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Abstract
Edge computing paradigm enables moving Internet of Things (IoT) applica-
tions from the Cloud to the edge of the network. Modern software engineering
approaches are adhering to microservices to enable the deployment of such
applications on edge devices. Microservices consist of the disaggregation of an
application into smaller pieces that operate independently. Recent works have
explored microservices packaged into containers and advocate that contain-
ers result in a reduced footprint and avoid the unwanted overhead caused by
traditional virtualization. However, containers cannot be used in many deeply
embedded systems (DES) due to an underlying operating system’s (OSs) require-
ment. DES are edge devices with minimal resources regarding storage, memory,
and processing power. Thus, they cannot afford large and sophisticated OSs. This
article presents the Hellfire hypervisor, a lightweight virtualization implemen-
tation that enables separation and improves security in IoT applications on DES.
Our proposal simplifies the traditional hypervisor approach and reaches devices
where the existing techniques fail. The results show that the proposed model has
a small footprint of 23 KB while keeping a low average virtualization overhead
of 0.62% for multiple virtual machines execution.
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1 INTRODUCTION

Connected devices around the world have led to the rise of the Internet of Things (IoT). In this paradigm, applications
rely on multiple devices, gathering, and sharing data across highly heterogeneous networks.1,2 Recently, IoT applications
started to move toward new strict requirements regarding timeliness and low latency combined with ultra-high availabil-
ity and reliability.3 In this regard, the edge computing paradigm has been presented as a promising solution.1 It refers to
the enabling technologies allowing computation to be performed at the edge of the network.4 In addition, it describes the
layer of edge devices used to do some local computing or sensor metering.5

The combination of the IoT devices’ hardware and software in the edge computing environment is called edge devices.6
However, edge devices can have different limitations in resources (storage, memory, and CPU). In this work, we use the
term “Deeply Embedded System” or simply “DES” to refer to devices starting with a few hundred kilobytes up to some
megabytes of storage and memory, typical in IoT applications. These devices often have plenty of connectivity options,
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graphic accelerators, and other hardware features that enable complex applications. Nevertheless, its memory capacity
makes challenging the adoption of rich operation systems. For example, the PIC32mz EF family from Microchip has up to
2 MB for flash and 512 KB RAM with several connectivity options (USB, CAN, Ethernet, and Wifi). Its system-on-a-chip
(SoC) has a core MIPS M5150 at 200 Mhz with memory management capacity and a cryptography engine. The PicoCore
RT1-V1 has an ARM Cortex-M7 core with 256 MB of flash and 32 MB of RAM and connectivity options such as USB, Eth-
ernet, CAN, and UART. The extensive software layer supported by these boards may require some separation to improve
security and modularity, for example, to isolate peripheral control from network connectivity.

Edge computing models aim to optimize IoT applications to move their functionalities to edge devices, rather than
outsourcing computations to distant data centers.7 In new edge computing architectures, modern software engineering
approaches are adhering to the microservices paradigm.3 It allows the development of new distributed computing soft-
ware systems to achieve high QoS, flexibility, dependability, and other properties due to their autonomic self-behavior,
such as self-monitoring, self-adaptation and self-reconfiguration, among others.8

Recent works have explored microservices packaged into containers to achieve a high degree of automation, deploy-
ment, elasticity, and reconfiguration of IoT applications.3,8-10 To this end, various container management and orches-
tration technologies have emerged, including Docker11 and Kubernetes.12 Containers are a kind of virtualization at
the operating system (OS) level, which package all binaries, libraries, and configuration files in a single box. They are
lightweight than server virtualization since it does not contain the complete OS image. Nevertheless, such technologies
are limited to hardware capable of executing general-purpose operating systems (GPOS), such as Linux or Windows, that
require hundreds of megabytes of storage and memory available on devices, like the Raspberry Pi boards.3,7-10,13-15 DES
devices, as the mentioned PIC32mz and PicoCore, cannot execute GPOS due to memory or processor limitations, but
their applications still may require the flexibility provided by containers.

The main contributions of this work are described as follows. First, we present virtualization features considering DES
and propose a new lightweight virtualization model that simplifies the traditional approach, enabling edge computing,
and the deployment of IoT applications on DES. Thus, delivering the inherent virtualization advantages to many IoT
applications cannot afford large and complex OSs. Second, we present the Hellfire hypervisor, an implementation of the
proposed model, to validate and demonstrate that it can keep a smaller footprint than existing techniques while keeping a
low virtualization overhead. Our experiments show that it can fit in 21 KB of storage and use 2 KB of RAM, representing
an overhead of 1.03% and 0.4% on the PIC32mz device.

The remainder of this article is organized as follows: Section 2 discusses the use of virtualization on DES. Section 3
presents a virtualization model to fit the DES needs. Section 4 details the implementation of the Hellfire Hypervisor,
a lightweight virtualization layer for embedded systems. Section 5 presents experimental results of implementation’s
footprint, performance, inter-VM communication, real-time, and security. Section 6 presents the related work. Section 7
presents a test case scenario for the deployment of the proposed model. Finally, Section 8 concludes the article.

2 VIRTUALIZATION ON DES

Edge computing is about processing data streams at least partially on the spot (e.g., directly on DES) in a resource-saving
way. It runs specific applications in a fixed logic location and is strongly based on virtualization.3,7-10,13-19 For a long time,
the research community believed that hypervisor-based virtualization was an overkill approach for DES due to its inher-
ent overhead.7,8,13,15 However, the advances in embedded processors that enabled hardware-assisted virtualization and
innovative hypervisor software architectures changed this scene. Recent research has shown the benefit of embedded vir-
tualization to meet DES challenges in edge environments.3,16,18 However, there is no consensus about which virtualization
approach better addresses the needs of DES.

