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Abstract

Goal recognition aims to recognize the set of candidate goals
that are compatible with the observed behavior of an agent.
In this paper, we develop a method based on the operator-
counting framework that efficiently computes solutions that
satisfy the observations and uses the information generated
to solve goal recognition tasks. Our method reasons explic-
itly about both partial and noisy observations: estimating un-
certainty for the former, and satisfying observations given the
unreliability of the sensor for the latter. We evaluate our ap-
proach empirically over a large data set, analyzing its com-
ponents on how each can impact the quality of the solutions.
In general, our approach is superior to previous methods in
terms of agreement ratio, accuracy, and spread. Finally, our
approach paves the way for new research on combinatorial
optimization to solve goal recognition tasks.

Introduction
Goal recognition as planning consists of inferring the set of
compatible goals from a set of goal candidates, given a plan-
ning task without a goal, and a sequence of observations. A
solution for a goal recognition task is a subset of goal candi-
dates that are compatible with the sequence of observations.
A plan for the planning task with the reference goal, part of
the set of goal candidates, generates the sequence of obser-
vations. This sequence may be partial, containing any num-
ber of observations from the plan. Existing methods on goal
recognition try to cope with three main classes of observa-
tion sequences: optimal (Ramı́rez and Geffner 2009), sub-
optimal (Ramı́rez and Geffner 2010), and noisy (Sohrabi,
Riabov, and Udrea 2016). Since approaches to goal recog-
nition as planning often employ standard planning technol-
ogy to solve goal recognition tasks, many of them can ben-
efit from improvements in the underlying planning technol-
ogy (Ramı́rez and Geffner 2009; E-Martı́n, R.-Moreno, and
Smith 2015; Pereira, Oren, and Meneguzzi 2017; Harman
and Simoens 2020).

Recent developments in planning include heuristics based
on the operator-counting framework, which combines the

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

information of admissible heuristic functions through an in-
teger program (IP) (Pommerening et al. 2014). These heuris-
tics provide constraints that must be satisfied by every plan
of the planning task. In general, the objective value of the
linear program (LP), a linear relaxation of the integer pro-
gram, is used as heuristic function to guide the search. A ma-
jor advantage of this framework is that it enables to reason
and to manipulate the information of the heuristics directly.

We develop an LP-based approach to solve goal recogni-
tion tasks, including five main contributions. First, we mod-
ify the operator-counting framework to efficiently compute
solutions that satisfy the counts of observations of a goal
recognition task. We also use this framework to estimate the
cost of an optimal plan for each goal candidate in the task.
Then, we use the information generated to solve the goal
recognition task. Second, we show how to contrast the ob-
jective value of the modified linear program and the length
of the sequence of observations to estimate the uncertainty
of the decision of our approach which we use to improve
our solution. Third, we develop an approach to explicitly ad-
dress noisy observations. Given the unreliability of the sen-
sor of observations, we create an integer program that aims
to automatically ignore noisy observations when comput-
ing solutions. Fourth, we show that higher heuristic values
from lower bound heuristics for the reference goal predict
the quality of our solution. Finally, we modify the previous
benchmarks to compare goal recognition methods by agree-
ment ratio, showing that ours overcomes the state of the art.

Planning Task and Operator-Counting
Framework

An SAS+ planning task is a tuple Π = 〈V,O, s0, s
∗, cost〉,

where V is a set of variables, O is a set of operators, s0 is
an initial state, s∗ is a goal condition, and cost a cost func-
tion. Each variable v ∈ V has a finite domain D(v). A state
is a complete assignment, a partial state is a partial assign-
ment of the variables over V , vars(s) is the set of variables
in a (partial) state s, and s[v] is the value of variable v in a
(partial) state s. The initial state s0 is a state, and the goal
condition s∗ is a partial state. A state s is consistent with a
(partial) state s′ if s[v] = s′[v] for all v ∈ vars(s′). Each
operator o ∈ O is pair of partial states 〈pre(o),post(o)〉
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Figure 1: A goal recognition task example.

and an operator o is applicable to a state s if s is consis-
tent with pre(o). Applying o to s generates a new state s′
such that s′[v] = post(o)[v] for vars(post(o)) and for the
remaining variables s′[v] = s[v]. Function cost : O → Z+

0
assigns a non-negative cost to each operator o ∈ O – in this
paper all operators have unit cost. An s-plan π is a sequence
of operators 〈o1, . . . , on〉 such that there exists a sequence
of states 〈s1 = s, . . . , sn+1〉 where oi is applicable to si
and produces state si+1, and sn+1 is consistent with s∗. The
cost of a s-plan π is defined as cost(π) =

∑
o∈π cost(o). An

s0-plan or a plan is a solution to a planning task and is op-
timal if its cost is minimal. Figure 1 illustrates our running
example where the agent performs cardinal movements and
starts at s0. An optimal plan that reaches s∗1 for this task is
π = 〈o1, o2, o3〉.
Definition 1 (Operator-Counting Constraint). Let Π be a
planning task with operatorsO, and let s be one of its states.
LetY be a set of real-valued and integer variables, including
an operator-counting non-negative integer variable Yo for
each operator o ∈ O. A set of linear inequalities over Y
is an operator-counting constraint for s if for every valid s-
plan π, there exists a solution with Yo = occurπ(o) for all
o ∈ O – where occurπ(o) is the number of occurrences of
operator o in the s-plan π.

In the example Yo3 + Yo10 ≥ 1 is an operator-counting
constraint (and a landmark constraint) for goal s∗1 because
the agent must use one of these operators to reach s∗1.

