
ESCOLA POLITÉCNICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO
MESTRADO EM CIÊNCIA DA COMPUTAÇÃO

ANDRÉ DA SILVA ANTONITSCH

TOWARDS A MULTI-LEVEL CROWD SIMULATION MODEL

Porto Alegre

2021

PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
SCHOOL OF TECHNOLOGY

GRADUATE PROGRAM IN COMPUTER SCIENCE

TOWARDS A MULTI-LEVEL
CROWD SIMULATION MODEL

ANDRÉ ANTONITSCH

Dissertation presented as partial requirement
for obtaining the degree of Master in
Computer Science at Pontifical Catholic
University of Rio Grande do Sul.

Advisor: Prof. Soraia Raupp Musse

Porto Alegre
2021

André da Silva Antonitsch

Towards a Multi-Level Crowd Simulation Model

This Master Thesis/Doctoral Thesis has been

submitted in partial fulfillment of the requirements

for the degree of Doctor/Master of Computer

Science, of the Graduate Program in Computer

Science, School of Technology of the Pontifícia

Universidade Católica do Rio Grande do Sul.

Sanctioned on March 30, 2021.

COMMITTEE MEMBERS:

Prof. Dr. Nuria Pelechano (CGVR/UPC)

Prof. Dr. Rafael Heitor Bordini (PPGCC/PUCRS)

Prof. Dr. Soraia Raupp Musse (PPGCC/PUCRS - Advisor)

ACKNOWLEDGMENTS

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior - Brasil (CAPES) - Finance Code 001.

TOWARDS A MULTI-LEVEL CROWD SIMULATION MODEL

RESUMO

Em geral, modelos de simulação de multidões tem níveis-de-detalhe predefinidos, sejam
microscópicos, macroscópicos ou uma combinação de dois modelos, como modelos híbridos. Modelos
macroscópicos oferecem um trade-off entre acurácia de simulação (ou individualidade dos agentes)
e complexidade da simulação, quando comparados com modelos microscópicos. Modelos híbridos
equilibram esse trade-off ao definir regiões no ambiente a serem simuladas com cada estratégia,
definindo regiões de mais ou menos importância. Este trabalho foca em modelos capazes de adaptar
o nível-de-detalhe dinamicamente. Propomos novos modelos, BioClouds e Legion, que introduzem
os conceitos de discretização e competição de espaço em modelos de macroscopios de simulação
de multidões. O Level-Of-Detail Urban Simulation framework é um framework feito para descrição
de cidades com nível-de-detalhe dinâmico que contém dois modulos, uma ferramenta de geração
de cidades e um modulo de simulação de mobilidade populacional. O presente trabalho apresenta
a simulação de mobilidade populacional do LODUS, que utiliza de estratégias de simulação de
multidões para solucionar tarefas de mobilidade populacional. Nós propomos três casos de uso para o
LODUS: mobiilidade urbana, transporte público e contágio e propagação de doenças. Nós realizamos
experimentos visando analisar qualitativamente comportamentos emergentes para o cenário de uma
simulação de mobilidade urbana.

Palavras Chave: Simulação de Multidões, Mobilidade Populacional.

TOWARDS A MULTI-LEVEL CROWD SIMULATION MODEL

ABSTRACT

In general, crowd simulation models have pre-defined level-of-detail, be it microscopic,
microscopic or a combination of two models, like hybrid models. Macroscopic models offer a trade-off
between simulation accuracy (or individuality of agents) and simulation complexity, when compared
with microscopic models. Hybrid models try to offset this trade-off by defining regions in the
environment to be simulated with each strategy, defining regions of more or less importance. The
present work focuses on models capable of shifting level-of-detail dynamically. We propose BioClouds
and Legion, which are novel macroscopic crowd simulation models, introducing the concept of
space discretization and competition to macroscopic crowd simulation. The Level-Of-Detail Urban
Simulation framework is a framework to describe cities with a dynamic level-of-detail which contains
two modules, a city generation tool and a population mobility simulation module. The present work
presents the LODUS population mobility simulation, which uses a crowd simulation approach to
solve the task of simulating population mobility. We propose three use cases for the population
mobility simulation: a urban mobility scenario, public transportation and disease spreading. We
performed experiments to qualitatively assess emergent behavior for the urban mobility scenario.

Keywords: Crowd Simulation, Population Mobility.

LIST OF FIGURES

4.1 A split event: a 50-agent legion splits into 7 smaller legions. The new central legion
receives the remaining agents in case of fractional divisions. This pattern arbitrarily
chosen, due to its symmetry. 33

5.1 Overview of the LODUS framework. Showing the dataflow the framework proposes,
from data to city generation and population simulation. The highlighted region marks
the modules covered in this section. 37

5.2 Blob diagram showing a blob containing two characteristic profiles. In this example
each characteristic profile contains four characteristic histograms. Note that each
histogram in a given profile contains population equal to that profile population. Also
note that the blob population is the sum of populations from each profile. 40

5.3 Diagram showing split and merge operations. Split separates a blob population in
two. Merge groups two blobs into one population. This diagram omits profiles for
clarity, but the same behavior applies to each profile. 41

5.4 A diagram of a LODUS environment. 42

6.1 The densities for experiment A. Cloud density in blue. Agents density in red. 56

6.2 The speeds for experiment A. Cloud speed in blue. Agent average density in red. . . . 57

6.3 The densities for experiment B. Cloud densities in red and blue. Agent densities in
green and yellow. 58

6.4 The speeds for experiment B. Cloud speeds in red and blue. Agent average speeds
in green and yellow. 59

6.5 The densities for experiment C. Cloud densities in red and blue. Agent densities in
green and yellow. 60

6.6 The speeds for experiment C. Cloud speeds in red and blue. Agent average speeds
in green and yellow. 61

6.14 The neighborhoods of Porto Alegre. The blue zones are the 13 neighborhoods used
in the small environment experiments. The neighborhoods of Centro, Floresta and
Moinhos de Vento are contained in the blue colored region. 64

6.21 A Levy distribution. Compares the effects of two scales on the shape of a Lévy
distribution. A larger scale flattens the distribution and increases weight of the tail. . 66

6.7 Snapshots from Experiment B. Two clouds (blue circles) want to reach their respec-
tive goals, in opposite directions (a). Then, when they enter inside the MVW area
(red rectangle), agents begin to be spawned (b). In (c), it is possible to see agents
from both clouds forming lanes while crossing each other. When agents finish to
cross each other (d), they keep following their respective paths until they leave the
MVW area, which makes the clouds resurface (e). Finally, agents left the MVW
area, so only the clouds continue to be simulated (f). 68

6.8 The zoomed image of Figure 6.7c. Showing the formation of lanes in the MVW. The
lines overlaying agents represents the paths representing the emergent lanes. Grey
lanes are walking left. Light-grey lanes are walking right. 69

6.9 Snapshots from experiment A using the heatmap visualization. (a) A legion heads
towards an obstacle. (b) The legion splits due to the obstacle. (c) The legions go
around the obstacle. (d) The legions begin regrouping. 69

6.10 Snapshots from experiment B, simulated with BioClouds. (a) A cloud heads towards
an obstacle. (b) The cloud avoids the obstacle and increases its perception radius.
(c) The cloud avoids another obstacle. (d) The cloud moves towards the goal and
returns to its original size. 69

6.11 Snapshots from experiment B using the heatmap visualization. (a) A legion heads
towards the obstacles. (b) The legion splits due to the obstacles. (c) The legions go
around the obstacles. (d) The legions begin regrouping. 70

6.12 Snapshots of experiment B simulated with BioCrowds. A crowd of BioCrowds agents
separating and regrouping when interacting with the obstacles. (a) A crowd splits
when interacting with an obstacle. (b) The crowd goes around the obstacle. (c)
The crowds start grouping back together. (d) The crowds continue grouping back
together. 70

6.13 Snapshots from experiment B using our blobby visualization. (a) A legion heads
towards the obstacles. (b) The legion splits due to the obstacles. (c) The legions go
around the obstacles. (d) The legions begin regrouping. 70

6.15 Experiment A: Population over time at each of the analyzed neighborhoods. Us-
ing routine movement description and comparing the effect of different movement
restriction (r) values. Simulation performed in a model city with 13 neighborhoods. . 71

6.15 Cont. 72
6.16 Experiment B: Population over time in each of the analyzed neighborhoods. Using

routine movement description and comparing the effects of using movement restric-
tion (r) values 0.3, 0.5, 0.7. On a model city with 94 neighborhoods. 73

6.16 Cont. 74
6.17 Three moments of Experiment A visualized with a Legion based visualization ap-

proach. This visualization uses a distance functions to model buildings. 74

6.18 Origin-Destination matrix for Experiment A with r = 0.3.The diagonal contains only
zero values as we chose to represent only the population which traveled outside their
native regions. 75

6.19 Origin-Destination matrix for Experiment A with r = 0.5.The diagonal contains only
zero values as we chose to represent only the population which traveled outside their
native regions. 76

6.20 Origin-Destination matrix for Experiment A with r = 0.7.The diagonal contains only
zero values as we chose to represent only the population which traveled outside their
native regions. 77

6.22 Experiment C: Population over time at each of the analyzed neighborhoods. Using
the Lévy distribution movement description and comparing the effects of using scale
(s) values 50, 100. On a model city with 13 neighborhoods. 78

6.23 Experiment D: Population over time in each of the analyzed neighborhoods. Using
the Lévy distribution movement description and comparing the effects of using scale
values 50, 100. Simulation performed in a city with 94 neighborhoods. 79

6.24 Origin-Destination matrix for Experiment C with s = 50.The diagonal contains only
zero values as we chose to represent only the population which traveled outside their
native regions. 80

6.25 Origin-Destination matrix for Experiment C with s = 100. The diagonal contains
only zero values as we chose to represent only the population which traveled outside
their native regions. 81

6.26 Experiment E: Population over time in each of the analyzed neighborhoods. Using the
Lévy distribution movement description and comparing the effects of using different
mobility probability (l) values. On a model city with 13 neighborhoods. 82

6.27 Experiment F: Population over time in each of the analyzed neighborhoods. Using the
Lévy distribution movement description and comparing the effects of using different
mobility probability (l) values. On a model city with 13 neighborhoods. 83

6.28 Experiment G: Population over time in each of the analyzed neighborhoods. Com-
bining the routine and Lévy distribution approaches to movement description. With
Lévy movement behavior scale s = 50. The graphs compare movement restrictions
of r = 0.3 and r = 0.7. 84

6.29 Experiment H: Population over time in each of the analyzed neighborhoods. Com-
bining the routine and Lévy distribution approaches to movement description. With
movement restriction r = 0.3. The graphs compare Lévy movement scales of s = 50
and s = 100. 85

CONTENTS

1 INTRODUCTION . 19

2 RELATED WORK . 21

2.1 MICROSCOPIC CROWD SIMULATION . 21
2.1.1 HOMOGENEOUS MICROSCOPIC CROWD SIMULATION . 21
2.1.2 HETEROGENEOUS INDIVIDUAL BEHAVIORS . 22
2.2 MACROSCOPIC CROWD SIMULATION . 24
2.3 HYBRID CROWD SIMULATION . 24
2.4 POPULATION MOBILITY . 24
2.5 THE PRESENT WORK IN THE STATE-OF-ART . 25

3 BIOCLOUDS . 27

3.1 THE BIOCROWDS MODEL . 27
3.2 FROM BIOCROWDS TO BIOCLOUDS MODEL . 28

4 LEGION . 31

4.1 MULTI-LEVEL CONTROL . 31
4.1.1 SPLITTING . 32
4.1.2 MERGING . 33
4.2 THE CONTROL ALGORITHM . 34

5 LODUS . 37

5.1 POPULATION . 39
5.2 ENVIRONMENT . 41
5.3 MOVEMENT ACTIONS AND ROUTINES . 42
5.4 SIMULATION ALGORITHM . 44
5.5 DATA INPUT AND IMPLEMENTATION DETAILS . 46
5.6 LODUS CASE-STUDIES . 51
5.6.1 URBAN MOBILITY . 51
5.6.2 PUBLIC TRANSPORTATION . 52
5.6.3 DISEASE SPREADING . 53

6 EXPERIMENTAL RESULTS . 55

6.1 BIOCLOUDS EXPERIMENTS . 55

6.1.1 BIOCLOUDS ACCURACY . 55
6.1.2 PERFORMANCE . 58
6.2 LEGION EXPERIMENTS . 62
6.3 LODUS URBAN MOBILITY EXPERIMENTS . 63
6.4 DAILY ROUTINES . 65
6.5 STOCHASTIC BEHAVIOR . 65
6.6 DAILY ROUTINES AND STOCHASTIC BEHAVIOR . 67

7 FINAL CONSIDERATIONS . 87

REFERENCES . 89

APPENDIX A – Published Papers during the Master’s Degree 91

19

1. INTRODUCTION

Crowd simulation solves tasks where experimenting or gathering with a large number of
real people is unfeasible, for example, finding out the best evacuation plan for a building becomes
unreasonable if you have to physically move people in and out of buildings, or animating a huge battle
scene for a movie because it is prohibitively expensive. This applies to both very small, refined crowds
and very large crowds of people where individual features are indistinguishable. Crowd simulation
has been studied and investigated in last 30 years [22] and still some challenges exist. One of these
challenges is related to the generalization of crowds at different levels of control, individual, group
and large crowds.

Microscopic and macroscopic simulations differ in how they model entities which represent
crowds. Microscopic simulation models are good fits to simulate small crowds with individual behav-
ior. There exist several models which fit this category, such as, BioCrowds [5], ORCA [24] and the
social forces model [11]. BioCrowds [5] is a space discretization simulation model which guarantees
collision avoidance between its agents by enforcing a convex partitioning of space by the participating
agents. ORCA [24] simulates collision avoiding crowds by computing the mutual interaction of ve-
locity obstacles, that is, the future positions each agent will occupy. Social forces [11] conceptualizes
agents as being affected by internal and external factors, leading to emergent behavior.

Macroscopic simulation models are good fits to simulate large abstract crowds where
behavior is homogeneous, i.e., not individualized. Some models which fit this category are Bio-
Clouds [2], a space discretization model, fluid dynamics models [10] and continuum crowds [23].
Hybrid simulation models were created to balance the computational efficiency of macroscopic mod-
els and the individual behavior and interactions of microscopic models. Xiong et al. [25] propose
combining a microscopic and a microscopic models to simulate different regions of an environment
with different levels-of-detail.

