
67IEEE Communications Magazine • February 2019 0163-6804/19/$25.00 © 2019 IEEE

AbstrAct

Security issues represent the greatest obsta-
cle to the growth of edge computing and the
Internet of Things (IoT). In this paradigm, IoT
applications are migrating to edge devices. As
a result, potential security risks are arising, and
unauthorized access to data from IoT edge
devices is becoming a real concern. Thus,
there is a need for a comprehensive, end-to-
end security approach since the system’s more
vulnerable point determines its overall security
level. An edge device security system has to be
built with a root of trust (i.e., something that is
unclonable) and a chain of trust. Additionally, a
security layer is necessary to ensure that differ-
ent IoT applications execute isolated from each
other in the device. In this sense, this article
defines a security architecture that integrates
trust mechanisms with embedded virtualization,
providing security from hardware to applica-
tions. Our experiments show that the proposed
architecture can be implemented with a smaller
overhead and memory footprint compared to
other proposed approaches in the literature,
which makes it highly suitable for resource-con-
strained edge devices.

IntroductIon
The evolution of the Internet of Things (IoT) and
the significant amount of data that has been
exchanged between devices and the cloud have
pushed the horizon to the edge computing para-
digm [1]. It extends the cloud-based infrastructure
to the edge of the network by increasing data
processing and decision making on IoT edge
devices, allowing more efficient communication
with intermediary nodes [2]. However, security
is emerging as one of the most significant chal-
lenges for edge computing [3]. The decentraliza-
tion of IoT applications to the edge has made the
devices more visible to attacks [4]. While some
existing solutions in the context of cloud comput-
ing may address many security issues at the edge
of the network, edge computing is introducing
new security concerns due to its distinct charac-
teristics [2].

The existing security paradigm will no longer
be adequate for addressing the new security
challenges in emerging devices [1]. According
to [3], edge devices are more than data sourc-
es in an edge architecture. They are expected
to preprocess data (e.g., aggregation, filtering)
and make decisions, which makes them the pri-
mary targets of attacks [4]. Also, edge devic-
es are often deployed in resource-constrained
environments without strict monitoring and
protection, thereby facing all kinds of security
threats [3, 4]. Once an attacker has control of
the device, no higher security mechanism can
identify this condition, and all system execution
and state can be compromised. According to
[1], to increase the trust in such devices is the
primary challenge. Hence, some aspects must
be considered for security improvements: hard-
ware-to-software oriented security and simple
architecture building blocks for sustaining the
system elements of the IoT.

This article promotes the use of embedded
virtualization as an important choice to miti-
gate security challenges imposed by the edge
computing paradigm [1, 2]. We propose a
security architecture that integrates trust mech-
anisms and a hypervisor specially designed
for resource-constrained devices. The novel
aspect of the architecture is to increase the
security of such devices with a smaller over-
head and memory footprint than provided by
existing approaches. A secure boot is used
to enforce a root of trust environment and to
build a chain of trust. Afterward, a trustworthy
virtualization layer is booted up and used to
initialize secure virtual machines (VMs). In our
approach, intrinsic virtualization characteris-
tics ensure protection during boot and runtime
states, starting with the hardware platform
and ending at IoT applications running on the
device.

In the next sections, we present the problem
statement and a security overview. We define the
security architecture and present its evaluation
regarding footprint, performance, latency, and
security. We conclude the article by comparing
our approach with existing works.

Ramão Tiago Tiburski, Carlos Roberto Moratelli, Sérgio F. Johann, Marcelo Veiga Neves,
Everton de Matos, Leonardo Albernaz Amaral, and Fabiano Hessel

DESIGN AND IMPLEMENTATION OF DEVICES, CIRCUITS, AND SYSTEMS

The authors define a
security architecture that

integrates trust mecha-
nisms with embedded

virtualization, providing
security from hardware

to applications. Their
experiments show that

the proposed architecture
can be implemented

with a smaller overhead
and memory footprint

compared to other
proposed approaches
in the literature, which

makes it highly suitable
for resource-constrained

edge devices.

