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Abstract. Goal and plan recognition of daily living activities has at-
tracted much interest due to its applicability to ambient assisted living.
Such applications require the automatic recognition of high-level activi-
ties based on multiple steps performed by human beings in an environ-
ment. In this work, we address the problem of plan and goal recognition
of human activities in an indoor environment. Unlike existing approaches
that use only actions to identify the goal, we use objects and their re-
lations to identify the plan and goal towards which the subject in the
video is pursuing. Our approach combines state-of-the-art object and re-
lationship detection to analyze raw video data with a goal recognition
algorithm to identify the subject’s ultimate goal in the video. Experi-
ments show that our approach identifies cooking activities in a kitchen
scenario.

Keywords: Goal Recognition · Relationship Detection · Object Detec-
tion.

1 Introduction

Goal recognition is the task of recognizing agents’ goals, given a model of the
environment dynamics in which the agent operates and a sample of observations
about its behavior [25]. These observations can be events provided by sensors
or actions performed by an agent. Goal recognition has several real-world ap-
plications, such as human-robot interaction [28], recognizing navigation goals
[14], and recipe identification [10, 12]. Most approaches of goal recognition rely
on plan libraries [3] to represent the agent behavior. However, recent advances
use classical planning instead of plan libraries, showing that automated plan-
ning techniques can efficiently recognize goals and plans [18]. Although much
effort has been focused on improving the recognition algorithms themselves [18],
recent research has focused on the quality of the domain models used to drive
such algorithms [2, 1, 17]. Unlike most approaches that assume that a human do-
main engineer can provide an accurate and complete domain model for the plan
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recognition algorithm, recent work on goal recognition use the latent space [2, 1]
to overcome this limitation. These approaches build planning domain knowledge
from raw data using a latent representation of the input data. However, building
such domain knowledge requires training an autoencoder with states where a
transition of two subsequent images can represent the action.

In this paper, we explore the quality of automatically generated domain
models that require minimal or no-interference of the human domain engineer.
We evaluate our approach empirically using an existing kitchen-centered dataset.
Since there is limited data for goal recognition based on videos, we manually
annotated the dataset with bounding boxes and relationships between objects.
Using this dataset, we perform experiments to compare both domain models,
showing that a domain model built with minimal human interference achieves
higher accuracy for most of the goals.

2 Background

2.1 Object and Relationship Detection

Object detection aims to determine whether there are any instances of objects
from given categories in an image and return their spatial location and extent
dimensions [15]. It is widely used in computer vision from simple tasks, such
as surface inspection [27], to complex tasks, as autonomous robots operating in
unstructured real-world environments [29]. Recently, approaches that learn raw
data features, such as the ones based on deep learning [21, 32] have advanced
state-of-the-art results. Deep learning is present in many architectures developed
over the past few years, such as Faster R-CNN [21] and FSAF [32].

Visual relationship detection (VRD) aims to accurately localize a pair of
objects and determine the predicate between them [13]. Recently, VRD has at-
tracted more and more research attention in artificial intelligence since it is a step
further on the understanding of images [33]. Nevertheless, recognizing individual
objects is generally not sufficient to understand the relation of multiple items in
a real-world scenario. VRD plays a crucial role in image understanding since it
reflects the relationship between two objects, including relative positions (e.g.,
on, above, etc.), actions (e.g., holding, moving, etc.), as well as the human-object
interactions such as person holding ball.

The task of recognizing relations between objects is represented by the widely
adopted convention [16] that characterizes each relationship as a triplet in the
form (s, r, o), where s and o are the subject and object categories of the re-
lationship predicate r, respectively, e.g., (person, move, pan), (bowl, on, table).
Recent methods focus on identifying triplets containing relationships by using
deep neural networks [13, 33]. Other approaches describe the creation of a scene
graph that contains the relationship between pairs of objects [31].

2.2 Goal Recognition

Plan recognition is the task of recognizing how agents achieve their goals based on
a set of observed interactions in an environment. Goal recognition is a particular
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case of plan recognition in which only the goal is recognized [25]. Interactions
in goal recognition can be some possible observed events performed by an agent
in an environment, as well as actions/activities (e.g., cook, drive), and changing
properties in an environment (e.g., at home, at work, resting). Recognizing agent
goals and plans is vital to monitor and anticipate the agent behavior, such as in
stories and life understanding [4], and educational environments [26].