In this work, we present two models to further explore the idea of levels-of-detail in crowd
simulation. Firstly, Legion, which is a multi-level behavioral model based on space discretization ap-
proach; and secondly, a population mobility framework to generate large scale simulations. Legion [2]
is a crowd abstraction based on BioClouds [1], capable of dynamically adapting to an environment
of different complexities. Legions, differently than clouds, from BioClouds, can split and merge
into groups of different sizes, when faced with obstacles and open areas. Secondly, we present the
Level-of-Detail Urban Simulator (LODUS) a framework composed of a procedural city-generation
tool and a variable-scale population mobility simulation. The present work proposes the population
mobility simulation model to be used in LODUS. The original LODUS work is presented by Silva et
al. [21].

The LODUS population mobility simulation framework is a framework design to allow
simulation designers to generate simulations involving movement of large scale populations of any
desired scale, i.e. cities, states, countries and so on. The framework is data-driven, adapting its
representation of a population to the available data. With an additional set of operations we seek

20

to model the urban mobility of a city, such as Porto Alegre. We base the framework on the idea
proposed by Gonzalez et al. [8], that human mobility patterns are repetitive over time. In this way,
we model an environment as a set of points-of-interest, and the population as resources to be traded
regularly by those locations. Our population representation expands on the idea of having a cloud
of agents proposed in BioClouds [2], where clouds represent a region occupied by similar agents.
The population model for the population mobility framework (LODUS) uses the terminology blob of
agents, i.e., a group of agents with a certain population profile, which can be separated and merged
back together.

Using the LODUS population mobility framework, we designed a few experimental scenarios
based on the COVID-19 pandemic during the year of 2020, using real-word mobility data for the
city of Porto Alegre. We also demonstrate possible models to simulate different situations, public
transportation with multiple transport modalities (bus, individual transport) and a simplified possible
model to simulate disease spreading using population mobility as a part of the simulation.

By combining models to increase and decrease the level-of-detail of a macroscopic simu-
lation we can build a new approach which can simulate from the singular agent up to the largest
population. We build upon that idea by presenting the Legion model, which individualizes clouds
up to the individual level, and a blob based population mobility framework, which can be translated
into Legion simulations for a given point-of-interest. As far as we know this is the first model to
connect population mobility in a macroscopic model with a microscopic model, allowing to simulate
individuals.

This work is organized as follows: Section 2 goes into details of related work in the fields
of crowd simulation and population mobility. Sections 3, 4 and 5 present the three models proposed
during this master’s degree, BioClouds, Legion and the population mobility module of LODUS,
respectively. Section 6 presents experimental results for BioClouds, Legion and LODUS. Finally,
Section 7 presents our final remarks and debates future work for this research.

21

2. RELATED WORK

This section discusses studies from the following areas of research: crowd simulation and
population mobility. Regarding crowd simulation, this work describes existing approaches for mi-
croscopic and macroscopic simulation and their relevance to the individualization of individuals in
a crowd. The methods presented here are viewed under the optics of how to simulate crowds with
the goal of achieving a multi-level simulation. In the topic of population mobility this work presents
two statistical models for the description of population mobility and temporal behavior. We also
present a crowd simulation model to analyze the impact of environment and mobility on the spread
of COVID-19.

The field of crowd simulation is vast and its uses can range from fire drill planning, crime
prevention and pedestrian flow analysis [22]. The analysis of how a crowd behaves in an environment
as a whole is largely the main concern of the field. This section presents microscopic models of
crowd simulation, where each agent is modeled as a single entity of the simulation, macroscopic
models, where each simulation entity represents several agents, or agents are represented as a field
distribution, density cloud or similar, hybrid crowd simulation models, where agents and crowds are
presented as a mix of microscopic and macroscopic approaches and, population mobility analysis
and simulation, where individuals are completely abstracted and the simulation is more interested in
larger scale temporal and spatial characteristics of a population.

2.1 Microscopic Crowd Simulation

Microscopic crowd simulation models each agent in a crowd as a single entity of simulation.
These models can vary on the degree each individual simulated agent presents particular behavior
in relation to other agents, where homogeneous models provide agents with little or no individuality
and heterogeneous models simulate agents with individual behavior.

2.1.1 Homogeneous Microscopic Crowd Simulation

Models such as, the social forces model [11], ORCA [24], and BioCrowds [5] are examples
of crowd simulation where agents and homogeneous. Agents will behave similarly and showing little
individuality.

Helbing et al. [11] introduced the concept of social forces. The social forces model con-
ceptualizes agent movement as if influenced by internal and environmental characteristics, such as
desired velocity, distance from other pedestrians and a term modeling attractive effects of simulation.
These simulations show to some self organizing behavior observed in real crowds.

22

Van den Berg et al. [24] propose the ORCA model, which simulates a crowd based on
reciprocal velocity obstacles (RVO). The simulator is solved with linear programming, which was
shown to solve a step in O(n) time. The model was originally created for robotics controllers
and tends to give little personal space for each agent. The model has extensions that cause it to
present more natural crowd forming behaviour, e.g., a simulation which respects the fundamental
diagram [17], i.e. a diagram which describe how fast each individual is willing to move in a certain
density, used for modeling culturality, personality and etc.

Bicho et al. [5] introduced the space discretization and competition model for crowd
simulation. BioCrowds supposes agents are competing to maintain their personal space and to do
so will take possession of space around them. To model the environment, the authors propose
using space discretization markers. Agents take possession of markers closest to them, forming
an emergent Voronoi partitioning of space. The convex Voronoi cells each agent now occupies
guarantee collision avoidance, as long as no agent attempts to move outside its cell.

BioCrowds also features self organizing emergent crowd behavior, most notably the emer-
gence of lanes, vortices, bottle neck and arc formation.

2.1.2 Heterogeneous Individual Behaviors

The individual behavior of an agent in the crowd can be modeled beyond the scope of
simple collision avoidance. There has been research on how to further customize, or adapt, a crowd
behavior to a different set of conditions. Among those, cultural crowd behaviors, thermal comfort
and emotion contagion.

Cultural Aspects

Favaretto et al. [7] proposed a model capable of capturing cultural differences of crowds
based on video and simulation analysis. The GeoMind model is a geometric analysis of how a
group of people, simulated or filmed, occupy a given space. The space occupation of a crowd is
associated with the OCEAN personality model. OCEAN parameters measure a person’s Openness,
Conscientiousness, Extroversion, Agreeableness and Neuroticism. These values are tracked in videos
displaying real life crowds of different cultural backgrounds and spaces, extracting measurable dif-
ferences between people from different cultures. The goal of GeoMind is to extract geometrical
information of a group, that process is divided into two steps: individual characteristics extrac-
tion and a mapping of crowd features into cultural dimensions. GeoMind analyzes crowd videos
or simulations and first extracts individualized information for each in the crowd. The model ex-
tracts position, speed, angular speed in relation to a reference vector. Based on those features, the
model computes three other measurements: collectivity, socialization and isolation levels for each
agent. Based on extracted features, the model computes OCEAN values for each individual. The

23

authors presented data which indicate the computed OCEAN values are dissimilar between crowds
of different cultures.

Narang et al. [17] propose an extension to the ORCA [24] model to generate trajectories
which display the density to speed relationship of the Fundamental Diagrams of a given crowd.
The DORCA model proposes the use of density filters to map the densities and occupations of
an environment. The density filters acts as an interface between a global planner and agent local
path planner. The agent will seek to optimize its preferred speed to conform with the information
provided by the density filter. The authors present results which show DORCA is conforms more, in
four different environments, with a real life crowd’s Fundamental Diagram than the original ORCA.

Psychological Aspects

Pelechano et al. [20] propose a model to incorporate psychological aspects and communi-
cation into crowd simulations. The PMFserv system, integrated with the crowd simulation system
MACES, models human behaviour like stress, emotion, motivation, decision process and ability. The
PMFserv uses performance moderator functions, grounded on real-life data, and human behavior
representations to model decision-making under varied agent emotional state and subjective utilities.
The decision making can be further constrained by stress levels and physiological state. The work
proposes modeling micro-behaviors for agents aiming to generate emergent cultural behavior.

Durupinar et al. [6] propose a model to differentiate, in a simulation, two types of crowds:
audiences and mobs. The authors define audiences as passive crowds and mobs as active crowds,
influenced by emotional and homogeneous behavior. The work has the following main contributions:
introduces an emotion contagion model based on OCEAN personality traits; employs the OOC emo-
tion model in multi-agent simulations; and utilizes a pleasure-arousal-dominance model do influence
agent decision making based on emotion expression and behavior selection. The authors present
scenarios simulating situations of protesters and police interactions and a sale event with agents
rushing towards sales.

Neto et al. [19] propose a model to simulated the spread of psychological phenomena
in a crowd of virtual agents. The model incorporates psychological characteristics of humans into
agents to simulate a model of emotional contagion in a crowd scenario. The model is further
associates OCEAN personality traits with agents in a crowd simulation. The model adds an emotion
information to agents in a BioCrowds simulation and provides the agents with the ability to spread
that information with other agents. At a given simulation step t, the emotion contagion is affected
by a number of factors, e.g., each agents position, expressiveness, susceptibility to contagion, current
goal and to which group each agent participating in contagion belongs to.

24

2.2 Macroscopic Crowd Simulation

Macroscopic simulation of crowds represents each agent as part of a collective, where the
control is on the macro-structure level [22]. These collectives of agents can be represented as density
fields or an aggregation of agents. Some examples of these models are the Continuum crowds model
and the BioClouds model.

Treuille et al. [23] proposed Continuum Crowds, a crowd simulation model based on con-
tinuum field dynamics. The model simulates a crowd as a dynamic potential field to perform agent
navigation for agents and moving obstacles. Continuum crowds models crowds without agent-based
dynamics.

The continuum crowds is modeled according to four hypothesis:

• Each person is trying to reach a geographic goal;

• People move at the maximum speed possible;

• There exists a discomfort field which determines location preferences;

• Agents attempt to minimize path length, discomfort and time.

The system takes a dynamic potential approach to generate velocity fields. Entities perform
path planning to avoid collisions.

The BioClouds model will be described in this work, presented in depth in Section 3.

2.3 Hybrid Crowd Simulation

Xiong et al. [25] propose the idea of a hybrid approach for crowd simulation, separating
the simulation environment into a microscopic and a macroscopic simulated regions. The authors
propose leveraging the accuracy and computational efficiency of both models. The work uses the
ORCA model as a microscopic simulation model, restricted to a region of interest, and the remaining
space is simulated using the continuum crowds model. The regions are interfaced with a transition
region. When an agent crosses the boundary, it is removed from one simulation and added to the
other. The regions in the work are defined during the environment description, and are static during
simulation.

2.4 Population Mobility

Population mobility abstracts key aspects of a population from a set of parameters to be
modeled, where the notion of the individual is, in general, non-existent. This is usually a statistical

25

approach to large scale temporal human mobility and migration patterns. In recent times the
COVID-19 epidemic sparked renewed interest in the study of urban mobility and its effects on
disease spreading. Proposed methods such as Jamshidi et al. [14] and Hernández-Orallo et al. [12]
present simulation studies on the impacts of mobility, mask usage and mobility models in the study
of COVID-19, while Brockmann et al. [4] and Gonzalez et al. [8] present analytical studies on the
characteristics of human mobility in urban environments

Brockmann et al. [4] and Gonzalez et al. [8] propose that human mobility patterns follows
a power law. Brockmann reached that conclusion by tracking bank notes serial numbers. Gonzalez
et al. used temporal data of cellphone location to derive a pattern of population mobility in a city.
Their models found temporal similarity in all patterns of human mobility. The authors argue this
temporal similarity impact human mobility among other aspects. One of the key findings of these
studies is the finding that humans mostly visit a small set of a few favorite locations repeatedly as
days passes with a random chance to visit novel locations each day. The authors also concluded
that humans in a city tend to travel the most to places close to where they currently are, with
fewer longer jumps. This behavior was modeled as a Lévy Flight [15], a random walk with distances
sampling a Lévy distribution.

Jamshidi et al. [14] present an evaluation of the effect of the weather on human mobility,
urban density and social isolation with and the subsequent effect on the spread of COVID-19. The
work highlights the effects of spatial and temporal scale on the infection models for COVID-19.
Hernández-Orallo et al. [12] explored the use of urban simulation to evaluate the temporal and
spatial risks of infection in a urban scenario. The explored situations were as such as train stations
and public squares, and the authors generated heatmaps to locate areas of increased risk. The goal
is to possibly help health agencies to mitigate risks in public spaces.

2.5 The Present Work in the State-of-Art

Regarding the presented context of the state-of-art, this work aims to expand on the idea
of multi-level models. That is, models which can dynamically shift between different degrees of of
microscopic and macroscopic simulation. This behavior is similar to hybrid crowd simulations, where
a simulation is pre-defined to use two simulation models on static regions and conditions, while on
multi-level simulations those conditions are dynamically defined by the user and simulation current
conditions. A microscopic model for regions of particular interest, and a macroscopic model for the
rest of the simulation, where simulation accuracy is not the main concern of the simulation.

In this way, BioClouds, Legion and LODUS present steps to create a crowd simulation
framework which can perform multi-level crowd simulation. BioClouds presents this idea with a multi-
simulation approach, using a BioCrowds simulation to provide individualized agent visualization.
Legion provides a dynamic hybrid crowd simulation, with simulation entities, legions, which can
split and merge depending on environment complexity, opposed to work like Xiong et al. [25] which

26

present static regions to define simulation granularity. LODUS expands on the ideas of using crowd
simulation strategies and groups of individuals of varying sizes to simulate a population mobility
scenario, with regions of arbitrary sizes, like cities, states or countries.

The three methods proposed in this dissertation are detailed in next chapters.

27

3. BIOCLOUDS

BioClouds model [2] is a generalization of BioCrowds [5], and as such, is a space dis-
cretization and competition model for collision avoidance of crowds. BioClouds models entities as
a group of agents, called a cloud and space markers as a space partitioning of space, that is, cells
containing a certain area of space.

The BioCrowds model is a space discretization crowd simulation algorithm in which agents
compete for discretized space. This space competition is performed over a discretization of the
simulation environment, allowing agents to interact with free available space and dispute personal
space. Next section briefly details BioCrowds in order to provide a better understanding of BioClouds
and Legions models.