Virtualization means creating a software abstraction layer that gives the applications a different view of the underlying
hardware.14 The following characteristics for virtualized systems are essential in the context of DES:

• Virtualization approach: It can be a type-1 hypervisor, a type-2 one, or a containers engine. Type-1 hypervisors
(Figure 1(A)) are directly executed on the hardware and are the most adopted approach in server virtualization.20

Differently, type-2 hypervisors (Figure 1(B)) execute on top of an OS. They are the preferred choice for home and office
virtualization since they can run guest OSs side-by-side with user’s applications. Containerization (Figure 1(C)) is an
OS-level virtualization method to execute multiple isolated systems (containers) using a single kernel. A user process
can check different information about the system, such as memory, process trees, files, and directories in a typical OS.
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F I G U R E 1 Comparison between the different virtualization approaches

OS’s containers enforce the process isolation limiting and prioritizing the resources (e.g., CPU, memory, I/O, network,
among others) without using virtual machines. A container engine executes on top of a host OS, responsible for the
separation between applications using the OS’s features.

• Underlying GPOS: It refers to the need for an underlying GPOS (e.g., Linux and Windows), which are complex sys-
tems designed to perform well on laptops up to supercomputers and support a wide range of applications, such as
accelerated graphics, artificial intelligence, and graphical user interfaces. Such features make GPOS generally large in
footprint and also unpredictable for real-time purposes. Although some GPOS (e.g., Linux) are highly customizable,
their minimal footprint is still unacceptable for DES.

• Separation: It allows the execution of multiple applications or even instances of OSs in separate boxes over the same
device. Two other features emerge from the separation: (i) the capacity to break complex applications into smaller
software pieces allowing better maintainability and modularity; and (ii) preventing defects in one part of the software
to propagate to adjacent regions or the physical platform, improving security as a whole.

• Real-time support: Proper real-time support is a common feature required by embedded systems. Typically, GPOS
focus on performance and present poor real-time results. Otherwise, real-time operating systems (RTOS) are capable
of dealing with timing constraints, but they do not support software separation. Thereby, separation and real-time
capabilities are required to coexist in the same system.

• Memory requirements: Because of many installed devices, each one’s cost keeps an essential role in the IoT field.
Thereby, reducing the hardware capacity helps to decrease costs. We consider as memory capacity the device’s storage
and SRAM size. The occupied portion of this capacity by the software is called the footprint.

The interest in virtualization at the edge has increased.7 However, as applied to server farms, classic virtualization
does not fit most IoT applications at the edge. The intrinsic characteristics (memory constraints, real-time, and security)
of such applications have motivated new models for DES virtualization.

3 VIRTUALIZATION MODEL FOR DES

This section describes a model for DES virtualization that dismisses the use of an underlying GPOS. Although this is true
for type-1 hypervisors for cloud computing, their performance-focused development results in some undesired charac-
teristics for embedded systems (e.g., high footprint and power consumption). Despite cloud and embedded applications
share some features, others are distinctive. For example, both expect that the virtualization layer provides a strong separa-
tion between guests for security purposes. However, cloud computing expects higher performance, while some embedded
applications have power consumption and storage constraints.
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F I G U R E 2 The proposed
virtualization model overview.
The doted sets indicate the key
model’s characteristics that
make possible the building of a
lightweight hypervisor

Before presenting the virtualization model, it is essential to remember some of the DES’s demands. Generally, such
systems execute dedicated applications. If a secondary functionality needs to be added, it must be integrated into the main
loop, affecting the whole system and making hard the management of many different features. The increasing demand
for more complex software stacks makes modularity an essential feature for these systems. As said before, the containers
approach can be used to bring modularity. However, the implicit overhead cost to keep a GPOS limits the reach for DES.
Otherwise, RTOSs may deliver a certain level of modularity but cannot deal with separation.

The proposed model observes some characteristics of DES to build a lightweight hypervisor capable of delivering mod-
ularity, security, and computing, where existing techniques fail. Figure 2 depicts the virtualization model. The hardware
platform is a typical SoC composed of memories, processors, and peripherals. Here, processors with hardware-assisted
virtualization are preferred. Although it is possible to implement a similar approach without such features, dedicated
hardware for virtualization can simplify the hypervisor’s design, improving performance and security. Besides, common
embedded architectures already have defined their support for virtualization, as ARM21 and MIPS.22 These processors
implement the privilege ring that allows for separate actions that can be performed by the hypervisor (supervisor mode)
and guests (kernel mode). In addition, to deliver separation, the processor must support a memory management unit
(MMU). This hardware module allows the hypervisor to implement memory isolation, a key feature to build modularity
and security by separation.16

In the proposed model, the hypervisor is the first layer of software (type-1 virtualization), and it performs in the
highest processor’s privilege level (supervisor mode). Hence, it can control all hardware behavior avoiding that guests
change the processor or platform configuration. The hypervisor creates the VM’s abstraction implementing two basic
functionalities. First, it constructs the memory isolation (using the MMU hardware). Second, it creates the virtual CPU
abstraction (VCPU) (i.e., a data structure that keeps the CPU context during context switches). The next software layer
is the guest system. They can be RTOSs, Unikernels, or even bare-metal applications that perform with a lower privilege
level (kernel mode). Any unexpected behavior (e.g., access to a not allowed memory location) will trap the hypervisor that
will take the required actions. Thus, any software in a VM views the system as an entirely independent machine allowing
the implementation of wholly separated applications and bringing modularity to the system.

