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A B S T R A C T

In recent years, computer systems spread in our daily lives have been experiencing an increasing wave of attacks
that disrupt their normal operation or leak sensitive data. Some of them, so-called I/O attacks, are performed by
malicious peripherals that perform read or write accesses to DRAM memory through unauthorized DMA (Direct
Memory Access) requests during the system boot. During this period the system is particularly vulnerable, which
allows hackers to make use of peripherals to perform malicious accesses to DRAM memory. As consequence, it
degrades system security. In this context, this paper presents a hardware-based secure-system boot sniffer (SBS)
Watchdog to prevent I/O attacks during system boot. The SBS Watchdog is tightly connected to the PCIe
communication bus to prevent peripherals from accessing DRAM memory during the BIOS execution and op-
erating system loading, i.e., during the system boot. Compared to existing approaches, the proposed technique is
fully transparent to the user, can be applied to any operating system, induces no performance degradation since
the SBS Watchdog is turned-off after system boot, and cannot be unintentionally disabled by users during system
configuration procedure. The proposed technique was implemented in a commercial FPGA. Practical experi-
ments have demonstrated the high effectiveness of the proposed technique to prevent I/O attacks during system
boot.

1. Introduction

The need to include security mechanisms in electronic tiny devices
has dramatically grown with the widespread use of such devices in our
daily life [1–3]. In this scenario this work presents a hardware-based
approach, here denoted as a watchdog connected to the Peripheral
Component Interconnect Express (PCIe) bus, which aims at preventing
I/O attacks during system boot. The approach is based on a dedicated
secure-system boot sniffer (SBS) Watchdog, which is tightly connected
to the PCIe bus to prevent peripherals from accessing DRAM memory
during the BIOS execution and operating system loading, i.e., during
the system boot. During this period, the system is particularly vulner-
able because configuration tables of the operating system (which are
located in a DRAM region that is not protected from Direct Memory
Access (DMA) accesses) are initialized during the system boot. These
configuration tables contain information concerning the memory region
and the type of memory access (read and/or write) that are allowed for
each of the peripherals connected to the system board chipset. Since
such configuration tables are not ready for use by the hardware before
the end of the system boot process, the firmware is not able to filter
DMA accesses from the peripherals, allowing them to read and/or write

system main memory with no protection. See Fig. 1 for details. (Note:
the I/O Memory Management Unit – IOMMU will be described in the
next section). Thus, a hacker behind a malicious peripheral may benefit
from this vulnerable moment to modify these tables in memory just
before the hardware is properly configured by the operating system
during the system boot. In this scenario, system main memory can be
initialized with a chunk of code that can be executed by the hacker
afterwards to control the system and/or to leak any information stored
therein. As a consequence, the system security is degraded.

2. Related works

Several approaches found in the literature have been used with
different degrees of success, as it will be described in the following
paragraphs:

1) To cope with such attacks, Intel developed a hardware protection
component: I/O Memory Management Unit (IOMMU), which has
been included in many modern computers. However, it is shown
that even if this component has been introduced 10 years ago, some
serious security concerns may be raised about its actual efficiency to
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prevent malicious I/O attacks due to some design weaknesses in its
configuration [4]. In more detail, the IOMMU component is able to
implement a DMA Protected Range (DPR) segment, which is speci-
fied by the processor and whose Protected Memory Ranges (PMR)
are implemented by the IOMMU in the system memory. However,
the Linux operating system does not use these memory segments
placing IOMMU structures outside the protected ranges [4]. Per-
ipheral devices are consequently able to read and write the IOMMU
configuration before its activation.

2) Another hardware protection mechanism is the Bus Master Enable
(BME) bit [5], which can prevent the peripherals from sending
messages during BIOS and operating system loading. If this bit is set
on in the configuration of the different PCIe bridges, the peripherals
that are connected to these bridges cannot send any DMA requests
by themselves anymore and thus cannot perform memory attacks.
This bit is correctly set at the startup of the system. However, in
many chipset configurations, firmware disables this protection be-
fore giving the control to the bootloader.