3.1 The BioCrowds Model

BioCrowds method [5] proposes the environment discretization with uniformly distributed
markers. Agents in the environment compete for those markers, based on proximity criteria, and
use them to determine their movement vectors. Indeed, each agent i accesses the markers inside its
personal space Ri to search for markers that are closest to i than any other agent j. So, a marker is
only available to the closest agent. For a given agent i, with a set of N available markers denoted
by S = {a1, a2, · · · , aN}, we calculate its movement vector m using Equation 3.1:

m =
N∑

k=1
wk(ak −X), (3.1)

where ak is the marker’s position and X is the agent’s position. The marker’s weight wk is calculated
from Equation 3.2:

wk = f(g−X, ak −X)∑N
l=1 f(g−X, al −X)

, (3.2)

where g is the goal position of agent i. Function f should prioritize markers that lead the agent
directly to its goal. A possible choice is defined in Equation 3.3:

f(x, y) = 1 + cosθ

1 + ||y|| , (3.3)

where θ is the angle between x and y. The model should allow the agent to move with a maximum
desired speed Smax. However, in dense crowds, the space available for each agent is smaller, resulting
in a speed reduction. Therefore, in the proposed model, the instantaneous motion vector can be
defined by:

v = smin
m
||m||

, (3.4)

28

where smin = min(||m||, Smax) which implies that if ||m|| > Smax, the maximum displacement is
limited by Smax. Otherwise, it is given by ||m||. Please refer to BioCrowds original paper [5] for
further details about the method.

3.2 From BioCrowds to BioClouds Model

The cloud’s behaviors differ from a BioCrowds agent in the following aspects: the space
capturing radius and the distance function used for space competition. Space competition radius is
determined by a desired density, a quantity of agents and a radius factor. This radius factor increases
the desired radius as the cloud increases captured space density. Clouds use the power-of-a-point
distance function [3] , which generates power diagrams, a generalization of Voronoi diagrams. The
power diagrams display the mathematical properties necessary by the BioCrowds collision avoidance
guarantees. In order to model a crowd’s desire to maintain a certain density, clouds possess a
perception radius balancing behaviour: a cloud which is under its preferred density will shrink its
radius to better accommodate its desires. Similarly, a cloud which is over its desired density will
grow its radius in an attempt to capture more space.

The movement of a cloud, owner a set of captured space markers, is given by the same
equations as the BioCrowds model. The model differences offer an exchange between accuracy and
simulation complexity, with a simulation on the same granularity of BioCrowds being also possible.

Space markers are used to discretize the space and are defined as an uniform grid of square
cells. In this work, it is used cells of area= 4sqm for cells of side= 2m. The cells can be owned by,
at most, a single cloud of agents at a time, in order to provide collision avoidance. Obstacles can
be simulated as an absence of cells in a given region of space, so clouds will not be able to mark
such regions as owned by them and, therefore, are not going to move into that region. The area
that cells represent is a parameter of the model and can be adjusted as intended.

Clouds, in its turn, are aggregations of agents which have common characteristics and
goals. The number of agents a certain cloud Ci contains is one of the could parameters. Indeed, the
cloud is a structure that contains a set of parameters, defined as follows for cloud i: Ci = {Ai, dDi,

dSi, dAi, Ri,t, sRi, ~gi, jDi,t, jAi,t}, where Ai states for the number of agents inside cloud i, dDi is
the desired density the cloud should achieve, dSi is the desired speed and dAi is the desired area such
cloud wants to occupy in order to keep the desired density. In addition, Ri,t is the cloud radius at
instant t, estimating that its shape is a circle1. This parameter states for the radius of the perception
area where cloud i is going to search for space markers (i.e. cells in BioClouds) in the environment.
Clouds can update their Ri,t radius parameter if instantaneous density is different from desired one.
Such update is defined by a radius change speed sRi parameter, which determines how much the
perception radius can change in a single simulation step, the maximum change is defined by dSi,

1In order to provide a collision free algorithm, we consider that our clouds should be represented by convex
polygons, so in order to avoid extra computation, it is considered as a circle only local density purposes.

29

as later described in Equation 3.6. In addition, ~gi states for cloud i goal. Finally, the instantaneous
values jDi,t and jAi,t are the instantaneous density and area, respectively, at instant t.

The main behavior of the cloud is to move towards its goal while trying to keep its desired
structure (density and velocity) and avoid collision with obstacles and other clouds. It implies that
the cloud i tries to keep its preferred density parameter dDi which, in its turn, is related to the cloud
area dAi. Once the number of agents Ai and the desired density dDi are defined for a cloud Ci, the
desired cloud area is computed such as: dAi = Ai

dDi
, as well the initial radius of the circular shape

to contain the cloud: Ri,0 =
√

Ai

dDiΠ . Therefore, Ci will try to keep its desired density during the
motion to achieve the goal ~gi. However, due to space constraints (for example, crowded situations),
clouds can lose space (i.e. cells) to other clouds. Such behavior diminishes the instantaneous area
(jAi,t) occupied by Ci at instant t, which can increase the instantaneous density (jDi,t = Ai

jAi,t
). In

fact, jAi,t and jDi,t are computed at each frame and depends on the area (in cells) that the cloud
is occupying at the moment.

Once the clouds in BioClouds can have different amount of agents and different densities,
their radii can be different, so the Euclidean distance function used to attribute markers to clouds
is not appropriate anymore as it is in BioCrowds for agents and markers. Indeed, in BioCrowds, the
Euclidean distance is used to decide if a certain marker should be attributed to a determined agent,
since markers are attributed to the closest agent. However in BioClouds, clouds can have different
radii so we propose to use another distance function in order to provide a correct way to attribute
the markers to the clouds, allowing free-of-collision clouds movement. To do so, the Power of a
Point distance [3] method was chosen, because it partitions the space into an emergent Voronoi-like
diagram, so it keeps the method collision-free. To clarify, the power of a point distance function is
defined in Equation 3.5:

Pdi,k,t = d(~Xi,t,~ak)2 −R2
i,t, (3.5)

where ~Xi,t is the center position of cloud Ci at frame t, ~ak states for the position of a given marker
k that the cloud Ci is computing the distance, function d(,) denotes the inner product and Ri,t is
the estimated Ci radius at frame t. Considering the relation between the power of a point distance
weight and the radius of a circle, the area a cloud occupies is approximated to that of a circle.
Considering that clouds can lose space, increasing instantaneous density, when competing for space,
Ri must be updated in a next frame to reflect how the cloud shape can change to accommodate
agents, and at the same time limit how compressed a cloud can possibly be. Ri,t+1 is then computed
according to the ratio between its instantaneous density jDi,t and the preferred density dDi, as seen
in Equations 3.6 and 3.7:

Ri,t+1 = Ri,t +min(dSi,max(−dSi, sRi βt Ri,t)), (3.6)

where βt can be defined as shown in Equation 3.7:

βt = min

jD2
i,t

dD2
i

, 2
− 1. (3.7)

30

The clouds movement vector equation is the same as the one defined for BioCrowds (see
Equation 3.1), and, as such, possess the same properties of only moving a cloud inside its own
emergent Voronoi polygon. The emergent Voronoi diagram of space associated with the movement
equation ensures that the clouds never collide between themselves. Unlike BioCrowds, the cells in
BioClouds have an area value, so a cloud ’s area can be measured by the total sum of owned cells
areas.

BioCloud model was implemented using the Unity3D framework2. It was built to allow for
the parallel computing of each step. The simulation performs the following steps:

1. Cells choose the closest cloud in the same way agents do with markers in BioCrowds;

2. Each cloud uses its owned cells to compute a resulting movement vector (Equation 3.1);

3. Each cloud updates its current radius (Equation 3.6); and finally

4. Each cloud moves according to its resulting movement vector.

2https://unity3d.com/

31

4. LEGION

Legion is a multi-level crowd simulation model [1], i.e., the simulation dynamically changes
the level-of-detail of the modeled agents. Legion also introduced a blobby model visualization ap-
proach to render dynamically defined blobs of agents, i.e., a visualization model capable of rep-
resenting crowds no matter the current level-of-detail of the simulation. Legions are similar to
BioClouds clouds, in which each legion models a group of individuals with similar goals, behaviors
and characteristics. The main difference between both models is the ability legions have to split
and merge when navigating an environment with varying degrees of complexity (obstacle quantities,
path shapes and so on). This leads to a simulation which is dynamically multi-level, offsetting com-
putational complexity and simulation accuracy (when compared to simulating agents individually)
as required by the user.

The blobby visualization presents a more organic look than the one presented in BioClouds,
where clouds are rigidly shaped. The blobby model represents legions and the environment as
distance functions. As such, blobby visualized legions can change shape according to their sizes,
proximity with other legions and proximity with obstacles.

Indeed, Legion is a new macroscopic crowd abstraction which purpose is to address the
multi-level behavior, allowing the simulation of groups of varied sizes that react to the complexity
of the environment. Legions represent crowds of people without simulating individuals, as proposed
in BioClouds model [2]. We introduce the possibility of having different levels between the higher
level (macroscopic) and the individual agent (microscopic) in an emergent way. The Legion can
be subdivided into crowds, smaller crowds, large groups, smaller groups, and successively down to
the level of individuals. The subdivision of vast legions into smaller groups of various sizes occurs
depending on the environment.

The main contribution of our model is that it can deal with those varied sized groups as a
single entity, keeping the group properties as goals, speed, and density as if it were individual behav-
iors. Moreover, the subdivision can be followed by group merging, and it happens only depending on
the space restrictions. Unlike the approach proposed by Xiong et al. [25] of defining specific regions
where the multi-level behavior can be achieved, in our model, the split and merge behaviors are
dynamically adapted to the complexity of the environment. We also seek to represent our legions
organically, compared to the usual methods to visualize macroscopic crowds [2], [13], as discussed
in Section 3.

4.1 Multi-level control

In real life, large crowds can be divided into smaller groups to get around obstacles. Indeed,
smaller groups accommodate better in free space when competing for regions with other groups.

32

After a crowd overcomes an obstacle, groups can merge back into a single large crowd, if there is
free space.

Our legion model uses BioCrowds [5], as BioClouds [2], which means that we also use
space markers to provide motion to our legions (as explained in Section 3). It is essential to note
that, The original BioClouds model proposed increasing the cloud’s radius when free space decreases
so that the cloud can use more markers on the ground. Here, we intend to model these situations
in real life, allowing the best efficiency of the macroscopic simulation, while preserving the more
precise behaviors of groups with fewer individuals. Next sections present split and merge behaviors.

4.1.1 Splitting

Legion splitting occurs whenever a legion is in a situation (time t) where, in a future
moment (time t + 1), it might have less space to accommodate the Legion than currently desired.
For example, when a group moves towards an obstacle, that obstacle takes up space, the group
cannot occupy, thereby reducing its future space availability.

Each legion i has following attributes: the number of agents it represents (Ai); the desired
density (Di in people/m2); speed (Si in m/s); legion goal ~Gi; and a perception radius (Ri) equal to
the corresponding radius to guarantee the desired density Di. In addition, as in BioClouds [2], the
entities evolve in a discretized space represented as a regular grid, which cells, Mi,t, are possessed by
the legion i at each frame t. As long as the group has the same amount of agents, the same density
and space desired to accommodate the structure, Ri, will not be changed. In a situation of division,
that is, the space needed in the t+ 1 is less than the desired for the crowd to move. This structure
is subdivided into 7 new structures in the location of its current area, 6 radial legions and a central
one, in a hexagonal pattern. Six from the new 7 legions are located at the edge of the original
and are more likely to capture space than the single cloud. The radius of the newly created clouds
is one-third of the original radius of the clouds. Figure 4.1 shows a diagram of the cloud’s split
pattern. The radial arrangement was chosen to facilitate the creation of smaller clouds in a pattern
that best mimics the original density and space occupation. Although we chose a seven-way split
for this work, the number of clouds created during a split event can be adapted to better simulate
each possible experiment.

The decision to split a legion i at time t+ 1, with Ai agents, position ~Xi,t, set of captured
cells Mi,t, movement vector ~Vi,t and perception radius Ri is based on the available space for the
legion i at frame t+ 1. We check for future available space by projecting the future position of the
legion ~Xi,t+1:

~Xi,t+1 = ~Xi,t + ~Vi,t. (4.1)

33

Then we check if the markers1 within radius Ri around ~Xi,t+1 are in the set Mi,t or free (i.e., do not
attributed to any other legion or obstacle). If this condition is true, no split is necessary. To avoid
computing the split decision, at each frame, we do it at every f frames. We have found f = 15
produces good visual results.

If a split happens, each one of the newly created legions (in present case 7 legions) receives
a new ID and inherits the same velocity, goal, and desired density as the parent legion. Moreover,
R is calculated based on the number of agents assigned to each Legion (1/7 of parent legion) and
the desired density. The set of captured cells Mt and the motion vector ~Vt are calculated to provide
the movement of that Legion at frame t+ 1 guiding to goal ~G. Since the cloud division can occur
recursively, each structure can be divided again until the resulting structure represents only one
individual.

Figure 4.1: A split event: a 50-agent legion splits into 7 smaller legions. The new central legion
receives the remaining agents in case of fractional divisions. This pattern arbitrarily chosen, due to
its symmetry.

4.1.2 Merging

Cloud merging behavior aims to regroup pair of legions (i and j) when they have the same
goals (~Gi = ~Gj) and are close enough to be reunited. We determine the second rule through a
simple heuristic: we consider the markers that are close to a straight line from the two clouds centers
(~Xi,t and ~Xj,t); if all such markers are part of subsets Mi or Mj then two clouds are adjacent and
can be reunited. If this condition is not true, there is space between the two clouds, not indicating
that they are adjacent, so merge behavior is not applied. Legion merging conditions are tested at
each simulation step.

1Markers are dots on the floor in a simulated environment. They are used in BioCrowds [5], BioClouds [2] and in
the current method to discretize the space, but continuous simulation are also possible

34

A legion that is in a situation that leads to splitting and also merging would cause a not
desirable repetition of splitting and merging behaviors. To avoid such sequential operations, we add
a settling time Sti for each newly created legion, either by splitting or merging operations. This
structure is defined as: Sti = {sti,mti}, where sti and mti state for last split and last merged
frame, respectively. In addition, we define two other thresholds: shiftsplit and shiftmerge, which state
for a number of frames where a new split/merge cannot happen. Such parameters work in a way
that only in simulation frame f = sti + shiftmerge, a new merge can occur for legion i. Similar
process happens to activate again the split operation, i.e., when simulation f = mti + shiftsplit.
In this work we empirically chosen shiftmerge = shiftsplit = 30 simulation frames because it results
in visually coherent simulations. This value is equivalent to 3 seconds of simulation time (10f/s),
and can be changed to better fit different environments. When two legions merge, their data is
combined to define a new legion with a new ID.

4.2 The control algorithm

At the beginning of the simulation, legions are generated based on user input, who also
defines the environment and the obstacles. For each legion i at t = 1, the user defines:

1. number of agents Ai,

2. initial position ~Xi,t,

3. desired density Di (people/m2),

4. desired speed Si (m/s), and

5. goal ~Gi (X,Y,Z) location.