Unlike relationship detection that identifies the predicate of a pair of ob-
jects to understand the scene better, goal recognition concentrates on identify-
ing high-level, complex goals by exploiting relationships between predicates that
are observations of the plan. Relationships between predicates are often encoded
as a STRIPS-style [8] domain, which is used for plan recognition as planning
(PRAP), since PRAP uses planning domains to generate hypotheses of possible
plans consistent with observations [19].

Formally, we model planning domains of the agents being observed following
a STRIPS [8] domain model D = 〈R,O〉, where: R is a set of predicates with
typed variables. Such predicates are associated with relations between objects
in a grounded problem representing binary facts. Grounded predicates represent
logical values according to some interpretation as facts, which are divided into
two types: positive and negated facts, as well as constants for truth (>) and
falsehood (⊥). The set F of positive facts induces the state-space of a planning
problem, which consists of the power set P(F) of such facts, and the representa-
tion of individual states S ∈ P(F). O is a set of operators op = 〈pre(op), eff (op)〉,
where eff (op) can be divided into positive effects eff +(op) (the add list) and neg-
ative effects eff −(op) (the delete list). An operator op with all variables bound is
called action and the collection of all actions instantiated for a specific problem
induces a state transition function γ(S, a) 7→ P(F) that generates a new state
from the application of an action to the current state. An action a instantiated
from an operator op is applicable to a state S iff S |= pre(a) and results in a
new state S′ such that S′ ← (S ∪ eff +(a))/eff −(a).

A planning problem within D and a set of typed objects Z is defined as P =
〈F ,A, I, G〉, where: F is a set of facts (instantiated predicates from R and Z); A
is a set of instantiated actions from O and Z; I is the initial state (I ⊆ F); and G
is a partially specified goal state, which represents a desired state to be achieved.
A plan π for a planning problem P is a sequence of actions 〈a1, a2, ..., an〉 that
modifies the initial state I into a state S |= G in which the goal state G holds by
the successive execution of actions in a plan π. Modern planners use the Planning
Domain Definition Language (PDDL) as a standardized domain and problem
representation medium [9], which encodes the formalism described here.

Bringing this all together, a goal recognition problem is a tuple PGR =
〈D,F , I,G, O〉, where D is a planning domain; F is the set of facts; I ⊆ F
is an initial state; G is the set of possible goals, which include a correct hidden
goal G∗ (i.e., G∗ ∈ G); and O = 〈o1, o2, ..., on〉 is an observation sequence of
executed actions, with each observation oi ∈ A, and the corresponding action
being part of a valid plan π that sequentially transforms I into G∗. The solu-
tion for a goal recognition problem is the correct hidden goal G ∈ G that the
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Fig. 1. Pipeline for goal recognition containing object detection, relationship recogni-
tion, planning domain generation and goal recognition modules.

observation sequence O of a plan execution achieves. An observation sequence
O contains actions representing an optimal or sub-optimal plan that achieves a
correct hidden goal, and this observation sequence can be full or partial. A full
observation sequence represents the whole plan that achieves the hidden goal,
i.e., 100% of the observed actions. A partial observation sequence represents a
sub-sequence of the plan for the hidden goal, such that a certain percentage of
the actions actually executed to achieve G∗ could not be executed.

3 Goal Recognition Using Relationship Information

In order to generate a domain representation of the environment from raw data,
we perform the following processes (as illustrated in Figure 1): (a) Object de-
tection that identifies and extracts a set of bounding boxes from the raw data
that contain objects. (b) Relationship detection that extracts important rela-
tions between objects. (c) Domain model generation that converts relationships
extracted from a module (b) into a STRIPS [8] domain model. Although (a)
and (b) processes are nontrivial, there are significant research on both subjects
recently [21, 32, 31]. In this paper, we address these problems by training off-the-
shelf architectures with our dataset and consider that the resulting relationships
contain a particular noise given each model’s accuracy. The output of the re-
lationship recognition module contains triplets with the relationship of the two
objects, which can be represented as a scene graph [31].

Our contribution in this paper relies on generating domain models for goal
recognition using minimal or no-interference from domain engineers. Upon using
minimal interference, the human domain engineer has to define verbs and pred-
icates in the extraction of complex relationships. Considering a no-interference
domain generation, the STRIPS domain model is entirely generated from data.

