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Abstract

The task of recognizing goals and plans from missing and full observations can be done
efficiently by using automated planning techniques. In many applications, it is important
to recognize goals and plans not only accurately, but also quickly. To address this challenge,
we develop novel goal recognition approaches based on planning techniques that rely on
planning landmarks. In automated planning, landmarks are properties (or actions) that
cannot be avoided to achieve a goal. We show the applicability of a number of planning
techniques with an emphasis on landmarks for goal and plan recognition tasks in two
settings: (1) we use the concept of landmarks to develop goal recognition heuristics; and
(2) we develop a landmark-based filtering method to refine existing planning-based goal
and plan recognition approaches. These recognition approaches are empirically evaluated
in experiments over several classical planning domains. We show that our goal recognition
approaches yield not only accuracy comparable to (and often higher than) other state-of-
the-art techniques, but also substantially faster recognition time over such techniques.

1. Introduction

As more computer systems require reasoning about what agents (both human and arti-
ficial) other than themselves are doing, the ability to accurately and efficiently recognize
goals and plans from agent behavior becomes increasingly important. Goal and plan recog-
nition is the task of recognizing goals and plans based on often incomplete observations
that include actions executed by agents and properties of agent behavior in an environ-
ment (Sukthankar, Goldman, Geib, Pynadath, & Bui, 2014). Most goal and plan recogni-
tion approaches (Geib & Goldman, 2005; Avrahami-Zilberbrand & Kaminka, 2005; Geib
& Goldman, 2009; Mirsky, Stern, Gal, & Kalech, 2016; Mirsky, Stern, Ya’akov (Kobi) Gal,
& Kalech, 2017) employ plan libraries to represent agent behavior, i.e., a plan library with
plans for achieving goals, resulting in approaches to recognize plans that are analogous
to parsing. Recent work (Ramı́rez & Geffner, 2009; Ramı́rez & Geffner, 2010; Pattison &
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Long, 2010; Keren, Gal, & Karpas, 2014; E-Mart́ın, R.-Moreno, & Smith, 2015; Sohrabi,
Riabov, & Udrea, 2016; Pereira & Meneguzzi, 2016; Pereira, Oren, & Meneguzzi, 2017)
use a planning domain definition (a domain theory) to represent potential agent behavior,
bringing goal and plan recognition closer to planning algorithms. These approaches allow
techniques used in planning algorithms to be employed for recognizing goals and plans re-
quiring less domain information. Recognizing goals and plans are important in applications
for monitoring and anticipating agent behavior in an environment, including crime detec-
tion and prevention (Geib & Goldman, 2001), monitoring activities in elderly-care (Geib,
2002), recognizing plans in educational environments (Uzan, Dekel, Seri, & Gal, 2015) and
exploratory domains (Mirsky, Gal, & Shieber, 2017a), and traffic monitoring (Pynadath
& Wellman, 2013), among others (Geib & Goldman, 2001; Granada, Pereira, Monteiro,
Barros, Ruiz, & Meneguzzi, 2017; Mirsky, Gal, & Tolpin, 2017b).

We develop recognition approaches that are based on planning techniques (without pre-
defined static plan libraries) that rely on planning landmarks (Hoffmann, Porteous, & Sebas-
tia, 2004), namely, landmark-based approaches for goal recognition. In automated planning,
landmarks are properties (or actions) that every plan must satisfy (or execute) at some point
in every plan execution to achieve a goal. Whereas in planning algorithms landmarks are
used to focus search, in this work, landmarks allow our recognition approaches to reason
about what cannot be avoided for achieving goals, substantially speeding up recognition
time. Thus, we provide novel contributions to efficiently solve goal recognition problems,
as follows. First, we provide two contributions for goal recognition techniques. We develop
two novel recognition heuristics that rely on landmarks and obviate the need to execute
a planner multiple times yielding substantial runtime gains. Our initial heuristic estimates
goal completion by considering the ratio between achieved and extracted landmarks of a
candidate goal. We expand this heuristic to use a landmark uniqueness value, representing
the information value of the landmark for some specific candidate goal when compared to
landmarks for all candidate goals. Second, we also develop a filtering method that rules out
candidate goals by estimating how many landmarks required by every goal in the set of
candidate goals have been reached within a sequence of observations. This filtering method
can be applied to other planning-based goal and plan recognition approaches, such as the
approaches from Ramı́rez and Geffner ((2009, 2010)) (with a probabilistic ranking), as well
as from Sohrabi et al. ((2016)).

