the current signal value is read (line 4),
and a SEU is simulated by inverting one bit inside the signal
value (line 5) and applying it to the current signal using
a force command (line 6). Note that this force command
modifies the signal until it gets overwritten, known as
deposit on the simulator tool. Finally, the simulation is run

Fig. 12 Simulation Steps Pseudo-algorithm

until its end. This means that the program comes to its final
state, by raising a stop signal, or an error signal (if detected
by the simulation script). In line 10 we make sure we have
enough samples to fulfill a confidence interval of 95% and
a margin of error less than 5% (since it is a simple random
sample: 0.98/

√
n, or at least 400 runs).

The simulation results were classified according to
Fig. 13. After fault injection, there are three possible results
(outcomes): Correct, Detected, or Failure. A correct result
is reached when either, no error were detected or the error
is latent. A latent error means that the fault in that signal, at
a given time did not affect the execution. A failure means
that the fault causes a failure in the processor without being
possible to detect it. Lastly, the detected fault is the result
of an error, which can be further classified in three possible
situations according to the fault-tolerant technique used:
Recovered, Not-recovered, and Recovered incorrectly. A
recovered case is when after detect, the recovery process
acts accordingly, and the program finishes its execution with
the expected result. A not-recovered error happens when
the recovery process fails to complete the program, either
without the expected result or a time-out. The last case is
when the recovery process is performed, and the program
reaches its final state with an incorrect result. This can
happen when the error occurs on the variable that controls a
loop, for example.

5.2 Experimental Setup

For each architecture of our tests a set of four programs were
used to stress the processor instruction set as follows:

1. Basic: a simple arithmetic operation executed 50 times
and checked against the correct value.

2. Bubble sort: classic benchmark algorithm that is
executed five times on a ten element vector.

Fig. 13 Fault states diagram



20 J Electron Test (2019) 35:9–27

3. NMEA: calculate the checksum (bitwise xor) of ASCII
codes on a message string five times.

4. Hamming: calculate a hamming encoded message using
matrices five times.

It is important to note that we did not use a more classic
test program (such as dhry, stanford, or whetstone) since the
simulation time was prohibitive, e.g. over a day on a high-
end computer for a single execution. In order to circumvent
this issue, the above programs were written in standard C
language trying to comprise some of the classic code flow
execution. Nonetheless, the chosen workload applied to the
four variations of the LEON3 took over a week of computer
simulation. This translates into over 2GiB of raw data logs.

The General Purpose Input Output (GPIO) pins are used
to signalize the external world when it began and finish.
These signals are used to assert the correctness of the
execution and/or error states. For instance, if the program
bsort, on its verify state, find an unordered value, an error
signal is raised to communicate the simulation script.

The compiler used is the standard sparc-elf-4.4.2
toolchain. The following flags have been used on compila-
tion and linking:

CFLAGS=-msoft-float -Wall -O0

LDFLAGS=-qsvt -qnoambapp -lsmall

5.3 Detection and Recovery Capability Analysis

Results from the simulation were analyzed and compiled
according to Section 5.1. This section presents a compara-
tive analysis of the four variations of the LEON3 processor
using the workload mentioned before.

Figure 14 presents the detection analysis for the three
architectures used in the experiment with the inclusion of
the LEON3 original (unmodified) configuration. The Y axis
on the left shows the total of executions in the simulation
ran, and on the right Y axis the percentage of these figures.
Note that for the original configuration there is no detection
available. Therefore only the Correct/Failure results are
presented.

In the original design, it is important to notice also
that only around 15% of the injected faults resulted in a
failure. An explanation for that is the fact that they have
been randomly injected, thus affecting processor resources
not involved in the program execution. In the adopted
simulation-based strategy, the fault-injection campaign is
extremely slow and, at the time this paper was written, it has
not been possible to run and to collect the simulation results
for all variations of the processor (original, DMR, TMR and
CR), considering the proposed workload.

For the architectures of the TMR and the DMR, the
correct rates were similar, in the order of 79% on average,
which means that the fault is either latent, or not detected.
The failure rate of the original is slightly lower than the
detected figures in the TMR and DMR approaches. This is
due to a detected error not always becoming a failure.

Interestingly, the time redundant approach shows the
higher percentage of corrected results (in the order of 95%
on average). This is due to the re-execution of the code
slice since the injected fault can be overwritten before it
manifests itself during the program execution.

The errors classified as failure appears on LEON3
original and time redundant implementations. After a closer
look into the simulation results, it is possible to note

Fig. 14 Detection analysis comparison of different LEON3 architectures



J Electron Test (2019) 35:9–27 21

Fig. 15 Recovery analysis for the DMR and Time Redundant approaches

that some signals have an immediate effect on processor
execution. For instance, internal signals of the pipeline
stage EX→nerror and ALU→Ticc, are responsible for
the general processor error and Trap interruption control,
respectively. These signals can cause a failure every time
they suffer a simulation SEU. Still, the time redundant
presents an improvement over the original implementation
for this type of error.

In a previous work [48], we investigated the effects of
the injected faults, and how they manifest in the processor
interfaces with other modules such as the caches, main
memory, and register file. The CR technique could be
further improved, in a future work, by performing a rollback
whenever the processor is in the process of halting.

Figure 15 shows an analysis for the recovery process
on the detected errors for the time redundant and DMR
approaches. Note that these charts are based on the absolute
number of errors detected, consequently the breakdown
of the values are presented on stacked percentages, so it
would be possible to compare both techniques. The TMR
is not shown since it has 100% correction for single faults.
However, TMR would have to, somehow, recover the faulty
processor, otherwise, the error gets accumulated on the
system. The original configuration is not presented once
there are no detection/correction mechanisms.

For the time redundancy approach, the average errors that
were corrected, is near the 98% mark, while the average for
the DMR is a little over 63%. The main problem with the
DMR, for our tests, is to recover both processors correctly.