3.1 Planning Domain Generation With Minimal Interference

To generate the planning domain model, we extract all relationships annotated
in the ground truth of the training set and build a scene graph [31], as illustrated
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Fig. 2. Direct multigraph generated using an excerpt of the relationships from boiled-
egg recipe. For simplicity, multiple edges are grouped into a single edge with relation-
ships represented with a dash division.

in the excerpt in Figure 2. A scene graph is a directed multigraph G = (V,E)
containing relationships between objects, where V is a set of vertices containing
the subjects and objects of a list of relationships, and E is a set of directed edges
containing the relationship between objects. The direction of the arrow in the
graph comes from the relationship of the subject to the object. For example, the
relationship (knife, cutting, hard-boiled egg) generates the red arrow in Figure 2.

From the scene graph, we can extract complex relationships between vertices.
Here, we denominate a complex relationship as a relationship with more than
two vertices. For example, from the excerpt scene graph presented in Figure 2,
we can extract the relationship (person, holding, boiled-egg, above, bowl). We use
the complex relationships to create the domain model.

This process considers a minimal interference of the human domain engineer
since he only has to decide what verbs generate complex relationships. In our
experiments, we identify four sets of actions. The four types of actions are:
handling actions, moving actions, cutting actions, and metamorphic actions.

Handling actions are the actions associated with persons manipulating ob-
jects. The multigraph denotes this action by vertices connected to the holding
edge. From these vertices and edge, we generate three actions: hold, take, and
put. The hold action considers the vertices connected to the edge holding. For
example, in Figure 2, we extract the action (person, hold, shell egg). In order to
generate take and put actions, the relationship in the triplet (subject, relation-
ship, object) must be holding and the object must have at least one edge with
another vertex in the multigraph where this edge is a preposition. Using the
Figure 2, we extract the complex relationships (person, take, shell-egg, on table)
and (person, put, shell-egg, on, table).

Moving actions occur when objects change their position in the scene. The
multigraph denotes this action by vertices connected to the moving edge. To gen-
erate the action moving, the relationship in the triplet must be moving and the
object must have at least two edges in the multigraph identified by prepositions.
For example, we extract the complex relationship (person, moving, hard-boiled-
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egg, on, plate) from Figure 2. This complex relationship describes that the person
moves the hard-boiled-egg to place it on the plate.

Cutting actions occur when an object is divided into pieces using another
object. The multigraph denotes this action by vertices connected to the cutting
edge. To generate the cutting action, the relationship in the triplet (subject,
relationship, object) must be cutting, and the object must have at least one edge
containing a preposition. For example, in Figure 2, we extract this action from
the edges connecting knife, hard-boiled-egg and cutting-board as (knife, cutting,
hard-boiled-egg, on, cutting-board).

Finally, metamorphic actions occur when an object changes its form. Dif-
ferent forms can be seen in Figure 2 as the many names to describe an egg
(shell-egg, boiled-egg, and hard-boiled-egg). In order to create this action, we con-
sider as pre-conditions all the relationships that appear in the frame before the
first appearance of the new form of the object. For example, in order to generate
the boiled-egg, the frame before its first appearance contains the relationships
where the shell-egg must be in the pan (shell-egg, in, pan), the person must be
holding the pan (person, holding, pan) and the pan must not be on the stove
(pan, on, stove).

3.2 Planning Domain Generation With No-Interference

To generate the planning domain model without human interference, we con-
sider all relationships annotated in the ground truth of the training set. Using
the annotated relationships, we create a binary vector containing all possible
relations of the domain. An action is generated any time a transition occurs,
i.e., when some relationship changes between two frames. We encode these tran-
sitions in a binary vector containing all the possible relationships that appear in
training data. This approach is similar to the one performed by Amado et al. [1].
However, instead of deriving binary vectors from an autoencoder, we consider a
binary vector composed by all the relationships containing in the training set.
Having generated binary vectors considering all transitions between frames, we
derive a set of actions by performing a bit-wise comparison using each state be-
fore a transition s and the state after a transition s′. This process is summarized
in Algorithm 1, where a modified XOR operation (XORE) on both states gener-
ates the effect of the transition, and a modified version of the XNOR operation
(XNORP ) generates the preconditions of candidate actions.