Definition 2 (Operator-Counting IP/LP Heuristic). The
operator-counting integer program IPC for a set of operator-
counting constraints C for state s is

minimize
∑
o∈O

cost(o)Yo

subject to C,

Yo ∈ Z+
0 .

The IP heuristic hIP is the objective value of IPC , and the LP
heuristic h is the objective value of its linear relaxation. If
the IP or LP is infeasible, the heuristic estimate is∞.

Goal Recognition as Planning
We formally define the task of goal recognition as planing
as a tuple 〈ΠP,Γ,Ω〉, where ΠP is a planning task without a
goal condition, Γ is a set of goal candidates, and Ω is a se-
quence of observations. Observation ~o corresponds to opera-
tor o. For readability, we abuse notation and equate operators
to observations throughout the paper when convenient.

Definition 3 (Observation Compliance). Let π =
〈o1, . . . , on〉 be a plan for a planning task Π and Ω =
〈~o1, . . . , ~om〉 a sequence of observations. Plan π complies
with Ω if a monotonic function f : [1,m] 7→ [1, n] exists
that maps all operator indexes in Ω to indexes in π, such
that ~oi = of(i).

We define three classes of sequences of observations: op-
timal and sub-optimal (Definition 4) observations, and noisy
optimal/sub-optimal observations (Definition 5).
Definition 4 (Sequence of Observations). Let π =
〈o1, . . . , on〉 be a plan for the planning task Π. Then, a
sequence of observations Ω is a sequence of operators ex-
tracted from the plan π maintaining their relative order. The
sequence may be partial, containing any number of opera-
tors from the plan π. An optimal sequence of observations is
extracted from an optimal plan and a sub-optimal sequence
of observations is extracted from a sub-optimal plan. An
optimal/sub-optimal observation is part of an optimal/sub-
optimal sequence of observations.
Definition 5 (Noisy Observations). A noisy sequence of
observations Ω is a sequence observations extracted from π
that is augmented with at least one observation O−π,
which is inserted in any position of the extracted sequence.

We extend the standard definition from Ramı́rez and
Geffner (2009) of an exact solution set for a goal recogni-
tion task to also consider sub-optimal observation sequences
(Definition 6) and call it reference solution set. We define the
reference solution set as a subset of the goal candidates such
that there exists a complying plan as sub-optimal as or less
than the plan that generated the observations for the refer-
ence goal.
Definition 6 (Reference Solution Set). Let 〈ΠP,Γ,Ω〉 be
a goal recognition task and Π a planning task with the goal
condition s∗ ∈ Γ (the reference goal). Let π∗ be an opti-
mal plan for Π, and let π be a plan for Π from which Ω
is extracted. Let h∗Ω(s0, s

∗
i ) be the cost of an optimal plan

for Π restricted to the set of plans that comply with Ω,
and h∗(s0, s

∗
i ) be the cost for an optimal plan for Π, both

with s∗i ∈ Γ. h∗Ω(s0, s
∗
i ) and h∗(s0, s

∗
i ) are equal to ∞ if

no plan exists. Then, the reference solution set for the goal
recognition task is

Γ* = {s∗i ∈ Γ | h
∗
Ω(s0, s

∗
i )

h∗(s0, s∗i )
≤ cost(π)

cost(π∗)
∧h∗Ω(s0, s

∗
i ) 6=∞}

In Figure 1 we show a goal recognition task with goal
candidates Γ = {s∗1, s∗2}. Suppose that s∗1 is the reference
goal. Then, Ω1 = 〈~o1〉 is an optimal sequence of obser-
vations because it is extracted from the optimal plan π1 =
〈o1, o2, o3〉, Ω2 = 〈~o5, ~o7, ~o9〉 and Ω3 = 〈~o4, . . . , ~o10〉 are
sub-optimal sequences of observations because they are ex-
tracted from the sub-optimal plan π2 = 〈o4, . . . , o10〉, and
Ω4 = 〈~o4, . . . , ~o10, ~o11〉 is a sub-optimal and noisy sequence
of observations because it was extracted from π2 and the ob-
servation of ~o11 was added. The reference solution set for
goal recognition tasks with noisy observations is computed
ignoring noisy observations in the sequence of observations.
The reference solution set for any of these observation se-
quences with respective plans is Γ∗i = {s∗1}. For example,



h∗Ω4
(s0, s

∗
1) = 7, h∗Ω4

(s0, s
∗
2) = 9, cost(π2)/ cost(π∗) =

7/3 and thus Γ∗4 = {s∗1}.

LP-Based Goal Recognition
We now develop an LP-based goal recognition method that
expands the operator-counting framework with observation-
counting constraints.

Observation-Counting Constraints We now introduce
an IP/LP heuristic which expands the operator-counting
framework with a set of observation-counting constraints.
Definition 7 formally introduces the set of observation-
counting constraints and the integer program that ensures
that the solution computed satisfies all observation counts.
Definition 7 (Satisfying IP/LP heuristic). Let YΩ be a set
of non-negative integer variables with a variable Y~o for each
operator o ∈ O. Let occurΩ(o) be the number of occur-
rences of operator o in Ω. Then, the satisfying integer pro-
gram IPCΩ for a set of operator-counting constraints C, a set
of observation-counting constraints, and sequence of obser-
vations Ω for state s is

minimize
∑
o∈O

cost(o)Yo

subject to C,
Y~o ≤ occurΩ(o) for all o ∈ O (1)
Y~o ≤ Yo for all o ∈ O (2)∑
Y~o∈YΩ

Y~o ≥ |Ω | (3)

Yo,Y~o ∈ Z+
0 .