Based on these data, our method computes the perception radius Ri that the legion must have to
achieve density Di, selects the set Mi,t with the markers inside Ri that could be attributed to legion
i, and finally computes the movement vector ~Vi,t based also on speed Si and goal ~Gi.

Each legion is subdivided in 7 other legions when the split behavior occurs. Let us consider
legion k as one of the 7 new legions generated from i. The data used to instantiate k is:

1. number of agents (int) Ak = Ai/7,

2. initial position
~Xk,t = ~Xi,t + [(sin(2πk/6), cos(2πk/6))×Ri/2],

3. desired density DK = Di,

4. desired velocity Sk = Si, and

5. goal ~Gk = ~Gi.

As for legion i, the method computes the perception radius Rk,Mk,t, and finally ~Vk,t. The new struc-
tures cannot merge during 30 frames, i.e., 3 seconds of simulation time, as defined in Section 4.1.2.

35

During the simulation, legions evolve in the environment, avoiding collision with other legions and
obstacles (when space to move is not free). Therefore, they can split again and successively, until
the Legion has only one individual.

For merge situations, as described before, two legions i and j can merge if they have same
goals and be adjacent. In this case, their data is gathered to compose a new legion (e.g., m), where
data is instantiated as follows:

1. number of agents Am = Ai + Aj,

2. initial position ~Xm,t = ~Xi,t+ ~Xj,t

2 ,

3. desired density Dm = Di,

4. desired velocity Sm = Si, and

5. goal ~Gm = ~Gi.

As in the split situation, the method computes Rm, Mm,t and finally ~Vm,t. Again, legion m cannot
split during 30 frames as defined in Section 4.1.2. During such time, the legion m can keep merging
again and successively, until there is not other legion that satisfies the conditions to merge.

36

37

5. LODUS

Population mobility [4] studies the large scale flow of a certain population in a given geo-
graphic space, not necessarily concerning itself with the accurate description of singular individuals
but the population as a whole. This can have a varying degree of granularity, a population can
be studied in a given city, country, continent or even the entire world. The same is valid on the
temporal axis, data can be daily, season, yearly and so on.

To capture these characteristics in a population simulation, the Virtual Humans Lab (VH-
LAB) developed LODUS, a framework designed to assist the creation of simulations with varying
degrees temporal, physical and population scopes. LODUS is composed of two main modules, the
population mobility simulation and a level-of-detail environment generation tool. The level-of-detail
environment generation tool module was developed by Gabriel Fonseca Silva as part of his Msc.
dissertation. The present works focuses on the population mobility simulation of the framework.
LODUS is designed to be used with real world data, and adaptability in mind when generating
the routines and population behavior. Figure 5.1 shows an overview of entire LODUS framework,
population mobility and city generation modules, and its relationships with a data driven simulation
design, the red encircled area highlights the framework sections covered in this work.

Figure 5.1: Overview of the LODUS framework. Showing the dataflow the framework proposes,
from data to city generation and population simulation. The highlighted region marks the modules
covered in this section.

38

Simulation models usually are specific on the set of data they use to perform a simulation
which, due to the unreliability of data in the field of population mobility often missing, can be
incomplete or otherwise unavailable. We design LODUS as a tool to aid in the configuration of
simulators. As such, LODUS does not have a specific set of data to describe a population and its
mobility patterns, but it presents a possibility to model a simulator according to the available data.
In this manner, a simulation designer can describe a population based on what data is available. In
a similar manner, the behavior of a population can also be tailored to what data is available. Next
sections contain a top-level description of the framework structures for population, environment and
mobility behavior.

Crowd simulation describes how a population moves and evolves on their environment over
time. Traditionally, crowd simulation focuses on the modeling of small crowds (on the context of
entire populations) [22]. Macroscopic crowd simulations are similar in the sense that individuality
they can be abstracted, but population mobility in general deal with larger scopes, e.g. cities,
countries and so on. As such we aim to bring crowd simulation strategies to human mobility
simulations.

Inspired by Gonzalez et al. [8] whose concluded that humans generally go back to similar
locations regularly, and using the abstract representation proposed in BioClouds [2] and Legion [1]
models, we propose modeling the population of a simulation as blobs of people. We called blob
as an abstract structure, like clouds or legions, but applied to more crowded groups that exist in
high level hierarchy of environment, for instance in cities or neighbors. Contrary to BioClouds and
Legion, the blobs contains individual and groups characteristics, and evolve in an environment that
contains locations which can request specific groups of population. It characterizes an inversion
of behavior responsibility, making the environment responsible for decision taking regarding the
population movement during the simulation, i.e., locations asks for people, instead of people choosing
where to go. For example, a workplace routinely requests workers during morning and homes request
workers back, after their shift. This leads to the idea that places have routines that move people
in a city. Expanding on the idea of clouds of people, we can add a characteristic profile to each
one of these blobs or groups. This does not add to the simulation the idea of a singular separable
individual, but does describe a population as having a certain profile that distributes the population
differently in temporally and spatially, e.g. children going to the school in the morning and coming
home in the afternoon, or workers going to work in the morning but only coming back home at
night.

A LODUS population mobility simulation is composed of the following elements: a) The
population modeled as blobs which can split and merge. b) An environment modeled as a graph of
regions and points of interest which blobs can occupy. And c) a set of population movement actions
and routines, to describe the desired population behavior during the simulation.

39

5.1 Population

To describe populations in LODUS we expand on ideas proposed in BioClouds and Legion,
the abstraction of people as groups which can split and merge. These blobs of people should hold
characteristics as a group, and not track individual characteristics. When modeling an abstracted
group of individuals, characteristics can be modeled as a set of histograms, each describing the
distribution of a single characteristic in a given population blob, i.e. a histogram to model age, with
possible bins child, adult and elder, will have a certain quantity attributed to each bin, representing
that population. In this manner, we can model population as a collection of characteristics, e.g.,
age, level of schooling, income, etc. And if we want to split and merge different populations we can
do so by operating directly of those histograms. This approach presents an information tracking
issue if some characteristic of a population is to be associated with a specific subgroup of that
population, e.g., which percent of the elder population is vaccinated. To provide the possibility for
this association we organize characteristics into population profiles, i.e. blobs contain profiles of
characteristic histograms, for instance the vaccinated population contain 10 children and 2 adults
and the unvaccinated population contains 5 adults.

A blob i is a tuple (Fi, Pi), where Fi is a set of profiles, e.g., infected or vaccinated.
Then, Fi is also a tuple (Ni,f , Cf i, f , Li,f), where Li,f is the population size (scalar value) in this
profile, Ci,f is the set of the characteristic histograms for that blob and Nf is an identifier (can
be a string) and states for the characteristic this profile represents, e.g. infected. A blob with a
quantity p of individuals will have p individuals distributed between all of its profiles, e.g. a blob
with population=10 can be distributed as follows: 5 vaccinated and 5 unvaccinated. The set Cf i, f

contains histograms, where a histogram h is a tuple (K,B), associating characteristic K to bins
B, e.g., age, with bins 30 adults and 20 children, and income, with bins 20 high and 20 low. Each
histogram h in a profile f contains population in its bins equal to Li,f . Still in the blob i, population
Pi will be the sum of populations at each profile contained in Fi. Figure 5.4 contains a diagrams of
a blob, showing its profiles and contained histograms.

Blobs can be operated in 3 ways: blobs can split, can be merged or have some quantity
of population from one of its profiles moved to another, for example, moving population from the
susceptible profile to infected. These operations can use population templates as parameters.

A blob split is an operation which separates a blob into two smaller blobs. One way to
split a blob in two can be the simple division of all characteristic histograms between the newly
created blobs. For example, splitting the blob b with p individuals, with produce blobs c and d,
with q and r individuals respectively, where p = q + r, this is valid for every blob profile. The splits
however do not have to distribute equally each profile, e.g., when creating blobs i and j in a split, it
is possible that blob i obtains all children from an original blob and blob j ends with 0 children.
This behavior lets us separate groups of population with particular characteristics, for example, a
group of children that will be sent to school, or a group of workers that will be sent to work. The
specification of affected population is done with population templates, if no specification is used,

40

Figure 5.2: Blob diagram showing a blob containing two characteristic profiles. In this example each
characteristic profile contains four characteristic histograms. Note that each histogram in a given
profile contains population equal to that profile population. Also note that the blob population is
the sum of populations from each profile.

population is split weighted according to population at each bin. Figure 5.3 shows a diagram of a
blob split.

Conversely, a blob merge operation is an operation which merges two separate blobs into
a larger blob. Adding blobs c and d, with q and r individuals respectively, it will produce a new
blob with p individuals, where p = q+ r. This addition process occurs per population profile for the
blobs. This operation preserves population quantity, both in an global level and in a profile level.
That is, the total population does not change in the simulator, and the total population for each
profile does not change. Figure 5.3 shows a diagram of a blob merge.

The third blob operation aims to move population from a profile a to a profile b inside
a blob. This population transfer does not change the total population in a blob, but changes
its characteristics. A population profile transfer can simulate situations like vaccination, infection
and so on. The main advantage of this, is tracking a population profile which acquired a certain
characteristic, e.g., what is the percentage of a population which is vaccinated among different
groups.

Population templates are a set of mappings that describe which population is affected by
any given operation. A template T affecting a blob i describes a set of pairs (k, v), where k is
a characteristic in Ci for blob i, and v is one of the possible values for a bin in the associated
histogram. A characteristic which is in Ci but not defined in T is assumed to be affected according
to its population distribution, i.e., weighted by population. The template T can contain any number
of pairs defining a population to be affected. For example

41

Figure 5.3: Diagram showing split and merge operations. Split separates a blob population in two.
Merge groups two blobs into one population. This diagram omits profiles for clarity, but the same
behavior applies to each profile.

5.2 Environment

To adequate our simulation framework to the varying scopes of space population mobility,
we define the space as an abstract graph representing regions and points-of-interest. Regions
represent a large region of physical space in the world, containing points-of-interest. Points-of-
interest (POIs) represent the places that motivate human travel in the simulation. Regions and
POIs can represent places or areas of any spatial scope, this definition is done during simulation
design by the user. In that manner, a simulation region can represent a country and a POI can
represent a state, or in another example, regions can represent neighborhoods of a city and POIs
represent the facilities, residential and commercial zones in those neighborhoods.

Regions model a grouping of POIs, which represent an interesting characteristic to model
movements over larger spans and to track origin and destination of a given population over a period
of time. In this way, a region i is a container for a set of POIs Pi. Regions model the larger level-of-
detail for the environment description, e.g., in a city simulation, regions can model neighborhoods.

In turn, POIs model the finest level-of-detail for the environment description. Population
blobs are contained in POIs and move between them as the simulation progresses. A POI p is a
tuple (Bp, Rp), where Bp is the set of population blobs contained in p, Rp is the routine p follows.
This routine describes the demands for population this POI has over time, e.g., a super market
requests consumes, a school requests students, and a residential area provides individuals to other
regions. As humans generally tend to be cyclical in their behavior, repeating similar routines daily,
a LODUS simulation is also cyclical. As such a routine repeats every cycle of simulation. This cycle
can represent days, weeks and so on, depending on how a designer creates POI routines.

42

Figure 5.4: A diagram of a LODUS environment.

5.3 Movement Actions and Routines

The movement of blobs during a simulation is defined by the POI routines and other
movement actions defined by the simulation designer. A movement action moves a quantity of
population between any number of POIs or between profiles in a blob, in a simulation step. We
designed LODUS to be extensible, and as such, its set of available actions is extensible, a user
can add new movement actions to a simulator. New actions can be used to model different life
situations, for example, bus transportation, events or crisis situations.

The system of movement actions is defined in two parts, the action description and the
function which consumes that description. Action description is a pair of action type, a identifier
for this action, and the set of values this action expects to receive as parameters. The definition
of values to be contained in the parameter set is contractually defined by the simulation designer.
Actions can be either base actions or complex actions.

The base movement action type is move population, to operate the simplest possible
simulation operation, moving a quantity of population from one POI to another. A move profile
action is the base action that changes the population profile for a blob, moving population from one
profile to another. Base actions are actions which directly operate change in the simulation.

Complex actions, on the other hand, can be broken down into a series of base actions,
describing complex mobility behavior. An example of a complex action is returning all children from
schools to their respective homes, this action is broken down into several move population actions,

43

moving population from a school POI to their original home POI. As such, complex actions return
a list of sub-actions and base actions return empty lists.

Actions accept one special parameter in their parameter dictionary, a population template.
As described in Section 5.1, a population template is a set of key-value pairs, describing which
population characteristic histograms to affect. For example, a population template mapping of
(age, adult) will cause the defined movement action to only affect the population in the adult
bin of the age characteristic histogram. Undefined pairings are assumed to be affected uniformly
weighted by the contained population. The move population action operates this way by default.

The move population base action has arguments (Po, Pd,Q, T) where Po is an origin
POI, Pd is a destination POI, Q is a desired quantity to be moved and T is a population template.
This action will split a blob with population Q from the blobs occupying Po and merge the split
blob to Pd while respecting the mappings present in T . In case there size(Po, T) < Q, move
population moves as much population as possible, where size(n, t) is the quantity of population in
POI n which respects template t. The move profile base action has arguments (B,Ko,Kd,Q, T)
where B is a target blob, Ko is the origin profile, Kd is the destination profile, Q is a desired
quantity to be moved and T is a population template. The action will subtract Q population from
profile Ko and add it to profile Nd while respecting the mappings present in T . In case there
size(Ko, T) < Q, move population moves as much population as possible, where size(K,T) is the
quantity of population in profile K which respects template T .

The extensibility of LODUS comes in the forms of plugins which allows a designer to add
more types of actions. A plugin adds to the simulator another function associated to an action
type. Plugins extend the set of actions available for the designer during a simulation description. A
plugin, is a extension to the simulator, which provides an association of a movement action type and
a function with a set of contractually defined parameters. Added movement actions can be both
base or complex actions.

The inversion of responsibility for movement in LODUS puts the movement behavior of
the simulated population on POIs instead of the population. Designers can achieve the movement
behavior in four different manners: routines, global routines, direct calling of movement actions and
queuing actions for future frames. Table 5.1 shows a relation of each type of action call and their
proposed uses.

Simulation Routines model the repeating temporal behavior of any given POIs, with what
parameters and during which simulation steps each movement action should be called. These
routines are cyclical, repeating every d simulation steps, where d is some user defined value to
represent the duration of a cycle. Each in the cycle step models the smallest time increment desired.
For example, a d of 24 can represent a cycle with duration of one day with each step modeling
an hour, or a cycle of 24 days with each step modeling a day. The semantics for a step and cycle
duration is defined by the mobility functions the designed simulation uses.