As described by Amado et al. [1], the Effect XOR (XORE) operation (Line 5)
computes the effect of the action when applying a state s. This operation out-
puts 1 for positive effects, i.e., when a bit changes from 0 in s to 1 in s′, and
−1 for negative effects, i.e., when a bit changes from 1 in s to 0 in s′. When
multiples transitions result in the same effect, we apply the Precondition XNOR
(XNORP ) operation (Line 10) to identify which bits do not change in all the set
of states s of the transitions. The idea is that a bit that appears in all transitions
with the same effect must be a necessary predicate to execute this action. The
XNORP operation outputs 1 for positive preconditions, i.e., when the bit is 1 in
all states that generate the effect, and −1 for negative preconditions, i.e., when
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Algorithm 1 Learn actions of a planing domain [1]
Require: Set of transitions T
1: function Action-Learner(T )
2: E ← 〈〉 . Map of actions
3: A← 〈〉 . Set of generated actions
4: for all (s, s′) ∈ T do
5: eff ← XORE(s, s′)
6: E(eff )← E(eff ) ∪ s

7: for all eff ∈ E do
8: pre ← ∅ . Derived pre-condition
9: for all s ∈ E(eff ) do

10: pre ← XNORP (pre, s)

11: A← A ∪ 〈pre, eff 〉
12: return A

the bit is 0 in all states that generate the effect. Using the algorithm 1, we can
generate the PDDL domain model with a compressed number of actions.

3.3 Goal Recognition Problem

Before setting up the goal recognition problem, we must have a planning prob-
lem. We generate the planning problem by extracting the relationships existent
in the first frame of the videos and the goal as the relationships existent in the
last frame. As described in Section 2.2, we represent a goal recognition prob-
lem as a tuple PGR = 〈D,F , I,G, O〉, where the domain D we compute using
Algorithm 1, facts F are represented by a binary vector encoding all possible
relationships. We compute the initial state I as the intersection of the relation-
ships existent in the initial frame of all videos of the training set. This set of
relationships are converted to a binary vector representing the initial state. We
generate the set of candidate goals G as the intersection of the relationships
presented in the last frame of each recipe, and then encode the resulting rela-
tionships into a binary vector. Finally, for each frame of the test set, we derive
the observations O by encoding the relationships presented in the frame into a
binary vector representing the state.

After building a goal recognition problem, we can apply off-the-shelf goal
recognition techniques, such as [19, 18]. The output of such techniques is the
goal with the highest probability of being the correct one.

4 Experiments

In this section we describe the dataset we use in the experiments, the annota-
tion process, the training of the detectors and the goal recognition execution.
In order to evaluate our models, we generated a dataset by altering the level
of observability available to the algorithm. We set five different percentages of
observability: 100%, 70%, 50%, 30% and 10%. We also compare both approaches
using real-world data extracted using a visual relationship detector [13].
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4.1 Dataset

Previous work on goal recognition using a kitchen scene dataset [12] has the
drawback of using limited dataset. Koller et al. [12] affirm that a thorough eval-
uation was not possible due to the small number of annotated videos. Their work
uses a subset of MPII Cooking 2 dataset [22] annotated with objects that con-
tains only two different performed recipes. Since a large number of images with
ground truth object bounding boxes are critical for learning object detectors
using a neural network, we decide to manually annotate a dataset with objects
and relationships between objects.

The Kitchen Scene Context based Gesture Recognition dataset1 (KSCGR) [23]
is a fine-grained kitchen dataset that contains videos of 7 different subjects cre-
ating five menus for cooking eggs in Japan: ham and eggs, omelet, scrambled
egg, boiled egg, and kinshi-tamago. The original ground truth annotation of the
dataset aims to recognize cooking actions and comprises of 8 cooking gestures
performed by the subject. The dataset is divided into training, validation, and
test sets [10], where the training set contains 4 subjects, each of them performing
5 recipes, the validation set contains 1 subject performing 5 recipes, and the test
contains 2 subjects, each performing 5 recipes. We select this dataset since it
has been used for goal recognition [10].

4.2 Dataset Annotation

The dataset annotation consists of two tasks: the bounding boxes annotation
and the relations annotation. For each task, we use two subjects that follow a
similar protocol that dictates first to watch the video containing the recipe being
performed and then annotate all bounding boxes and relations existent in each
video frame. Finally, the subjects must generate a file for each video containing
all annotated data. For bounding box annotation, we generate a list containing
30 category labels used at least in one recipe. The category labels contains:
person, baked egg, boiled egg, broken egg, hard-boiled egg, mixed egg, shell egg, ham
egg, kinshi egg, scrambled egg, omelette, ham, pan, frying pan, pan handle, pan
lid, bowl, chopstick, cutting board, dishcloth, glass, knife, milk carton, oil bottle,
plate, saltshaker, spoon, turner, table, and stove. The released dataset annotation2

contains 2,356,829 instance-level annotations for objects. Both subjects annotate
a single video, and we measure the quality of inter-annotator agreement using
the Cohen’s Kappa [5]. We consider a correct agreement if the bounding boxes
have an intersection over union (IoU) greater than 0.7. Using this criteria, we
achieve a κ = 0.99, indicating almost perfect agreement between annotators.