Ramão Tiago Tiburski, Sérgio F. Johann, Marcelo Veiga Neves, and Fabiano Hessel are with the Pontifical Catholic University of Rio Grande do Sul;
Carlos Roberto Moratelli is with Federal University of Santa Catarina; Everton de Matos is with Pontifical Catholic University of Rio Grande do Sul and Meridional

Faculty; Leonardo Albernaz Amaral is with FTEC Faculdade de Tecnologia.
Digital Object Identifier:

10.1109/MCOM.2018.1701047

Lightweight Security Architecture Based
on Embedded Virtualization and Trust

Mechanisms for IoT Edge Devices

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on September 28,2021 at 13:49:27 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • February 201968

Problem stAtement And
securIty overvIew

Edge computing takes place on IoT end devices,
which means that less data is sent to the cloud
[3]. Hence, IoT edge devices are becoming the
most critical part of the architecture and the start-
ing point for security [4]. Figure 1 presents an IoT
architecture composed of edge, fog, and cloud.
According to the OpenFog Consortium [2], cloud
works as a coordination layer responsible for
making general decisions (e.g., security, storage),
putting almost all the processing, control, and
security at the edge and fog layers. The core net-
work (CN) connects the fog to the cloud. The fog
layer is composed of powerful devices that should
process and store data, and manage edge devic-
es connected through the radio access network
(RAN) (e.g., WLANs, cellular networks). The edge
layer is composed of IoT end devices, which are
also called IoT edge devices or just edge devices.
They are usually resource-constrained devices and
can preprocess data at the edge layer [4]. They
use the RAN to send data to the upper layer.

The security challenges at the edge require a
new security architecture for the devices [1]. Fig-
ure 2 presents a “security for IoT edge devices”
taxonomy. It presents challenges to overcome,
relevant attacks and how they can violate security
requirements, and mechanisms that can strength-
en security on IoT edge devices. The security chal-
lenges are [1–3]:
• Simple and low-overhead building blocks:

Edge devices deal with scenarios involv-
ing life support and low-latency applica-
tions. Thus, security solutions should follow
a simple and low-overhead architecture to
meet applications’ quality of service (QoS)
requirements, which is a challenging task in
resource-constrained devices.

• Data preprocessing and decision making: An
edge device should be able to preprocess
data from sensors and make decisions on it,
which will draw the attackers’ attention to
perform new attacks.

• IoT applications on the edge: Most IoT appli-
cations are expected to migrate from the
cloud to edge devices, which will make them
the primary target of attacks.

• Higher vulnerability to DoS attacks: Devices
can be a target for denial of service (DoS)
attacks since attackers can more easily over-
whelm them compared to cloud servers.

The challenges drive the rise of new threats
at the edge. Also, old threats from traditional
IoT environments are inherited by edge devices.
Table 1 presents the most relevant attacks against
them [3]. Also, it describes vulnerabilities and
which security requirements can be violated in
each attack.

IoT edge devices can be violated regarding
unauthorized access, use, disruption, modifica-
tion, or even destruction [4]. Most of the attacks
aim to disrupt a device’s software (e.g., operat-
ing system, virtualization, or key storage). How-
ever, vulnerabilities can also explore the network.
For instance, attacks exploring backdoor security
flaws have been seen in sensitive application envi-
ronments like home care [3].

Regarding security violation, attacks explore
the three pillars: confidentiality, integrity, and
availability (CIA). Default passwords, for exam-
ple, can be the reason for backdoor violations in
edge devices (breaking confidentiality). Integrity
can be violated when the attacker has control of
the device, like in intrusion and physical/tamper-
ing attacks. Confidentiality and integrity can also
be explored in privilege escalation attack. Finally,
availability can be affected by DoS or physical/
tampering attacks.

Based on this analysis and following the tax-
onomy (Fig. 2), we present the security mecha-
nisms that should be used toward the definition
of a security architecture for edge devices (more
details are presented later) [1, 3, 5]:
• Secure boot: It is the basis for root of trust

(RoT) systems. It requires a secure bootstrap
subsystem in read-only memory or a hard-
ware state machine to authenticate the stored
program with asymmetric keys. If a modifica-
tion is detected, the bootstrap process must
be interrupted. A tamper-evident hardware
module must protect the initial boot program.