While hypervisors for cloud computing require up to tens of megabytes of footprint, the proposed model needs tens of
kilobytes, keeping virtualization advantages such as modularity and security. Although other hardware constraints could
be considered, they are less critical. For example, DES communicates just with surrounding devices. Hence, to most of
the applications, network throughput is not a significant concern. Nevertheless, some specific applications may require
attention over other aspects, as hardware engines for speed up cryptography operations. In this way, we limited our focus
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to the processor capabilities and memory capacity to build up isolated applications in small devices. To this end, we
introduced some simplifications to improve virtualization for DES:

• Simplified memory management: The model avoids swapping23 and simplifies the page tables (PTs)23 implementation
at the hypervisor level. Generally, the number of VMs is known, allowing the system’s partitioning in design time.
Thereby, the VMs are allocated contiguously in memory, making the management more straightforward because only
the base address and size are required for its mapping. This scheme saves memory because no PTs are needed. After all,
the memory mapping can be directly written to the MMU control registers (see Section 4.2). Note that this simplification
does not affect the memory management implementation at the guest’s level because how the hypervisor manages the
memory is transparent to the guest. See Section 4.2;

• Static partitioning: A hypervisor implementation targeting DES should not support the management interface since it
can determine its setup in compilation time. See Section 4.5;

• Directly mapped devices: Direct access from applications to peripherals may be needed. If the peripheral does not need
to be shared, the hypervisor must allow direct mapping (bypassing) to the applications. This technique avoids the
implementation of device drivers at the hypervisor level and improves performance. Otherwise, device drivers for
shared peripherals, such as Ethernet, must be implemented and managed by the hypervisor. See Section 4.4;

• Small hypercall API interface: Hypercalls are calls invoked from guests to the hypervisor, similar to syscalls in a typical
OS. The hypercall API allows the implementation of extended services, that is, services provided by the hypervisor to its
guests, like inter-VM communication or access to shared devices. It is essential to keep this API simple for two reasons:
to reduce the hypervisor’s attack surface and to keep the hypervisor as small as possible. See Sections 4.3 and 4.4;

• Simple and predictable scheduler: The scheduler must implement proven algorithms to maintain predictability, like the
round-robin scheduler. In addition, the interrupt management can be simplified using the pass-through technique sup-
ported by hardware-assisted virtualization (i.e., interrupts can be redirected to guests without hypervisor intervention).
See Sections 4.3 and 4.6;

• Simplified VCPU management: The trap-and-emulate technique consists of emulating guest’s privileged instructions
(i.e., instructions that only can be performed on supervisor mode). However, one single instruction may require tens or
hundreds of instructions from the hypervisor side to be emulated, increasing the VCPU management complexity and
overhead. Para-virtualization is commonly used to avoid such problems, which require the substitution of privileged
instructions on guests by hypercalls. Thus, proper hardware-assisted virtualization can help keep the VCPU manage-
ment small and straightforward because it allows for eliminating instruction emulation and most of the hypercalls.
Nevertheless, hypercalls are still useful for virtualization extended services like inter-VM communication or peripheral
sharing. See Section 4.1.

The proposed model follows the microkernel approach. Hence, the hypervisor implements only the necessary
hardware control and minimal services, like inter-VM communication. For example, sophisticated network protocols,
cryptography, file systems, and other libraries are supported at the VM level. Thereby, a VM with the picoTCP stack can
be instantiated as a separate application for network support. The same can be done with cryptographic libraries (e.g.,
WolfSSL). A VM with an RTOS, like FreeRTOS, can implement real-time services with a predictable execution in parallel.
All these features result in a flexible system capable of supporting microservices that all together build IoT applications.

4 THE HELLFIRE HYPERVISOR IMPLEMENTATION

In this section, we describe the software implementation for the proposed model. We adopted the Microchip PIC32mz as
the hardware platform, which comprises an M5150 processor core (MIPS32 architecture) with 512 KB of SRAM and 2 MB
of flash. The M5150 core implements the MIPS virtualization extension (MIPSVZ), making it a perfect testbed. Thereby,
we created the Hellfire Hypervisor, a hypervisor designed to deliver virtualization for small embedded devices, including
IoT sensors and DES. It is open-source software, mostly written in C language with a few lines of Assembly, resulting in
around 10k lines of code. It is available online at https://github.com/hellfire-project/hellfire-hypervisor. It was primarily
designed to be as small and straightforward as possible; thus, using the hardware support to avoid complex software
implementation. The remainder of the section describes the software techniques used to implement the proposed model
presented in Section 3.

https://github.com/hellfire-project/hellfire-hypervisor
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4.1 Privilege-levels and context-switching

Before understanding the MIPS privilege-ring and the proposed context-switching scheme, it is essential to know that
the MIPS has the coprocessor 0 (CP0), a set of configuration registers accessed by the special instructions mfc0 and mtc0
in privileged mode only. In the MIPSVZ specification, a subset of these registers, named guest CP0, are duplicated, and
they may be accessed from the VM’s privilege level if allowed by the hypervisor.

Figure 3(A) shows the complete privilege-ring and all possible ring transitions to the MIPSVZ core. It implements
the root-kernel, root-user, guest-kernel, and guest-user ring levels. A GPOS would use only the root-kernel and root-user
ring levels that are backward-compatible to the kernel and user-modes from classic architecture. The hypervisor uses
the most privileged-ring (root-kernel) and delegates the VMs to the guest-kernel mode. Keeping the VMs in a less priv-
ileged ring allows for the hypervisor to create separation. In addition, our implementation uses a subset of the ring
transitions, showed in Figure 3(A) as dotted arrows. Note that it is possible to handle interrupts directly in the guest-
kernel mode.

The flowchart in Figure 3(B) describes the operations performed during the transitions. On entering the hypervisor
exception handler (root-kernel), the GPRs are saved. In the case of a timer interrupt, the CP0 context is saved, the scheduler
selects the next VM restoring its CP0 context. Any other interrupt will trigger the corresponding device driver. Other
exceptions as hypercalls or guest faults are handled accordingly. Finally, the GPR context is restored, and the control
is returned to the guest. Hence, the transition from guest-kernel to root-kernel happens in the following situations: (i)
root-kernel interrupts and (ii) guest-kernel exceptions. For example, if an interrupt targeting the root-kernel happens, the
processor will jump to the hypervisor’s interrupt vector handler. Thus, it will perform the GPR context saving, perform the
required operation at the device driver level, restoring the GPR, and jumping back to the guest-kernel mode. During the
context restoring, two special operations must be performed: (i) set the Exception Program Counter (a CP0 register that
keeps the VM’s program counter); and (ii) set the CP0 guest_id register (used to select the translation look-aside buffer
(TLB) entries and better-addressed in Section 4.2).