The satisfying IP heuristic hIP
Ω is the objective value of IPCΩ ,

and the satisfying LP heuristic hΩ is the objective value of its
linear relaxation. If the IP or LP is infeasible, the heuristic
estimate is∞.

In the integer program, the set of constrains (1) limits the
value of each Y~o by the number of occurrences of the op-
erator o in Ω. Next, the set of constraints (2) binds the two
sets Y~o and Yo of variables. This set of constraints guaran-
tees that Yo acts as an upper bound for Y~o. Thus, to increase
the count of Y~o the integer program must first increase the
count of Yo which is minimized in the objective function
and restricted by the set of operator-counting constraints C.
Finally, constraint (3) ensures all observations are satisfied,
since each Y~o is limited by the number of times o appears
in Ω. While simpler models can compute the same objective
value, we show how explicit information about the observa-
tions enables us to reason about noisy observations.

Note that hΩ(s, s∗) ≤ h∗Ω(s, s∗) for all states s of the
planning task. First note that h is admissible (Pommerening
et al. 2014) and that a complying plan π can always sat-
isfy IPCΩ . Note that the only difference between IPCΩ and IPC

are the observation-counting constraints. These constraints
only restrict the set of plans that can satisfy IPCΩ to the set of
plans that satisfy all observations. If π is an optimal s-plan
that complies with Ω (h∗Ω(s, s∗) = cost(π)), then there is a
solution for IPCΩ/LPCΩ where Y~o = Yo = occurπ(o).

We use the hΩ heuristic to estimate a lower bound on the
cost of an optimal plan that satisfies all observations in Ω for
each goal candidate in Γ. However, this information is insuf-
ficient to estimate the solution set because the goal candidate
with the least hΩ-value is not necessarily the most likely one.
Consider a goal recognition task with two goal candidates.
The first goal candidate has an optimal cost plan that can be
extended with one operator to satisfy the single observation
in Ω. The second goal candidate has an optimal cost plan
that complies with the observation in Ω. In this example the
plan for the first goal costs less than the plan for the sec-
ond goal. In this example only the first goal candidate would
be included in the solution set. However, we argue that the
second goal is more likely to be part of the reference solu-
tion set since it is the only goal candidate with a comply-
ing optimal plan. Therefore, we normalize the values of hΩ

with estimates of the costs of the original optimal solution –
without satisfying the observations. Like previous methods,
the idea is to select the goals that have plans that satisfy all
observations with the least additional cost. For this, we use
the value of the original operator-counting heuristic h. Hav-
ing hΩ and h for each goal candidate we can compute the
following solution set:

δmin = min
s∗i∈Γ : hΩ(s0,s∗i )<∞

{hΩ(s0, s
∗
i )− h(s0, s

∗
i )} (4)

ΓLP = {s∗i ∈ Γ | hΩ(s0, s
∗
i )− h(s0, s

∗
i ) = δmin} (5)

Equation 4 computes the minimum difference δmin be-
tween the lower bound cost of an optimal plan that satisfies
observations and the lower bound cost of an optimal plan
(ignoring observations). The δmin value only considers goal
candidates with bounded estimates for plans that satisfy ob-
servations (hΩ(s0, s

∗) <∞). Equation 5 computes the solu-
tion set ΓLP by selecting all goals with a difference between
the estimates equal to δmin. Note that ΓLP is an approximated
solution and not equal to the reference solution set Γ*. In
our running example, consider a goal recognition task with
Ω = 〈~o5, ~o7, ~o9〉. Then cost of hΩ(s0, s

∗
1) and h(s0, s

∗
1) are

7 and 3, and costs of hΩ(s0, s
∗
2) and h(s0, s

∗
2) are 9 and 3.

Thus, δmin equals to 4, and we return ΓLP = {s∗1}.

Addressing Noisy Observations In most realistic set-
tings, unreliable sensors may add noisy observations to the
sequence of observations. Consider a goal recognition task
in our running example with Ω = 〈~o4, . . . , ~o10, ~o11〉. Then,
hΩ(s0, s

∗
1) = 13 and hΩ(s0, s

∗
2) = 11. In this situation we

would have δmin = 8, and ΓLP = {s∗2}. However, the ob-
servation ~o11 is unlikely to be part of any plan that gener-
ates the sequence of observations for either of the two goals.
Evaluating precisely which observations are unlikely to be
part of plans for a goal is a hard problem that requires solv-
ing a planning task multiple times, or, as Sohrabi, Riabov,
and Udrea (2016) do, generating multiple plans. In spite of
that, we can the estimate the solution for this problem in
polynomial time using the linear relaxation of an integer pro-
gram. Specifically, we modify the integer program to try to
automatically identify noisy observations given the unreli-
ability of the sensors. The main modification is to replace



constraint (3) in the integer program IPΩ
C with constraint (6).