The process of relationship annotation aims to identify relations between ob-
jects that are interesting for the performed task. We consider 6 types of relations
predicates: 3 spatial relations (in, on, and above) and 3 action relations (cutting,
holding, and moving). Applying these predicates, we manually created a list con-
taining 164 relations between the 30 category labels that reflects the interesting

1 http://www.murase.m.is.nagoya-u.ac.jp/KSCGR/
2 https://github.com/rogergranada/kscgr_annotation
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relations between two objects in the dataset. This list characterizes each rela-
tionship as a triplet (s, r, o), where s and o are the subject and object categories
respectively, and r is the relationship predicate. For example, a relation for a
ham on the cutting board is identified as (ham, on, cutting board). The complete
dataset annotation contains 2,269,151 triples for all 35 videos of the dataset. We
compute the inter-annotator agreement using a single video annotated by both
subjects, resulting in a κ = 0.87, indicating an almost perfect agreement.

4.3 Object and Relationship Detection

In order to generate triplets for our experiments, we train an off-the-shelf object
and relationship detectors. It is important to note that our approach is indepen-
dent of both detectors, although their accuracy may influence the final results.
We use the Faster R-CNN [21] as object detector and VDR-DSR [13] as a rela-
tionship detector. We trained the Faster R-CNN using a VGG-16 [24] as the base
network. We loaded weights pre-trained in PASCAL VOC 2007 dataset [7] and
freeze the first five convolutional layers. In the other layers, we use a learning
rate of 1e-3, which decreased by a factor of 10 after every epoch. VRD-DSR [13]
uses the RoI features from Faster R-CNN to use as the visual appearance fea-
tures and spatial location cues. As we previously extracted features from Faster
R-CNN, we can perform only predicate detection using VRD-DSR. In such task,
VRD-DSR predicts the correlated predicates given a pair of localized objects. We
train the VRD-DSR using the VGG-16 as the backbone network for 20 epochs.
We use Adam optimizer [11] for all networks and set the learning rate to 1e-5.

4.4 Goal Recognition

To test our approaches’ ability to recognize goals using only the relationships
between objects, we perform goal recognition using a landmark-based heuristics
[18], which is the current state-of-the-art in goal and plan recognition. Following
the current goal recognition research, we evaluate our approaches in terms of
accuracy and spread using different observability levels. We set five different
percentages of observability: 100%, 70%, 50%, 30% and 10%. Finally, we test our
approaches using the real-world data from the VRD-DSR relationship detector.

Table 1. Experimental results on Goal Recognition problems using domain model with
minimal human interference.

Boiled egg Ham egg Kinshi egg Omelette Scrambled egg

Obs |O| Acc SG |O| Acc SG |O| Acc SG |O| Acc SG |O| Acc SG

10 591 1.00 3.36 575 0.76 1.64 513 0.13 2.17 585 0.67 1.74 521 0.58 2.41

30 1774 1.00 3.31 1727 0.77 1.65 1540 0.12 2.10 1758 0.48 2.16 1564 0.60 2.45

50 2957 1.00 3.41 2879 0.76 1.65 2568 0.11 2.15 2931 0.42 1.99 2608 0.58 2.45

70 4139 1.00 3.38 4031 0.77 1.64 3596 0.13 2.14 4103 0.52 1.94 3651 0.60 2.39

100 5914 1.00 3.39 5759 0.76 1.65 5137 0.12 2.15 5863 0.48 2.19 5217 0.59 2.41

VRD 5914 1.00 3.43 5759 0.65 1.54 5137 0.11 2.07 5863 0.56 2.31 5217 0.44 2.50
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Fig. 3. Examples of possible goals in goal recognition for (a) Kinshi and (b) Ham eggs.

Table 1 summarizes the goal recognition performance using our approaches
for all recipes of the test set, where Obs is the percentage of the plan that is
actually observed; |O| is the average number of observations; Acc (Accuracy)
represents the average number of problems in which the correct goal was among
the recognized goals; SG (Spread of goal G) is the average number of returned
goals when multiple-goal hypotheses were tied in the recognition algorithm.

