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AbstrAct

Security issues represent the greatest obsta-
cle to the growth of edge computing and the 
Internet of Things (IoT). In this paradigm, IoT 
applications are migrating to edge devices. As 
a result, potential security risks are arising, and 
unauthorized access to data from IoT edge 
devices is becoming a real concern. Thus, 
there is a need for a comprehensive, end-to-
end security approach since the system’s more 
vulnerable point determines its overall security 
level. An edge device security system has to be 
built with a root of trust (i.e., something that is 
unclonable) and a chain of trust. Additionally, a 
security layer is necessary to ensure that differ-
ent IoT applications execute isolated from each 
other in the device. In this sense, this article 
defines a security architecture that integrates 
trust mechanisms with embedded virtualization, 
providing security from hardware to applica-
tions. Our experiments show that the proposed 
architecture can be implemented with a smaller 
overhead and memory footprint compared to 
other proposed approaches in the literature, 
which makes it highly suitable for resource-con-
strained edge devices.

IntroductIon
The evolution of the Internet of Things (IoT) and 
the significant amount of data that has been 
exchanged between devices and the cloud have 
pushed the horizon to the edge computing para-
digm [1]. It extends the cloud-based infrastructure 
to the edge of the network by increasing data 
processing and decision making on IoT edge 
devices, allowing more efficient communication 
with intermediary nodes [2]. However, security 
is emerging as one of the most significant chal-
lenges for edge computing [3]. The decentraliza-
tion of IoT applications to the edge has made the 
devices more visible to attacks [4]. While some 
existing solutions in the context of cloud comput-
ing may address many security issues at the edge 
of the network, edge computing is introducing 
new security concerns due to its distinct charac-
teristics [2].

The existing security paradigm will no longer 
be adequate for addressing the new security 
challenges in emerging devices [1]. According 
to [3], edge devices are more than data sourc-
es in an edge architecture. They are expected 
to preprocess data (e.g., aggregation, filtering) 
and make decisions, which makes them the pri-
mary targets of attacks [4]. Also, edge devic-
es are often deployed in resource-constrained 
environments without strict monitoring and 
protection, thereby facing all kinds of security 
threats [3, 4]. Once an attacker has control of 
the device, no higher security mechanism can 
identify this condition, and all system execution 
and state can be compromised. According to 
[1], to increase the trust in such devices is the 
primary challenge. Hence, some aspects must 
be considered for security improvements: hard-
ware-to-software oriented security and simple 
architecture building blocks for sustaining the 
system elements of the IoT. 

This article promotes the use of embedded 
virtualization as an important choice to miti-
gate security challenges imposed by the edge 
computing paradigm [1, 2]. We propose a 
security architecture that integrates trust mech-
anisms and a hypervisor specially designed 
for resource-constrained devices. The novel 
aspect of the architecture is to increase the 
security of such devices with a smaller over-
head and memory footprint than provided by 
existing approaches. A secure boot is used 
to enforce a root of trust environment and to 
build a chain of trust. Afterward, a trustworthy 
virtualization layer is booted up and used to 
initialize secure virtual machines (VMs). In our 
approach, intrinsic virtualization characteris-
tics ensure protection during boot and runtime 
states, starting with the hardware platform 
and ending at IoT applications running on the 
device. 

In the next sections, we present the problem 
statement and a security overview. We define the 
security architecture and present its evaluation 
regarding footprint, performance, latency, and 
security. We conclude the article by comparing 
our approach with existing works.
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Problem stAtement And  
securIty overvIew

Edge computing takes place on IoT end devices, 
which means that less data is sent to the cloud 
[3]. Hence, IoT edge devices are becoming the 
most critical part of the architecture and the start-
ing point for security [4]. Figure 1 presents an IoT 
architecture composed of edge, fog, and cloud. 
According to the OpenFog Consortium [2], cloud 
works as a coordination layer responsible for 
making general decisions (e.g., security, storage), 
putting almost all the processing, control, and 
security at the edge and fog layers. The core net-
work (CN) connects the fog to the cloud. The fog 
layer is composed of powerful devices that should 
process and store data, and manage edge devic-
es connected through the radio access network 
(RAN) (e.g., WLANs, cellular networks). The edge 
layer is composed of IoT end devices, which are 
also called IoT edge devices or just edge devices. 
They are usually resource-constrained devices and 
can preprocess data at the edge layer [4]. They 
use the RAN to send data to the upper layer.