3) Also, another efficient protection against this type of attack is to use
the Intel Trusted Execution Technology (Intel TXT) to configure the
hardware of each computer [6,7]. Intel TXT works by creating a
Measured Launch Environment (MLE) that enables an accurate
comparison of all the critical elements of the launch environment
against a known good source. Intel TXT creates a cryptographically
unique identifier for each approved launch enabled component and
then provides hardware-based enforcement mechanisms to block
the launch of code that does not match approved code (i.e., the cryp-
tographic identifier). This Intel hardware-based solution provides the
foundation on which trusted platform solutions can be built to
protect against the software-based attacks that threaten integrity of
systems. However, setting such hardware/software infrastructure
protection is quite tricky, difficult for an end user which is not a
hardware and operating system expert. As a consequence, up to our
knowledge, Intel TXT is not a solution that is largely deployed so far.
It is therefore necessary to find solutions that are efficient without
being too restrictive.

4) In [7] authors developed an efficient hardware package to wrap
around all outsourced hardware (intellectual property – IP) cores
that are able to perform DMA via system bus interface. Such a
technique aims at guaranteeing secure boot for specific System-on-
Chips (SoCs) known as FPGA SoCs. This type of SoCs are known to
include in addition to a conventional CPU architecture (containing
entities like processor, memory and bus), a configurable hardware
logic (to map the outsourced cores) in the same chip. In this scenario
if IP cores are sourced from third-parties, they are hence question-
able whether they could contain (in addition to the logic that per-
forms their desirable functionality) unwanted logic devoted to per-
form unauthorized access to the system memory and so, leak/
corrupt sensitive data stored in memory during system boot. The
hardware wrapper demonstrates to be efficient to guarantee secure
system boot, but note that one hardware wrapper must be added to
every outsourced IP core mapped in the FPGA. This could result in
an unacceptable area overhead for systems containing a large
number of IP cores that are able to perform DMA via system bus

interface.
5) Finally, if we consider tiny devices such as IP cameras, smart-TVs,

smart-phones and multimedia central in autonomous vehicles for
instance, they typically do not run with the latest full-version of
Windows or Linux operating systems and in the majority of the cases
they do not even run with these operating systems at all. So, they do
not benefit from the native security mechanisms embedded into
these operating systems as previously described. Instead, they use
home-tailored, optimized-code operating systems devoted to their
target application. So, they are extremely vulnerable to I/O attacks
during system boot.

Interested readers on the issue of secure boot of embedded systems
can also address additional references on [8–11]. Considering the
aforementioned approaches, the proposed technique presents the fol-
lowing advantages: (a) it is fully transparent to the user (i.e., does not
need/depend on any user configuration). (b) can be applied to any
operating system. (c) induces no performance degradation since the SBS
Watchdog is turned-off after system boot. (d) results in a negligible area
overhead since a unique SBS Watchdog is designed to handle any
number of peripheral ports connected to the PCIe bus, and (e) cannot be
unintentionally disabled by users during system configuration proce-
dure.

In order to improve the drawbacks previously described, the next
section presents the proposed approach. It is worth mentioning that
such approach can be used as a stand-alone solution or even in con-
junction with any of the previous approaches.

3. The proposed approach

The approach is based on a dedicated secure-system boot sniffer
(SBS) Watchdog, which is tightly connected to the PCIe bus to prevent
peripherals from accessing DRAM memory during the BIOS execution
and operating system loading, i.e., during the system boot.

The proposed approach can be applied to any embedded system,
assuming the condition that the Intel IOMMU hardware protection
component has been incorporated in the system board chipset. IOMMUs
are designed to virtualize the memory space and the interrupts of the
peripherals [5,12]. Memory virtualization is implemented in the so-
called DMA remapping units (DMAR) of the IOMMU. In this scenario,
the DMAR units are configured based on the Global Command Register
(GCMDR) and in particular on the Translation Enable Bit (TE Bit),
which is part of the GCMDR. Both, TE Bit and GCMDR are stored in the
system memory and are updated by the BIOS firmware during its ex-
ecution. The existence of the Intel IOMMU hardware component on the
board chipset is mandatory because the SBS Watchdog needs to be
configured with information stored in the TE Bit. During system start
up, TE Bit is set to “0” by the BIOS firmware, and set to “1” by the
operating system when it finishes loading and is ready to start running
user tasks.

For embedded systems that do not support the Intel IOMMU hard-
ware component, the equivalent bit to the TE Bit must be identified and
its address used to configure the SBS Watchdog. By doing so, the SBS
Watchdog will be able to recognize when the system is ready to start
running user application and then, release peripherals to freely access
system memory.