A routine i is modeled as a list of pairs (C,At,i), where C is the is the cycle moment when
action At,i is called. The cycle moment C for simulation frame Fr is calculated as Fr mod d, and

44

Type of Action Call Frequency Example of Use

Routine Updates according to each
POI’s routine.

Modeling regular city cyclical behavior
and human mobility.

Global Routine Repeats every n frames. Modeling global events, like random-walks
and infection spreading.

Next Frame Queue Adds an action to be called
once next frame.

Models actions which resolve their
effects over multiple simulation steps.

Direct Calls an action once.
Allows for user input during a simulation.
Allows for one time events during specific
frames.

Table 5.1: Table showing different ways to call actions in a LODUS simulation. Each type of action
call is better suited for some specific behaviors.

as such, action At,i is called when C = Fr mod d. This repetition of a population’s behavior was
inspired by Gonzalez et al. [8], which model proposed the real life activities in real-life, tracked by
geo-tracking cellphones.

Global Routines(GR) model a similar behavior as routines, except they apply to every POI
in the simulation. A GR is a pair (C,A) where C is the cycle moment when action A is called for
all POIs. This behavior could be described by adding an extra action to each POIs routine and is
here for ease of use by designers of a simulation.

Direct call of actions allows designers to program specific one-time events in the simulation.
This invocation is done by simply feeding the simulator a new action after any given step of a
simulation. For example, modeling a cultural event to happen during a specific simulation frame
Fr, can be achieved by processing the action modeling that event, one time, after frame Fr is
processed.

Queuing actions for future frames can be done in the same manner as direct invocation
of actions or by actions processed in routines. This lets actions do spillover for future frames, for
example, population movement where there is no available public transportation during a given time
can prolong movement through several frames.

5.4 Simulation Algorithm

During a simulation, LODUS executes the following algorithm:

45

Algorithm 1: LODUS population mobility simulation flow
B ← base action set;
D ← routine cycle duration steps ← simulation step count;
G← load simulation environment;
i ← 0;
// Add all required action functions to the environment.
G.initialize_plugins();
while steps > i do

// The action queue for this frame.
Queue Q;
if i < 0 then

// If there is any actions leftover from last frame.
L← frame i - 1 queued actions;
Q.queue(L);

end
// Current frame routines. That is, the routines for a i mod

D step of the simulation.
F ← frame i mod D routines;
Q.queue(F);
// Current frame Global Routines.
R← frame i global routines;
Q.queue(R);
// While there are still actions to consume this frame.
while Q 6= ∅ do

// Remove action q from queue.
q ← Q.dequeue();
// Consume action q. If q is a complex action g receives a

new list of actions. Otherwise g receives an empty list.
g ← G.consume(q, i);
// If q is a complex action add its sub actions to the queue.
if q 6∈ B then

Q.queue(g);
end

end
// Consume any user defined action for this frame.
u← user defined action (direct action call);
G.consume(u, i);
i ← i + 1;

end

46

Where Q is queue which accepts lists as arguments, G.consume(q, i) is the function which
consumes an action q and effects the changes defined in the contract for action q. In case q is not
a base action, it returns a list of new actions to be queued up. Action u is any number of optional
user defined actions to be invoked at any frame during simulation, it is part of the algorithm to
explicit it is not part of the regular routine/global routine and queued actions simulation flow.

5.5 Data Input and Implementation Details

The setup for a LODUS population mobility simulation requires 3 parts: a simulator script,
an environment and population description input and the action plugins. The simulator script is
a python script implementing the EnvGraph simulator class. The environment and population
descriptions are defined in a JSON file. Finally, plugins are python classes used in the simulator
script.

Data Input File Description

The environment and population and description file is a JSON object with the top level
structure shown in Listing 5.1:

{
" popu l a t i on_temp l a t e " : <popu l a t i o n h i s tog ram d e s c r i p t i o n >,
" b l o ck_type s " : <popu l a t i o n p r o f i l e s >,
" r e p e a t i n g_g l o b a l_ a c t i o n s " : [<g l o b a l r o u t i n e s >] ,
" r e g i o n s " : [<r e g i o n d e s c r i p t i o n s >]

}

Listing 5.1: Top level structure for the environment and population description file

The characteristic histograms each population blob has are described in the "popula-
tion_template" key-value pair. <population histogram description> is a JSON object containing a
key-value pair for each characteristic histogram desired in a simulation, each value in the pair is a list
with the possible bins for that characteristic. Listing 5.2 shows a characteristic histogram example:

" popu l a t i on_temp l a t e " :
{

" age " : [
" a d u l t s " ,
" e l d e r s " ,
" young "

] ,
" o c cupa t i on " : [

" i d l e " ,
" s t uden t " ,

47

" worker "
]

}

Listing 5.2: Population characteristic histogram description.

Population profiles are defined in the "block_types" key-value pair. <population profiles>
is a list of all desired profiles in the simulation. Listing 5.3 shows a profile description example:
" b l o ck_type s " : [" h e a l t h y " , " i n f e c t e d "]

Listing 5.3: Populaiton characteristic profile description.

The environment is described in the key-value pair "regions". The content of "regions" is
a list of JSON objects which follow the pattern in Listing 5.4:
" r e g i o n s " :
[

{
"name " : " Aberta dos Morros " ,

" image_pos i t i on " : [1150 .0 , 3022 .0] ,
" l o n g_ l a t_p o s i t i o n " : [−51.1975768802765 , −30.1564777842068] ,
" wo r l d_po s i t i o n " : [2212.175202540122 , −15068.325869652443] ,
" p opu l a t i o n " : [7146 , 0] ,
" p o p u l a t i o n_d e s c r i p t i o n " : {
" h e a l t h y " :
{

" age " : { " a d u l t s " : 3574 , " e l d e r s " : 1429 } ,
" oc cupa t i on " : { " i d l e " : 2143 }

} ,
" nodes " : { <POI d e s c r i p t i o n > }

} ,

}
]

Listing 5.4: Population characteristic histogram description.

Where "image_position", "long_lat_position", "world_position" are optional location pa-
rameters for this region, in image position, geographic and world positions respectively. The "popu-
lation" key is a list containing the quantity of population contained in each population profile for this
region and population_description is a distribution of that population over the population profiles
and their respective bins. Missing values and keys for population description assumes the remaining
unassigned population is supposed to be distributed uniformly. The initialized population is assigned
to the "home" POI by default.

Points-of-interest (POIs) are described in the "nodes" key-value pair containing a JSON
object where each POI is mapped as a key. The content of each described POI is a JSON object

48

with a key "characteristics" containing any information the user desires to use in plugins relative
to this POI, and any quantity of number keys. Each of the number keys defines an hour of the
routine for this POI, and contains a list of possible actions. Actions themselves are require two
keys: "type" a plain text identifier for this action, according to its plugin, and "values" the contract
defined parameters for this action. Listing 5.5 shows and example of a defined POI containing two
actions and a position characteristic:
"home " :
{

" c h a r a c t e r i s t i c s " :
{

" wo r l d_po s i t i o n " : [1694.9063426768407 , −15259.419436546974]
} ,

" 7 " :
[
{

"name " : " push_adults_to_work " ,
" type " : " push_popu la t i on " ,
" v a l u e s " : {

" o r i g i n_ r e g i o n " : " Aberta dos Morros " ,
" o r i g i n_node " : "home " ,
" d e s t i n a t i o n_node " : "work " ,
" q u an t i t y " : 5716 ,
" popu l a t i on_temp l a t e " : {

" age " : " a d u l t s " ,
" o c cupa t i on " : " worker "

} } }
] ,

" 1 8 " :
[
{

"name " : " r e tu rn_worke r s " ,
" type " : " re turn_popu lat ion_home " ,
" v a l u e s " : {

" r e g i o n " : " Aberta dos Morros " ,
" node " : "home " ,
" q u an t i t y " : −1,
" popu l a t i on_temp l a t e " : {
} } }

]
}

Listing 5.5: POI description.

Global routines are described in the key "repeating_global_actions" key, as described in
Listing 5.1. Global routine descriptions follow the same structure as regular routines with two
exceptions, the keys "node" and "region" in the "values" object can be omitted and global routines
have an extra "cycle_length" parameter. Listing 5.6 shows an example of global routine description.

49

" r e p e a t i n g_g l o b a l_ a c t i o n s " : [
{

" c y c l e_ l e n g t h " : 1 ,
" type " : " l evy_wa lk " ,
" v a l u e s " : { " popu l a t i on_temp l a t e " : {} }

}
]

Listing 5.6: Global Routine description.

Plugins describe additional actions and hold the external parameters the simulation designer
desires for the added functions. This provides a way to customize the simulator to model different
types of human mobility situations. Plugins are written as python modules to be imported by the
simulator script. Each module should describe a class inheriting the LODUS TimeActionPlugin class,
this makes them able to be loaded by the LODUS environment. Listing 5.7 and Listing 5.8 shows
an example of a plugin which adds an example action to the simulator. The example action moves
100 population from a POI a at region r to the POI home at region r.
c l a s s ExampleP lug in (env i ronment . T imeAct ionP lug in) :

def __init__ (s e l f , env_graph) :
super () . __init__ ()

s e l f . graph = env_graph
s e l f . s e t_p a i r (’ example_act ion ’ , s e l f . example_act ion)

s e l f . example_parameter = ’ foo ’

Listing 5.7: Plugin initialization.

def example_act ion (s e l f , v a l u e s , hour , t ime) :
r e g i o n = va l u e s [’ r e g i o n ’]
i f i s i n s t ance (r eg i on , s t r) :

r e g i o n = s e l f . graph . get_region_by_name (r e g i o n)

node = va l u e s [’ node ’]
i f i s i n s t ance (node , s t r) :

node = r e g i o n . get_node_by_name (node)

pop_template = v a l u e s [’ popu l a t i on_temp l a t e ’]

new_act ion_va lues = {}
new_act ion_type = ’ move_populat ion ’
new_act ion_va lues [’ o r i g i n_ r e g i o n ’] = r e g i o n . name
new_act ion_va lues [’ o r i g i n_node ’] = node . name
new_act ion_va lues [’ d e s t i n a t i o n_ r e g i o n ’] = r e g i o n . name
new_act ion_va lues [’ d e s t i n a t i o n_node ’] = ’home ’

new_act ion_va lues [’ q u a n t i t y ’] = 100

50

new_act ion_va lues [’ popu l a t i on_temp l a t e ’] = pop_template

a c t i o n = env i ronment . TimeAction (_type = new_action_type ,
_va lue s = new_act ion_va lues)

return [a c t i o n]

Listing 5.8: Example plugin action function definition.

The simulator script has three functions: initialize the environment, load plugins and
control the simulation flow. Initializing the simulation environment uses the data input file described
above and the framework class EnvGraph. Loading plugins is done by initializing the plugin classes
and loading the objects into the EnvGraph. Controlling the simulation flow is done by a loop
controlling the step update for the simulator. Listing 5.9 has a simulator script example:

Data Load ing
env_graph = generate_Env i ronmentGraph (da t a_ i npu t_ f i l e_pa th)

Parameter s
days = 3
day_dura t i on = 24
env_graph . r ou t i n e_day_ l eng th = day_dura t ion
s imu l a t i o n_ s t e p s = days ∗ day_dura t i on

Load P l u g i n s Examples
p lug = ExampleP lug in (env_graph)
p lug . example_parameter = ’ bar ’
env_graph . LoadPlug in (p lug)

SIMULATION
f o r i i n range (s imu l a t i o n_ s t e p s) :

Rout ine / Repeat ing G l oba l Act ion c a l l example
Updates POI Rou t i n e s and G l oba l Rou t i n e s
These a r e d e f i n e d i n the i n p u t env i ronment d e s c r i p t o r f i l e
env_graph . update_t ime_step (i % day_durat ion , i)

D i r e c t Act i on C a l l example f o r f rame 50
i f i == 50 :
dummy_action = TimeAction (’ push_popu la t i on ’ ,

{ ’ r e g i o n ’ : ’ example1 ’ ,
’ node ’ : ’ example2 ’ ,
’ q u a n t i t y ’ : 5 0})

env_graph . d i r e c t _ a c t i o n _ i n v o k e (dummy_action)

Next frame queue a c t i o n example f o r f rame 60
i f i == 60 :
dummy_action = TimeAction (’ push_popu la t i on ’ ,

{ ’ r e g i o n ’ : ’ example1 ’ ,

51

’ node ’ : ’ example2 ’ ,
’ q u a n t i t y ’ : 5 0})

env_graph . queue_next_frame_act ion (dummy_action)

Listing 5.9: Simulation controller script example.

5.6 LODUS Case-Studies

To serve as case studies for LODUS, we modeled three possible mobility situations: urban
mobility, public transportation and disease spreading. Of these case studies, we focused our imple-
mentation efforts on the urban mobility models, and present theoretically the possible models for
public transportation and disease spreading. Section 6 contains experimental results for our urban
mobility simulations.

5.6.1 Urban Mobility

Gonzalez et al. [8] makes two useful affirmations on the movement of urban populations
we can use as a starting point for our abstracted urban mobility model. Notably, the conclusion that
humans repeatedly travel to a few choice locations and that there is some degree of noise to their
daily movement which can be described with a Lévy flight random walk. A Lévy flight is a random
walk pattern which follows a Lévy probability distribution for the length of each jump. A Lévy
distribution is a heavy-tailed probability distribution. In practice, this leads the Lévy flight to have
a high concentration of short jumps and a lower concentration of longer jumps. The parameters of
the Lévy flight change depending on the population being measured. With these two assumptions,
we instantiated two different behaviors: a rigid daily routine where people move into their favorite
POIs, and a Lévy flight noisy movement which moves people to random POIs.

The daily routine distributes the "adult worker" population of a "home" POI to every
"work" POI, weighted by distance. The action also takes a scaling parameter, to model variation of
mobility over time, e.g. weekends have less traffic of people than work days. This mobility description
is deterministic when measuring quantity of people, but not the composition of the moved blobs,
that is, characteristics other than age and occupation varies from frame to frame, as blobs split and
merge. The noisy Lévy flight population movement, developed in LODUS, is a global routine which
samples a distance using a Lévy distribution and moves some quantity of population to a POI that
matches that distance. For each POI e compute a histogram of distances to other POIs, which are
binned by a distance grouping value. When called, the action divides the population of a POIs in
packets to be moved, each packet has a chance to be moved, defined by a mobility scale parameter.
When a POI selects a distance, it will send population to one of the POIs in that distance group,
randomly chosen. Distance values with no POIs will cause the populations to stay in the origin POI.