Our use of landmarks to drive goal recognition stems from properties of landmarks in
classical planning. First, they are necessary conditions to achieving goals, and thus provide
very strong evidence that certain observations are tied to specific goals. Second, although
their computation is, in theory, expensive, in practice, we can efficiently compute very
informative sets of ordered landmarks, and critically, only once per goal recognition problem,
resulting in a very efficient overall algorithm.

We prove key properties of our recognition heuristics and their use as a filtering mech-
anism, and evaluate empirically our approaches using a set of well-known domains from
the International Planning Competition (IPC), as well as a number of domains we devel-
oped specifically to measure the scalability of goal and plan recognition algorithms. For all
domains, we evaluate the algorithms using datasets with varying degrees of observability
(missing observations) and noise (spurious observations). We compare our heuristics for
goal recognition against the current state-of-the-art (Ramı́rez & Geffner, 2009; Ramı́rez &
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Geffner, 2010; E-Mart́ın et al., 2015; Sohrabi et al., 2016) by using a dataset developed
by Ramı́rez and Geffner ((2009, 2010)), and a new dataset we generated for other plan-
ning domains with larger and more complex problems, as well as problems with missing
and noisy observations. Experiments show that our recognition heuristics are substantially
faster and more accurate than the state-of-the-art for datasets that contain several domains
and problems where recognizing the intended goal is non-trivial.

The remainder of this article is organized as follows. Section 2 provides background
on planning, domain-independent heuristics, and landmarks. We proceed to describe how
we extract useful information from planning domain definitions in Section 3, which we use
throughout the article. In Section 4, we develop our goal recognition approaches using land-
marks. We empirically evaluate our approaches in Section 5, which shows the results of the
experiments for our goal recognition approaches against the state-of-the-art. In Section 6, we
survey related work and compare the state-of-the-art with our approaches. Finally, in Sec-
tion 7, we conclude this article by discussing limitations, advantages and future directions
of our approaches.

2. Background

In this section, we review essential background on planning terminology and landmarks.
Finally, we define the task of goal recognition over planning domain definitions.

2.1 Planning

Planning is the problem of finding a sequence of actions (i.e., plan) that achieves a particular
goal from an initial state. In this work, we use the terminology from Ghallab et al. ((2016))
to represent planning domains and problems. First, we define a state in the environment by
the following Definition 1.

Definition 1 (Predicates and State). A predicate is denoted by an n-ary predicate symbol
p applied to a sequence of zero or more terms (τ1, τ2, ..., τn) – terms are either constants
or variables. We refer to grounded predicates that represent logical values according to some
interpretation as facts, which are divided into two types: positive and negated facts, as well
as constants for truth (>) and falsehood (⊥). A state S is a finite set of positive facts f
that follows the closed world assumption so that if f ∈ S, then f is true in S. We assume a
simple inference relation |= such that S |= f iff f ∈ S, S 6|= f iff f 6∈ S, and S |= f1∧ ...∧fn
iff {f1, ..., fn} ⊆ S.

Planning domains describe the environment dynamics through operators, which use
a limited first-order logic representation to define schemata for state-modification actions
according to Definition 2.