• Secure key storage: A secure key storage sys-
tem is based on specialized hardware to pro-
tect the integrity of keys. For instance, root
public keys can be stored in a write-once
memory to avoid key substitution. Alterna-
tively, physical unclonable functions (PUFs)
could be used not just for device authenti-
cation but also for runtime key generation,
avoiding the necessity for key storage.

• Security by separation: This uses spatial
and temporal separation to avoid software
defects in a part of the device propagating
to adjacent parts or the physical platform.

Figure 1. IoT architecture in three layers: edge, fog, and cloud.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on September 28,2021 at 13:49:27 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • February 2019 69

• Secure inter-domain communication: There
is a need for protection in the interaction
between VMs and other software parts of an
edge device.
The use of embedded virtualization in IoT is

becoming predominant to strengthen the secu-
rity around edge devices [2]. This trend focuses
on better allocation through management of the
available resources, while increasing the securi-
ty of all elements of the edge systems related to
both hardware and software [6].

Hypervisors are a crucial component of vir-
tualized systems and represent an intermediate
software layer between VMs and the actual hard-
ware [6]. Running in a privileged context, a hyper-
visor has direct control of the hardware and can
create and maintain trusted execution environ-
ments (TEEs) based on features such as isolation
[5]. Also, it restricts lateral movement within the
system while facilitating high-speed and secure
inter-VM communications. Virtualization should
be implemented with support from the hardware
to be efficient and work with a small overhead
and memory footprint.

In addition to virtualization, an authentication
process should start from the hardware and pass
through the virtualization layer until it reaches
the applications running inside VMs. This process
involves other important mechanisms, such as
secure boot and secure key storage.

securIty ArchItecture defInItIon
The proposed architecture is composed of four
security mechanisms: secure boot, secure key stor-
age, security by separation, and secure inter-do-
main communication. They ensure the authenticity
of the executed code, the integrity of the runtime
states, and the confidentiality of elements stored in
the persistent memory. We present the proposed
architecture in Fig. 3 and describe its mechanisms
in the following subsections.

chAIn of trust ProtectIon

A chain of trust (CoT) is established after various
stages of secure boot, starting on the hardware
and going to the highest level of software. An
edge device must be designed to boot up only
if the first piece of software to execute is cryp-
tographically signed by a trusted entity (e.g.,
device vendor) and its signature matches a root
public key that is stored in the device. Specialized
hardware can be used to store cryptographic keys
and perform the signature verification. The mini-

mum requirements in terms of hardware are (Fig.
3A): a one-time-programmable (OTP) memory to
store the root public key and a primary bootload-
er (i.e., a piece of software that runs before any
operating system) embedded in the hardware or
stored in protected memory that is able to verify
the signature of the next boot stage. This scheme
enables a RoT that should be used to ensure the
integrity and authenticity of all running software.
By anchoring this RoT in the hardware, tampering
becomes more difficult. Once a RoT has been
established, the initial software component should
make identity and integrity checks with the hyper-
visor in the boot chain (Fig. 3B). If successful, the
same process will take place in the next boot
stage of the CoT until the software stack is fully
protected [5].

Since a virtualized environment can be com-
posed of VMs from different providers, an addi-
tional level of secure boot verification should be
performed. The establishment of a CoT between
the hypervisor and VMs is mandatory, allowing
the hypervisor to be securely anchored to the
hardware and trusted for all operations (Fig. 3C).
For example, a vendor can mix third-party soft-
ware (e.g., a robotic arm controller running in a
virtualized application, with software developed
in house). Virtualization makes the integration of
different software’s environments easier since it is

Figure 2. Security taxonomy for IoT edge devices.

Table 1. Attacks, vulnerabilities, and security violations against edge devices.

Attack Vulnerability Security violation

Denial of
service

An attacker can spend resources of a device. It can
be performed by stealing the device, manipulating its
software, or disrupting the communication channel.

Availability

Physical/
tampering

Extraction of valuable cryptographic information for
future use and software modification.

Confidentiality,
integrity, availability

Hidden channel
Exploration of vulnerabilities regarding sharing of
hardware components among the device’s VMs. Data
leakage across the VMs is a consequence of such attack.

Confidentiality

Backdoor
Remote access exploration. An attacker leverages
backdoor programs through the network to break into
the device’s infrastructure without being discovered.