52

This Lévy plugin has a scale parameter s which controls the Lévy distribution. A mobility
scale parameter l controls how often the population moves and a packet size parameter p, which
models the size of groups which move through random walk. Section 6 presents experiments using
this model. The experiments compare different values for each parameter, and different sizes of city.
Table 6.4 shows the experiments performed.

5.6.2 Public Transportation

One of the main concerns of public transportation scaling is making sure the traffic system
is capable of handling the required flow of population during the day. People traveling during rush
hours can clog traffic in a way where the travel time becomes increasingly abnormal in relation to
normal traffic. Modeling this rush hour delay lost in traffic can be modeled as actions which take
several steps to finish taking effect on the simulation.

We can add the delay to our model by creating the delayed move population action to
have a route parameter R, to decide which route going from POI a to POI b will take, and the
maximum capacity and flow rate for R. This can be done with a map to store the transportation
parameters, and a limitation to the move population action. Movement which would overflow the
transportation restrictions should be queued for future frames, as shown in Table 5.1.

The way this delayed move population action should follow the algorithm, whereD(Po, Pd, quant)
is a delayed move population action requesting the move of quant population from POI Po to POI
Pd. And, M(Po, Pd, quant) is a move population action requesting the move of quant population
from POI Po to POI Pd. Route and routecapacity are functions which retrieve the route properties
between two POIs:

Algorithm 2: Delayed move population action pseudocode.
Q← next frame queue;
quant← quantity to be moved;
Po← origin POI;
Pd← destination POI;
R← route(Po, Pd);
C ← route_capacity(R);
// If requested movement overwhelms route.
if quant > C then

// Queue remaining quantity for next frame.
N ← D(Po, Pd, quant− C);
Q.queue(N);
// Return a movement action at capacity.
return M(Po, Pd, C)

else
// Return a movement action for quant.
return M(Po, Pd, quant)

end

53

5.6.3 Disease Spreading

Recently, disease spreading models are of increased interest due to the COVID-19 epi-
demics. While several models abstract away the spatial factor, we can combine them with LODUS
to try and add those mobility factors back to the simulation. We propose using a global routine
in LODUS to compute localized SIR [9] infection simulations for each POI. While SIR simulations
compute infections over the entire population, we propose using LODUS as a population mobility
based restriction to infections. This simulated population will possess, as described in Section 5.1, to
represent the characteristics of a population in a SIR simulation: susceptible, infected and removed.

The interaction of an external infection and disease spread solver and the LODUS frame-
work is possible with a plugin which manages the infection procedure. To that end, we propose
modeling a simplified SIR simulation which operates on a target group of the total population. This
SIR simulation has γ and β parameters defined by the user. As such, we model a global routine,
as shown in Table 5.1, to perform several SIR steps infections over the environment, each targeting
a specific POI of the simulation. The SIR infection applied to a POI, affects only the population
present in that POI. The parameters S, I and R for the SIR simulation, are taken from the sizes
of the population with each profile in the POI. This lets the SIR simulation always compute the
’current’ state of infection for any POI, even if population moves to other places. Subsequently, the
population in the affected POI will move to other POIs. This has the effect of restricting contagion
to already infected places and slowly diffusing the infection over the environment.

54

55

6. EXPERIMENTAL RESULTS

This section shows our experiments for BioClouds, Legion and LODUS. Section 6.1 con-
tains the experiments for BioClouds model. Section 6.2 contains the experiments for Legion. And
Section 6.3 contains the experiments for LODUS, simulating the city of Porto Alegre under various
conditions and different simulation approaches.

6.1 BioClouds Experiments

This section presents some experimental results obtained by our model. Section 6.1.1 shows
that the proposed clouds are accurate representation of the agents they are trying to personify, while
Section 6.1.2 shows some performance comparison among BioClouds, BioCrowds and other works
in literature.

6.1.1 BioClouds Accuracy

The goal of this section is to show that the clouds, in our method, accurately represent the
agents inserted on them. To do so, some tests are performed with both BioClouds and BioCrowds,
having their respective results compared. We designed three experiments (A, B, and C) in order
to compare the average densities and speeds between BioCrowds and BioClouds. Experiment A
simulates a single crowd of agents, while experiments B and C simulate crowds of various sizes in
a bidirectional flow.

The BioCrowds agents density measurement was performed by dividing the number of
agents in a certain cloud by the convex-hull area the cloud occupies. This measurement is not
accurate for very small areas and few agents, when densities are unrealistically high. For all three
experiments, the MVW (Microscoscopic View Window) is positioned at the center of the environ-
ment, with w = 80 and h = 50. Biocrowds agents are spawned when the cloud 1 enters the MVW
and are removed when the agents leave the MVW. The environment in these experiments is a flat
square of terrain with no obstacles, measuring 150 by 150 meters.

Experiment A simulates one only crowd (1) of agents walking unobstructed. The cloud 1
starts the experiment at a position (0, 74) in a 2D coordinates and moves towards its goal at position
(150, 74), at a max preferred speed of 1.3m/s. Cloud 1 represents 200 agents at a preferred density
of 0.5agent/sqm. Figures 6.1 and 6.2 show the obtained density and speed results for experiment
A, respectively. The graphs compare how closely the cloud density and speed (in blue), relate to the
density and speed of agents which are spawned (in red). In an unobstructed scenario, agents follow
closely the behavior of the cloud which created them, as shown by the low deviation between the
red and blue lines. The small variations are due to the microscopic simulation where agents avoid

56

collisions and interact with others, what does not happen in BioClouds. In fact, in the same time we
show that both behaviors are coherent, we show the main advantage of our method when allowing
to perceive (and quantitatively measure) the impact of individuals in the simulation.

Figure 6.1: The densities for experiment A. Cloud density in blue. Agents density in red.

Experiment B simulates two equal sized crowds (names 1 and 2) of agents walking to-
wards each other in a bidirectional flow. Cloud 1 starts the experiment at position (0, 74) and moves
towards its goal at position (150, 74), at a max preferred speed of 1.3m/s. Cloud 2 starts the exper-
iment at position (150, 74) and moves towards its goal at position (0, 74), at a max preferred speed
of 1.3m/s. Both clouds 1 and 2 represent 500 agents each at a preferred density of 0.5agent/sqm
each. Figures 6.3 and 6.4 show the obtained density and speed results for experiment B, respec-
tively. In this experiment it is easy to see the impact of the two crowds when being simulated in
a microscopic way while crossing each other. As we can perceive such disturbance caused by the
crowds it is not visible in the clouds.

Experiment C simulates two different sized crowds of agents (500 and 250 agents) walking
towards each other. Cloud 1 starts the experiment at position (0, 74) and moves towards its goal at
position (150, 74), at a max preferred speed of 1.3m/s. Cloud 1 represents 500 agents and has a
preferred density of 0.5agent/sqm. Cloud 2 starts the experiment at position (150, 74) and moves
towards its goal at position (0, 74), at a max preferred speed of 1.3m/s. Cloud 2 represents 250
agents and a preferred density of 0.5agent/sqm each. Figures 6.5 and 6.6 show the obtained density
and speed results for experiment C, respectively. Comparing with experiment B it is easy to see that

57

Figure 6.2: The speeds for experiment A. Cloud speed in blue. Agent average density in red.

as there are more agents, higher is a variation due to the number of individuals and their interactions
in the simulation. In fact, one can say that our method succeeds to simulate crowds as unities and
also to show the impact of individuals in the simulation in the same time.

Figures 6.3,6.4,6.5 and 6.6 show the graphs of distinct crowds interacting. In red and
blue the graphs show the values (density and speed) for the clouds. In green and yellow the graphs
show the average values for the BioCrowds agents, spawned by our method. It is easy to see
that when simulating clouds there is no variation in densities and speeds. On the other hand, the
interaction among agents crossing others increases densities above the estimated density by the
cloud. As well as reducing speed below the estimated velocity of the cloud. These data indicates
that when simulating and seeing clouds there is a expected loss of accuracy what can be observed
when simulating our microscopic method. The aspect we want to highlight here is that Clouds or
Crowds can be simulated and visualized in specific points, based on user decision, in order to obtain
the accuracy, microscopic model provides, and also take benefit from the optimized computational
time, allowed by macroscopic model (discussed in Section 6.1.2).

Also, a qualitatively analysis can be performed. Figure 6.7 presents some snapshots of
the Experiment B. Two clouds are walking towards their respective goals, placed in opposite
directions (Figure 6.7(a)). When the clouds enter inside the MVW area, agents begin to be spawned
(Figure 6.7(b)). It is possible to see that such agents are distributed along the area of the cloud

58

Figure 6.3: The densities for experiment B. Cloud densities in red and blue. Agent densities in green
and yellow.

which is already inside the MVW. Local interactions between agents can be seen in Figure 6.7(c),
where agents of both clouds are forming lanes while crossing each other.

In Figure 6.7(d), it is possible to see the variation the crowd shape adopts in relation to the
expected cloud shape. It happens due to local interactions that are simulated in microscopic level.
Even so, agents were able to stay nearby their respective cloud center, so, when they start to leave
the MVW area, the clouds begin to resurface (Figure 6.7(e)). Therefore, when agents already left
the MVW area, only the clouds continue to be simulated. Figure 6.8 shows a zoomed in instance
of figure 6.7(c), where the formed lanes are represented with the grey (lanes moving left) and white
(lanes moving right) lines.

6.1.2 Performance

The goal of this section is to show that BioClouds is able to achieve better performance
when compared with BioCrowds. Also, we evaluate our performance in comparison with the work
of Narain et al. [16].

BioClouds performance is dependant on the current radius size of each cloud, since each
cloud attempts to capture each cell inside its radius what is used to compute the cloud motion.

59

Figure 6.4: The speeds for experiment B. Cloud speeds in red and blue. Agent average speeds in
green and yellow.

Considering that the perception radius of a cloud increases in situations of space competition, the
performance is affected by the densities of each cloud.

To test the performance of BioClouds we designed 4 experiments (D, E, F and G), with
varying sizes of crowds, with different configurations of number of clouds and cloud sizes. These
experiments are simulated utilizing BioClouds only at first, without a MVW, to test the performance
of the macroscopic simulation module. The experiments were run with a i7-3770 CPU 3.40GHz,
16GB of RAM and a GeForce GTX 660 GPU.

For the experiments D, E, F and G, the environment is a flat square of terrain with no
obstacles, measuring 1000 by 1000 meters. Experiments D and E consider a crowd of 200 thousands
agents. Experiments F and G analyses a crowd of 1 million agents. The preferred density of agents
in these experiments is of 3.0 agent/sqm, as to represent a densely packed crowd [18]. Experiments
D and E simulate each one of two crowds of 100 thousands agents moving towards each other.

Experiment D has 400 clouds of 500 agents each, while experiment E has 200 clouds of
1000 agents each. The clouds are spawned in the rectangles delimited by the diagonals {(0, 50), (100, 450)}
and {(400, 50), (500, 450)}. Experiments F and G simulate two crowds of 1 million agents moving
towards each other.

60

Figure 6.5: The densities for experiment C. Cloud densities in red and blue. Agent densities in green
and yellow.

Experiment F has 2000 clouds of 500 agents each. Experiment G has 1000 clouds of 1000
agents each. The clouds are spawned in the rectangles delimited by the diagonals {(0, 150), (200, 850)}
and {(800, 150), (1000, 850)}.

Since there is variation in time per frame during the simulation, the measure of performance
selected is the median of the time per frame during the simulation. Table 6.1 shows the obtained
time per frames for BioClouds, and a comparison with the results obtained by Narain et al. [16].
BioClouds is capable of simulating a greater number of agents than the competitive work, with
shorter times per frame. In addition, our work shows simulations with a larger number of agents.

Experiments Agents Clouds Cloud Time /
Size Frame

D 100k 400 500 20.80ms
E 100k 200 1000 25.60ms
F 1m 2000 500 86.85ms
G 1m 1000 1000 105.22ms
Narain et al. [16] 100k - - 447ms
Narain et al. [16] 80k - - 806ms

Table 6.1: Obtained results per experiment and comparison with other studies.

61

Figure 6.6: The speeds for experiment C. Cloud speeds in red and blue. Agent average speeds in
green and yellow.

To assess the impact of the MVM during large crowd simulations experiments, D, E, F
and G were simulated with a with a 25 by 25 meters MVW positioned in the center of the simulated
environment. The experiments measured the quantity of agents currently inside the MVW and the
time per simulated frame. Table 6.2 shows the median of agents inside the MVW and the median
time per frame during the simulated experiments.

Experiments Agents in MVW Time / Frame
D 4037 190.94ms
E 2905 166.36ms
F 4866 317.41ms
G 5235 562.96ms

Table 6.2: The median time per frame and median agents in MVW during the execution of experi-
ments D, E, F and G with a 25 by 25 meters MVW. The times per frame measured for this analysis
ignore frames with no BioCrowds agents.

62

6.2 Legion Experiments

We now present some experimental results obtained with Legion model. The experiments
focus on exploring the new multi-level behavior and the proposed visualization. Experiments A
and B compare how different complexities of environment (varied amount of obstacles) affect split
and merge behaviors. In order to compare two different scenarios, the number of split and merge op-
erations were counted during each experiment, as well as the crowd densities and average velocities.
Experiments A and B have the following data:

• The simulation runs at 10 frames per simulated second.

• The cells in the regular grid are 0.125m size and area of 0.015625m2;

• Each experiment has, at the beginning, one only legion containing 100 agents with preferred
density of 1agent/m2;

• desired speed S = 1.3m/s;

• goal position ~G = (5, 25);

• obstacle size 5m × 5m, where experiment A has one obstacle positioned at (15, 25), and
experiment B has four obstacles positioned at (15, 25), (23, 30), (23, 20), (32, 25).

• total size of environment 100m× 50m.

We want to show the impact of environmental complexity on the emergence of split and
merged behaviors. To the best of our knowledge, there is no dynamically hybrid crowd simulation
methods which to compare to, so we compare results to the purely macroscopic simulation. In ex-
periment A, 1 split and 6 merge operations were executed; while in experiment B, 11 split operations
and 50 merge operations happened. Table 6.3 compares the two experiments. Merge operations
occur more often than split operations since one split operation instantiates 7 legions, which need
six merge operations to merge back into one Legion. We emphasize that split/merge operations are
asymmetrical, i.e., one Legion can split one time and gives origin to 7 legions, that have to merge
in pairs from 4 to 6 times to become the same Legion again.