Definition 2 (Operator and Action). An operator a is represented by a triple 〈name(a),
pre(a), eff(a)〉: name(a) represents the description or signature of a; pre(a) describes the
preconditions of a, a set of predicates that must exist in the current state for a to be executed;
eff(a) represents the effects of a. These effects are divided into eff(a)+ (i.e., an add-list of
positive predicates) and eff(a)− (i.e., a delete-list of negated predicates). An action is a
ground operator instantiated over its free variables.
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We say an action a is applicable to a state S if and only if S |= pre(a), and generates a
new state S′ such that S′ := (S ∪ eff (a)−)/eff (a)+.

Definition 3 (Planning Domain). A planning domain definition Ξ is represented by a
pair 〈Σ,A〉, which specifies the knowledge of the domain, and consists of a finite set of facts
Σ (e.g., environment properties) and a finite set of actions A.

A planning instance, comprises both a planning domain and the elements of a planning
problem, describing a finite set of objects of the environment, the initial state, and the goal
state which an agent wishes to achieve, as formalized in Definition 4.

Definition 4 (Planning Instance). A planning instance Π is represented by a triple
〈Ξ, I, G〉.

• Ξ = 〈Σ,A〉 is the domain definition;

• I ⊆ Σ is the initial state specification, which is defined by specifying the value for all
facts in the initial state; and

• G ⊆ Σ is the goal state specification, which represents a desired state to be achieved.

Classical planning representations often separate the definition of I and G as part of a
planning problem to be used together with a domain Ξ, such as STRIPS (Fikes & Nilsson,
1971) and PDDL (McDermott, Ghallab, Howe, Knoblock, Ram, Veloso, Weld, & Wilkins,
1998). In this work, we use the STRIPS fragment of PDDL to formalize planning domains
and problems. Finally, a plan is the solution of a planning instance, as formalized in Defi-
nition 5.

Definition 5 (Plan). A plan π for a planning instance Π = 〈Ξ, I, G〉 is a sequence of
actions 〈a1, a2, ..., an〉 that modifies the initial state I into a state S |= G in which the goal
state G holds by the successive execution of actions in a plan π. A plan π∗ with length |π∗|
is optimal if there exists no other plan π′ for Π such that π′ < π∗.

While actions have an associated cost, we take the assumption from classical planning
that this cost is 1 for all instantiated actions. A plan π is considered optimal if its cost, and
thus length, is minimal.

Finally, modern classical planners use a variety of heuristics to efficiently explore the
search space of planning domains by estimating the cost to achieve a specific goal (Ghallab
et al., 2016). In classical planning, this estimate is often the number of actions to achieve the
goal state from a particular state, so we describe all techniques assuming a uniform action
cost c(a) = 1 for all a ∈ A. Thus, the cost for a plan π = [a1, a2, ..., an] is c(π) = Σc(ai).
Heuristics make no guarantees of the accuracy of their estimations, however, when a heuristic
never overestimates the cost to achieve a goal, it is called admissible and guarantees optimal
plans for certain search algorithms. A heuristic h(s) is admissible if h(s) ≤ h*(s) for all
states, where h*(s) is the optimal cost to the goal from state s. Heuristics that overestimate
the cost to achieve a goal are called inadmissible.
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2.2 Landmarks

In the planning literature (Richter, Helmert, & Westphal, 2008), landmarks are defined
as necessary properties (alternatively, actions) that must be true (alternatively, executed)
at some point in every valid plan (see Definition 5) to achieve a particular goal, being
often partially ordered following the sequence in which they must be achieved. Hoffman et
al. ((2004)) define fact landmarks, and Vidal and Geffner ((2005)) define action landmarks,
as follows:

Definition 6 (Fact Landmark). Given a planning instance Π = 〈Ξ, I, G〉, a formula Fl

is a landmark in Π iff Fl is true at some point along all valid plans that achieve G from I.
In other words, a landmark is a type of formula (e.g., conjunctive formula or disjunctive
formula) over a set of facts that must be satisfied (or achieved) at some point along all valid
plan executions.