The security challenges at the edge require a 
new security architecture for the devices [1]. Fig-
ure 2 presents a “security for IoT edge devices” 
taxonomy. It presents challenges to overcome, 
relevant attacks and how they can violate security 
requirements, and mechanisms that can strength-
en security on IoT edge devices. The security chal-
lenges are [1–3]:
• Simple and low-overhead building blocks: 

Edge devices deal with scenarios involv-
ing life support and low-latency applica-
tions. Thus, security solutions should follow 
a simple and low-overhead architecture to 
meet applications’ quality of service (QoS) 
requirements, which is a challenging task in 
resource-constrained devices. 

• Data preprocessing and decision making: An 
edge device should be able to preprocess 
data from sensors and make decisions on it, 
which will draw the attackers’ attention to 
perform new attacks. 

• IoT applications on the edge: Most IoT appli-
cations are expected to migrate from the 
cloud to edge devices, which will make them 
the primary target of attacks. 

• Higher vulnerability to DoS attacks: Devices 
can be a target for denial of service (DoS) 
attacks since attackers can more easily over-
whelm them compared to cloud servers. 

The challenges drive the rise of new threats 
at the edge. Also, old threats from traditional 
IoT environments are inherited by edge devices. 
Table 1 presents the most relevant attacks against 
them [3]. Also, it describes vulnerabilities and 
which security requirements can be violated in 
each attack. 

IoT edge devices can be violated regarding 
unauthorized access, use, disruption, modifica-
tion, or even destruction [4]. Most of the attacks 
aim to disrupt a device’s software (e.g., operat-
ing system, virtualization, or key storage). How-
ever, vulnerabilities can also explore the network. 
For instance, attacks exploring backdoor security 
flaws have been seen in sensitive application envi-
ronments like home care [3]. 

Regarding security violation, attacks explore 
the three pillars: confidentiality, integrity, and 
availability (CIA). Default passwords, for exam-
ple, can be the reason for backdoor violations in 
edge devices (breaking confidentiality). Integrity 
can be violated when the attacker has control of 
the device, like in intrusion and physical/tamper-
ing attacks. Confidentiality and integrity can also 
be explored in privilege escalation attack. Finally, 
availability can be affected by DoS or physical/
tampering attacks. 

Based on this analysis and following the tax-
onomy (Fig. 2), we present the security mecha-
nisms that should be used toward the definition 
of a security architecture for edge devices (more 
details are presented later) [1, 3, 5]: 
• Secure boot: It is the basis for root of trust 

(RoT) systems. It requires a secure bootstrap 
subsystem in read-only memory or a hard-
ware state machine to authenticate the stored 
program with asymmetric keys. If a modifica-
tion is detected, the bootstrap process must 
be interrupted. A tamper-evident hardware 
module must protect the initial boot program. 

• Secure key storage: A secure key storage sys-
tem is based on specialized hardware to pro-
tect the integrity of keys. For instance, root 
public keys can be stored in a write-once 
memory to avoid key substitution. Alterna-
tively, physical unclonable functions (PUFs) 
could be used not just for device authenti-
cation but also for runtime key generation, 
avoiding the necessity for key storage. 

• Security by separation: This uses spatial 
and temporal separation to avoid software 
defects in a part of the device propagating 
to adjacent parts or the physical platform. 