Table 6.3: results of experiments A and B: average density (agents/m2), average speed (m/s),
number of splits and merges.

density speed # splits # merges
A 1.001 1.30 1 6
B 1.003 1.29 11 50

Figures 6.9 and 6.11 show snapshots of experiments A and B: a legion recursively splitting
and merging to traverse a scenario with obstacles. In experiment B, the first Legion never fully
regrouped into a single legion again, since the created small groups got far away from others due

63

to obstacles. This fact is consistent with real-life: people can drift apart due to space restrictions,
and lose group identity. Figure 6.12 shows the same scenario simulated with microscopic BioCrowds
behaviors.

It is essential to mention that we decide not to include path planning for all the evaluated
simulations, so the only input was the goal and not a path to achieve the goal. We did that
because we do not want to interfere with the way the legions will avoid the obstacles, deciding, for
instance, going through the right or left side of the obstacles. In order to compare with BioCrowds,
we also turned off the path planning, and as a consequence, we can see some agents in a local
minimum, behind the obstacles. We compared our results with BioClouds [2], in the environment of
experiment B, as can be seen in Figure 6.10. We measured the average density (people/m2) along
the simulations for the three methods: Legion (d̄ = 1.03), BioCrowds (d̄ = 1.23), and BioClouds
(d̄ = 0, 99). Even though the results are similar, as expected, BioCrowds achieved higher average
density, because at the end agents were very close to each other to achieve the same goal. On
the other hand, BioClouds kept lower densities because it is always one circle trying to achieve the
desired density. Legion achieved an average density close to the desired one, even after splits and
merges.

6.3 LODUS Urban Mobility Experiments

Comparison of the LODUS population dynamics simulation with the state-of-art has one
major impediment, to the best of our knowledge there are no comparable simulation models with
enough characteristics in common to present a relevant comparison. Additionally, comparison with
real world data is very difficult, given how difficult to obtain real world data can be for mobility
issues, due to privacy concerns and availability of data by governmental agencies. To this end,
we propose using validation metrics, to the degree that a user of the simulation can decide if the
generated data is plausible, or for example, a specialist in the urban mobility field could judge and
compare with real world data, if he or she finds himself in possession of those data.

To validate the framework and model presented in Chapter 5 and the use case proposed in
5.6.1 we devised six experiments using real world data from the city of Porto Alegre. The experiments
are divided into three sets, one set using only rigidly defined population routines, one set using only
the Lévy flight model, and a set combining both approaches.

We modeled Porto Alegre in two versions, one reduced to 13 neighborhoods and the full
94 neighborhoods version. The population for each neighborhood was obtained from InLoco1, a
company that collects data from many cities in Brazil. Each neighborhood is modeled as a region
containing an assortment of POIs. Each region contains at least the following POIs: home, work,
school, marketplace, pharmacy, and gas_station. Regions also may possess some of less common
public spaces, for example: shopping_mall, hospital, and football stadium. For this experiment,

1https://inloco.com.br/pt/

64

whether a region has one of the less common POIs, it was decided using real world data for the
city of Porto Alegre. The data collection, city description, and generation of the JSON input file
was done by Gabriel Fonseca Silva at VHLAB, as part of his Msc. dissertation in the context of the
LODUS project. Figure 6.14 shows a representation of the city and the chosen neighborhoods for
the performed experiments.

Every simulation was ran with 7 days of 24 steps each, representing hours, for a total of
168 simulation steps. A short simulation duration of a few days is sufficient to analyze short term
movement patterns and is small enough for simulation results to be easily parsed visually.

Figure 6.14: The neighborhoods of Porto Alegre. The blue zones are the 13 neighborhoods used in
the small environment experiments. The neighborhoods of Centro, Floresta and Moinhos de Vento
are contained in the blue colored region.

We focus our analysis on three neighborhoods: Centro, Floresta and Moinhos de Vento.
This was done just to reduce informational clutter. For each of the experiments we present a
population over time graph, containing the quantity of population in each neighborhood. The graph
presents data for local population (which are in the neighborhood in the analyzed time), outsider
population (who lives in another neighborhood) and total population (outsider+insider), over the
course of the entire simulation. Experiments A and C, with 13 simulated neighborhoods, also present
an Origin-Destination Matrix (OD matrix), which characterizes the relationship between each pair
of regions. Table 6.4 shows a comparison experiment parameters and goals.

65

Table 6.4: Table showing the parameters used for each experiment. Numbers in brackets show the
set of values compared in that experiment.

Experiment Neighs. Routine Lévy Restr. (r) Mov. Prob. (l) Scale (s)
A 13 x {0.3, 0.5, 0.7}
B 94 x {0.3, 0.5, 0.7}
C 13 x 0.1 {50, 100}
D 94 x 0.1 {50, 100}
E 13 x {0.05, 0.1} 50
F 94 x {0.05, 0.1} 50
G 94 x x {0.3, 0.7} 0.1 50
H 94 x x 0.3 0.1 {50, 100}

6.4 Daily Routines

This section shows our results obtained using a mobility pattern composed of exclusively
daily routines 2. Mobility occurs in two moments, during frames 7 and 18 of the daily loop. At
hour 7 all workers will move from their home POIs to work POIs. This distribution is weighted
according to the distance between both regions. At hour 18, every worker goes back to their original
home POIs. This routine also has a movement restriction parameter r, this parameter reduces the
quantity of workers which leave home at hour 7 linearly. New quantity q′ = q × (1− r), where q is
the original quantity of workers which would be moved. We used values for r as follows: 0.3, 0.5
and 0.7 for the movement restriction parameters, which approximate the average movement pattern
for Porto Alegre before the pandemic, the average movement pattern during the pandemic and the
maximum verified restriction of movement3, respectively.

Experiments A and B describe simulations for 13 and 94 neighborhoods and are shown
respectively in Figure 6.15 and Figure 6.16. It is possible to see how the rigidly defined routine
presents no daily variation.

Figures 6.18, 6.19 and 6.20 show the OD matrices for experiment A, with 13 neighbor-
hoods, for all 3 values for r. The OD matrix shows only the population which moved outside their
native regions, as such, shows no restriction of movement. The ratios of the population distribution
is not affected by the restriction parameters. Figure 6.17 shows snapshots of experiment A, using a
Legion [1] inspired visualization.

6.5 Stochastic Behavior

To solve the issue of rigidity and determinism of the simulation, we implemented the Lévy
Flight [15] model in LODUS. This behavior randomly moves population between POIs according to

2The daily routine description was created by Gabriel Fonseca Silva using data from InLoco.
3According to the InLoco data.

66

a Lévy distribution function. This operation was defined as a Global Routine with cycle length = 1.
At each simulation step, each POI separates their population in population packets, for each packet
p the POI samples a travel distance according to a Lévy distribution4 with location 0 and scale s,
and moves the population in p to a POI in that distance bin (as described in Section 5.6.1). The
parameter l determines what is the probability of a POI to sample a distance for any packet p. For
these experiments we used values 50 and 100 for s, 10 for the size of p and values 0.05 and 0.1 for l.
Figure 6.21 shows a histogram of values for two Lévy distributions, one with scale 50 and one with
scale 100. The stochastic movement introduced by adding a Lévy flight behavior to the population
does not form a routine for a city, but it serves as a way to make the simulation more dynamic and
lifelike.

(a) Distribution with scale = 50. (b) Distribution with scale = 100.

Figure 6.21: A Levy distribution. Compares the effects of two scales on the shape of a Lévy
distribution. A larger scale flattens the distribution and increases weight of the tail.

Experiments C and D are shown in Figure 6.22 and Figure 6.23, and show the simulations
for 13 and 94 neighborhoods, respectively, with both values of sampling scale s. The probability l
to sample a packet was 0.1. It is possible to see how the random walk slowly moves population to
other regions and the effect of changing the scale of the Lévy sampling on the characteristic of the
generated population.

Figures 6.24 and 6.25 show the OD matrices for experiment C, with 13 neighborhoods, for
both values of s. The OD matrices show different short term migration patterns that form with a
different probability distribution defining Lévy jumps. Changing scale value changes the preference
of individuals to travel to farther or closer places, this is reflected on the emergent migration pattern.

Experiments E and F are shown in Figure 6.26 and Figure 6.27, and show the simulations
for 13 and 94 neighborhoods, respectively, with both values of probability l. The value for s used
was 50. It is possible to see how the speed of population dispersion by the random walk actions
changes with the probability for a packet to perform a Lévy jump.

4We used the Scipy python module Lévy distribution implementation. It offers two control parameters, location
and scale, to control the shape and location of the distribution.

67

6.6 Daily Routines and Stochastic Behavior

Combining both simulation approaches, daily routines and stochastic walk, we can model
a population which has a defined set of favorite spots but also visits, albeit less often, the different
facilities around the city. Experiment G and H combine the routine movement behavior of Experi-
ments A and B, with the Lévy walk mobility of experiments C, D, E and F. Experiment G compares
the effect of two values of movement restriction, r = 0.3 and r = 0.7, a Lévy movement behavior
with scale s = 50. Experiment H compares the effect of two values of Lévy movement scale, s = 50
and s = 100.

Figure 6.28 the population overtime graph of the combined movement patterns, over the
three selected neighborhoods, for experiment G. It shows the dominant recurring and deterministic
routine, with the added noisy daily variation of the Lévy flight movement pattern. Experiment G
compares values for r = 0.3 and r = 0.7.

Figure 6.29 the population overtime graph of the combined movement patterns, over the
three selected neighborhoods, for experiment H. It shows the dominant recurring and deterministic
routine, with the added noisy daily variation of the Lévy flight movement pattern. Experiment G
compares values for s = 50 and s = 100.

68

(a) Two clouds walking towards opposite direc-
tions.

(b) Agents being spawned when clouds enter the
MVW.

(c) Agents crossing each other. (d) Agents crossed each other.

(e) Agents leaving the MVW and clouds resur-
facing. (f) Agents left the MVW, just clouds remaining.

Figure 6.7: Snapshots from Experiment B. Two clouds (blue circles) want to reach their respective
goals, in opposite directions (a). Then, when they enter inside the MVW area (red rectangle), agents
begin to be spawned (b). In (c), it is possible to see agents from both clouds forming lanes while
crossing each other. When agents finish to cross each other (d), they keep following their respective
paths until they leave the MVW area, which makes the clouds resurface (e). Finally, agents left the
MVW area, so only the clouds continue to be simulated (f).

69

Figure 6.8: The zoomed image of Figure 6.7c. Showing the formation of lanes in the MVW. The
lines overlaying agents represents the paths representing the emergent lanes. Grey lanes are walking
left. Light-grey lanes are walking right.

(a) (b)

(c) (d)

Figure 6.9: Snapshots from experiment A using the heatmap visualization. (a) A legion heads
towards an obstacle. (b) The legion splits due to the obstacle. (c) The legions go around the
obstacle. (d) The legions begin regrouping.

(a) (b)

(c) (d)

Figure 6.10: Snapshots from experiment B, simulated with BioClouds. (a) A cloud heads towards
an obstacle. (b) The cloud avoids the obstacle and increases its perception radius. (c) The cloud
avoids another obstacle. (d) The cloud moves towards the goal and returns to its original size.

70

(a) (b)

(c) (d)

Figure 6.11: Snapshots from experiment B using the heatmap visualization. (a) A legion heads
towards the obstacles. (b) The legion splits due to the obstacles. (c) The legions go around the
obstacles. (d) The legions begin regrouping.

(a) (b)

(c) (d)

Figure 6.12: Snapshots of experiment B simulated with BioCrowds. A crowd of BioCrowds agents
separating and regrouping when interacting with the obstacles. (a) A crowd splits when interacting
with an obstacle. (b) The crowd goes around the obstacle. (c) The crowds start grouping back
together. (d) The crowds continue grouping back together.

(a) (b)

(c) (d)

Figure 6.13: Snapshots from experiment B using our blobby visualization. (a) A legion heads towards
the obstacles. (b) The legion splits due to the obstacles. (c) The legions go around the obstacles.
(d) The legions begin regrouping.

71

(a) Population over time with
r = 0.3 in neighborhood Centro.

(b) Population over time with
r = 0.3 in neighborhood Floresta.

(c) Population over time with
r = 0.3 in neighborhood Moinhos de Vento.

(d) Population over time with
r = 0.5 in neighborhood Centro.

(e) Population over time with
r = 0.5 for neighborhood Floresta.

(f) Population over time with
r = 0.3 for neighborhood Moinhos de Vento.

Figure 6.15: Experiment A: Population over time at each of the analyzed neighborhoods. Using
routine movement description and comparing the effect of different movement restriction (r) values.
Simulation performed in a model city with 13 neighborhoods.

72

(g) Population over time with
r = 0.7 for neighborhood Floresta.

(h) Population over time
r = 0.7 for neighborhood Moinhos de Vento.

(i) Population over time with
r = 0.7 for neighborhood Centro.

Figure 6.15: Cont.

73

(a) Population over time with
r = 0.3 in neighborhood Centro.

(b) Population over time with
r = 0.3 in neighborhood Floresta.

(c) Population over time with
r = 0.3 in neighborhood Moinhos de Vento.

(d) Population over time with
r = 0.5 in neighborhood Centro.

(e) Population over time with
r = 0.5 in neighborhood Floresta.

(f) Population over time with
r = 0.5 in neighborhood Moinhos de Vento.

Figure 6.16: Experiment B: Population over time in each of the analyzed neighborhoods. Using
routine movement description and comparing the effects of using movement restriction (r) values
0.3, 0.5, 0.7. On a model city with 94 neighborhoods.

74

(g) Population over time with
r = 0.7 in neighborhood Centro.

(h) Population over time with
r = 0.7 in neighborhood Foresta.

(i) Population over time with
r = 0.7 in neighborhood Moinhos de Vento.

Figure 6.16: Cont.

(a) (b) (c)

Figure 6.17: Three moments of Experiment A visualized with a Legion based visualization approach.
This visualization uses a distance functions to model buildings.

75

Figure 6.18: Origin-Destination matrix for Experiment A with r = 0.3.The diagonal contains only
zero values as we chose to represent only the population which traveled outside their native regions.

76

Figure 6.19: Origin-Destination matrix for Experiment A with r = 0.5.The diagonal contains only
zero values as we chose to represent only the population which traveled outside their native regions.

77

Figure 6.20: Origin-Destination matrix for Experiment A with r = 0.7.The diagonal contains only
zero values as we chose to represent only the population which traveled outside their native regions.

78

(a) Population over time with
s = 50 in neighborhood Centro.

(b) Population over time with
s = 50 in neighborhood Floresta.