Definition 7 (Action Landmark). Given a planning instance Π = 〈Ξ, I, G〉, an action
Al is a landmark in Π iff Al is a necessary action that must be executed at some point along
all valid plans that achieve G from I.

From the concept of fact landmarks, Hoffmann et al. ((2004)) introduce two types of
landmarks as formulas: conjunctive and disjunctive landmarks. A conjunctive landmark is
a set of facts that must be true together at some point in every valid plan to achieve a
goal. A disjunctive landmark is a set of facts such that at least one of the facts must be
true at some point in every valid plan to achieve a goal. Figure 1 shows an example that
illustrates a set of landmarks for a Blocks-World1 problem instance. This example shows
a set of conjunctive ordered landmarks (connected boxes) that must be true to achieve the
goal state (on A B). For instance, to achieve the fact landmark (on A B) which is also
the goal state, the conjunctive landmark (and (holding A) (clear B)) must be true
immediately before, and so on, as shown in Figure 1.

Whereas in planning the concept of landmarks is used to build heuristics (Richter et al.,
2008) and planning algorithms (Richter & Westphal, 2010), in this work, we propose a novel
use for landmarks: to monitor an agent’s plan execution. Intuitively, we use landmarks as
waypoints (or stepping stones) in order to monitor what an observed agent cannot avoid to
achieve its goals.

2.3 Goal Recognition

Goal recognition is the task of recognizing agents’ goals by observing their interactions in an
environment (Sukthankar et al., 2014). In goal recognition, such observed interactions (i.e.,
observations) comprise the evidence available to recognize goals. Definition 8 follows the
formalism proposed by Ramı́rez and Geffner in ((2009, 2010)) characterizing an observation
sequence as the result of action sequence.

Definition 8 (Observation Sequence). An observation sequence O = 〈o1, o2, ..., on〉 is
said to be satisfied by a plan π = 〈a1, a2, ..., am〉, if there is a monotonic function f that
maps the observation indices j = 1, ..., n into action indices i = 1, ..., n, such that af(j) = oj.

1. Blocks-World is a classical planning domain where a set of stackable blocks must be re-assembled on
a table (Ghallab, Nau, & Traverso, 2004).

5



Pereira, Oren & Meneguzzi

on A B

holding A clear B

clear A handempty ontable A

on B A handempty clear B

Landmarks

Figure 1: Ordered landmarks for a Blocks-World problem instance.

By combining the various notions of planning problem and an observation sequences,
we formally define a goal recognition problem over a planning domain definition following
Ramı́rez and Geffner ((2009))2 in Definition 9, and a weak notion of solution to that problem
in Definition 10.

Definition 9 (Goal Recognition Problem). A goal recognition problem is a tuple TGR =
〈Ξ, I,G, O〉, where:

• Ξ = 〈Σ,A〉 is a planning domain definition;

• I is the initial state;

• G is the set of possible goals, which include a correct hidden goal G∗ (i.e., G∗ ∈ G);
and

• O = 〈o1, o2, ..., on〉 is an observation sequence of executed actions, with each obser-
vation oi ∈ A, and the corresponding action being part of a valid plan π (from Def-
inition 5) that transitions I into G∗ through the sequential execution of actions in
π.

Definition 10 (Solution to a Goal Recognition Problem). A solution to a goal recog-
nition problem TGR = 〈Ξ, I,G, O〉 is a nonempty subset of the set of possible goals G ⊆ G
such that ∀G ∈ G there exists a plan πG generated from a planning instance 〈Ξ, I, G〉 and
πG is consistent with O.

2. Unlike the probabilistic approach developed by Ramı́rez and Geffner ((2010)), our heuristic approaches
do not use any prior probabilities to perform the goal recognition process.
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Figure 2: Blocks-World example.

Thus, the ideal solution for a goal recognition problem is a set containing only the correct
hidden goal G∗ ∈ G that the observation sequence O of a plan execution achieves. As an
example of how the goal recognition process works, consider the Example 1, as follows.