As we can see, the accuracy for Boiled egg was the highest when compared
with the other recipes. It justifies since the Boiled egg recipe is the most dissimilar
recipe. While the other recipes uses the frying pan to prepare the egg, the Boiled
egg uses the pan. The egg is also different in this recipe, since it is not broken
into the container. A counter point is illustrated by the Kinshi egg recipe, that
achieved the lowest accuracy of all recipes. Figure 3 (a) illustrates the output
of the goal recognizer to the Kinshi egg recipe, where we can see that in most
frames the recipe Scrambled egg is predicted as the correct recipe. In fact, both
recipes are very similar, when the egg is being cooked in the frying pan. However,
in Kinshi egg, the person cuts the egg after taking it out of the frying pan, which
represents the change in the correct goal by the goal recognizer in the last frames.
Figure 3 (b) illustrates the candidate goals for Ham egg, where Scrambled egg is
predicted mainly in parts of the video where the egg is in frying pan.

Table 2 shows the results achieved when using the domain model without
human interference. When dealing with our automatically generated domain
model, it seems that the plan focus on Scrambled egg actions, since in most plans
this action is the candidate goal with the highest number of achieved landmarks.
The unique case where it does not infer the Scrambled egg goal occurs when we
feed the observations from Boiled egg recipe.

When using real-world data from the visual relationship detector (VRD),
there is not a large difference between the scores achieved by using missing
observations. As the goal recognizer is based on landmarks, the most of the noisy
data do not interfere the goal prediction. When comparing our results with the
results achieved by Granada et al. [10], our approach using a minimal inference
can achieve a highest number of correct goals. In that work, some goals were
never achieved since missing information would lead to wrong plans in the plan
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Table 2. Experimental results on Goal Recognition problems using domain model with
no human interference (data-driven).

Boiled egg Ham egg Kinshi egg Omelette Scrambled egg

Obs |O| Acc SG |O| Acc SG |O| Acc SG |O| Acc SG |O| Acc SG

10 591 1.00 1.97 575 0.12 1.89 513 0.26 2.46 585 0.04 2.47 521 0.97 2.70

30 1774 1.00 1.95 1727 0.22 1.79 1540 0.24 2.42 1758 0.04 2.47 1564 0.98 2.71

50 2957 1.00 1.96 2879 0.23 1.79 2568 0.25 2.43 2931 0.04 2.49 2608 0.98 2.69

70 4139 1.00 1.96 4031 0.21 1.82 3596 0.25 2.42 4103 0.04 2.47 3651 0.97 2.67

100 5914 1.00 1.97 5759 0.25 1.77 5137 0.25 2.43 5863 0.04 2.49 5217 0.97 2.69

VRD 5914 1.00 1.96 5759 0.23 1.68 5137 0.26 2.33 5863 0.04 2.43 5217 0.97 2.73

library. As our work considers more than the sequence of actions to determine
the correct goal, we improve the goal recognition process.

5 Related Work

Amado et al. [1] combines goal recognition techniques with deep autoencoders to
generate domain theories from data streams. A pair of images is encoded into an
autoencoder generating a 72 bits vector representation of the transition. These
pairs of states are fed into an Action Learner to generate the domain model.
Their experiments are evaluated in simple problems, such as Hanoi Tower and
MNIST 8-Puzzle datasets. Using a kitchen scenario, Koller et al. [12] proposes a
goal recognition approach that infers goals from video using spatial object anno-
tation traces. In order to find the goal, their technique matches the properties of
detected objects to the preconditions of planning operators, using a knowledge
base. Unlike our method, they build a domain model using domain engineering.

Granada et al. [10] perform goal recognition using the KSCGR [23] dataset.
Their approach modifies a symbolic plan recognition approach called Symbolic
Behavior Recognition (SBR) to work with a Convolutional Neural Network
(CNN). The CNN identifies individual actions from raw images that are then
processed by a goal recognition algorithm that uses a plan library describing pos-
sible overarching activities to identify the subject’s ultimate goal in the video.
Although their approach uses the same KSCGR dataset, plan libraries limit the
goal recognition process, since some recipes contain actions that appear only in
the test set and not in the training set.

6 Conclusion

This paper describes two approaches for goal recognition using the relation-
ship between objects in a kitchen scenario. The first approach uses minimum
interference of a human domain engineer, while the second approach is totally
data-driven. In order to perform experiments, we annotate a dataset of actions
occurring in a kitchen scenario and make it freely available. Experiments using
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both models shows that the model using a minimal human interference achieves
better results when comparing with the automatically generated domain model.

As future work, we plan to test different objects and relationship detectors [6,
30] to verify their influence in the outcome results. We intend to test other
goal recognizers such as probabilistic plan recognizers [20] and plan recognition
algorithms to deal with incomplete domain models to handle inconsistencies and
noise generated by the domain model generator.
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