Figure 1. IoT architecture in three layers: edge, fog, and cloud.
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• Secure inter-domain communication: There 
is a need for protection in the interaction 
between VMs and other software parts of an 
edge device. 
The use of embedded virtualization in IoT is 

becoming predominant to strengthen the secu-
rity around edge devices [2]. This trend focuses 
on better allocation through management of the 
available resources, while increasing the securi-
ty of all elements of the edge systems related to 
both hardware and software [6].

Hypervisors are a crucial component of vir-
tualized systems and represent an intermediate 
software layer between VMs and the actual hard-
ware [6]. Running in a privileged context, a hyper-
visor has direct control of the hardware and can 
create and maintain trusted execution environ-
ments (TEEs) based on features such as isolation 
[5]. Also, it restricts lateral movement within the 
system while facilitating high-speed and secure 
inter-VM communications. Virtualization should 
be implemented with support from the hardware 
to be efficient and work with a small overhead 
and memory footprint. 

In addition to virtualization, an authentication 
process should start from the hardware and pass 
through the virtualization layer until it reaches 
the applications running inside VMs. This process 
involves other important mechanisms, such as 
secure boot and secure key storage.

securIty ArchItecture defInItIon
The proposed architecture is composed of four 
security mechanisms: secure boot, secure key stor-
age, security by separation, and secure inter-do-
main communication. They ensure the authenticity 
of the executed code, the integrity of the runtime 
states, and the confidentiality of elements stored in 
the persistent memory. We present the proposed 
architecture in Fig. 3 and describe its mechanisms 
in the following subsections.

chAIn of trust ProtectIon

A chain of trust (CoT) is established after various 
stages of secure boot, starting on the hardware 
and going to the highest level of software. An 
edge device must be designed to boot up only 
if the first piece of software to execute is cryp-
tographically signed by a trusted entity (e.g., 
device vendor) and its signature matches a root 
public key that is stored in the device. Specialized 
hardware can be used to store cryptographic keys 
and perform the signature verification. The mini-

mum requirements in terms of hardware are (Fig. 
3A): a one-time-programmable (OTP) memory to 
store the root public key and a primary bootload-
er (i.e., a piece of software that runs before any 
operating system) embedded in the hardware or 
stored in protected memory that is able to verify 
the signature of the next boot stage. This scheme 
enables a RoT that should be used to ensure the 
integrity and authenticity of all running software. 
By anchoring this RoT in the hardware, tampering 
becomes more difficult. Once a RoT has been 
established, the initial software component should 
make identity and integrity checks with the hyper-
visor in the boot chain (Fig. 3B). If successful, the 
same process will take place in the next boot 
stage of the CoT until the software stack is fully 
protected [5]. 

Since a virtualized environment can be com-
posed of VMs from different providers, an addi-
tional level of secure boot verification should be 
performed. The establishment of a CoT between 
the hypervisor and VMs is mandatory, allowing 
the hypervisor to be securely anchored to the 
hardware and trusted for all operations (Fig. 3C). 
For example, a vendor can mix third-party soft-
ware (e.g., a robotic arm controller running in a 
virtualized application, with software developed 
in house). Virtualization makes the integration of 
different software’s environments easier since it is 

Figure 2. Security taxonomy for IoT edge devices.

Table 1. Attacks, vulnerabilities, and security violations against edge devices.

Attack Vulnerability Security violation

Denial of 
service

An attacker can spend resources of a device. It can 
be performed by stealing the device, manipulating its 
software, or disrupting the communication channel.

Availability

Physical/
tampering

Extraction of valuable cryptographic information for 
future use and software modification.

Confidentiality,
integrity, availability

Hidden channel
Exploration of vulnerabilities regarding sharing of 
hardware components among the device’s VMs. Data 
leakage across the VMs is a consequence of such attack.

Confidentiality

Backdoor
Remote access exploration. An attacker leverages 
backdoor programs through the network to break into 
the device’s infrastructure without being discovered.

Confidentiality

Intrusion
An attacker takes control of certain sections of an edge 
device and can launch several types of attacks, such as 
DoS and selective information tampering.