Example 1. To exemplify the goal recognition process, let us consider the Blocks-World
example in Figure 2. The initial state represents an initial configuration of stackable blocks,
while the set of candidate goals is composed by the following stacked “words”: RED, BED,
and SAD. Consider an observation sequence for a hidden goal RED consisting of the fol-
lowing action sequence: [(unstack D B), (putdown D), (unstack E A), (stack E
D), (pickup R), (stack R E)]. By following the full plan, we can easily infer that the
hidden goal is indeed RED. However, if the we cannot observe action (stack R E), it is
not trivial to infer that RED is indeed the goal the observation sequence aims to achieve.

Like (Sohrabi et al., 2016), we also deal with missing observations during the goal
recognition process. We differ from (Sohrabi et al., 2016) in that we do not deal with noisy
(unreliable) observations explicitly. Nevertheless our technique proves to be robust against
noise by relying exclusively on necessary conditions for the plans leading to each goal as
our empirical analysis corroborates. In a partial observation sequence, we observe only a
sub-sequence of actions of a plan that achieves a particular goal because some actions are
missing or obfuscated. A noisy observation sequence contains one or more actions (or a
set of facts) that might not be part of a plan that achieves a particular goal, e.g., when a
sensor fails and generates abnormal or spurious readings. We formalize the way in which an
environment generates observations of agent plans in Definition 11.

Definition 11 (Observation Sequence Generation). Let π = 〈a1, a2,
. . . , an〉 be a plan generated by a planning instance Π = 〈Ξ, I, G〉. An action projection
function ap(a) : A 7→ ~A is a function that maps actions to sequences of zero or more
actions. An observation sequence generation function os(π) is a function that maps a plan
π into an observation sequence O as follows:

os(π) =

{
〈〉 if π = 〈〉
〈ap(a1)〉 · os(〈a2, . . . , an〉) if π = 〈a2, . . . , an〉

The key to generating such sequences is how the rules for function ap to translate actions.
Following our Example 1, we could define an action projection function that never generates
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observations for unstack actions, and generates noise for all stack actions as follows.

ap1(a) =


〈(pickup X)〉 if a = (pickup X)

〈(putdown X)〉 if a = (putdown X)

〈〉 if a = (unstack X Y)

〈(stack X Y),(unstack X Y)〉 if a = (stack X Y)

We formally define missing and noisy observations in Definitions 12 and 13 and both types
of observation are exemplified in Example 2.

Definition 12 (Missing Observation). Let Π = 〈Ξ, I, G〉 be a planning instance, π
be a valid plan that achieves G from I, and O is an observation sequence induced by an
observation generation function os with an action projection function ap. An observation
sequence O misses observations (is a partial or incomplete observation sequence) with respect
to the plan π that achieves the goal G from I if the ap function maps any action into the
empty sequence 〈〉.

Definition 13 (Noisy Observation). Let Π = 〈Ξ, I, G〉 be a planning instance, π be
a valid plan that achieves G from I, and O is an observation sequence induced by an
observation generation function os with an action projection function ap. An observation
sequence O contains noisy observations with respect to the plan π that achieve the goal G
from I if the ap function maps any action a into a non-empty sequence containing one or
more action a′ 6= a.

Example 2. Let us consider that a valid plan to achieve a goal G is π = [a, b, c, d, e].
Consider the following observation sequences Om1, Om2, and Om3:

• Om1 = [a, d];

• Om2 = [b, e]; and

• Om3 = [d, a, c]

Observation sequences Om1 and Om2 satisfy Definition 12, and therefore, they are partial
observation sequences and contain missing observed actions. Om3 is not a partial observation
sequence because it does not satisfy Definition 12 as the observation sequence [d, a, c] is not
a strict subset of ordered actions of the plan π.