In our implementation, the hypervisor allows for the VMs to access a subset of the guest CP0. Thus, VMs can
read the processor status and enable or disable interrupts, avoiding unnecessary traps from guest-kernel to root-kernel.
A small penalty is paid; the hypervisor must save/restore the guest CP0 registers on every context-switching. In
addition, the M5150 core has a GPR shadow scheme, allowing us to keep up to eight copies of the GPR con-
text in hardware. One shadow page is reserved for the hypervisor, and the other seven are dedicated to guests.
Hence, the core can quickly swap register files from shadow copies, that is, the GPR saving/restore routines
need only indicate which is the shadow page needed. All this helps to simplify the VCPU management, as stated
in Section 3.

F I G U R E 3 MIPS virtualization extension architecture privilege-ring and the flowchart for context-switching
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4.2 Memory virtualization

Memory virtualization plays a vital role in the hypervisor implementation. This subsystem is mainly responsible for the
separation, keeping the different domains isolated. Its existence relies on a hardware mechanism present in the processor:
the MMU. Memory addresses generated by the processor’s core, called virtual addresses (VA), need to be translated to
physical addresses (PA) by the MMU controlled by an OS or a hypervisor. The OS needs to keep a PT for each process
mapping VA to PA. During context-switching, the OS remaps the processor to the corresponding PT. If a process requires
an address translation not present in the PT, a trap is issued (page-fault). Thus, malfunctioning or even malicious memory
access is detected and stopped. The MIPSVZ module implements hardware-assistance for memory management with an
additional translation level, called two-level MMU. In this scheme, the guest OS configures its virtual memory using the
guest CP0 in the same way in a standalone environment. Typically, the hypervisor keeps a PT for each VM and configures
the MMU accordingly to the guest’s needs. During memory translation, the two-level MMU generates IPA (intermediate
physical address) from VA based on the guest’s MMU. The PA will result from the combination with the hypervisor’s
MMU configuration. This scheme avoids modifying the guest OS while reducing the virtual memory configuration and
translation traps. Figure 4 describes this mechanism.

Standard hypervisors for cloud computing implement a complete paging mechanism. As stated, the hypervisor keeps
a PT to map guest OSs to physical memory. In these systems, the guest OS does not need to be entirely loaded into
the main memory to be executed. The hypervisor can implement an on-demand paging mechanism (swapping). Such a
scheme reduces memory usage since pages that have not been used recently can be stored in the swapping system. In
addition, it avoids the memory external fragmentation problem because the VMs do not need to be allocated contiguously
in physical memory. However, this approach has critical drawbacks for DES. First of all, swapping systems and on-demand
paging mechanisms impact real-time responsiveness. Nevertheless, some DES do not support swapping due to storage
restrictions. Moreover, a complete virtual memory management mechanism implies a more complex hypervisor and,
consequently, a larger footprint and more processing requirements.

A simplified virtual memory management mechanism brings some advantages to DES. First, it avoids second-stage
translation misses keeping the VM whole mapped at the hardware during its execution. Thus, bare-metal applications,
RTOSs, or Unikernels that do not implement virtual memory support will not suffer additional delays and jitter due to
hypervisor paging management. In addition, the limited number of virtual machines usually required by DES allows for
a static configuration. For these systems, memory fragmentation due to contiguous guest OS allocation is not a significant
problem. Thereby, our approach simplifies the memory management by combining two distinct techniques: (i) static VM’s
memory allocation (which is better addressed in Section 4.5) and (ii) avoiding to keep a complete PT scheme in memory.
The contiguous memory allocation is represented in Figure 4.

The MIPS M5150 MMU implements a TLB that acts as a cache for the PT entries. It has 32 entries, where each entry
consists of a guest_id (guest identification number) and a couple of fields to describe the memory map being created.

F I G U R E 4 Hellfire Hypervisor memory
management strategy using the MIPS virtualization
extension two-level memory management unit hardware
support. VMs are contiguously mapped in the physical
memory
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F I G U R E 5 Hardware translation
look-aside buffer (TLB) and hypervisor
actions during address translation

During compilation, we generated a fixed-size array of elements that describe the memory mapping. On boot time, the
hypervisor calls the tlbEntryWrite() routine for each element of the array. This routine translates the elements to the hard-
ware TLB, allowing us to map IPA to PA. Among the hardware entries, guest_id has an important role; it indicates which
VM an entry belongs to. With all needed entries loaded on hardware, the hypervisor only needs to set the guest_id during
context-switching to remap the memory to another VM. This scheme is depicted in Figure 5, which clarifies the actions
performed by the software (hypervisor) and the hardware. Once written the memory mapping to the TLB during boot,
the software only needs to write the correct guest_id during context-switching and stop a VM execution in a page-fault
case. From the hardware view, for each guest’s memory access, a translation must generate the PA from the VA. Hence,
the hardware checks the guest level TLB for memory mapping and generates the IPA. In our case, as we avoid the use of
GPOSs or complex memory schemes on guests, the IPA is the same as the VA. The IPA is combined with the guest_id to
find a second-level TLB (root TLB) match. If the translation is successful, the execution proceeds uninterrupted.

This scheme makes the context-switching lightweight and avoids to keep huge PTs on memory. Finally, the contiguous
mapping does not affect the guest’s memory management, allowing it to implement a complete management scheme.
However, the focus of our hypervisor is more straightforward guests.