Confidentiality

Intrusion
An attacker takes control of certain sections of an edge
device and can launch several types of attacks, such as
DoS and selective information tampering.

Confidentiality,
integrity

Privilege
escalation

A malicious VM can manipulate other VMs or take
control of certain elements of the device.

Confidentiality,
integrity

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on September 28,2021 at 13:49:27 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • February 201970

possible to keep them completely separated. Our
security architecture allows the software provid-
ers to sign their VMs independently, that is, each
VM has a signature header (Fig. 3D). The device
vendor stores the provider’s public key within
the hypervisor, allowing it to check the integrity/
authenticity of each VM individually.

While virtualization allows software stacks from
different providers to be integrated, individually
signed VMs ensure code integrity, authenticity,
and non-repudiation. Thus, our architecture guar-
antees that the program has not been modified
(integrity), the VM is from the provider it claims
to be from (authenticity), and if a VM causes a
malfunction, the responsible party cannot deny it
(non-repudiation).

vIrtuAlIzAtIon ProtectIon

Once the CoT is established, the system is still
vulnerable to runtime attacks, and virtualization
plays an important role in keeping the TEEs [1].
Additionally, the use of hardware-assisted virtu-
alization, that is, specialized hardware with the
capacity of simplifying the hypervisor implemen-
tation and improving the system’s performance,
contributes to reducing the attack surface.

Many different approaches are discussed
about hardware assistance for hypervisors [7, 8].
As a result, most modern embedded hypervisors
use a hybrid approach, applying full virtualization
of the CPU (no modifications required in the vir-
tualized software for basic functionalities), and
paravirtualization (virtualized software must be
modified) is required for extended services, such
as inter-VM communication. Different hypervisor
subsystems are used to improve devices’ security,
such as spatial isolation, temporal separation, and
secure inter-VM communication.

The most common way of providing spatial iso-
lation among VMs is through a memory manage-
ment unit (MMU), a hardware block that provides
virtual memory abstractions to the system (Fig. 3E).
Processors with hardware-assisted virtualization
implement a second stage of MMU translation,
which is controlled by the hypervisor. Essentially,

the VMs can handle the hardware in the same way
as in a non-virtualized system. However, they map
virtual memory to intermediate physical memory.
The hypervisor is responsible for mapping interme-
diate physical memory addresses to physical mem-
ory, avoiding conflicts and ensuring separation
between VMs. The second-stage MMU translation
drastically decreases the hypervisor’s exceptions,
making it suitable for resource-constrained devices
and with a small surface for attacks.

Temporal separation guarantees the correct dis-
tribution of processor time among VMs accord-
ing to their execution priorities (Fig. 3E). Different
authors have addressed the hypervisor’s scheduler
as a way to improve temporal separation and to
honor real-time constraints [9]. Additionally, sys-
tem interrupts require attention since they interfere
directly with the VM’s execution. Hardware-assist-
ed virtualization can help to manage interrupts,
allowing them to be redirected to VMs without
intervention from the hypervisor. This feature is
called interrupt pass-through, and it minimizes the
overall hypervisor overhead and footprint.

Virtualized IoT edge applications require some
level of interaction with each other and with the
hypervisor itself. Also, some applications require
secure channels for sensitive information. Thus,
an efficient and secure inter-VM communication
mechanism is available in the hypervisor (Fig.
3F). It is implemented as para-virtualized services,
that is, using a well-defined hypercall application
programming interface (API) (the VM’s calls to
the hypervisor) as presented in Fig. 3G. Thus, the
hypervisor works as a communication arbiter,
copying messages from the sender to the desti-
nation application. The hypervisor can check the
size, the number of messages, and even deny for-
bidden communication.

Virtualization brings an advantage for keep-
ing the integrity of TEEs: it allows the hypervisor
to monitor the behavior of the VMs, detecting
malfunction caused by software errors or attacks.
There are three ways of detecting a compromised
VM:
• A VM tries to access memory outside the

address space defined at design time.
• A VM invokes hypercalls that should not be

called.
• A VM does not periodically reset a watch-

dog.
If the system detects one of these situations, the
VM will be restarted. Hence, two things can hap-
pen:
• If the VM code was compromised after

deployment, its hash signature will not match
during the chain of trust phase, and it will
not boot up.