Fig. 2 depicts details of the general architecture. As can be seen, the
SBS Watchdog is set between the PCIe Host and the peripherals (via a
PCIe Switch). In such connection, the SBS has as function to monitor all
communication traffic from the peripherals towards the PCIe Host
Block during the period when the BIOS is being executed and the op-
erating system is being loaded. After this critical period (CP), the per-
ipherals are released to communicate at any time, with no restriction
with the DMA Controller. In more detail, while TE Bit= “0”, the SBS
Watchdog allows the peripheral to send to the DMA Controller only the
data that are solicited by the PCIe Host to configure the board chipset
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Fig. 1. System boot timeline and vulnerability window.
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during system boot. In this scenario, any request from the peripheral to
the PCIe Host to write into the system memory is promptly blocked by
the SBS Watchdog. When TE Bit assumes logical value “1”, peripherals
are released to communicate at any time, with no restriction with the
DMA Controller.

Fig. 3 depicts in more detail this situation. Note that data coming
from the PCIe Host pass directly to the peripheral without scrutiny of
the SBS Watchdog. Nevertheless, the data coming from the peripheral
to the PCIe Host are checked by the SBS Watchdog. The communication
on the PCIe bus is given according to a specific pattern, which is de-
picted in Fig. 4. As seen in this figure, data is formatted in a 4×32-bit
word, with 18 fields in a total. When the SBS Watchdog receives data
from the peripheral formatted in such way, it checks if it concerns on a
request from the peripheral to the PCIe Host to write in the system
memory. If it is the case, the SBS Watchdog interrupts immediately such
communication traffic. Otherwise, it allows the communication process
to proceed till the end.

Fig. 5 depicts the connections between the SBS Watchdog and the
DMA Controller. When the SBS Watchdog has to update the TE Bit
Register the System Boot Monitor and Bus Interface Block (Fig. 6) starts
communicating with the DMA Controller by sending a DMA Req signal,
which is answered by the latter by sending a DMA Ack signal. Then, the
SBS Watchdog indicates to the DMA Controller that it needs to read the
content of the TE Bit in the system memory. This is done by sending a
DMA Read/Write signal to the DMA Controller while writing the

GCMDR (i.e., the TE Bit) address in the Address Bus. When the data
stored in the GCMDR is read out from the memory and is available in
the Data Bus, the DMA Controller replies with a DMA Data Enable signal
in order for the SBS Watchdog to read the Data Bus.

Fig. 6 depicts the internals of the SBS Watchdog. During system boot
the TE Bit is set to “0” in the System Memory by the BIOS firmware
(Fig. 2). When the SBS Watchdog is powered on, the System Boot
Monitor and Bus Interface Block requests to the DMA Controller to read
the status of the TE Bit in the System Memory. Then the System Boot
Monitor and Bus Interface Block initializes the TE Bit Register= “0”. The
System Boot Monitor and Bus Interface block repeats periodically this
communication with the DMA Controller in order to keep updated the
TE Bit Register with the most recent system boot status. While the TE Bit
in the System Memory (and so the TE Bit Register) is equal to “0”, the
selected Decoder output is A. When the TE Bit Register switches to “1”,
the Decoder output changes to B (this means that the operating system
has already been loaded and the SBS Watchdog is bypassed).

While TE Bit Register= “0”, the SBS Watchdog operates as follows
(Fig. 7 presents the SBS flow chart for details):

a) First, the Receiver Block detects that there is a communication from
the peripheral to the PCIe Host, receives and stores temporarily the
requested data in the 4× 32-bit word format as depicted in Fig. 4,
while forwarding it to the Buffer and Packet Analyzer Blocks.

b) In the Packet Analyzer Block, the word is decoded and checked if it
is a write operation solicited by the peripheral to the PCIe Host. If it
is not the case (for instance, the peripheral is sending its identifi-
cation number, ID, to the DMA Controller), the word stored in the
Buffer Block is released to the PCIe Host. However, if it is a write
request, then the contents of the fields Fmt and Type (Fig.4) are as
follows: Fmt= “10” or “11”: it means a memory write request from
the peripheral to the PCIe Host for a 32 or 64 bits address, respec-
tively; and Type= “00000”. In this case, the Packet Analyzer Block
understands that the peripheral is attempting to perform an un-
authorized write operation into the System Memory and so, it in-
terrupts immediately the communication (i.e., the word stored in
the Buffer is flushed).

4. Experimental results

The proposed technique was validated by a set of experiments
realized with the GHDL compiler [13] and GTKWave waveform [14],
both open source simulation software packages. With this purpose, two
blocks describing the PCIe Host and a peripheral emulator were im-
plemented in VHDL language and prototyped into a Virtex-7 Xilinx
FPGA (Part number xc7vx485tffg1761-2). Fig. 8 depicts these blocks
and their interconnections.