We call the solution set using this heuristic Γε.∑
Y~o∈YΩ

Y~o ≥ |Ω | − b|Ω | ∗ εc (6)

where ε is the unreliability rating of the sensor that repre-
sents the expected percentage of mistaken observations. This
new constraint requires that at least |Ω | − b|Ω | ∗ εc ob-
servations be satisfied by the solution found. If ε = 0, all
observations must be satisfied. If 0 < ε < 1, some observa-
tions can be automatically ignored in order to minimize the
objective value of hΩ for each goal candidate. Consider our
running example with Ω = 〈o4, . . . , o10, o11〉 and ε = 0.2.
Then, the integer program IPCΩ has to satisfy 7 observations.
Then, hΩ(s0, s

∗
1) = 7 and hΩ(s0, s

∗
2) = 9. In this situation

we would have δmin = 4, and Γε = {s∗1}.
Measuring Uncertainty The main idea of this approach is
that if Ω has a lower percentage of observations we should
be more careful in our decision. However, if the percent-
age is higher we can be more confident. A goal recognition
task does not provide the percentage of observations in Ω.
However, we can estimate this information using our heuris-
tic hΩ. Since hΩ provides a lower bound on the cost of a plan
that satisfies the observations the difference (if any) between
hΩ and |Ω | must be due to missing observations. Note that
under 100% observability hΩ = |Ω |, and with lower de-
grees of observability hΩ may select operators that are not
in Ω to satisfy the operator-counting constraints C. Thus,
in lower degrees of observability the difference between hΩ

and |Ω | is likely to increase. This information allows us to
estimate the degree of observability as follows:

µ = 1 +
maxs∗i∈ΓLP{hΩ(s0, s

∗
i )} − |Ω |

maxs∗i∈ΓLP{hΩ(s0, s∗i )}
(7)

where µ is the uncertainty ratio. This value is computed
by first selecting the goal candidates using Equation 5, and
then selecting the goal candidate in ΓLP with maximum hΩ.
Having µ we can compute the new solution set Γµ that con-
siders uncertainty:

Γµ = {s∗i ∈ Γ | hΩ(s0, s
∗
i )− h(s0, s

∗
i ) ≤ δmin ∗ µ} (8)

Consider our running example with Ω = 〈~o6〉. Then,
hΩ(s0, s

∗
1) = 7 and hΩ(s0, s

∗
2) = 9. In this situation we

would have δmin = 4, and ΓLP = {s∗1}. However, we would
argue that having only one observation is insufficient to
make a precise decision. Using uncertainty we would have
µ = 1 + 6/7 and Γµ = {s∗1, s∗2}.

Experimental Results
We conducted extensive empirical experiments to show the
effectiveness of our methods in three ways. First, we eval-
uate how each source of operator-counting constraints im-
pacts the quality of our solutions. Second, we assess the per-
formance of our methods that explicitly address low observ-
ability and noise. Finally, we compare our approach with
previous ones. We ran all experiments with Ubuntu running
over an Intel Core i7 930 CPU (2.80 GHz) with a memory

limit of 1 GB, all methods solved each goal recognition task
under a time limit of five seconds. Our implementation uses
Fast Downward version 19.06 (Helmert 2006), a Python pre-
possessing layer, and the CPLEX 12.10 LP solver.1

Benchmark Domains and Data sets We create a new
benchmark by adapting the one introduced by Pereira, Oren,
and Meneguzzi (2017) to use the agreement ratio evalua-
tion metric from Ramı́rez and Geffner (2009). For each do-
main we create three planning tasks each (except for IPC-
GRID, in which we create four) with four reference goals
each that we use to compute the plans from which we ex-
tract the sequence of observations. We compute optimal and
sub-optimal plans for each pair of planning task and refer-
ence goal creating two data sets. To compute sub-optimal
plans we use weighted A∗ with w = 2 (Pohl 1970).

Following previous work, we experiment with five differ-
ent levels of observability: 10%, 30%, 50%, 70% and 100%.
We only generate one sequence of observations for 100%
of observability, and three different random observation se-
quences from the same plan for other percentages, generat-
ing 208 goal recognition tasks in total for IPC-GRID and
156 for each of the other domains in each data set (optimal
and sub-optimal). For each data set we also create a corre-
sponding noisy data set by adding d|Ω |∗0.2e randomly gen-
erated observations in each sequence of observations— i.e.
the fault rate of the sensor is 20%. Three different noisy se-
quences are generated for each original sequence. For each
goal recognition task we add at least five randomly gener-
ated candidate goal conditions. In total we have 8, 288 goal
recognition tasks divided in four data sets. In order to cre-
ate the new benchmarks, we compute the reference solution
set Γ* for each goal recognition task for optimal and sub-
optimal data sets. Thus, for each goal candidate of each base
task we solve a planning task twice.

We evaluate the methods using three metrics: agreement
ratio, accuracy and spread. The agreement ratio is defined
as the intersection over union |Γ* ∩Γ |/|Γ* ∪Γ | of the ref-
erence solution set Γ* against the solution Γ provided by
the method. The accuracy is 1 if the solution set chosen by
the evaluated method contains the reference goal and 0 oth-
erwise. Note that we use a slight modified of accuracy in
other to compare to (Pereira, Oren, and Meneguzzi 2017).
The spread is the size of the solution set chosen by the eval-
uated method. Table 1 summarizes the information about
the data sets. The domains we use are BLOCKS WORLD,
DEPOTS, DRIVERLOG, DWR, IPC GRID, FERRY, LO-
GISTICS, MICONIC, ROVERS, SATELLITE, SOKOBAN and
ZENO TRAVEL. Due to space restrictions, we summarize
results for all domains as averages in OTHER, except for
BLOCKS WORLD, IPC GRID and SOKOBAN. For each do-
main row, |Γ | is the average number of candidate goals.
Columns |Ω | and |Γ* | show the average sizes of the ob-
servations and the reference solution set, respectively. The
average size of the plan with 100% of observability indi-
cates the size of the plan computed for the reference goal.

1Source-code and benchmark are available at:
https://bit.ly/lp-goal-recognition
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As expected, the average sizes |Ω | and |Γ* | are larger for
the sub-optimal data set than for the optimal data set.