Confidentiality,
integrity

Privilege 
escalation

A malicious VM can manipulate other VMs or take 
control of certain elements of the device.

Confidentiality,
integrity
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possible to keep them completely separated. Our 
security architecture allows the software provid-
ers to sign their VMs independently, that is, each 
VM has a signature header (Fig. 3D). The device 
vendor stores the provider’s public key within 
the hypervisor, allowing it to check the integrity/
authenticity of each VM individually. 

While virtualization allows software stacks from 
different providers to be integrated, individually 
signed VMs ensure code integrity, authenticity, 
and non-repudiation. Thus, our architecture guar-
antees that the program has not been modified 
(integrity), the VM is from the provider it claims 
to be from (authenticity), and if a VM causes a 
malfunction, the responsible party cannot deny it 
(non-repudiation).

vIrtuAlIzAtIon ProtectIon

Once the CoT is established, the system is still 
vulnerable to runtime attacks, and virtualization 
plays an important role in keeping the TEEs [1]. 
Additionally, the use of hardware-assisted virtu-
alization, that is, specialized hardware with the 
capacity of simplifying the hypervisor implemen-
tation and improving the system’s performance, 
contributes to reducing the attack surface. 

Many different approaches are discussed 
about hardware assistance for hypervisors [7, 8]. 
As a result, most modern embedded hypervisors 
use a hybrid approach, applying full virtualization 
of the CPU (no modifications required in the vir-
tualized software for basic functionalities), and 
paravirtualization (virtualized software must be 
modified) is required for extended services, such 
as inter-VM communication. Different hypervisor 
subsystems are used to improve devices’ security, 
such as spatial isolation, temporal separation, and 
secure inter-VM communication.

The most common way of providing spatial iso-
lation among VMs is through a memory manage-
ment unit (MMU), a hardware block that provides 
virtual memory abstractions to the system (Fig. 3E). 
Processors with hardware-assisted virtualization 
implement a second stage of MMU translation, 
which is controlled by the hypervisor. Essentially, 

the VMs can handle the hardware in the same way 
as in a non-virtualized system. However, they map 
virtual memory to intermediate physical memory. 
The hypervisor is responsible for mapping interme-
diate physical memory addresses to physical mem-
ory, avoiding conflicts and ensuring separation 
between VMs. The second-stage MMU translation 
drastically decreases the hypervisor’s exceptions, 
making it suitable for resource-constrained devices 
and with a small surface for attacks. 

Temporal separation guarantees the correct dis-
tribution of processor time among VMs accord-
ing to their execution priorities (Fig. 3E). Different 
authors have addressed the hypervisor’s scheduler 
as a way to improve temporal separation and to 
honor real-time constraints [9]. Additionally, sys-
tem interrupts require attention since they interfere 
directly with the VM’s execution. Hardware-assist-
ed virtualization can help to manage interrupts, 
allowing them to be redirected to VMs without 
intervention from the hypervisor. This feature is 
called interrupt pass-through, and it minimizes the 
overall hypervisor overhead and footprint. 

Virtualized IoT edge applications require some 
level of interaction with each other and with the 
hypervisor itself. Also, some applications require 
secure channels for sensitive information. Thus, 
an efficient and secure inter-VM communication 
mechanism is available in the hypervisor (Fig. 
3F). It is implemented as para-virtualized services, 
that is, using a well-defined hypercall application 
programming interface (API) (the VM’s calls to 
the hypervisor) as presented in Fig. 3G. Thus, the 
hypervisor works as a communication arbiter, 
copying messages from the sender to the desti-
nation application. The hypervisor can check the 
size, the number of messages, and even deny for-
bidden communication.