The overall performance comparison for the DMR and
time redundant approaches is depicted in Fig. 16. These
charts present the total percentage of executions, for each
program, which finished with success, including those
detected and corrected.

The averages of correctness are 92% and 95% for DMR
and time redundant approaches, respectively. For the time
redundant, the average 5% of failures could be further
mitigated due to the signal sensibility of the LEON3.

5.4 Execution Overhead Analysis

Although the CR technique presents a competitive recovery
capability, it introduces time overhead on the program
execution. Whenever a recovery is made, the execution
needs to be halted for, at least, one clock cycle, allowing the
recovery of the IU pipeline registers and an additional clock
cycle for each register in the register file used since the last
safe checkpoint. Table 2 presents the increase percentage on
the workload execution against the original implementation
of the LEON3 processor.

Fig. 16 Overall comparison of LEON3 DMR and time redundant approaches



22 J Electron Test (2019) 35:9–27

Table 2 Execution time
overhead against baseline LEON3 flow control LEON3 time redundant

Workload Correct Recovered Correct Recovered

basic 0.00% 4.39% 112.88% 113.61%

bsort 0.00% 0.25% 104.90% 105.00%

nmea 0.00% 1.09% 104.90% 105.12%

hamming 0.00% 1.07% 106.71% 106.99%

Average 0.00% 1.70% 107.35% 107.68%

Each implementation of the LEON3 has different time
overhead on the execution. The LEON3 DMR does not
add time to perform the checkpoints since the checkpoint
procedure is done in parallel. Therefore, no overhead is
noticed when there are no errors detected on the execution.
Although, once an error is detected, the recovery procedure
takes a few clock cycles to occur, hence the average value
of 1.70% of time increase against the baseline execution.

The cost of executing twice each slice of code out-stands
on the LEON3 time redundant approach. On average it adds
107.35% for correct execution and 107.68% when the error
is detected.

The impact of the time redundant approach can be
isolated to analyze how long it takes to perform a rollback
(recovery process). Table 3 presents the simulation time that
the CR hardware needs to act on the system and its mean
occupation of the stack of the register file. In our simulation,
the clock cycle was configured to 25ns and the stack has
64 positions (Section 4.6). Each rollback process takes, on
average, 17 clock cycles to finish and rewrite seven registers
on the register file.

5.5 Cache Influence Analysis

Since we have disabled instruction and data caches, it is
possible to analyze the time overhead due to this decision.
Table 4 presents the simulation time (in ns) and increase
ratio. The time increment due to the removal of caches
and keeping the unmodified architecture has an average of
almost seven times slower than with caches. Also, without
cache and adopting the time redundant approach has an
average of 14 times the original time.

It is a high price to pay in exchange for reliability.
Nonetheless, the primary goal is to have a fault-free
execution instead of the fastest possible execution.

5.6 FPGA Area Overhead Analysis

It is important to compare how the different architectures
influence on the area occupied. The implementations went
through the synthesis tool on the Microsemi design flow.

At this stage, preliminary results can be obtained for the
target FPGA. The data from Core (VersaTiles) and RAM
for a Microsemi ProASIC3E-1500 FPGA are presented
in Table 5 along with the increase percentages for each
variation.

The TMR could not be implemented on this device. The
same goes for the DMR approach, which cannot be fit in
the device at the current stage of the design. It is possible
to note that both results of area match the order of footprint
increase. The lower is the time redundant, followed by the
DMR and lastly the TMR. This confirms the consequence
of replicating the processor unit inside the SoC.

5.7 FPGA Power Analysis

Another critical figure when designing space applications
is power consumption. Microsemi offers a spreadsheet [35]
that can estimate power consumption of its devices on very
early stages of development. At synthesis, it is possible to
use the amount of VersaTiles and RAM occupied, along
with the operating frequency of the system, to estimate
dynamic and static power.

Table 6 shows the power consumption estimation
results for a ProASIC3E-3000 FPGA. The following
configurations were used on the power estimation tool:

– Device: A3PE3000
– Range: Commercial
– Condition: Typical
– Mode: Active

The decision to estimate values on a larger device
was based on the spreadsheet limitations. The calculator
spreadsheet does not allow to enter with a number of
Cores/RAMs higher than the available on the chosen device.
Since this is an estimation for comparison, the differences
on the dynamic power figures3 are negligible. The major
difference is the static power, which is the amount of power
that the device consumes independently of the implemented

3Experimenting on the spreadsheet, less than 0.5mW difference on the
dynamic power was noticed for the 1500 and 3000 device.



J Electron Test (2019) 35:9–27 23

Table 3 Recovery impact on
time redundant approach Workload Simulation time (avg - ns) Clock cycles Stack usage (avg)

basic 456 18.24 8

bsort 474 18.96 8

nmea 405 16.2 7

hamming 400 16 7

Average 433.75 17.35 7.5

Table 4 Effect of caches on
execution time Workload With cache Without cache Increase Without cache + TR Increase

basic 133825 494000 3.69 1051630 7.86

bsort 601180 5064100 8.42 10376346 17.26

nmea 286770 2057875 7.18 4216682 14.70

hamming 275291 2219775 8.06 4588508 16.67

Average 6.84 Average 14.12

Table 5 Area overhead comparison for a microsemi ProASIC3E-1500 FPGA

Resource type Available Baseline Time redundant Increase DMR Increase TMR Increase

Core 38400 15599 30147 93.26% 41852 168.30% 52243 234.91%

RAM/FIFO 60 52 54 3.85% 60 15.38% 68 30.77%

Table 6 Power consumption
comparison for a microsemi
ProASIC3E-3000 FPGA

Power source Original TR DMR TMR

Dynamic Power 39.58 72.94 100.12 124.44

Static Power 37.5 37.5 37.5 37.5

Total 77.08 110.44 137.62 161.94

Table 7 Total cost analysis for Microsemi ProASIC3E-3000 FPGA

Approach Detection rate Recovery rate Runtime Overhead Total cost

Time Area

Time Redundant 0.95 0.98 0.70 2.07 1.93 0.16

DMR+CR 1.00 0.92 0.56 1.01 2.68 0.19

TMR 1.00 1.00 0.48 1.00 3.35 0.14



24 J Electron Test (2019) 35:9–27

circuit on the FPGA. For the -1500 variant this value is
18mW for the same settings.