• If an attacker was exploiting a vulnerability
based on the malfunction, it will boot up and
run as expected. However, the hypervisor can
emit alerts about the reset activities, enabling
developers to investigate the causes.

evAluAtIon
We evaluated our architecture on a MIPS32
processor core running at 200 MHz, with 2
MB of flash memory and 512 kB SRAM. It is a
resource-constrained device targeting IoT and
embedded markets that supports hardware-as-
sisted virtualization. We focused on exploring the

Figure 3. Proposed security architecture for IoT edge devices.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on September 28,2021 at 13:49:27 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • February 2019 71

architecture’s suitability for resource-constrained
devices and security. Our evaluation consists of
three different metrics: footprint, performance,
and latency. Performance and latency results are
based on an average of 1000 measurement runs.
For security, we conduct a discussion around how
the proposed architecture has achieved confiden-
tiality, integrity, and availability.

footPrInt, PerformAnce, And lAtency AnAlysIs

We implemented the proposed architecture in
about 10,000 lines of C code (LoC) for the hyper-
visor (including cryptographic algorithms) and
4000 LoC for the other security mechanisms. The
implementations are publicly available as open
source at https://github.com/hellfire-project. For
the RoT, we implemented a secure boot (first-
stage bootloader), storing it in the device’s boot
sector, which cannot be cloned to other devices.
The secure boot mechanism implements digital
signature using SHA256 for hash generation and
two options for cryptographic algorithms: Elliptic
Curve Digital Signature Algorithm (ECDSA) and
RSA. On top of the secure boot, we implemented
the virtualization support using our open source
hypervisor, called Hellfire Hypervisor, which
implements the same cryptographic algorithms as
a secure boot mechanism. The Hellfire Hypervisor
hosts entirely separated VMs that use the secure
inter-VM communication mechanism to interact
with each other. There are some advantages of
being able to divide an IoT application to exe-
cute in smaller software components. First, each
application is simpler and easier to implement and
debug. Second, the only exposed application is
the one that implements network communication
thanks to the separation enforced by the hypervi-
sor. Thus, potential attacks on this application will
not expose sensitive data of other VMs or even
allow the attacker to modify their contents.

Table 2a presents footprint results for each
software component. SRAM presents the memory
required to run each system. Code storage pres-
ents flash memory required to store the code. The
total footprint (SRAM and code storage) includ-
ing secure boot and hypervisor systems requires
just 123 kB, which illustrates the small footprint of
our architecture (applications are not considered
in this measure). It is worth reiterating that the
resulting footprint includes both cryptographic
algorithms and the support for all virtualization
features. For comparison purposes, off-the-shelf
hypervisors like Xen and KVM [7] require tens
of megabytes. Xvisor [8], a hypervisor designed
for embedded systems, requires up to 16 MB of
RAM. Some aspects help our hypervisor keep its
small size: the paging subsystem is simplified (the
number of VMs and their physical memory map
are defined at design time), there is no filesystem
implementation for devices with storage in flash,
there is no support for an interactive shell or a
proper filesystem, and all configuration is defined
at design time. To improve the footprint analysis,
we implemented two applications that execute on
the bare metal, as there is no operating system
running on top of the hypervisor. The IoT edge
application is a simple monitoring application that
receives data generated by the edge device itself
and communicates with other VMs using hyper-
calls. It requires 32 kB of data SRAM for execu-

tion and 15 kB for code storage, resulting in a
total of 47 kB. The network communication appli-
cation is a more complex application that uses
the network to communicate with other devic-
es. It requires 64 kB of data SRAM for execution
and 85 kB for code storage, resulting in a total of
149 kB. We used a small TCP/IP library, called
picoTCP, to implement the network stack. If we
consider both security architecture and applica-
tions, the total footprint required in this experi-
ment is 319 kB, which is a promising result for
resource-constrained devices.