Virtualization brings an advantage for keep-
ing the integrity of TEEs: it allows the hypervisor 
to monitor the behavior of the VMs, detecting 
malfunction caused by software errors or attacks. 
There are three ways of detecting a compromised 
VM: 
• A VM tries to access memory outside the 

address space defined at design time. 
• A VM invokes hypercalls that should not be 

called. 
• A VM does not periodically reset a watch-

dog. 
If the system detects one of these situations, the 
VM will be restarted. Hence, two things can hap-
pen: 
• If the VM code was compromised after 

deployment, its hash signature will not match 
during the chain of trust phase, and it will 
not boot up. 

• If an attacker was exploiting a vulnerability 
based on the malfunction, it will boot up and 
run as expected. However, the hypervisor can 
emit alerts about the reset activities, enabling 
developers to investigate the causes.

evAluAtIon
We evaluated our architecture on a MIPS32 
processor core running at 200 MHz, with 2 
MB of flash memory and 512 kB SRAM. It is a 
resource-constrained device targeting IoT and 
embedded markets that supports hardware-as-
sisted virtualization. We focused on exploring the 

Figure 3. Proposed security architecture for IoT edge devices.
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architecture’s suitability for resource-constrained 
devices and security. Our evaluation consists of 
three different metrics: footprint, performance, 
and latency. Performance and latency results are 
based on an average of 1000 measurement runs. 
For security, we conduct a discussion around how 
the proposed architecture has achieved confiden-
tiality, integrity, and availability.

footPrInt, PerformAnce, And lAtency AnAlysIs

We implemented the proposed architecture in 
about 10,000 lines of C code (LoC) for the hyper-
visor (including cryptographic algorithms) and 
4000 LoC for the other security mechanisms. The 
implementations are publicly available as open 
source at https://github.com/hellfire-project. For 
the RoT, we implemented a secure boot (first-
stage bootloader), storing it in the device’s boot 
sector, which cannot be cloned to other devices. 
The secure boot mechanism implements digital 
signature using SHA256 for hash generation and 
two options for cryptographic algorithms: Elliptic 
Curve Digital Signature Algorithm (ECDSA) and 
RSA. On top of the secure boot, we implemented 
the virtualization support using our open source 
hypervisor, called Hellfire Hypervisor, which 
implements the same cryptographic algorithms as 
a secure boot mechanism. The Hellfire Hypervisor 
hosts entirely separated VMs that use the secure 
inter-VM communication mechanism to interact 
with each other. There are some advantages of 
being able to divide an IoT application to exe-
cute in smaller software components. First, each 
application is simpler and easier to implement and 
debug. Second, the only exposed application is 
the one that implements network communication 
thanks to the separation enforced by the hypervi-
sor. Thus, potential attacks on this application will 
not expose sensitive data of other VMs or even 
allow the attacker to modify their contents. 

Table 2a presents footprint results for each 
software component. SRAM presents the memory 
required to run each system. Code storage pres-
ents flash memory required to store the code. The 
total footprint (SRAM and code storage) includ-
ing secure boot and hypervisor systems requires 
just 123 kB, which illustrates the small footprint of 
our architecture (applications are not considered 
in this measure). It is worth reiterating that the 
resulting footprint includes both cryptographic 
algorithms and the support for all virtualization 
features. For comparison purposes, off-the-shelf 
hypervisors like Xen and KVM [7] require tens 
of megabytes. Xvisor [8], a hypervisor designed 
for embedded systems, requires up to 16 MB of 
RAM. Some aspects help our hypervisor keep its 
small size: the paging subsystem is simplified (the 
number of VMs and their physical memory map 
are defined at design time), there is no filesystem 
implementation for devices with storage in flash, 
there is no support for an interactive shell or a 
proper filesystem, and all configuration is defined 
at design time. To improve the footprint analysis, 
we implemented two applications that execute on 
the bare metal, as there is no operating system 
running on top of the hypervisor. The IoT edge 
application is a simple monitoring application that 
receives data generated by the edge device itself 
and communicates with other VMs using hyper-
calls. It requires 32 kB of data SRAM for execu-

tion and 15 kB for code storage, resulting in a 
total of 47 kB. The network communication appli-
cation is a more complex application that uses 
the network to communicate with other devic-
es. It requires 64 kB of data SRAM for execution 
and 85 kB for code storage, resulting in a total of 
149 kB. We used a small TCP/IP library, called 
picoTCP, to implement the network stack. If we 
consider both security architecture and applica-
tions, the total footprint required in this experi-
ment is 319 kB, which is a promising result for 
resource-constrained devices. 