The time redundant approach shows the lower increase
in power consumption, followed by the DMR and TMR
approaches. Since the redundant processors are fed with the
main clock source, their dynamic power are proportional to
the occupied resources of the FPGA.

On a more practical example, a 1,000mAh/1.5V battery
has a 1500mWh capacity. If we consider this capacity as the
main power source and ignoring losses, we can calculate the
runtime using the Eq. 1.

Runtime(h) = Capacity(mWh)/PowerConsumed(mW) (1)

In this case, the theoretical runtime are:

– Original: ∼19.4 hours
– Time Redundant: ∼13.5 hours
– DMR: ∼10.9 hours
– TMR: ∼9.2 hours

5.8 Technique Remarks

Our simulation results show that the time redundant
based on CR have lower overhead on area and power
while sustaining reasonable numbers on the detection and
recovery process. The major drawback is time overhead due
to its nature of re-execution of code slices.

As a final comparison, in order to obtain a more solid
number, we use an adapted formula from [6] and [14], to get
a metric on the technique total cost. The total cost formula is
presented in Eq. 2. The calculated total cost is dimensionless
once it represents a relationship between proportions.

T otalCost = DetectionRate ∗ RecoveryRate ∗ RunT ime
T imeOverhead ∗ AreaOverhead

(2)

Table 7 shows the results of the total cost for the
three implemented techniques for a Microsemi ProASIC3E-
3000 FPGA. Values used in detection/correction rates and
overheads columns are percentages (i.e., 1.00 means 100%)
compared to the original implementation.

These figures show us that the time redundancy is in
between the DMR and TMR technique. Although, the time
redundancy approach has a better Detection ∗ Recovery

factor, 0.93 against 0.92 for the DMR+CR.
Regarding the TMR technique, its major drawback is

Runtime
Area

factor. Even though it has 100% detection and recov-
ery rates, without time overhead, the spatial redundancy
compromise it’s application for low-power applications.

6 Conclusion

This work presented a fault-tolerant architecture using
the checkpoint recovery technique for soft-core processors

aimed at space-applications using FPGAs. The related work
on the area shows that there is room for improvement on
time-redundancy Fault Tolerance (FT) techniques. From
our design premises, we picked the LEON3 soft-core
processor as the test vehicle. The LEON3 is already used
in space missions with its commercial fault-tolerant version
(LEON3FT - [3]).

We named this technique as LEON3 Checkpoint
Recovery Fault-Tolerant (LEON3CReFT). All modifica-
tions made to the GRLIB [1] are available at https://github.
com/prcvilla/leon3creft as required by the GPL-3.0.

The fault injection campaign was described in detail and
the results for three different architectures were compared
for a set of programs. From our experimental results, it was
shown that the CR technique is a valid alternative to TMR
and even DMR. This conclusion is valid also for the limited
logic area and power budget, subjects of interest in satellites.
The constraints are allied to comparable levels of reliability.
In our approach, there is no need to perform modifications
to the software source code or compiler.

As stated in Section 4.1, the cache memories have been
disabled as they present a large area susceptible to SEUs
and may also interfere in the processor synchronization with
the checkpoints and recovery. In an actual space application,
it is important to implement the proposed strategy using a
processor with a cache memory. Nonetheless, considering
that there is only one processor in the chosen architecture,
it might have been possible to add caches and to test the
proposed approach. This means that a few units in the SoC
would have needed to be checkpointed as well, implying
in more area overhead and testing time to make sure it
continued to work. Once the work will be further improved,
this is going to be considered in the future development.
Additionally, the architecture will be tested in a multi-core
fashion which may have new implications on the system
design.

Also in a future work, the designed system must be
validate with a faster fault-injection mechanism, such as
FTUNSHADES [23, 36]. As for our preceding work
presented in [51], we aim to perform analysis of SEU-
susceptibility for combined effects of EMI and TID.

Nonetheless, we are going to improve the fault-injection
campaign by using the FT-UNSHADES, which is a
hardware-accelerated fault injection platform. Additionally
the SET faults could be analysed in addition to the results.

Acknowledgments This work has been partly funded by the Brazilian
National Council for Scientific and Technological Development
(CNPq) and Instituto Federal do Rio Grande do Sul (IFRS).

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://github.com/prcvilla/leon3creft
https://github.com/prcvilla/leon3creft


J Electron Test (2019) 35:9–27 25

References

1. Aeroflex Gaisler: GRLIB IP Library (2015a) http://www.gaisler.
com/index.php/products/ipcores/soclibrary

2. Aeroflex Gaisler: LEON3 Processor (2015b) http://www.gaisler.
com/index.php/products/processors/leon3

3. Aeroflex Gaisler: LEON3FT-RTAX Fault-tolerant Processor
(2015c) http://www.gaisler.com/index.php/products/components/
leon3ft-rtax

4. Alkhafaji FSM, Hasan WZW, Isa MM, Sulaiman N (2018)
Robotic controller: ASIC versus FPGA - a review. J Comput
Theor Nanosci 15(1):1–25

5. Altera Tech. (2013) White paper: Introduction to single-event
upsets

6. Argyrides C, Pradhan DK, Kocak T (2011) Matrix Codes for Reli-
able and Cost Efficient Memory Chips, vol 19. https://doi.org/10.
1109/TVLSI.2009.2036362. http://ieeexplore.ieee.org/document/
5352255/

7. Avizienis A, Laprie JC, Randell B, Landwehr C (2004) Basic con-
cepts and taxonomy of dependable and secure computing. IEEE
Trans Dependable Secure Comput 1(1):11–33. https://doi.org/10.
1109/TDSC.2004.2. http://ieeexplore.ieee.org/lpdocs/epic03/wrap
per.htm?arnumber=1335465