Table 2b presents the architecture perfor-
mance for SHA256 hash generation from VMs
stored in the flash memory and the ECDSA/RSA
signature verification time of these VMs. For
instance, a VM with a size of 64 kB takes 23.20
ms for hash generation, 57.30 ms for ECDSA ver-
ification, and 39.40 ms for RSA verification. Note
that the hash generation time increases as the VM
size gets bigger. On the other hand, time for sig-
nature verification is independent of the VM’s size
since it is based on the VM’s hash, which is gener-
ated by the SHA256 algorithm and always has the
same size. In these experiments, we used 3072
bits for RSA keys and 256 bits for ECDSA keys,
which are equivalent in cryptography strength.
Based on the results, ECDSA was more suitable
for resource-constrained devices than RSA con-
sidering key length. However, RSA presented
reduced execution time, which is also important
in resource-constrained situations. Hence, the
decision of the best algorithm depends on the
requirements imposed by the application envi-
ronment and the restrictions of resources in the
device. Regarding latency, we observed that the
communication latency between VMs is around
99 µs for messages up to 256 B, which outper-
forms related work, as discussed later.

securIty AnAlysIs

In this section, we evaluate the security of our
architecture, showing how it has achieved the
three fundamental elements of CIA: confidential-
ity (preventing sensitive device information from

Table 2. Results: a) footprint of software components (kB); b) performance of
VM hash generation and signature verification (ms).

(a)

Software SRAM Code storage Total footprint

Secure boot 32 33 65

Hypervisor 32 26 58

IoT edge app 32 15 47

Network commun. app 64 85 149

(b)

VM size
(kB)

SHA256
hash

Verification Total time

ECDSA RSA ECDSA RSA

32 11.15 57.10 39.40 68.25 50.55

64 23.20 57.30 39.40 80.50 62.60

128 46.25 57.70 39.40 103.95 85.65

256 92.65 57.50 39.40 150.15 132.05

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on September 28,2021 at 13:49:27 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • February 201972

reaching the wrong people), integrity (avoiding
improper device boot modification or destruc-
tion and ensuring its authenticity), and availability
(ensuring reliable access to the IoT edge device).

In our system, an embedded application exe-
cutes in a VM and takes advantage of two differ-
ent security aspects: CoT and virtualization. The
secure boot protection checks the software integ-
rity at boot time. Thus, the main purpose of the
CoT is to deliver a verified software stack to the
runtime environment, helping to prevent phys-
ical/tampering attacks. The virtualization layer
is responsible for preventing possible runtime
violations. It keeps the attacker confined to the
compromised VM, minimizing the severity of the
attack and ensuring availability of other services.
Also, the hypervisor can detect a VM’s misbehav-
ior without complicated intrusion techniques; for
example, the call for a hypercall not predicted or
message exchanges not expected. These detec-
tions may indicate that an attacker is in control of
the VM, and in this case, the security mechanism
properly intercepts such events.

The hypervisor’s spatial separation, provided
by the hardware MMU, improves confidentiality.
If an application attempts to access a memory
region of any other application or peripherals,
it will be stopped by the hypervisor. Security by
separation improves security over the following
attacks (Table 1): DoS, backdoor, hidden-channel,
intrusion, and privilege escalation. Additionally,
the small hypervisor footprint, a result of its simpli-
fied subsystems, helps to keep a small attack sur-
face. Recent research showed that two forms of
attacks, named Meltdown and Spectre, allow for
breaking the memory isolation, exposing sensitive
data [10]. These attacks rely on out-of-order exe-
cution on modern processors. Our architecture
prevents such attacks in two different ways:
• It avoids the use of affected processors since

most of the embedded processors from
MIPS and ARM families are not vulnerable.

• The CoT circumvents the execution of
non-authorized software, a premise of the
attacks.

comPArIson wIth exIstIng APProAches
We compared our architecture with existing solu-
tions regarding security mechanisms (Fig. 2) and
highlighted their main differences. Pinto et al. [11]
proposed a TrustZone-based architecture named
IIoTTEED, which implements the basic building
blocks of a TEE to protect edge devices. Spatial
and temporal isolation mechanisms provide confi-
dentiality and availability. Also, a secure boot pro-
cess ensures integrity at boot time. The authors
used a dual ARM Cortex-A9 running at 600 MHz
for evaluation and concluded that IIoTEED must be
complemented with other critical security strategies
to guarantee tight industrial security for devices.