4.3 I/O virtualization

Some hardware peripherals need to be shared among the VMs, such as Ethernet and timers. For example, when a
guest tries to read or schedule a timer interrupt, the hypervisor will need to intercept these actions by traps or using
para-virtualization to share the device properly. Similarly, the hypervisor may implement a network switch layer to allow
guests to access the external world. As a consequence, all I/O may need to be controlled by the hypervisor. Both examples
are complex in terms of implementation and lines of code. In addition, they may impose performance penalties on the
hypervisor. VirtIO24 surged as an effort to standardize the I/O interfaces for Linux hypervisors consisting of a set of Linux
modules. Nonetheless, simplified subsystems are essential for embedded hypervisors. For example, the ability to map a
peripheral directly to a VM redirecting its interrupts can save many efforts and diminish the hypervisor attack surface.

The proposed implementation supports directly mapped devices, which requires to map noncontinuous memory
regions to a VM. Usually, I/O devices are mapped to specific PA. For example, a VM may have mapped 32 Kbytes of RAM
allocated in the physical memory from 0x1000_0000 to 0x1000_8000. If the same guest requires access to a peripheral at
the PA 0x1F00_0800 the hypervisor must configure a TLB-entry to match it. The static partitioning approach allows for
defining all direct-mapped devices in a configuration file, as stated in Section 4.5.
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4.4 Inter-VM communication

The proposed hypervisor defines a hypercall interface for communication among VMs. This implementation adopts a
message passing mechanism based on para-virtualization. The hypervisor routes messages among VMs using the address,
size, and ID destination, which are hypercall parameters configured by the guest. Thereby, the hypervisor does not make
any assumptions about the message formatting; this is entirely responsible for communicating guest OSs. For example,
suppose a multitask guest OS needs to demultiplex25 incoming messages among different tasks. In that case, it may add
a header to the message indicating the origin and destination task id. In this case, the communicant guests must agree
about the header format.

Each VCPU implements its incoming message queue as a limited circular buffer, statically allocated for performance
purposes. A message targeting a determined VCPU will be copied to its queue, and the hypervisor will insert a virtual
interrupt to the guest. The next time that the guest is executed, it will handle the virtual interrupt and call a hypercall
to retrieve the message. Figure 6 describes hypervisor behavior while redirecting messages between guests. The VM 2
invokes the HCALL_IPC_SEND_MSG hypercall (1), causing a message copy from its buffer to the ring buffer of the
destination VCPU. After, the hypervisor injects a virtual interrupt (2) in the VCPU 1. In the next execution, VM 1 will
handle the interrupt executing the HCALL_IPC_RECV_MSG hypercall. Thus, the hypervisor will copy the ring buffer’s
message to the target buffer (3), completing the message’s sending.

4.5 Static partitioning

Cloud hypervisors implement management interfaces to allow users to configure all system elements. Cloud computing
requires to instantiate or stop VMs without overall system interruption. Migration or reconfiguration should not influ-
ence the execution of the other guests. As discussed prior in this section, typical DES applications restrict the number
of VMs, and usually, they must be executed during all device’s runtime. Beyond simplifying the memory subsystem,
as seen in Section 4.2, static partitioning benefits from these characteristics. Static partitioning consists of determining
the system resources allocated to each guest at design time. For example, memory space, scheduling priorities, directly
mapped devices, among other resources, are estimated by the developers and defined programmatically before compila-
tion. Despite this method being less flexible than using an underlying GPOS or a hypervisor with a management interface,
it brings two advantages: a small attack surface (making the system more robust against attacks) and simplicity.

To make the definition of the system’s setup easier, we created a building scheme involving a configuration file and
a tool to process it. Thereby, the partitioning is written in a structured file parsed by the libconfig, a C/C++ library for
processing configuration files. This library has a compact and readable content format that is more appropriate than
XML, similar to JSON schemes. In the configuration file, the user gives details about the system to be built. An example is
given in Figure 7. The figure’s left side shows a configuration file example with a section called system where it is defined

F I G U R E 6 Example of inter-VM communication involving
two guests
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F I G U R E 7 Configuration file versus the C header generated by the genconf tool

debug flags, serial speed, and the hypervisor scheduler’s quantum. Following, a section called virtual_machines allows
for creating a list of VMs specifying their scheduling priority, memory size, storage, mapped devices, and interrupts.

During the building time, the configuration file is read by a tool called gentool. We implemented this tool to help the
developers to configure the system from a higher abstraction level view. Gentool knows the platform architecture details
and creates the partitioning based on the number of VMs and the required size for each one. It outputs a C header used
in the rest of the compilation process. The VM’s configuration is grouped by a data structure, called struct vmconf_t, a
fixed-size array that keeps the meta-data processed from the configuration file, see the right side of Figure 7. Note that
the gentool’s output is substantially more complex than the input file, especially memory partitioning. The tool considers
the memory and storage sizes to optimize the allocation scheme for a given VM’s set. The resulting allocation is stored in
a fixed size array of struct tlb_entry elements. This information is read by the hypervisor during booting time and used to
configure the processor’s TLB.

Furthermore, the gentool keeps details about hardware devices and interrupts. The device_mappingpropriety in the
configuration file gives an array of device names to be mapped to the guest. The tool creates a structure called struct
device_mapping_t that keeps the memory addresses and size of the memory-mapped devices allowed to the guest. Simi-
larly, the interrupt_redirect is an array that keeps interruptions that must be redirected to the guest. Finally, the gentool
gives a convenient way to configure the system and promote the hypervisor and the VM build.

4.6 Real-time support

Several aspects may impact real-time responsiveness, as paging and swapping schemes or scheduling policies. Techniques
as on-demand paging23 or swapping bring execution unpredictability because when a required page is not present in
memory, the process or VM is blocked until the data is loaded. The loading time may vary depending on the system load
and the kind of storage involved. RTOSs overcome these problems by simplifying their implementation. For example, no
memory management and a more straightforward software stack with predictable scheduling algorithms.