8. Barboza SHI, Bregant M, Chambert V, Espagnon B, Herrera
HDH, Mahmood SM, Moraes D, Munhoz MG, Noėl G, Pilyar a
et al (2016) SAMPA chip: a new ASIC for the ALICE TPC and
MCH upgrades. J Instrum 11(02):C02,088

9. Barnaby HJ (2006) Total-Ionizing-Dose Effects in Modern CMOS
Technologies, vol 53. https://doi.org/10.1109/TNS.2006.885952.
http://ieeexplore.ieee.org/document/4033191/

10. Battezzati N, Sterpone L, Violante M (2010) Reconfigurable
field programmable gate arrays for mission-critical applications.
Springer, Berlin. https://books.google.com.br/books?hl=en&lr=&
id=iVScPZCgp EC&oi=fnd&pg=PP5&dq=reconfigurable+field+
programmable+gate+arrays+for+mission-critical+applications&o
ts=fjBZtSQupc&sig=jx3fKoLJ61msyfpPwqZJVTtT5lo

11. Baumann R (2003) Impact of Single-Event Upsets in Deep-
Submicron Silicon Technology. https://doi.org/10.1557/mrs2003.
38. http://journals.cambridge.org/abstract S0883769400017516

12. Bernardeschi C, Cassano L, Domenici A (2015) SRAM-based
FPGA Systems for Safety-Critical Applications: A Survey
on Design Standards and Proposed Methodologies. J Comput
Sci Technol 30(2):373–390. https://doi.org/10.1007/s11390-015-
1530-5

13. Bouhali M, Shamani F, Dahmane ZE, Belaidi A, Nurmi J (2017)
FPGA applications in unmanned aerial vehicles - a review.
In: Wong S, Beck AC, Bertels K, Carro L (eds) Proceedings
of Applied reconfigurable computing. Springer International
Publishing, Cham, pp 217–228

14. Castro HdS, da Silveira JAN, Coelho AAP, e Silva FGA,
Magalhaes PdS, de Lima OA (2016) A correction code for
multiple cells upsets in memory devices for space appli-
cations. In: Proceedings of 2016 14th IEEE International
New Circuits and Systems Conference (NEWCAS). IEEE,
pp 1–4. https://doi.org/10.1109/NEWCAS.2016.7604783. http://
ieeexplore.ieee.org/document/7604783/

15. Cetin E, Diessel O, Li T, Ambrose JA, Fisk T, Parameswaran S,
Dempster AG (2016) Overview and Investigation of SEU Detec-
tion and Recovery Approaches for FPGA-Based Heterogeneous
Systems. In: Proceedings of the FPGAs and Parallel Architectures
for Aerospace Applications. Springer International Publishing,
Cham, pp 33–46. https://doi.org/10.1007/978-3-319-14352-1 3

16. de Oliveira AB, Tambara LA, Kastensmidt FL (2017) Applying
lockstep in dual-core ARM Cortex-A9 to mitigate radiation-
induced soft errors. In: Proceedings of the 2017 IEEE 8th Latin

American Symposium on Circuits & Systems (LASCAS). IEEE,
pp 1–4. https://doi.org/10.1109/LASCAS.2017.7948063. http://
ieeexplore.ieee.org/document/7948063/

17. EEJournal: The Biggest SoC/FPGAs (2017). https://www.
eejournal.com/article/the-biggest-socfpgas/

18. Ferlini F, da Silva FA, Bezerra E, Lettnin DV (2012) Non-intrusive
fault tolerance in soft processors through circuit duplication.
In: Proceedings of 2012 13th Latin American Test Workshop
(LATW). IEEE, pp 1–6. https://doi.org/10.1109/LATW.2012.626
1264. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnu
mber=6261264

19. Friend RB, Arroyo C, Hansen J (2016) Big Missions, Small
Solutions Advances and Innovation in Architecture and Technol-
ogy for Small Satellites. In: Proceedings of the AIAA SPACE
2016. American Institute of Aeronautics and Astronautics, Reston,
Virginia. https://doi.org/10.2514/6.2016-5229

20. Glein R (2014) BRAM radiation sensor for a Self-Adaptative SEU
mitigation. In: Proceedings of the Space FPGA users workshop

21. Goloubeva O, Rebaudengo M, Reorda M, Violante M (2006)
Software-implemented hardware fault tolerance. Springer, Berlin.
https://books.google.com.br/books?hl=en&lr=&id=qX9GAAAA
QBAJ&oi=fnd&pg=PA1&dq=software+implemented+hardware+
fault-tolerance&ots=owaXCAdHzD&sig=G5Ql7eRDVfTwvyZR
IrP4zYxQsw8

22. Guthaus MR, Ringenberg JS, Ernst D, Austin TM, Mudge T,
Brown RB (2001) Mibench: a free, commercially representative
embedded benchmark suite. In: Proceedings of 2001 IEEE inter-
national workshop workload characterization, WWC’01. IEEE
Computer Society, Washington, pp 3–14. https://doi.org/10.1109/
WWC.2001.15

23. Guzman-Miranda H, Aguirre M, Tombs J (2009) Noninvasive
Fault Classification, Robustness and Recovery Time Measurement
in Microprocessor-Type Architectures Subjected to Radiation-
Induced Errors, vol 58. https://doi.org/10.1109/TIM.2009.20146
03. http://ieeexplore.ieee.org/document/4787115/

24. Guzmȧn D, Rowland D, Uribe P, Nieves T (2011) A Low Power
Processors for Cubesat Missions. In: Proceedings of the 8th annual
cubesat developer’s workshop 2011

25. Henkel J, Bauer L, Dutt N, Gupta P, Nassif S, Shafique M, Tahoori
M, Wehn N (2013) Reliable On-chip Systems in the Nano-era:
Lessons Learnt and Future Trends. In: Proceedings of the 50th
annual design automation conference, DAC’13. ACM, New York,
pp 99:1–99:10. https://doi.org/10.1145/2463209.2488857