Jang et al. [12] proposed SeCRet, a framework
that builds secure communications between a rich
execution environment (REE) and a TEE. SeCReT
creates a session key to sign the messages trans-
ferred during inter-domain communication. They
evaluated SeCReT’s performance on an Arndale
board that offers a Cortex-A15 at 1.7 GHz in a
dual-core processor. Results show that enabling
SeCReT creates a performance overhead of 16.41
percent (from 1642.5 ms to 1912.1 ms) with an

input payload of 256 B. In our approach, secure
inter-VM communications happen through the
use of hypercalls (99.59 ms for 256 B).

Dai et al. [13] present TEE, an architecture that
uses the Xen hypervisor to allow multiple VMs on a
commodity cloud-end platform to enjoy DRTM-like
secure execution environments. However, accord-
ing to Sabt et al. [5], Dynamic Root of Trust for Mea-
surement (DRTM) is not suitable for low-overhead
applications. They evaluated TEE’s performance with
an Intel Core Duo processor running at 1.8 GHz
and 2 GB RAM. Results show that time to create the
TEE domain is 173 ms with one vCPU and 64 MB
memory, the TEE kernel is of 1.30 MB, and the time
consumed for encryption is 436.9 ms (on average).

Guan et al. [14] present TrustShadow, a system
that takes advantage of TrustZone technology to
coordinate communications between applications
and untrusted operating systems. It also implements
secure boot and secure key storage mechanisms.
The authors used an ARM Cortex-A9 processor, 1
GB DRAM and 256 kB iRAM for evaluation. The
latency overhead on primitive operating system
operations was 70 percent (on average).

While these systems have been shown to
be effective in protecting IoT devices, they are
over-architected for resource-constrained devic-
es. The works present security solutions for more
powerful devices, and it becomes clear when
we compare the hardware they used to evaluate
their works. On the other hand, our architecture
is designed for resource-constrained devices and
does not support some features, such as remote
updates and terminal access, as other approaches
do. However, our results outperform the existing
approaches’ results regarding footprint, latency,
and cryptographic performance even using more
resource-constrained devices than they did.

conclusIon
In this article, we have proposed a security archi-
tecture for IoT edge devices. Our model is based
on embedded virtualization and trust mecha-
nisms, and ensures the security of IoT edge appli-
cations running on these devices. The design of
our architecture does not require modification
to IoT edge applications. As a result, the device’s
protection can be guaranteed without the require-
ment of re-engineering applications at the edge.
Also, the architecture presented promising results
regarding memory footprint and inter-VM com-
munications latency when compared to related
work approaches. We expect that the proposed
architecture can help in the design of securi-
ty solutions for resource-constrained devices of
upcoming edge computing architectures.

Acknowledgment

This study was financed in part by the Coorde-
nação de Aperfeiçoamento de Pessoal de Nível
Superior — Brasil (CAPES) — Finance Code 001.

references
[1] P. Zhang, M. Zhou, and G. Fortino, “Security and Trust Issues

in Fog Computing: A Survey,” Future Generation Comp. Sys.,
vol. 88, 2018 , pp. 16–27.

[2] OpenFog Consortium, “OpenFog Reference Architecture for
Fog Computing,” Tech. Rep., 162 pp., Feb. 2017.

[3] R. Roman, J. Lopez, and M. Mambo, “Mobile Edge Com-
puting: A Survey and Analysis of Security Threats and Chal-
lenges,” Future Generation Comp. Sys., vol. 78, 2018, pp.
680–98.

Our model is based on

embedded virtualization

and trust mechanisms

and ensures the security

of IoT edge applications

running on these devic-

es. The design of our

architecture does not

require modification to

IoT edge applications.

As a result, the device’s

protection can be

guaranteed without the

requirement of re-engi-

neering applications at

the edge.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on September 28,2021 at 13:49:27 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • February 2019 73

[4] A. Alrawais et al., “Fog Computing for the Internet of Things:
Security and Privacy Issues,” IEEE Internet. Comp., vol. 21,
no. 2, pp. 34–42, Mar. 2017.

[5] M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted Execu-
tion Environment: What It Is, and What It Is Not,” 14th Int’l.
Conf. Trust, Security and Privacy in Computing and Com-
mun., vol. 1, Aug. 2015, pp. 57–64.

[6] C. Moratelli et al., “Embedded Virtualization for the Design
of Secure IoT Applications,” 27th Int’l. Symp. Rapid System
Prototyping, Oct. 2016, pp. 2–6.