Our hypervisor implementation finds a thread-off between memory management’s advantages, as separation, and
the drawbacks in responsiveness. Thereby, it implements only the memory management features needed to provide
separation. No additional schemes like on-demand paging or swapping are provided. As seen in Section 3, the DES char-
acteristics dispenses complex memory management techniques. In addition, we implement a predictable round-robin
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scheduling algorithm with priority. Another feature of our hypervisor is the ability to support directly mapped devices,
bypassing the hypervisor to access certain devices, avoiding additional overhead, and improving responsiveness. This
feature is associated with the interrupt pass-through, where interrupts can be redirected to a VM without hypervisor
intervention.

4.7 Porting to other platforms

We designed the Hellfire Hypervisor software structure to facilitate the port to other architectures. In fact, beyond MIPS32,
it already supports RISC-V for both rv32 and rv64 architectures. It implements a Hardware Abstraction Layer (HAL),
providing a set of function calls that must be implemented to move the hypervisor across architectures. The HAL gives
adequate support to build a higher software layer that is architectural independent. During the port, subsystems such as
memory management, general exceptions, and interrupt control must be rewritten to reflect the new processor hardware
that comprehends a small part of the software. For example, of 9800 hypervisor code lines, only 1530 corresponds to the
M5150 and 1294 to the rv32 HALs. In addition, the gentool helps keep the same configuration files across architectures
since it abstracts the configuration details, generating the adequate header file.

5 EVALUATION AND RESULTS

This section brings a quantitative and qualitative analysis of our implementation. We analyzed the resulting hypervisor
footprint and determined the virtualization performance impact using a well-known benchmark. In addition, we tested
the inter-VM communication delay for a set of two applications and provided some real-time results. Finally, we present
a brief qualitative analysis of security.

5.1 Footprint analysis

The footprint aspects are important for small devices since the hypervisor and the application’s size must be acceptable.
We measured the hypervisor size for configurations with one, two, three, and four VMs, with the inter-VM commu-
nication, Ethernet, USB, and interrupt redirection drivers enabled. The one VM system consists of a simple blink led
application. The two VMs implement the ping/pong application and use the inter-VM communication mechanism to
exchange messages. The three VMs system consists of a combination of the blink and the ping/pong applications. To the
four VMs system, we included a VM that performs the Coremark benchmark (see Section 5.2 for benchmark results). We
have compiled the source-code using GCC 4.9.2 (Codescape GNU Tools 2016.05-03 for MIPS MTI Bare Metal) with Binu-
tils 2.24.90 and the optimization levels O0 (no optimization), O2 (most of the supported optimizations that do not involve
a space/speed trade-off), O3 (all O2 optimizations more optimizations for speed that may increase the footprint), and Os
(optimize for space usage). In addition, we used the compiler flag -micromips. MicroMIPS is a code compression instruc-
tion set architecture that offers 32-bit performance with 16-bit code size for most instructions and is supported by the
M5150, which allows for significant code reduction. Table 1 shows the results. All numbers are given in bytes, and only
the hypervisor footprint is considered (VM’s size is not included). The column text+ro means the size of the instructions

GCC optimization level

data+bss text+ro

#VMs all opt. O0 O2 O3 Os

1 2016 32,632 21,328 25,496 20,156

2 2028 34,952 21,548 25,716 20,344

3 2048 37,620 21,684 25,852 20,468

4 2068 40,104 21,788 25,984 20,584

T A B L E 1 Footprint results for the Hypervisor
(bytes)
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F I G U R E 8 Coremark’s score for an increasing number of VMs

and the read-only segments (kept in flash storage), while data+bss is the sum of the global initialized data and nonini-
tialized data (loaded to RAM during boot). As the optimization levels do not affect the data+bss size, Table 1 shows only
a column for all results.

It is seen that the compiler optimization level plays an important role. For example, the one VM system has a total
footprint of 34,648 bytes (text+ro plus data+bss) for O0 optimization and 22,172 bytes when optimized for Os, a reduction
of 36%. In all optimization levels, we can see a small increase in text+ro and data+bss sections with additional VMs. This
happens because it is allocated a struct vmconf_t(see Section 4.5) in the read-only section for each new VM. In addition,
a struct vcpu_t (a data structure that keeps the execution status of a VCPU) is allocated in the data section for each VM.
Finally, based on footprint results, we can see that using optimization levels O2 or Os, it is possible to keep the total
footprint around 23 KB, which is very optimistic for a hypervisor.

5.2 Performance analysis

Coremark* is a benchmark used to measure embedded processors’ performance. It was designed to run on microproces-
sors from 8 to 64-bit. It implements algorithms such as list processing, matrix manipulation, state machine, and cyclic
redundancy check, all everyday operations in embedded applications. The Coremark result is a score number that can be
used to compare performance among different processor families. Our goal was to determine the virtualization impact
by comparing the native Coremark score with the hypervisor under different system configurations. We prepared five
different setups: native, one VM, two VMs, three VMs, and four VMs systems. For the native setup, we performed the
Coremark as a standalone application, that is, without the hypervisor. The remaining setups consist of a different number
of parallel VMs running the Coremark application. Thereby, comparing the native resulting score to the score of differ-
ent system setups, we expect to find the hypervisor overhead. In all setups, the optimization level used was 02, and the
hypervisor scheduler quantum was configured for 5 ms, that is, it performs context-switching every 5 ms.

Figure 8 show the results. The native execution resulted in a Coremark score of 589.93, while the one VM system was
588.32 giving a performance penalty of 0.27%. For the remaining setups, the CPU time will be equally shared among all
VMs, that is, in the four VM system, each VM will have only 25% of the CPU time. Thus, the resulting score will be divided
among the VMs. Observe that, for the two systems VM, Figure 8 shows the resulting score for each VM and a column bar
with the sum. In this case, VMs’ score was 293.63 and 293.72, resulting in a total of 587.36, which gives an overhead of
0.43%. Using the same technique, we found overheads of 0.68% and 0.76% for the three and four VMs systems. These are
very optimistic numbers that result from two main reasons: (i) the low hypervisor code complexity and (ii) the MIPSVZ
hardware features, especially the TLB and the GPR shadows that keep the context-switching lightweight.