26. Kastensmidt FL, Fonseca ECP, Vaz RG, Goncalez OL, Chipana
R, Wirth GI (2011) TID in Flash-Based FPGA: Power Supply-
Current Rise and Logic Function Mapping Effects in Propagation-
Delay Degradation. IEEE Trans Nuclear Sci 58(4):1927–1934.
https://doi.org/10.1109/TNS.2011.2128881. http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm? arnumber=5752883

27. Keller AM, Wirthlin MJ (2017) Benefits of Complementary
SEU Mitigation for the LEON3 Soft Processor on SRAM-
Based FPGAs. IEEE Trans Nuclear Sci 64(1):519–528.
https://doi.org/10.1109/TNS.2016.2635028. http://ieeexplore.
ieee.org/document/7763831/

28. Kletzing CA, Kurth WS, Acuna M, MacDowall RJ, Torbert RB,
Averkamp T, Bodet D, Bounds SR, Chutter M, Connerney J,
Crawford D, Dolan JS, Dvorsky R, Hospodarsky GB, Howard J,
Jordanova V, Johnson RA, Kirchner DL, Mokrzycki B, Needell
G, Odom J, Mark D, Pfaff R, Phillips JR, Piker CW, Remington
SL, Rowland D, Santolik O, Schnurr R, Sheppard D, Smith CW,
Thorne RM, Tyler J (2013) The electric and magnetic field instru-
ment suite and integrated science (EMFISIS) on RBSP. Space Sci
Rev 179(1-4):127–181. https://doi.org/10.1007/s11214-013-9993
-6

29. Koren I, Krishna C (2010) Fault-tolerant systems. Morgan Kauf-
mann, San Mateo. https://books.google.com.br/books?

http://www.gaisler.com/index.php/products/ipcores/ soclibrary
http://www.gaisler.com/index.php/products/ipcores/ soclibrary
http://www.gaisler.com/index.php/products/processors/leon3
http://www.gaisler.com/index.php/products/processors/leon3
http://www.gaisler.com/index.php/products/components/ leon3ft-rtax
http://www.gaisler.com/index.php/products/components/ leon3ft-rtax
https://doi.org/10.1109/TVLSI.2009.2036362
https://doi.org/10.1109/TVLSI.2009.2036362
http://ieeexplore.ieee.org/document/5352255/
http://ieeexplore.ieee.org/document/5352255/
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1109/TDSC.2004.2
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm? arnumber=1335465
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm? arnumber=1335465
https://doi.org/10.1109/TNS.2006.885952
http://ieeexplore.ieee.org/document/4033191/
https://books.google.com.br/books?hl=en&lr=&id=iVScPZCgp_EC&oi=fnd&pg=PP5&dq=reconfigurable+field+programmable+gate+arrays+for+mission-critical+applications&ots=fjBZtSQupc&sig=jx3fKoLJ61msyfpPwqZJVTtT5lo
https://books.google.com.br/books?hl=en&lr=&id=iVScPZCgp_EC&oi=fnd&pg=PP5&dq=reconfigurable+field+programmable+gate+arrays+for+mission-critical+applications&ots=fjBZtSQupc&sig=jx3fKoLJ61msyfpPwqZJVTtT5lo
https://books.google.com.br/books?hl=en&lr=&id=iVScPZCgp_EC&oi=fnd &pg=PP5&dq=reconfigurable+field+programmable+gate+arrays+for+mission-critical+applications&ots=fjBZtSQupc&sig=jx3fKoLJ61msyfpPwqZJVTtT5lo
https://books.google.com.br/books?hl=en&lr=&id=iVScPZCgp_EC&oi=fnd &pg=PP5&dq=reconfigurable+field+programmable+gate+arrays+for+mission-critical+applications&ots=fjBZtSQupc&sig=jx3fKoLJ61msyfpPwqZJVTtT5lo
https://doi.org/10.1557/mrs2003.38
https://doi.org/10.1557/mrs2003.38
http://journals.cambridge.org/abstract_S0883769400017516
https://doi.org/10.1007/s11390-015-1530-5
https://doi.org/10.1007/s11390-015-1530-5
https://doi.org/10.1109/NEWCAS.2016.7604783
http://ieeexplore.ieee.org/document/7604783/
http://ieeexplore.ieee.org/document/7604783/
https://doi.org/10.1007/978-3-319-14352-1{_}3
https://doi.org/10.1109/LASCAS.2017.7948063
http://ieeexplore.ieee.org/document/7948063/
http://ieeexplore.ieee.org/document/7948063/
https://www.eejournal.com/article/the-biggest-socfpgas/
https://www.eejournal.com/article/the-biggest-socfpgas/
https://doi.org/10.1109/LATW.2012.6261264
https://doi.org/10.1109/LATW.2012.6261264
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm? arnumber=6261264
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm? arnumber=6261264
https://doi.org/10.2514/6.2016-5229
https://books.google.com.br/books?hl=en&lr=&id=qX9GAAAAQBAJ&oi=fnd&pg=PA1&dq=software+implemented+hardware+fault- tolerance&ots=owaXCAdHzD&sig=G5Ql7eRDVfTwvyZRIrP4zYxQsw8
https://books.google.com.br/books?hl=en&lr=&id=qX9GAAAAQBAJ&oi=fnd&pg=PA1&dq=software+implemented+hardware+fault- tolerance&ots=owaXCAdHzD&sig=G5Ql7eRDVfTwvyZRIrP4zYxQsw8
https://books.google.com.br/books?hl=en&lr=&id=qX9GAAAAQBAJ&oi=fnd&pg=PA1&dq=software+implemented+hardware+fault- tolerance&ots=owaXCAdHzD&sig=G5Ql7eRDVfTwvyZRIrP4zYxQsw8
https://books.google.com.br/books?hl=en&lr=&id=qX9GAAAAQBAJ&oi=fnd&pg=PA1&dq=software+implemented+hardware+fault- tolerance&ots=owaXCAdHzD&sig=G5Ql7eRDVfTwvyZRIrP4zYxQsw8
https://doi.org/10.1109/WWC.2001.15
https://doi.org/10.1109/WWC.2001.15
https://doi.org/10.1109/TIM.2009.2014603
https://doi.org/10.1109/TIM.2009.2014603
http://ieeexplore.ieee.org/document/4787115/
https://doi.org/10.1145/2463209.2488857
https://doi.org/10.1109/TNS.2011.2128881
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm? arnumber=5752883
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm? arnumber=5752883
https://doi.org/10.1109/TNS.2016.2635028
http://ieeexplore.ieee.org/document/7763831/
http://ieeexplore.ieee.org/document/7763831/
https://doi.org/10.1007/s11214-013-9993-6
https://doi.org/10.1007/s11214-013-9993-6
https://books.google.com.br/books?hl=en&lr=&id=o_Pjbo4Wvp8C&oi=fnd&pg=PR11&dq=fault+tolerant+systems+koren&ots=RYPEQBzbyA&sig=pMKkYxL70ahe4U4U3hTKWLlrR3Y