Optimal Sub-Optimal

# % |Γ | |Ω | |Γ* | |Ω | |Γ* |

B
L

O
C

K
S

10

20.33

1.25 8.0 1.42 7.61
30 3.08 3.97 3.83 3.58
50 4.42 2.5 5.92 3.19
70 6.67 1.94 8.5 2.53
100 8.83 1.83 11.83 2.25

IP
C

-G
R

ID

10

7.5

1.63 2.71 2.06 1.58
30 4.0 1.21 5.56 1.4
50 6.19 1.13 8.88 1.35
70 8.69 1.04 12.56 1.31
100 11.88 1.0 17.25 1.5

S
O

K
O

B
A

N 10

8.67

2.33 2.11 3.33 1.83
30 6.5 1.25 8.67 1.28
50 10.33 1.22 13.75 1.33
70 14.67 1.03 19.33 1.36
100 20.17 1.0 27.0 1.33

O
T

H
E

R

10

6.89

1.85 3.01 2.46 2.32
30 4.69 1.61 6.37 1.45
50 7.52 1.21 10.04 1.21
70 10.61 1.1 14.13 1.15
100 14.51 1.06 19.55 1.08

Table 1: Key properties of each experimental domain.

Evaluating the Constraints We measure how the sources
of operator-counting constraints impact the quality of the so-
lutions, and if more informed heuristics hΩ improve the so-
lution of goal recognition tasks. The constraint sources are:
state equation hSEQ (Bonet 2013), landmarks hLMC (Bonet
and van den Briel 2014), and the post-hoc optimization
hPhO (Pommerening, Röger, and Helmert 2013).

Figure 2 shows the value of hΩ for each source of con-
straints. Each point is the hΩ-value for a goal recognition
task with its reference goal in the optimal data set. There
are four figures in each group, one for each degree of ob-
servability (10%, 30%, 50% and 70%). They show that, in
general, hSEQ

Ω and hLMC
Ω are more informed than hPhO

Ω , and
that hSEQ

Ω and hLMC
Ω are comparable. Also, as expected, the

difference in the values decreases as observability increases.
On average hSEQ

Ω and hLMC
Ω are more informed than hPhO

Ω
on 61.49% and 72.58% of the goal recognition tasks respec-
tively. hSEQ

Ω is more informed than hLMC
Ω on 31.19% of the

tasks, and hLMC
Ω is more informed than hSEQ

Ω on 42.96% of
the tasks.

Optimal Sub-Optimal

# % S L P S, L L, P S, P S L P S, L L, P S, P

B
L

O
C

K
S

10 0.45 0.42 0.44 0.45 0.41 0.44 0.44 0.41 0.39 0.44 0.39 0.41
30 0.43 0.33 0.43 0.43 0.47 0.47 0.5 0.44 0.41 0.5 0.44 0.49
50 0.55 0.46 0.44 0.55 0.58 0.59 0.5 0.37 0.51 0.5 0.57 0.55
70 0.75 0.54 0.58 0.75 0.81 0.85 0.64 0.45 0.55 0.64 0.69 0.71

100 0.82 0.58 0.62 0.82 0.88 0.92 0.74 0.52 0.58 0.74 0.79 0.84

IP
C

-G
R

ID

10 0.65 0.92 0.4 0.87 0.92 0.68 0.6 0.86 0.25 0.76 0.86 0.63
30 0.73 0.97 0.25 0.93 0.97 0.78 0.69 0.88 0.23 0.82 0.88 0.71
50 0.83 0.97 0.27 0.96 0.97 0.9 0.81 0.89 0.29 0.84 0.89 0.87
70 0.9 0.97 0.3 0.97 0.97 0.95 0.87 0.91 0.08 0.89 0.91 0.89

100 1.0 1.0 0.23 1.0 1.0 1.0 0.94 0.94 0.05 0.94 0.94 0.94

S
O

K
O

B
A

N 10 0.38 0.38 0.24 0.39 0.34 0.31 0.38 0.3 0.24 0.52 0.25 0.36
30 0.59 0.41 0.14 0.75 0.38 0.59 0.72 0.43 0.14 0.77 0.37 0.68
50 0.82 0.53 0.21 0.92 0.49 0.82 0.77 0.51 0.17 0.79 0.41 0.79
70 0.93 0.73 0.21 0.99 0.62 0.93 0.85 0.58 0.17 0.8 0.51 0.85

100 0.96 0.85 0.23 1.0 0.81 0.96 0.88 0.73 0.22 0.83 0.72 0.88

O
T

H
E

R

10 0.71 0.73 0.63 0.78 0.72 0.69 0.63 0.63 0.55 0.72 0.63 0.64
30 0.71 0.71 0.54 0.82 0.7 0.73 0.67 0.7 0.54 0.78 0.69 0.69
50 0.81 0.78 0.58 0.88 0.77 0.82 0.8 0.78 0.61 0.87 0.78 0.83
70 0.91 0.87 0.63 0.96 0.87 0.92 0.9 0.87 0.64 0.94 0.88 0.9

100 0.96 0.94 0.66 0.98 0.95 0.95 0.95 0.93 0.66 0.97 0.95 0.95

AVG 0.79 0.77 0.54 0.86 0.78 0.8 0.76 0.74 0.52 0.82 0.75 0.78

Table 2: Agreement ratio for constraint sets state equa-
tion hSEQ

Ω (S), landmarks hLMC
Ω (L), and post-hoc hPhO

Ω (P).