[7] C. Dall and J. Nieh, “KVM/ARM: The Design and Implemen-
tation of the Linux ARM Hypervisor,” 19th Int’l. Conf. Archi-
tectural Support for Programming Languages and Operating
Systems, 2014, pp. 333–48.

[8] A. Patel et al., “Embedded Hypervisor Xvisor: A Compara-
tive Analysis,” 23rd Int’l. Conf. Parallel, Distributed and Net-
work-Based Processing, Mar. 2015, pp. 682–91.

[9] K. Cheng et al., “Optimizing Soft Real-Time Scheduling Per-
formance for Virtual Machines with SRT-Xen,” 15th Int’l.
Symp. Cluster, Cloud and Grid Computing, May 2015, pp.
169–178.

[10] J. Horn et al., “Meltdown and Spectre,” Jan. 2018; https: //
meltdownattack.com, accessed Oct. 25, 2018.

[11] S. Pinto et al., “IIoTEED: An Enhanced, Trusted Execution
Environment for Industrial IoT Edge Devices,” IEEE Internet
Comp., vol. 21, no. 1, Jan. 2017, pp. 40–47.

[12] J. S. Jang et al., “SeCReT: Secure Channel between Rich
Execution Environment and Trusted Execution Environ-
ment,” Network and Distributed System Security Symp., Feb.
2015, pp. 1–15.

[13] W. Dai et al., “TEE: A Virtual DRTM Based Execution Envi-
ronment for Secure Cloud-End Computing,” Future Genera-
tion Comp. Sys., vol. 49, 2015, pp. 47–57.

[14] L. Guan et al., “TrustShadow: Secure Execution of Unmod-
ified Applications with ARM TrustZone,” 15th Int’l. Conf.
Mobile Systems, Applications, and Services, June 2017, pp.
488–501.

bIogrAPhIes
Ramão Tiago TibuRski (ramao.tiburski@acad.pucrs.br) received
his M.S. degree in computer science from Pontifical Catho-
lic University of Rio Grande do Sul (PUCRS), Brazil. He is a
Ph.D. student of computer science at PUCRS. His research

interests are IoT, fog and edge computing, and security for IoT
resource-constrained devices.

CaRlos RobeRTo moRaTelli (carlos.moratelli@ufsc.br) received
his Ph.D. in computer science from PUCRS. He is an adjunct
professor at UFSC. He worked for 10 years in the telecommu-
nication industry, acting on software engineering related to
embedded systems. His research interests are embedded real-
time systems, Linux Embedded, and virtualization for embedded
systems.

séRgio F. Johann (sergio.filho@pucrs.br) received his Ph.D.
degree in computer science from PUCRS. He is an adjunct pro-
fessor at PUCRS. He has experience in computer architecture
design and organization, operating systems, embedded systems
(design and integration), embedded software support, real-time
systems and control systems.

maRCelo Veiga neVes (marcelo.neves@pucrs.br) received
his Ph.D. degree in computer science from PUCRS. He is an
adjunct professor at PUCRS. His primary research interests are
software-defined networking, IoT and big data.

eVeRTon de maTos (everton.matos@edu.pucrs.br) received his
M.S. degree in computer science from PUCRS. He is an adjunct
professor at Meridional Faculty (IMED). He is a Ph.D. student
of computer science at PUCRS. His research interests are IoT,
middleware, fog and edge computing, context awareness, and
context sharing.

leonaRdo albeRnaz amaRal (lalbernaz@gmail.com) received
his Ph.D. degree in computer science from PUCRS. He is
adjunct professor at FTEC Faculdade de Tecnologia. He has
experience in computer science with emphasis in middleware
systems, RFID, IoT, smart cities, and pervasive systems.

Fabiano hessel (fabiano.hessel@pucrs.br) is a full professor of
computer science at PUCRS. He received his Ph.D. in computer
science from UJF, France (2000). He has experience as Gen-
eral and Program Chair of several committees of prestigious
conferences and journals. His research interests are embedded
real-time systems, and RTOS and MPSoC systems applied to
IoT/smart cities.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on September 28,2021 at 13:49:27 UTC from IEEE Xplore. Restrictions apply.