26 J Electron Test (2019) 35:9–27

hl=en&lr=&id=o Pjbo4Wvp8C&oi=fnd&pg=PR11&
dq=fault+tolerant+systems+koren&ots=RYPEQBzbyA&
sig=pMKkYxL70ahe4U4U3hTKWLlrR3Y

30. Lesage L, Mejias B, Lobelle M (2011) A software based approach
to eliminate all SEU effects from mission critical programs.
In: Proceedings of the 2011 12th European Conference on
Radiation and Its Effects on Components and Systems. IEEE, pp
467–472. https://doi.org/10.1109/RADECS.2011.6131353. http://
ieeexplore.ieee.org/document/6131353/

31. Li T, Shafique M, Ambrose JA, Henkel J, Parameswaran S (2017)
Fine-Grained Checkpoint Recovery for Application-Specific
Instruction-Set Processors. IEEE Trans Comput 66(4):647–660.
https://doi.org/10.1109/TC.2016.2606378. http://ieeexplore.ieee.
org/document/7562290/

32. Lindoso A, Entrena L, Garcia-Valderas M, Parra L (2017)
A Hybrid Fault-Tolerant LEON3 Soft Core Processor Imple-
mented in Low-End SRAM FPGA. IEEE Trans Nuclear
Sci 64(1):374–381. https://doi.org/10.1109/TNS.2016.2636574.
http://ieeexplore.ieee.org/document/7776886/

33. Martins VMG, Villa PRC, Neto HCC, Bezerra E (2015) A TMR
Strategy with Enhanced Dependability Features Based on a Par-
tial Reconfiguration Flow. In: Proceedings of the 2015 IEEE
Computer Society Annual Symposium on VLSI. IEEE, pp 161–
166. https://doi.org/10.1109/ISVLSI.2015.84. http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7309556http://
ieeexplore.ieee.org/document/7309556/

34. Microsemi Inc. (2017) ProASIC3 FPGA. https://www.microsemi.
com/products/fpga-soc/fpga/proasic3-overview

35. Microsemi Inc. (2018) Power Estimators and Calculators.
https://www.microsemi.com/products/fpga-soc/design-resources/
power-calculator

36. Mogollon J, Guzman-Miranda H, Napoles J, Barrientos J,
Aguirre M (2011) FTUNSHADES2: A novel platform for
early evaluation of robustness against SEE. In: Proceed-
ings of the 2011 12th European Conference on Radiation
and Its Effects on Components and Systems. IEEE, pp
169–174. https://doi.org/10.1109/RADECS.2011.6131392. http://
ieeexplore.ieee.org/document/6131392/

37. Norton CD, Werne TA, Pingree PJ, Geier S (2009) An
evaluation of the Xilinx Virtex-4 FPGA for on-board pro-
cessing in an advanced imaging system. In: Proceedings
of the 2009 IEEE Aerospace conference. IEEE, pp 1–
9. https://doi.org/10.1109/AERO.2009.4839460. http://ieeexplore.
ieee.org/abstract/document/4839460/

38. Petkov M (2003) The effects of space environments on electronic
components. In: JPL Technical Report Server 1992+. https://trs.
jpl.nasa.gov/handle/2014/7193

39. Ragel R, Parameswaran S (2012) Reli: Hardware/software
Checkpoint and Recovery scheme for embedded processors.
In: Proceedings of the 2012 Design, Automation & Test in
Europe Conference &Exhibition (DATE). IEEE, pp 875–880.
https://doi.org/10.1109/DATE.2012.6176621. http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6176621

40. Reorda M, Violante M, Meinhardt C, Reis R (2009) A low-
cost SEE mitigation solution for soft-processors embedded in
Systems on Programmable Chips. In: 2009 Design, Automa-
tion & Test in Europe Conference & Exhibition, pp 352–
357. https://doi.org/10.1109/DATE.2009.5090687. http://dl.acm.
org/citation.cfm?id=1874620.1874704

41. Rodriguez-Andina JJ, Valdes-Pena MD, Moure MJ
(2015) Advanced Features and Industrial Applications of
FPGAs—A Review. IEEE Trans Ind Inf 11(4):853–864.
https://doi.org/10.1109/TII.2015.2431223. http://ieeexplore.ieee.
org/document/7104117/

42. Sabena D, Sterpone L, Scholzel M, Koal T, Vierhaus HT, Wong S,
Glein R, Rittner F, Stender C, Porrmann M, Hagemeyer J (2014)
Reconfigurable high performance architectures: How much are
they ready for safety-critical applications? In: Proceedings of the
2014 19th IEEE European Test Symposium (ETS). IEEE, pp 1–
8. https://doi.org/10.1109/ETS.2014.6847820. http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6847820