The MIPS 5150 implements performance counter registers22 that can be programmed to count different kinds of hard-
ware events, for example, number of executed instructions or invoked hypercalls. Thereby, we used the register counters
to determine the impact of the different setups over the cache. For this, we programmed the counters to issue the number

*https://www.eembc.org/coremark/
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of data and instruction cache misses. As expected, the cache misses for data and instructions increases exponentially with
the addition of VMs. For the native execution, the data and instruction cache misses were 192 and 651, respectively. The
one, two, three, and four VMs systems resulted in 10,167, 492,228, 897,950, and 3,903,672 data cache misses, and 712,
155,134, 617,441, and 3,788,338 instruction cache misses. The M5150 processor core has only 16 KB for instruction cache
and 4 KB for data cache. The context-switching between VMs changes the spatial memory location abruptly, forcing new
cache lines to be loaded. Additional VMs mean different spatial locations being accessed, and the amount of cache has
not been enough. This problem may be minimized, increasing the scheduler quantum to, for example, 10 ms, causing
two times less context-switching.

5.3 Inter-VM communication delay

We tested the inter-VM communication focusing on evaluating the latency of message exchanges between VMs. Thus,
we implemented two applications. The first one works as an echo server that replies to all received messages. The second
one sends messages of 256 bytes, repeatedly calculating its round-trip time. We call them the ping-pong application. As
a result, we obtained an average round-trip time of 199.97 μs after 1000 messages. Thereby, the inter-VM mechanism
presented in Section 4.4 is an efficient and secure way to implement communication on the virtualized platform.

5.4 Real-time analysis

For real-time applications, it is essential to understand the behavior of the system regarding the response delay. To measure
a VM’s responsiveness in our hypervisor, we tested the response time for interrupt handling. For this, we implemented a
VM capable of receiving interrupts from an I/O pin (external source) and generate outputs to another I/O pin. Hence, we
used a function generator to issue interrupts every 10 ms. We measured the instants of the generated interrupt and the
response in the output pin for each interrupt. The time difference is the total delay to the system to react to an external
event. We tested the responsiveness in three situations:

1. the system idle, composed of one VM: the VM for the latency test;
2. the system under moderate load, composed of two VMs: the VM for latency test and the blink LED application;
3. the system under heavy load, composed of four VMs: the VM for latency test, the blink LED application, and the

ping-pong application.

The ping-pong application generates a heavy load on the system since it changes messages exhaustively. For each sit-
uation, we generated 100,000 interrupts obtaining the response delay for each one. For the system idle test, the average
response time was 8 μs. Since there is not scheduling (only one VM), the interrupts are directly sent to the VM (interrupt
pass-through), resulting in a fast response. In the moderate and heavy load tests, interrupts may happen when the target
VM is not in execution, requiring rescheduling. The rescheduling may happen when the interrupt arrives, or it is post-
poned if the hypervisor needs to attend to other VMs. Figure 9 presents the response delay histograms showing the time
distribution. For the system under moderate load (two VMs), see Figure 9(A), the average response time was 173.23 μs
with a minimal of 8 and maximum of 1008 μs. For the system under heavy load (four VMs), see Figure 9(B), the average
response time was 1010.48 μs with a minimal of 8 and maximum of 2008 μs. We can see a variation depending on the
system load, but it is possible to determine the worst-case response time making the resulting system behavior predictable.

5.5 Security analysis

In Reference 17, we demonstrated how security could be delivered in DES using the Hellfire Hypervisor. A security
architecture involving trust mechanisms and virtualization was proposed, where a secure boot allows for a root of trust
environment and, ultimately, ensuring a chain of trust. Afterward, a trustworthy virtualization layer is booted up. The
intrinsic virtualization characteristics, such as separation, ensure protection during the VM’s boot and runtime states.
Cryptography algorithms can be used to provide integrity/authenticity to the system. Results for footprint and overall
performance were presented, showing that the technique is feasible for DES.
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F I G U R E 9 Histograms for interrupt responsiveness for system under moderate and heavy loads

6 RELATED WORK

Virtualization is a well-established technology, with various hypervisor solutions, mainly due to many use cases ranging
from servers20,26 to embedded systems.19,27-29 Xen20 is an open-source and type-1 hypervisor that relies on a privileged
VM, called Dom0, to manage nonprivileged VMs and interface with peripherals. KVM26 is also an open-source but
was designed as a hosted hypervisor and integrated into Linux’s kernel. Although initially developed for desktop and
server-oriented applications, both hypervisors have found their place in the embedded space.27,28

In literature, there are relevant studies that propose lightweight implementations of hypervisors.19,29 The work in
Reference 29 presents Muen Separation Kernel, an open-source microkernel, formally proven to contain no runtime errors
at the source code level. It uses Intel’s hardware-assisted virtualization technology (VT-x) to provide strong separation
and make its implementation simpler. The Muen project makes use of emulation by employing the Bochs IA-32 emulator.
The kernel has approximately 2700 lines of code. The work does not present performance results.

Authors in Reference 19 present Bao, a lightweight hypervisor implementation that uses a static partitioning archi-
tecture, supporting Armv8 and RISC-V platforms. Bao strongly focuses on isolation for fault-containment and real-time
behavior. Its kernel has approximately 5600 lines of code. Tests were executed in Xilinx ZCU104, featuring a Zynq-US+
SoC with a quad-core Cortex-A53 running at 1.2 GHz, per-core 32K L1 data and instruction caches, and a shared unified
1 MB L2/LLC cache. The hypervisor code and benchmark applications were compiled using the Arm GNU Toolchain
version 8.2.1 with -O2 optimizations. Results regarding memory show that it needs 23 KB of storage and 17 KB dur-
ing runtime. To assess virtualization performance overhead, authors employed the MiBench Embedded Benchmark
Suite.30 Preliminary evaluation shows Bao generates an average virtualization overhead of 1.25% (one VM) and 32.50%
for multiple VMs executions.