(c) Population over time with
s = 50 in neighborhood Moinhos de Vento.

(d) Population over time with
s = 100 in neighborhood Centro.

(e) Population over time with
s = 100 in neighborhood Floresta.

(f) Population over time with
s = 100 in neighborhood Moinhos de Vento.

Figure 6.22: Experiment C: Population over time at each of the analyzed neighborhoods. Using the
Lévy distribution movement description and comparing the effects of using scale (s) values 50, 100.
On a model city with 13 neighborhoods.

79

(a) Population over time with
s = 50 in neighborhood Centro.

(b) Population over time with
s = 50 in neighborhood Floresta.

(c) Population over time with
s = 50 in neighborhood Moinhos de Vento.

(d) Population over time with
s = 100 in neighborhood Centro.

(e) Population over time with
s = 100 in neighborhood Floresta.

(f) Population over time with
s = 100 in neighborhood Moinhos de Vento.

Figure 6.23: Experiment D: Population over time in each of the analyzed neighborhoods. Using
the Lévy distribution movement description and comparing the effects of using scale values 50, 100.
Simulation performed in a city with 94 neighborhoods.

80

Figure 6.24: Origin-Destination matrix for Experiment C with s = 50.The diagonal contains only
zero values as we chose to represent only the population which traveled outside their native regions.

81

Figure 6.25: Origin-Destination matrix for Experiment C with s = 100. The diagonal contains only
zero values as we chose to represent only the population which traveled outside their native regions.

82

(a) Population over time with
l = 0.05 in neighborhood Centro.

(b) Population over time with
l = 0.05 in neighborhood Floresta.

(c) Population over time with
l = 0.05 in neighborhood Moinhos de Vento.

(d) Population over time with
l = 0.1 in neighborhood Centro.

(e) Population over time with
l = 0.1 in neighborhood Floresta.

(f) Population over time with
l = 0.1 in neighborhood Moinhos de Vento.

Figure 6.26: Experiment E: Population over time in each of the analyzed neighborhoods. Using
the Lévy distribution movement description and comparing the effects of using different mobility
probability (l) values. On a model city with 13 neighborhoods.

83

(a) Population over time with
l = 0.05 in neighborhood Centro.

(b) Population over time with
l = 0.05 in neighborhood Floresta.

(c) Population over time with
l = 0.05 in neighborhood Moinhos de Vento.

(d) Population over time with
l = 0.1 in neighborhood Centro.

(e) Population over time with
l = 0.1 in neighborhood Floresta.

(f) Population over time with
l = 0.1 in neighborhood Moinhos de Vento.

Figure 6.27: Experiment F: Population over time in each of the analyzed neighborhoods. Using
the Lévy distribution movement description and comparing the effects of using different mobility
probability (l) values. On a model city with 13 neighborhoods.

84

(a) Population over time in Centro with r = 0.3. (b) Population over time in Floresta with r = 0.3.

(c) Population over time in Moinhos de Vento with
r = 0.3. (d) Population over time in Centro with r = 0.7.

(e) Population over time in Floresta with r = 0.7.
(f) Population over time in Moinhos de Vento with
r = 0.7.

Figure 6.28: Experiment G: Population over time in each of the analyzed neighborhoods. Combin-
ing the routine and Lévy distribution approaches to movement description. With Lévy movement
behavior scale s = 50. The graphs compare movement restrictions of r = 0.3 and r = 0.7.

85

(a) Population over time in Centro with s = 50. (b) Population over time in Floresta with s = 50.

(c) Population over time in Moinhos de Vento with
s = 50. (d) Population over time in Centro with s = 100.

(e) Population over time in Floresta with s = 100. (f) Population over time in Moinhos de Vento with
s = 100.

Figure 6.29: Experiment H: Population over time in each of the analyzed neighborhoods. Combining
the routine and Lévy distribution approaches to movement description. With movement restriction
r = 0.3. The graphs compare Lévy movement scales of s = 50 and s = 100.

86

87

7. FINAL CONSIDERATIONS

This section presents our final considerations for the present work, which presented Bio-
Clouds, Legion and LODUS. This work aimed to study the little explored field of multilevel simu-
lation models and methods that can make the transition dynamically to and from the microscopic
and macroscopic levels of simulation.

BioClouds and Legion are space discretization macroscopic crowd simulation models, which
abstract crowds into groups of individuals which move together, with similar goals and characteristics.
While Bioclouds presented a multi-level visualization approach, using BioCrowds to visualize agents,
if the simulation was intended to be microscopic. Legion presented a multi-level simulation approach
which can make the transition between different levels of simulation dynamically, differently from
hybrid models, like the model proposed by Xiong et al. [25] which have regions statically defined
to behave with different levels of simulation. Legion also proposed a blobby visualization model for
blob based crowd simulation models, using blobby models to generate a more organic occupation of
area than BioClouds. Bioclouds [2] and Legion [1] resulted in papers published during the master’s
degree.

LODUS is a framework developed at the Virtual Humans Lab (VHLAB), it is composed of
two main modules, a city-generation tool1 and a mobility simulation model, developed in the present
work. The LODUS mobility module is a population mobility model that uses crowd simulation based
techniques to solve the human mobility task, particularly the groups as blobs of individuals from
BioClouds and Legions. LODUS abstracts the population and blobs of individuals, described by
characteristic histograms, defining how a population is distributed given the modeled characteristics.
Environment is abstracted as Points-of-Interest (POI), containers of blobs, which represent places
of particular interest for the simulation, e.g. houses, markets, schools, and regions which are groups
of POIs.

The present work also proposed three use cases for LODUS, population mobility, public
transportation and disease spread. A population mobility experiment, based on cities having their
mobilities defined by both a rigid cyclical schedule and a noisy mobility behavior based on studies by
Gonzalez et al. [8] and Brockmann et al. [4]. Public transportation could be modeled in LODUS by
using mobility actions which propagate over several simulation frames. Disease spreading could be
modeled combining the LODUS mobility approach and population description with a SIR simulation,
using the population profiles to store variables for the SIR simulation and spread the disease using
mobility. We performed qualitative assessment of experiment measuring the impact of mobility
parameters for the population mobility. The experiments measured the population over time of
highlighted neighborhoods with different emergent population behaviors.

The LODUS framework is a promising tool for modeling complex simulation scenarios
with the set of environment generation tools and along with population mobility simulation. This
could position LODUS as a useful tool for analyzing population mobility problems. This simulation

1Developed by Gabriel Fonseca Silva as part of his master’s degree.

88

approach could be extended to explore: contagion modeling, public transportation designing tasks,
improving the visualization population flow of a simulated city, modeling migration flows between
countries or continental regions, modeling changes in population characteristic composition due
to long term social policies (such as increasing schools in specific zones of a city or government
expenditure in specific commercial zones).

Considering a given population mobility data for a given city, the visualization of daily
population movements can be useful to guide decision making processes for this city. LODUS can
be used as a population flow visualization tool by simulating a population, creating dynamic data for
a given time frame based on static population descriptions. In a similar manner to public transporta-
tion, as described in earlier chapters, we can simulate long term and long range population mobility.
This approach applies to long distance travels, such as air plane and maritime transportation, as well
as long term population mobility, regardless of transportation mode, such as migration flow. This
long term simulation is facilitated by LODUS environment abstraction, by using a different descrip-
tion for an environmental graph, transportation ratios and functions compatible with a simulation
timestep measured in days or months. With our approach we can also explore a different subset of
simulation models: population characteristics evolution over time, e.g., the change in education in
a community with new schools. Instead of focusing on population mobility, this approach models
longer spans of time and focuses on the changes of population composition instead of location. A
LODUS style simulation would use functions to change the composition of blobs as they occupy
regions with schools with a timestep representing a large timespan.

The applicability of LODUS to solve real-life problems is contingent to finding solution to
some open issues. Validation of LODUS simulation data requires information of large population
mobility which is not easily available, due to privacy concerns or cost. The visualization of LODUS
generated data, the OD matrices and quantity over time graphs, is not easy to grasp or analyze,
specially by non-experts. The models for public transportation is, at the moment, only theoretical,
further investigations have to be made to validate an implemented case study. Regarding the disease
spreading case, our research group is currently seeking to provide such integration.

89

BIBLIOGRAPHY

[1] Antonitsch, A.; Musse, S. R.; de Figueiredo, L. H. “Towards a legion of virtual humans:
Steering behaviors and organic visualization”. In: SIBGRAPI Conference on Graphics, Patterns
and Images, 2020, pp. 31–38.

[2] Antonitsch, A. D. S.; Schaffer, D. H. M.; Rockenbach, G. W.; Knob, P.; Musse, S. R.
“BioClouds: A multi-level model to simulate and visualize large crowds”. In: Computer Graphics
International Conference, 2019, pp. 15–27.

[3] Aurenhammer, F. “Power diagrams: Properties, algorithms and applications”, SIAM Journal
on Computing, vol. 16–1, Aug 1987, pp. 78–96.

[4] Brockmann, D.; Hufnagel, L.; Geisel, T. “The scaling laws of human travel”, Nature, vol.
439–7075, Jan 2006, pp. 462–465.

[5] de Lima Bicho, A.; Rodrigues, R. A.; Musse, S. R.; Jung, C. R.; Paravisi, M.; Magalhães,
L. P. “Simulating crowds based on a space colonization algorithm”, Computers & Graphics,
vol. 36–2, Apr 2012, pp. 70–79.

[6] Durupınar, F.; Güdükbay, U.; Aman, A.; Badler, N. I. “Psychological parameters for crowd
simulation: From audiences to mobs”, IEEE Transactions on Visualization and Computer
Graphics, vol. 22–9, Nov 2015, pp. 2145–2159.

[7] Favaretto, R. M.; Musse, S. R.; Costa, A. B. “Emotion, Personality and Cultural Aspects in
Crowds: Towards a Geometrical Mind”. Springer-Verlag, 2019, 205p.

[8] Gonzalez, M. C.; Hidalgo, C. A.; Barabasi, A.-L. “Understanding individual human mobility
patterns”, Nature, vol. 453–7196, Jun 2008, pp. 779–782.

[9] Harko, T.; Lobo, F. S.; Mak, M. “Exact analytical solutions of the Susceptible-Infected-
Recovered (SIR) epidemic model and of the SIR model with equal death and birth rates”,
Applied Mathematics and Computation, vol. 236, Jun 2014, pp. 184–194.

[10] Helbing, D. “A fluid dynamic model for the movement of pedestrians”, Complex Systems,
vol. 6–5, May 1992, pp. 391–415.

[11] Helbing, D.; Molnar, P. “Social force model for pedestrian dynamics”, Physical Review E,
vol. 51–5, May 1995, pp. 4282.

[12] Hernández-Orallo, E.; Armero-Martínez, A. “How human mobility models can help to deal with
COVID-19”, Electronics, vol. 10–1, Jan 2021, pp. 33.

[13] Hughes, R. “The flow of human crowds”, Annual Review of Fluid Mechanics, vol. 35–1,
Jan 2003, pp. 169–182.

90

[14] Jamshidi, S.; Baniasad, M.; Niyogi, D. “Global to USA county scale analysis of weather,
urban density, mobility, homestay, and mask use on COVID-19”, International Journal of
Environmental Research and Public Health, vol. 17–21, Jan 2020, pp. 7847.

[15] Mandelbrot, B. B. “The fractal geometry of nature”. W. H. Freeman and Company, 1982,
468p.

[16] Narain, R.; Golas, A.; Curtis, S.; Lin, M. C. “Aggregate dynamics for dense crowd simulation”,
ACM Transactions on Graphics, vol. 28–5, Dec 2009, pp. 1–8.

[17] Narang, S.; Best, A.; Curtis, S.; Manocha, D. “Generating pedestrian trajectories consistent
with the fundamental diagram based on physiological and psychological factors”, PLOS ONE,
vol. 10–4, Apr 2015, pp. e0117856.

[18] Narang, S.; Best, A.; Manocha, D. “Interactive simulation of local interactions in dense crowds
using elliptical agents”, Journal of Statistical Mechanics: Theory and Experiment, vol. 2017–3,
Mar 2017, pp. 033403.

[19] Neto, A. B. F.; Pelachaud, C.; Musse, S. R. “Giving emotional contagion ability to virtual
agents in crowds”. In: International Conference on Intelligent Virtual Agents, 2017, pp. 63–72.

[20] Pelechano Gómez, N.; O’Brien, K.; Silverman, B. G.; Badler, N. “Crowd simulation
incorporating agent psychological models, roles and communication”. In: First International
Workshop on Crowd Simulation, 2005, pp. 21–31.

[21] Silva, G. F.; Cassol, V.; Neto, A. B. F.; Antonitsch, A.; Schaffer, D.; Musse, S. R.;
de Marsillac Linn, R. “LODUS: A multi-level framework for simulating environment and
population - A contagion experiment on a pandemic world”. In: IEEE International Smart
Cities Conference, 2020, pp. 1–8.

[22] Thalmann, D.; Musse, S. R. “Crowd Simulation”. Springer-Verlag, 2012, 296p.

[23] Treuille, A.; Cooper, S.; Popović, Z. “Continuum crowds”, ACM Transactions on Graphics,
vol. 25–3, Jul 2006, pp. 1160–1168.

[24] Van Den Berg, J.; Guy, S. J.; Lin, M.; Manocha, D. “Reciprocal n-Body Collision Avoidance”.
In: Robotics Research, Springer Berlin Heidelberg, 2011, pp. 3–19.

[25] Xiong, M.; Lees, M.; Cai, W.; Zhou, S.; Low, M. Y. H. “Hybrid modelling of crowd simulation”,
Procedia Computer Science, vol. 1–1, May 2010, pp. 57–65.

91

APPENDIX A – PUBLISHED PAPERS DURING THE MASTER’S
DEGREE

• da Silva Antonitsch, André, Soraia Raupp Musse, and Luiz Henrique de Figueiredo. "Towards a
Legion of Virtual Humans: Steering Behaviors and Organic Visualization." In: 33rd SIBGRAPI
Conference on Graphics, Patterns and Images (SIBGRAPI), 2020.

• Silva, Gabriel Fonseca, et al. "LODUS: A Multi-Level Framework for Simulating Environment
and Population - A Contagion Experiment on a Pandemic World." In: IEEE International
Smart Cities Conference (ISC2), 2020.

• Antonitsch, Andre da Silva, et al. "BioClouds: A multi-level model to simulate and visualize
large crowds." In: Computer Graphics International Conference, 2019.

• Schaffer, Diogo, et al. "Towards Animating Virtual Humans in Flooded Environments." ACM
SIGGRAPH Motion, Interaction and Games, 2020.