43. Siegle F, Vladimirova T, Ilstad J, Emam O (2015) Mitigation of
radiation effects in SRAM-based FPGAs for space applications.
ACM Comput Surv 47(2):34. https://doi.org/10.1145/2671181.
Article 37

44. Siewiorek D, Swarz R (2017) Reliable computer systems: Design
and evaluatuion. Digital Press

45. Li T, Ambrose JA, Parameswaran S (2016) ReCoRD: Reducing
Register Traffic for Checkpointing in Embedded Processors. In:
Proceedings of the 2016 Conference on Design, Automation
& Test in Europe, DATE’16. EDA Consortium, San Jose, pp
582–587. http://dl.acm.org/citation.cfm?id=2971808.2971945,
http:// ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=7459379

46. Tang HH, Olsson N (2003) Single-Event Upsets in Microelectron-
ics. MRS Bullet 28(02):107–110. http://journals.cambridge.org/
abstract S0883769400017498

47. Torrens G (2017) FPGA-SRAM Soft Error Radiation Hardening.
In: Field - Programmable Gate Array. InTech. https://doi.org/10.
5772/66195. http://www.intechopen.com/books/field-programmab
le-gate-array/fpga-sram-soft-error-radiation-hardening

48. Travessini R, Villa PRC, Vargas F, Bezerra E (2018) Processor
core profiling for SEU effect analysis. In: Proceedings of the
2018 IEEE 19th Latin-American Test Symposium (LATS). IEEE,
pp 1–6. https://doi.org/10.1109/LATW.2018.8347235. https://
ieeexplore.ieee.org/document/8347235/

49. U.S. State Department (2018) Directorate of Defense Trade
Controls. http://pmddtc.state.gov/index.html

50. Velazco R., Fouillat P., Reis R. (eds) (2007) Radiation
Effects on Embedded Systems. Springer, Netherlands.
https://doi.org/10.1007/978-1-4020-5646-8

51. Villa P, Bezerra E, Goerl R, Poehls L, Vargas F, Medina N,
Added N, De Aguiar V, MacChione E, Aguirre F, Da Sil-
veira M (2017a) Analysis of COTS FPGA SEU-sensitivity to
combined effects of conducted-EMI and TID. In: Proceedings
of the 2017 11th international workshop on the electromag-
netic compatibility of integrated circuits, EMCCompo 2017.
https://doi.org/10.1109/EMCCompo.2017.7998076

52. Villa PRC, Goerl RC, Vargas F, Poehls LB, Medina NH,
Added N, de Aguiar VAP, Macchione ELA, Aguirre F, da
Silveira MAG, Bezerra E Analysis of single-event upsets in a
Microsemi ProAsic3E FPGA. In: Proceedings of the 2017 18th
IEEE Latin American Test Symposium (LATS). (2017b), pp
1–4. IEEE. https://doi.org/10.1109/LATW.2017.7906772. http://
ieeexplore.ieee.org/document/7906772/

53. Villa PRC, Travessini R, Vargas F, Bezerra E (2018)
Processor checkpoint recovery for transient faults in crit-
ical applications. In: proceedings of the 2018 IEEE 19th
Latin-American Test Symposium (LATS). IEEE, pp 1–6.
https://doi.org/10.1109/LATW.2018.8349674. https://ieeexplore.
ieee.org/document/8349674/

54. Violante M, Meinhardt C, Reis R, Reorda MS (2011) A
Low-Cost Solution for Deploying Processor Cores in Harsh
Environments, vol 58. https://doi.org/10.1109/TIE.2011.2134054.
http://ieeexplore.ieee.org/document/5740344/

55. Wilson DS (2011) Cubesat Flight Software Development. In:
Proceedings of the 2011 workshop on spacecraft flight software
(FSW11). Baltimore

56. Ziade H, Ayoubi RA, Velazco R et al (2004) A survey on fault
injection techniques. Int Arab J Inf Technol 1(2):171–186