A
G

R
1
−

A
G

R
2

hLMC
Ω vs. hPhO

Ω hSEQ
Ω vs. hPhO

Ω hSEQ
Ω vs. hLMC

Ω

h1
Ω − h2

Ω

Figure 3: Relation between hΩ-value and agreement ratio.

Table 2 shows the results of the agreement ratio for each
source of operator-counting constraints solving goal recog-
nition tasks in the optimal and sub-optimal data sets. The
solution set ΓLP is computed using hΩ, and when two or
more sources of operator-counting constraints are used, they
are all combined into a single integer program IPCΩ . The first
group of columns shows the results for each source of con-
straints used individually, and the second combined in pairs.
When the constraints are used individually hSEQ

Ω and hLMC
Ω

achieve the best results for different domains. For example,
hSEQ

Ω is the best for BLOCKS while hLMC
Ω is the best for IPC-

GRID. When pairs of constraints are combined the results
improve and again the pair formed by hLMC

Ω and hSEQ
Ω pro-

vides best results. Results using all constraints are similar
to using the pair hLMC

Ω and hSEQ
Ω (as presented next in Ta-

ble 3). There are two key conclusions of these results. First,
the agreement increases with the degree of observability, but
even with 100% it is still hard to obtain perfect agreement.
Second, the agreement degrades in the sub-optimal data set,
but our method maintains an average of 0.82.



Optimal

ΓLP Γµ RG POM POM-10% POM-30%

# % AGR ACC SPR AGR ACC SPR AGR ACC SPR AGR ACC SPR AGR ACC SPR AGR ACC SPR

B
L

O
C

K
S

10 0.44 0.86 7.53 0.44 0.86 7.56 0.47 0.92 9.83 0.06 0.17 1.44 0.13 0.47 4.06 0.38 1.0 18.14
30 0.46 0.78 2.5 0.44 0.86 4.67 0.45 0.92 5.56 0.21 0.39 1.17 0.3 0.75 2.94 0.24 1.0 15.25
50 0.59 0.89 3.03 0.52 0.89 3.86 0.62 0.97 3.69 0.33 0.58 1.25 0.37 0.81 3.08 0.25 0.97 12.17
70 0.85 0.97 1.83 0.76 0.97 2.42 0.81 1.0 2.22 0.51 0.72 1.14 0.45 0.94 2.19 0.25 1.0 9.22

100 0.92 1.0 1.67 0.92 1.0 1.67 0.9 1.0 2.08 0.59 1.0 1.67 0.55 1.0 1.92 0.31 1.0 6.42

IP
C

-G
R

ID

10 0.87 0.94 2.67 0.88 0.96 2.69 0.91 1.0 3.23 0.47 0.75 2.35 0.55 0.98 4.38 0.49 1.0 6.25
30 0.93 0.96 1.15 0.94 0.98 1.17 0.99 1.0 1.25 0.85 0.98 1.52 0.81 1.0 1.96 0.64 1.0 3.17
50 0.96 0.98 1.08 0.96 0.98 1.08 1.0 1.0 1.13 0.86 1.0 1.44 0.86 1.0 1.56 0.77 1.0 2.15
70 0.97 0.98 1.06 0.97 0.98 1.06 1.0 1.0 1.04 0.97 0.98 1.02 0.97 0.98 1.02 0.93 0.98 1.15

100 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

S
O

K
O

B
A

N 10 0.39 0.53 2.08 0.38 0.61 2.94 0.4 0.81 4.86 0.28 0.53 2.14 0.32 0.89 4.39 0.26 0.97 7.0
30 0.75 0.81 1.25 0.64 0.92 2.06 0.56 0.86 2.53 0.57 0.69 1.22 0.48 0.75 1.89 0.23 0.94 5.17
50 0.92 1.0 1.19 0.83 1.0 1.39 0.61 0.86 2.14 0.61 0.69 1.42 0.55 0.81 2.14 0.28 1.0 5.08
70 0.99 1.0 1.0 0.94 1.0 1.08 0.64 0.83 1.53 0.85 0.92 1.17 0.81 0.94 1.39 0.36 1.0 3.64

100 1.0 1.0 1.0 1.0 1.0 1.0 0.67 0.75 1.17 1.0 1.0 1.0 1.0 1.0 1.0 0.42 1.0 2.75

O
T

H
E

R

10 0.78 0.89 3.27 0.78 0.9 3.38 0.74 0.93 3.88 0.4 0.47 1.67 0.53 0.77 3.68 0.46 0.99 6.43
30 0.81 0.91 1.77 0.79 0.94 2.04 0.69 0.95 2.67 0.63 0.73 1.38 0.57 0.89 2.54 0.3 0.99 5.59
50 0.88 0.95 1.32 0.84 0.97 1.63 0.77 0.95 1.86 0.77 0.85 1.16 0.7 0.93 1.84 0.29 0.98 4.8
70 0.95 0.99 1.15 0.94 0.99 1.23 0.82 0.96 1.49 0.88 0.94 1.13 0.78 0.99 1.55 0.35 1.0 3.92

100 0.98 1.0 1.06 0.98 1.0 1.06 0.9 0.97 1.24 0.95 1.0 1.08 0.87 1.0 1.29 0.45 1.0 3.01