The work in Reference 31 presents Xvisor, an open-source type-1 hypervisor, focused on providing a mono-
lithic, lightweight, portable, and flexible virtualization solution. It supports ARM virtualization extensions to pro-
vide full-virtualization and para-virtualization through optional VirtIO compatible device drivers. It can map inter-
rupts directly to guests, allowing guest interrupts to be handled without the hypervisor’s intervention. In addition,
it provides memory isolation between hypervisor, guests, and guest applications using the third privileged level
from ARM’s virtualization support. The kernel has approximately 440K lines of code. Experimental results show
that Xvisor ARM guest has lower CPU overhead and higher memory bandwidth than KVM ARM guest and Xen
ARM DomU.

Authors in References 32-34 present seL4, a high-assurance, high-performance OS microkernel. seL4 is the most
advanced member of the L4 microkernel family. It supports virtual machines that can run a fully fledged guest OS. Subject
to seL4’s enforcement of communication channels, guests and their applications can communicate with each other and
native apps. In terms of source-code size, the kernel is about 9400 SLOC (ARM and RISC-V). In terms of executable code
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Work Lines of code

Memory

Storage RAM Footprint

Muen29 2700 75 KB 16 KB 91 KB

Bao19 5600 41 KB 18 KB 59 KB

Xvisor31 440, 000 1–2 MB 4–18 MB 5–20 MB

seL432-34 9400 138 KB 24 KB 162 KB

Hellfire (this work) 9800 21 KB 2 KB 23 KB

T A B L E 2 Comparison with related
works

size, the kernel has about 138 KB. Its RAM size is about 24 KB. Regarding virtualization overhead, the authors do not
present numerical results but argue that seL4 adds minimal overhead.

There has been an increasing interest in containers in recent years, which are a vital element of modern cloud com-
puting and play an important role in emerging concepts.15 However, it is a solution that still requires a GPOS. On the
other hand, specially designed type-1 hypervisors enable the implementation of smaller virtualization layers compatible
with embedded system constraints.

Table 2 shows that embedded virtualization can build hypervisors with small memory footprints and low virtualization
overheads. Type-1 embedded hypervisors can be used for more restricted devices requiring additional modularity and
security, adding the advantage of supporting RTOSs, unikernels, or bare-metal applications. Another advantage of type-1
architecture is its strong separation. A deep concern about edge computing is security. Therefore, to improve the security
of sensitive domains through a separation is essential.

Our solution, the Hellfire Hypervisor, was designed especially for DES. It is custom-made during compilation time,
that is, its data structure length is defined during the building process. The expressive results presented in Section 5 and
Table 2 show that the Hellfire hypervisor can enable edge computing in DES due to its small footprint, low virtualization
overhead and inter-VM communication delay, and real-time support while enforcing security by separation.

7 TEST CASE SCENARIO AND BENEFITS TO SMART CITY APPLICATIONS

We also evaluated the proposed approach in a scenario that highlights its capabilities for IoT deployment. The scenario,
presented in Figure 10, depicts a typical smart city application that monitors the air quality in urban areas. Air quality is
usually monitored by networks of fixed stations strategically placed in the city, where each station can measure a wide
range of pollutants (Figure 10(A)). In this scenario, each station has a DES, which was implemented in a MIPS32 proces-
sor core running at 200 Mhz, with 2 MB of flash memory and a 512 KB SRAM. The DES was connected to some sensors
simulated by software to monitor the environment: light, CO2 (carbon dioxide), CH2O (methanal), and temperature. The
DES’s software components were implemented and are shown in Figure 10(B). The air quality monitoring application
was divided into three applications: data acquisition, data reasoning, and network communication. They execute into each
DES in order to monitor the air quality in different parts of the city. The data acquisition application receives raw data
from sensors and sends them to the data reasoning application through inter-VM communication. The data reasoning
performs data filtering and aggregation to make decisions. For example, it can generate alarms for pollution peaks or
aggregate and compact relevant data to reduce communication. Finally, the network communication application imple-
ments the required network stacks to send data to the fog/cloud monitoring device (Figure 10(C)). Regarding memory
and storage requirements, we observed a requirement of about 32 KB of flash and 16 KB of SRAM to communicate the
data acquisition application with sensors using any of the following interface options: I2C, UART, SPI, or USB. The data
reasoning application had the same requirements since it does not implement complex software stacks. Network commu-
nication was achieved using the picoTCP stack†. It required 128 KB for storage and 64 KB of SRAM to support TCP/IP and
HTTP protocols. Thus, resulting in a total footprint of 288 KB (SRAM and storage) for the three applications execution.

The proposed hypervisor can be useful not only in this experiment but in all IoT smart scenarios composed of DES
devices, such as smart home care, smart building, smart lighting, and smart parking, as highlighted in Figure 10(D). The
use of DES devices in the described scenarios means the reduction of cost and power consumption.

†https://github.com/tass-belgium/picotcp
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F I G U R E 10 Air quality monitoring scenario in urban areas. In addition, smart cities scenarios that can benefit from our
approach

8 CONCLUSION

In this article, we proposed a virtualization model to enable IoT applications in DES. We presented the virtualization
model and described our implementation, called Hellfire hypervisor. Following this, we evaluated the implementation
and presented a quantitative and qualitative analysis to demonstrate its effectiveness. To complement the results, we
presented application scenarios that can benefit from the proposed model.

The Hellfire hypervisor does not compete with current methodologies, like containerization. However, it is com-
plementary since it can reach devices that container engines cannot afford, enabling edge computing on devices with
minimal CPU, storage, and memory resources.
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