https://books.google.com.br/books?hl=en&lr=&id=o_Pjbo4Wvp8C&oi=fnd&pg=PR11&dq=fault+tolerant+systems+koren&ots=RYPEQBzbyA&sig=pMKkYxL70ahe4U4U3hTKWLlrR3Y
https://books.google.com.br/books?hl=en&lr=&id=o_Pjbo4Wvp8C&oi=fnd&pg=PR11&dq=fault+tolerant+systems+koren&ots=RYPEQBzbyA&sig=pMKkYxL70ahe4U4U3hTKWLlrR3Y
https://books.google.com.br/books?hl=en&lr=&id=o_Pjbo4Wvp8C&oi=fnd&pg=PR11&dq=fault+tolerant+systems+koren&ots=RYPEQBzbyA&sig=pMKkYxL70ahe4U4U3hTKWLlrR3Y
https://doi.org/10.1109/RADECS.2011.6131353
http://ieeexplore.ieee.org/document/6131353/
http://ieeexplore.ieee.org/document/6131353/
https://doi.org/10.1109/TC.2016.2606378
http://ieeexplore.ieee.org/document/7562290/
http://ieeexplore.ieee.org/document/7562290/
https://doi.org/10.1109/TNS.2016.2636574
http://ieeexplore.ieee.org/document/7776886/
https://doi.org/10.1109/ISVLSI.2015.84
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm? arnumber=7309556http://ieeexplore.ieee.org/document/7309556/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm? arnumber=7309556http://ieeexplore.ieee.org/document/7309556/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm? arnumber=7309556http://ieeexplore.ieee.org/document/7309556/
https://www.microsemi.com/products/fpga-soc/fpga/proasic3- overview
https://www.microsemi.com/products/fpga-soc/fpga/proasic3- overview
https://www.microsemi.com/products/fpga-soc/design- resources/power-calculator
https://www.microsemi.com/products/fpga-soc/design- resources/power-calculator
https://doi.org/10.1109/RADECS.2011.6131392
http://ieeexplore.ieee.org/document/6131392/
http://ieeexplore.ieee.org/document/6131392/
https://doi.org/10.1109/AERO.2009.4839460
http://ieeexplore.ieee.org/abstract/document/4839460/
http://ieeexplore.ieee.org/abstract/document/4839460/
https://trs.jpl.nasa.gov/handle/2014/7193
https://trs.jpl.nasa.gov/handle/2014/7193
https://doi.org/10.1109/DATE.2012.6176621
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm? arnumber=6176621
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm? arnumber=6176621
https://doi.org/10.1109/DATE.2009.5090687
http://dl.acm.org/citation.cfm?id=1874620.1874704
http://dl.acm.org/citation.cfm?id=1874620.1874704
https://doi.org/10.1109/TII.2015.2431223
http://ieeexplore.ieee.org/document/7104117/
http://ieeexplore.ieee.org/document/7104117/
https://doi.org/10.1109/ETS.2014.6847820
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm? arnumber=6847820
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm? arnumber=6847820
https://doi.org/10.1145/2671181
http://dl.acm.org/citation.cfm?id=2971808.2971945
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7459379
http://journals.cambridge.org/abstract_S0883769400017498
http://journals.cambridge.org/abstract_S0883769400017498
https://doi.org/10.5772/66195
https://doi.org/10.5772/66195
http://www.intechopen.com/books/field-programmable-gate- array/fpga-sram-soft-error-radiation-hardening
http://www.intechopen.com/books/field-programmable-gate- array/fpga-sram-soft-error-radiation-hardening
https://doi.org/10.1109/LATW.2018.8347235
https://ieeexplore.ieee.org/document/8347235/
https://ieeexplore.ieee.org/document/8347235/
http://pmddtc.state.gov/index.html
https://doi.org/10.1007/978-1-4020-5646-8
https://doi.org/10.1109/EMCCompo.2017.7998076
https://doi.org/10.1109/LATW.2017.7906772
http://ieeexplore.ieee.org/document/7906772/
http://ieeexplore.ieee.org/document/7906772/
https://doi.org/10.1109/LATW.2018.8349674
https://ieeexplore.ieee.org/document/8349674/
https://ieeexplore.ieee.org/document/8349674/
https://doi.org/10.1109/TIE.2011.2134054
http://ieeexplore.ieee.org/document/5740344/


J Electron Test (2019) 35:9–27 27

Paulo R. C. Villa graduated in Computer Engineering from Pontifı́cia
Universidade Católica do Rio Grande do Sul (PUCRS) in 2009.
MSc (2013) and PhD (2018) in Electric Engineering from Federal
University of Santa Catarina (UFSC). His research is aimed at fault
tolerance techniques for embedded processors, he is a member of
Embedded System Group at UFSC and Associate Professor at Federal
Institute of Rio Grande do Sul.

Rodrigo Travessini is an Electronic Engineer graduated by the Federal
University of Santa Catarina. He has a master degree in the same
institution. His research is aimed at fault tolerance techniques for
embedded processors and is a member of Embedded System Group at
UFSC.

Roger C. Goerl is a computer engineer graduated by PUCRS. He
has a Master degree on Electric Engineering from PUCRS. Currently
he is pursuing computer science PhD in the same institution under
advisement of Prof. César Marcon. He is a member of Laboratory of
excellence in electronics, automation and embedded systems of high
reliability at PUCRS.

Fabian L. Vargas is graduated in Electrical Engineering from the
Pontifı́cia Universidade Católica do Rio Grande do Sul (1988),
MSc. in Computer Science from the Universidade Federal do Rio
Grande do Sul (1991) and PhD. in Microelectronics from the Institut
National Polytechnique de Grenoble (1995). F. Vargas has experience
in Computer Science, focusing on Computer Systems Architecture,
acting on the following topics: fault-tolerant systems design for
critical applications, design of on-chip sensors for reliability insurance,
design for electromagnetic/radiation tolerance and on-line testing.
Prof. Vargas is an IEEE Senior Member and a Golden Core Member
of the IEEE Computer Society since 2003.

Eduardo A. Bezerra is a Researcher and Lecturer of Computer
Engineering at Universidade Federal de Santa Catarina (UFSC), where
he is with the Department of Electrical Engineering since 2010. He
received his Ph.D. in Computer Engineering from the University of
Sussex (Space Science Centre), England, UK, in 2002. From 2016
to 2017, he took a sabbatical leave to develop research activities at
the Laboratoire d’Informatique, de Robotique et de Microélectronique
de Montpellier (LIRMM), Université de Montpellier, France, where
he is now a ”long term invited professor” (Invité longue durée
Professeur). He is the author and co-author of papers published
covering a broad range of scientific topics within the disciplines
of Computer Engineering. His research interests are in the areas
of embedded systems for space applications, Cubesats, computer
architecture, reconfigurable systems (FPGAs), software & hardware
testing, fault tolerance and microprocessor applications.


	Fault Tolerant Soft-Core Processor Architecture Based on Temporal Redundancy
	Abstract
	Introduction
	Objectives and Contribution
	Text Organization

	Reliability Improvement Strategies for Microprocessors
	Radiation Effects on Electronics
	Fault, Error and Failure
	Single Event Effects
	Fault-tolerance Techniques
	Checkpoint Recovery (CR)
	Checkpoint Recovery Overhead


	Related Works
	Proposed Checkpoint Recovery Technique
	Constraints and Assumptions
	Test Vehicle
	Implemented Error-Detection Approaches
	Implemented Checkpoint Recovery Approach
	DMR and Time-redundant Implementation
	Checkpoint Recovery Hardware Considerations

	Experimental Results
	Simulation Method
	Experimental Setup
	Detection and Recovery Capability Analysis
	Execution Overhead Analysis
	Cache Influence Analysis
	FPGA Area Overhead Analysis
	FPGA Power Analysis
	Technique Remarks

	Conclusion
	Acknowledgments
	Publisher's Note
	References