AVG 0.86 0.94 1.79 0.84 0.95 1.99 0.77 0.95 2.39 0.7 0.79 1.31 0.67 0.91 2.22 0.39 0.99 5.2

Sub-Optimal

ΓLP Γµ RG POM POM-10% POM-30%

# % AGR ACC SPR AGR ACC SPR AGR ACC SPR AGR ACC SPR AGR ACC SPR AGR ACC SPR

B
L

O
C

K
S

10 0.41 0.86 6.86 0.42 0.89 7.42 0.46 0.97 10.61 0.06 0.19 1.19 0.19 0.58 4.44 0.34 1.0 17.53
30 0.49 0.78 3.17 0.35 0.86 6.92 0.54 1.0 4.86 0.28 0.56 1.17 0.32 0.89 3.36 0.26 1.0 13.47
50 0.55 0.86 3.08 0.42 0.94 5.61 0.62 0.97 2.72 0.39 0.72 1.08 0.36 0.81 2.17 0.27 1.0 9.89
70 0.71 0.92 2.06 0.56 0.94 3.06 0.68 1.0 2.44 0.51 0.94 1.33 0.44 1.0 2.22 0.26 1.0 8.61

100 0.84 1.0 1.67 0.84 1.0 1.67 0.8 1.0 2.08 0.51 1.0 1.67 0.48 1.0 1.92 0.28 1.0 6.42

IP
C

-G
R

ID

10 0.77 0.92 1.81 0.75 0.98 2.4 0.81 1.0 2.73 0.64 0.88 2.23 0.59 0.98 3.44 0.42 1.0 5.6
30 0.82 0.94 1.13 0.77 0.98 1.6 0.9 1.0 1.27 0.81 0.96 1.35 0.8 0.96 1.52 0.67 0.96 2.23
50 0.84 0.94 1.13 0.84 1.0 1.56 0.92 1.0 1.1 0.87 1.0 1.08 0.86 1.0 1.13 0.86 1.0 1.21
70 0.89 1.0 1.1 0.85 1.0 1.23 0.93 1.0 1.02 0.92 1.0 1.0 0.92 1.0 1.0 0.92 1.0 1.0

100 0.94 1.0 1.0 0.94 1.0 1.0 0.94 1.0 1.0 0.94 1.0 1.0 0.94 1.0 1.0 0.94 1.0 1.0

S
O

K
O

B
A

N 10 0.52 0.61 1.78 0.44 0.72 3.17 0.29 0.64 4.56 0.35 0.64 2.47 0.38 0.92 4.08 0.24 1.0 6.86
30 0.77 0.83 1.08 0.62 0.97 2.67 0.43 0.75 2.92 0.56 0.75 1.72 0.51 0.86 2.64 0.24 0.97 5.5
50 0.79 0.92 1.17 0.66 1.0 2.58 0.53 0.72 1.83 0.58 0.75 1.39 0.53 0.86 2.31 0.25 0.97 5.14
70 0.8 0.97 1.03 0.85 1.0 1.39 0.54 0.61 1.28 0.63 0.86 1.25 0.59 0.92 1.75 0.3 1.0 4.11

100 0.83 1.0 1.0 0.83 1.0 1.0 0.58 0.58 1.33 0.83 1.0 1.0 0.83 1.0 1.0 0.38 1.0 2.75

O
T

H
E

R

10 0.72 0.89 2.84 0.7 0.92 3.29 0.63 0.94 3.81 0.45 0.56 1.69 0.48 0.82 3.63 0.37 0.99 6.35
30 0.77 0.9 1.74 0.63 0.95 2.89 0.68 0.93 2.35 0.65 0.78 1.32 0.55 0.91 2.48 0.28 0.99 5.47
50 0.87 0.95 1.33 0.72 0.99 2.23 0.76 0.96 1.85 0.79 0.9 1.22 0.69 0.97 1.9 0.3 1.0 4.59
70 0.94 0.98 1.16 0.83 0.99 1.63 0.84 0.96 1.45 0.87 0.95 1.1 0.79 0.98 1.52 0.37 1.0 3.81

100 0.97 1.0 1.06 0.97 1.0 1.06 0.89 0.97 1.24 0.95 1.0 1.08 0.86 1.0 1.29 0.46 1.0 3.01

AVG 0.82 0.93 1.71 0.75 0.97 2.39 0.74 0.93 2.3 0.7 0.83 1.31 0.65 0.93 2.19 0.38 1.0 5.01

Table 3: Agreement ratio (AGR), accuracy (ACC) and spread (SPR) for each method on optimal and sub-optimal data sets.



Figure 3 shows the relation between hΩ-value and agree-
ment for goal recognition tasks. Again, there are four Fig-
ures in each group, one for each degree of observability.
Each point on the x-axis shows the difference between the
agreement ratio for the solution generated using hΩ for each
goal recognition task in the optimal data set (-1 to 1). The
y-axis shows the difference of hΩ-values for the same task
with its goal reference (-10 to 10). For example, in group
hLMC

Ω vs. hPhO
Ω the points are clustered on right upper quad-

rant which shows that in general when AGR1 is higher than
AGR2, h1

Ω is also higher than h2
Ω. We see the same trend

in group hSEQ
Ω vs. hPhO

Ω . We highlight a different situation
in the group hSEQ

Ω vs. hLMC
Ω since the points are clustered

on the upper right and bottom left quadrants. This shows
that higher hΩ-values tend to produce higher agreement ra-
tio. Thus, these results provide evidence that more informed
heuristics improve the solution of goal recognition tasks.