Table 2b presents the architecture perfor-
mance for SHA256 hash generation from VMs 
stored in the flash memory and the ECDSA/RSA 
signature verification time of these VMs. For 
instance, a VM with a size of 64 kB takes 23.20 
ms for hash generation, 57.30 ms for ECDSA ver-
ification, and 39.40 ms for RSA verification. Note 
that the hash generation time increases as the VM 
size gets bigger. On the other hand, time for sig-
nature verification is independent of the VM’s size 
since it is based on the VM’s hash, which is gener-
ated by the SHA256 algorithm and always has the 
same size. In these experiments, we used 3072 
bits for RSA keys and 256 bits for ECDSA keys, 
which are equivalent in cryptography strength. 
Based on the results, ECDSA was more suitable 
for resource-constrained devices than RSA con-
sidering key length. However, RSA presented 
reduced execution time, which is also important 
in resource-constrained situations. Hence, the 
decision of the best algorithm depends on the 
requirements imposed by the application envi-
ronment and the restrictions of resources in the 
device. Regarding latency, we observed that the 
communication latency between VMs is around 
99 µs for messages up to 256 B, which outper-
forms related work, as discussed later.

securIty AnAlysIs

In this section, we evaluate the security of our 
architecture, showing how it has achieved the 
three fundamental elements of CIA: confidential-
ity (preventing sensitive device information from 

Table 2. Results: a) footprint of software components (kB); b) performance of 
VM hash generation and signature verification (ms).

(a)

Software SRAM Code storage Total footprint

Secure boot 32 33 65

Hypervisor 32 26 58

IoT edge app 32 15 47

Network commun. app 64 85 149

(b)

VM size
(kB)

SHA256
hash

Verification Total time

ECDSA RSA ECDSA RSA

32 11.15 57.10 39.40 68.25 50.55

64 23.20 57.30 39.40 80.50 62.60

128 46.25 57.70 39.40 103.95 85.65

256 92.65 57.50 39.40 150.15 132.05
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reaching the wrong people), integrity (avoiding 
improper device boot modification or destruc-
tion and ensuring its authenticity), and availability 
(ensuring reliable access to the IoT edge device). 

In our system, an embedded application exe-
cutes in a VM and takes advantage of two differ-
ent security aspects: CoT and virtualization. The 
secure boot protection checks the software integ-
rity at boot time. Thus, the main purpose of the 
CoT is to deliver a verified software stack to the 
runtime environment, helping to prevent phys-
ical/tampering attacks. The virtualization layer 
is responsible for preventing possible runtime 
violations. It keeps the attacker confined to the 
compromised VM, minimizing the severity of the 
attack and ensuring availability of other services. 
Also, the hypervisor can detect a VM’s misbehav-
ior without complicated intrusion techniques; for 
example, the call for a hypercall not predicted or 
message exchanges not expected. These detec-
tions may indicate that an attacker is in control of 
the VM, and in this case, the security mechanism 
properly intercepts such events. 

The hypervisor’s spatial separation, provided 
by the hardware MMU, improves confidentiality. 
If an application attempts to access a memory 
region of any other application or peripherals, 
it will be stopped by the hypervisor. Security by 
separation improves security over the following 
attacks (Table 1): DoS, backdoor, hidden-channel, 
intrusion, and privilege escalation. Additionally, 
the small hypervisor footprint, a result of its simpli-
fied subsystems, helps to keep a small attack sur-
face. Recent research showed that two forms of 
attacks, named Meltdown and Spectre, allow for 
breaking the memory isolation, exposing sensitive 
data [10]. These attacks rely on out-of-order exe-
cution on modern processors. Our architecture 
prevents such attacks in two different ways: 
• It avoids the use of affected processors since 

most of the embedded processors from 
MIPS and ARM families are not vulnerable. 