Note that the peripheral emulator is a generic block implemented
only with the PCIe functionality. With this purpose, other native
functions necessary to implement a smart device were dismissed since
they were not the goal and were not even necessary to validate the
proposed approach. Note also that the PCIe Host Block was im-
plemented in a minimized version containing only the logic necessary
to guarantee a transaction between the PCIe Host and the peripheral.
Examples of such a transaction can be a read request from the PCIe Host
to the peripheral (Fig. 9) or even a request from the peripheral to the
PCIe Host to write into the system memory (Fig. 10).

Simulation signals seem in Fig. 9 are described as follows: a) System
clock; b) System reset; c) Data stream sent by the peripheral to the SBS
Watchdog; d) Data stream received by the SBS Watchdog from the
peripheral and forwarded to the PCIe Host; e) Data stream received by
the PCIe Host from the SBS Watchdog. As observed, data stream is re-
ceived and forwarded by the SBS Watchdog. This process can be
guaranteed because after analyzing fields Fmt and Type of the 4×32-
bit word format (Fig.4) the SBS Watchdog decides to release data since
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it does not represent a memory write request from the peripheral into the
system memory. Nevertheless, Fig. 10 describes a memory write request
transaction from the peripheral to the PCIe Host. And as expected, the
SBS Watchdog interrupts such communication by cutting down the data
stream.

DW 0

DW 1

DW 2

DW 3

Fig. 4. Data format for communication between peripheral and PCIe Host.
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5. Final considerations

This work presented a hardware-based approach to prevent I/O
attacks during system boot, here denoted as a dedicated secure-system
boot sniffer (SBS) Watchdog. This watchdog is tightly connected to the
Peripheral Component Interconnect Express (PCIe) bus to prevent
peripherals from accessing DRAM memory during the BIOS execution
and operating system loading, i.e., during the system boot. During this
period, the system is particularly vulnerable because configuration ta-
bles of the operating system (which are located in a DRAM region that
is not protected from Direct Memory Access (DMA) accesses) are not
ready for use by the hardware before the end of the system boot pro-
cess. Therefore, the firmware is not able to filter DMA accesses from the
peripherals, allowing them to read and/or write system main memory
indiscriminately, with no protection. Thus, a hacker behind a malicious

peripheral may benefit from this vulnerable moment to modify these
tables in memory just before the hardware is properly configured by the
operating system. In this scenario, system main memory can be in-
itialized with a chunk of code that can be executed by the hacker
afterwards to control the system and/or to leak any information stored
therein. As consequence, the system security is degraded.

In order to validate the proposed approach, the SBS Watchdog, a
simplified version of the PCIe Host and an entity that mimics the
functionality of a PCIe-compliant peripheral connected to the PCIe bus
of a system board chipset have been implemented in VHDL language
and prototyped into a Virtex-7 Xilinx FPGA (Part number
xc7vx485tffg1761-2). The obtained results confirm that the SBS
Watchdog is able to interrupt any attempt from the peripheral to write
into the system memory during the system boot period. All the other
communication between the PCIe Host and the peripheral is allowed.

Considering the existing approaches, the proposed technique pre-
sents the following advantages: (a) it is fully transparent to the user
(i.e., does not need/depend on any user configuration). (b) can be ap-
plied to any operating system. (c) induces no performance degradation
since the SBS Watchdog is turned-off after system boot. (d) results in a
negligible area overhead since a unique SBS Watchdog is designed to
handle any number of peripheral ports connected to the PCIe bus, and
(e) cannot be unintentionally disabled by users during system config-
uration procedure.

6. Current work

Currently a full embedded system is under construction, where the
SBS Watchdog and the simplified PCIe Host are being coupled with the
Leon3 softcore processor and a DMA Controller. The whole VHDL-based
system is being mapped to the aforementioned FPGA device. The
hardware implementation of the SBS Watchdog indicated preliminarily
an area usage of the FPGA in the order of 2051look-up tables (LUTs)
and 562 registers. With the purpose of comparison, the area occupied
by the Leon3 softcore processor implemented in the same FPGA was
15,393 LUTs and 10,794 registers. In this scenario, the area overhead
induced by the SBS Watchdog is only 9.97%. Note that the final LUT
count, after physical optimizations and full implementation, is typically
lower. Then, running the Xilinx opt_design tool after synthesis will give
us a more realistic (and even more optimistic) count.
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