Evaluating Previous Methods and Uncertainty Table 3
compares our ΓLP and Γµ methods to two other polyno-
mial time approaches from the literature, reporting agree-
ment ratio, accuracy and spread for optimal and sub-optimal
data sets with degrees of observability with 10%, 30%,
50%, 70% and 100% of the observations. Our methods
use the three sources of constraints hSEQ, hLMC, and hPhO.
RG (Ramı́rez and Geffner 2009) computes a relaxed plan
efficiently and returns as the goal set the goal candidates
with relaxed plans that satisfy the largest number of observa-
tions. POM (Pereira, Oren, and Meneguzzi 2017) performs
the recognition task by computing landmarks and returns as
the goal set the goal candidates that have the highest number
of landmarks satisfied by the observation. We use their goal
completion heuristic for its better results. We report the re-
sults of POM-10% and POM-30%, which return larger goal
sets, including those within a 10% and 30% threshold of the
goals with the highest number of landmarks satisfied.

On both data sets our approach ΓLP has the highest agree-
ment ratio on average and is the best in almost all do-
mains and degrees of observability. An exception is the do-
main IPC-GRID where RG has in general better results. We
note that in hard domains like SOKOBAN, our methods have
much higher agreements ratios than other approaches. For
example, on the optimal data set for this domain, ΓLP has av-
erage agreement ratio of 0.81 while the next best approach
RG has average agreement ratio of 0.76.

Table 3 also shows accuracy and spread for all methods. It
shows that many methods can achieve high accuracy while
yielding a high spread, thus degrading the agreement ratio.
For example, while POM-30% has a perfect accuracy on al-
most all domains on the sub-optimal data set, its spread is
the highest. The BLOCKS domain has on average 20.33 goal
candidates, and for POM-30% to achieve a competitive ac-
curacy on 10% of observability it returns almost all goals
with a spread of 17.53. By contrast, our Γµ method increases
the accuracy without increasing the spread excessively by
measuring uncertainty. This happens especially in the low
observability scenarios it was designed to address. Take for
example the results of SOKOBAN on sub-optimal data set, in
which Γµ shows a substantially higher accuracy without a

Optimal Sub-Optimal

# % ΓLP Γε RG POM ΓLP Γε RG POM

B
L

O
C

K
S

10 0.32 0.32 0.31 0.06 0.38 0.38 0.42 0.05
30 0.37 0.37 0.39 0.13 0.36 0.37 0.49 0.22
50 0.64 0.64 0.6 0.37 0.53 0.53 0.55 0.28
70 0.79 0.81 0.77 0.47 0.67 0.67 0.63 0.38
100 0.88 0.88 0.89 0.57 0.78 0.82 0.74 0.51

IP
C

-G
R

ID

10 0.57 0.57 0.16 0.38 0.62 0.62 0.12 0.54
30 0.85 0.85 0.28 0.71 0.68 0.68 0.08 0.72
50 0.89 0.89 0.07 0.81 0.84 0.84 0.04 0.85
70 0.95 0.95 0.15 0.93 0.89 0.89 0.02 0.9
100 1.0 1.0 0.08 0.99 0.94 0.94 0.04 0.92

S
O

K
O

B
A

N 10 0.27 0.27 0.1 0.24 0.31 0.32 0.13 0.25
30 0.56 0.7 0.2 0.34 0.48 0.56 0.12 0.29
50 0.61 0.82 0.2 0.57 0.5 0.73 0.01 0.46
70 0.6 0.97 0.08 0.84 0.54 0.8 0.06 0.58
100 0.66 1.0 0.04 0.96 0.35 0.85 0.04 0.77

O
T

H
E

R

10 0.44 0.44 0.27 0.27 0.42 0.42 0.31 0.31
30 0.57 0.58 0.32 0.51 0.6 0.63 0.36 0.53
50 0.77 0.78 0.37 0.65 0.78 0.78 0.41 0.71
70 0.88 0.89 0.46 0.8 0.86 0.88 0.41 0.79
100 0.95 0.96 0.45 0.9 0.91 0.96 0.4 0.87

AVG 0.71 0.73 0.35 0.61 0.69 0.72 0.34 0.61

ACC 0.89 0.9 0.5 0.73 0.87 0.89 0.48 0.76
SPR 1.91 1.78 1.38 1.3 1.93 1.72 1.34 1.31

Table 4: Agreement ratio, and average accuracy (ACC) and
spread (SPR) results on data sets with noisy observations.

corresponding increase in spread, unlike other methods. Our
idea to measure the uncertainty is general since it does not
require linear programming heuristics and could be applied
to RG and POM to improve their results.

Noisy Observations Table 4 compares agreement ratio
of our ΓLP and Γε methods with RG and POM on noisy
data sets. The last two rows show the average accuracy and
spread over all domains. Again, our methods use the three
sources of constraints hSEQ, hLMC, and hPhO. Here most
methods degrade with noisy observations, reducing their
agreement ratio. Γε, which addresses noisy observations ex-
plicitly, has on average the highest agreement ratio and ac-
curacy on both data sets. For example, on the SOKOBAN do-
main some noisy observations might be impossible to satisfy
because they lead to unsolvable states on all plans. In this
situation Γε substantially improves the agreement ratio.

Discussion
In this paper we developed a novel class of goal recogni-
tion methods based on linear programming models. These
methods include an uncertainty measurement that increases
the accuracy on low observability scenarios, as well as an
efficient and automatic method to address noisy observa-
tions. We adapt and provide a benchmark to compare meth-
ods using the agreement ratio, which allows us to evaluate
our methods in a number of different ways. First, we eval-
uate how different sources of constraints impact the qual-
ity of our solutions. Second, we assess how our additional
constraints and uncertainty measurement affect performance
under noise and low observability, respectively. Third, we



compare our methods to previous ones, showing that ours
are, in general, superior.
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