• The CoT circumvents the execution of 
non-authorized software, a premise of the 
attacks.

comPArIson wIth exIstIng APProAches
We compared our architecture with existing solu-
tions regarding security mechanisms (Fig. 2) and 
highlighted their main differences. Pinto et al. [11] 
proposed a TrustZone-based architecture named 
IIoTTEED, which implements the basic building 
blocks of a TEE to protect edge devices. Spatial 
and temporal isolation mechanisms provide confi-
dentiality and availability. Also, a secure boot pro-
cess ensures integrity at boot time. The authors 
used a dual ARM Cortex-A9 running at 600 MHz 
for evaluation and concluded that IIoTEED must be 
complemented with other critical security strategies 
to guarantee tight industrial security for devices. 

Jang et al. [12] proposed SeCRet, a framework 
that builds secure communications between a rich 
execution environment (REE) and a TEE. SeCReT 
creates a session key to sign the messages trans-
ferred during inter-domain communication. They 
evaluated SeCReT’s performance on an Arndale 
board that offers a Cortex-A15 at 1.7 GHz in a 
dual-core processor. Results show that enabling 
SeCReT creates a performance overhead of 16.41 
percent (from 1642.5 ms to 1912.1 ms) with an 

input payload of 256 B. In our approach, secure 
inter-VM communications happen through the 
use of hypercalls (99.59 ms for 256 B). 

Dai et al. [13] present TEE, an architecture that 
uses the Xen hypervisor to allow multiple VMs on a 
commodity cloud-end platform to enjoy DRTM-like 
secure execution environments. However, accord-
ing to Sabt et al. [5], Dynamic Root of Trust for Mea-
surement (DRTM) is not suitable for low-overhead 
applications. They evaluated TEE’s performance with 
an Intel Core Duo processor running at 1.8 GHz 
and 2 GB RAM. Results show that time to create the 
TEE domain is 173 ms with one vCPU and 64 MB 
memory, the TEE kernel is of 1.30 MB, and the time 
consumed for encryption is 436.9 ms (on average). 

Guan et al. [14] present TrustShadow, a system 
that takes advantage of TrustZone technology to 
coordinate communications between applications 
and untrusted operating systems. It also implements 
secure boot and secure key storage mechanisms. 
The authors used an ARM Cortex-A9 processor, 1 
GB DRAM and 256 kB iRAM for evaluation. The 
latency overhead on primitive operating system 
operations was 70 percent (on average). 

While these systems have been shown to 
be effective in protecting IoT devices, they are 
over-architected for resource-constrained devic-
es. The works present security solutions for more 
powerful devices, and it becomes clear when 
we compare the hardware they used to evaluate 
their works. On the other hand, our architecture 
is designed for resource-constrained devices and 
does not support some features, such as remote 
updates and terminal access, as other approaches 
do. However, our results outperform the existing 
approaches’ results regarding footprint, latency, 
and cryptographic performance even using more 
resource-constrained devices than they did.

conclusIon
In this article, we have proposed a security archi-
tecture for IoT edge devices. Our model is based 
on embedded virtualization and trust mecha-
nisms, and ensures the security of IoT edge appli-
cations running on these devices. The design of 
our architecture does not require modification 
to IoT edge applications. As a result, the device’s 
protection can be guaranteed without the require-
ment of re-engineering applications at the edge. 
Also, the architecture presented promising results 
regarding memory footprint and inter-VM com-
munications latency when compared to related 
work approaches. We expect that the proposed 
architecture can help in the design of securi-
ty solutions for resource-constrained devices of 
upcoming edge computing architectures.
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