Now, consider the following observation sequences On1 and On2:

• On1 = [a, b, c, d, e, g]; and

• On2 = [b, d, h]

It is possible to see that both observation sequences On1 and On2 contain noisy observations
(g and h respectively) and satisfy Definition 2. However, note that On2 contains not only
noisy observations but it also misses observations, i.e., On2 is partial observation sequence
with noisy observations.
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Although we define missing and noisy observations with actions as observations, our goal
recognition approaches can also deal with facts (or fluents) as observations, like (Sohrabi
et al., 2016). Indeed, as we see in Section 4, using states as observations makes goal recog-
nition much easier for our heuristic approaches, since we can use the observations directly
to compute achieved landmarks. In Section 4, we show that what matters for our goal
recognition approaches is the evidence of fact landmarks during the observations, and it is
irrelevant whether this evidence is provided by either an observed action or a set of facts.

3. Extracting Recognition Information from Planning Definition

In this section, we describe the process through which we extract useful information for goal
recognition from planning domain definition. First, we describe landmark extraction algo-
rithms from the literature, and how we use these algorithms in our approaches in Section 3.1.
Second, we show how we classify facts into partitions from planning action descriptions and
how we use them during the goal recognition process in Section 3.2.

3.1 Extracting Landmarks

Hoffman et al. ((2004)) proves that the process of generating exactly all landmarks and
deciding about their ordering is PSPACE-complete, which is exactly the same complexity
of deciding plan existence (Bylander, 1994). Nevertheless, most landmark extraction algo-
rithms extract only a subset of landmarks for a given planning instance for efficiency. While
there are several algorithms to extract landmarks and their orderings in the literature that
we could use (Zhu & Givan, 2003; Richter et al., 2008; Keyder, Richter, & Helmert, 2010),
we chose the landmark extraction algorithm from Hoffmann et al. ((2004)) to extract land-
marks from planning instances due to its speed and simplicity. This algorithm can extract
both conjunctive and disjunctive landmarks, but we use the conjunctive landmarks to build
heuristics for our goal recognition approaches.

To represent landmarks and their ordering, the algorithm of Hoffmann et al. ((2004))
uses a tree in which nodes represent landmarks and edges represent necessary prerequisites
between landmarks. Each node in the tree represents a conjunction of facts that must be
true simultaneously at some point during plan execution, and the root node is a landmark
representing the goal state. This algorithm uses a Relaxed Planning Graph (RPG) (Hoff-
mann & Nebel, 2001), which is a leveled graph that ignores the delete-list effects of all
actions, thus containing no mutex relations. Once the RPG is built, the algorithm extracts
landmark candidates by back-chaining from the RPG level in which all facts of the goal
state G are possible, and, for each fact g in G, checks which facts must be true until the
first level of the RPG. For example, if fact B is a landmark and all actions that achieve
B share A as precondition, then A is a landmark candidate. To confirm that a landmark
candidate is indeed a landmark, the algorithm builds a new RPG structure by removing
actions that achieve this landmark candidate and checks the solvability over this modified
problem3, and, if the modified problem is unsolvable, then the landmark candidate is a

3. Deciding the solvability of a relaxed planning problem using an RPG structure can be done in polynomial
time (Blum & Furst, 1997).
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A

B C

D

E

box

truck

plane

Figure 3: Logistics problem example.� �
Fact Landmarks:
(and (at BOX AIRPORT-E))
(and (at PLANE AIRPORT-E) (in BOX PLANE))
(and (at PLANE AIRPORT-C) (at BOX AIRPORT-C))
(and (at PLANE AIRPORT-E))
(and (at TRUCK D))
(and (in BOX TRUCK) (at TRUCK AIRPORT-C))
(and (at BOX B) (at TRUCK B))
(or (at TRUCK A) (at TRUCK C) (at TRUCK D))� �
Listing 1: Fact landmarks (conjunctive and disjunctive) extracted from the Logistics

example in Figure 3.

necessary landmark. This means that the actions that achieve the landmark candidate are
necessary to solve the original planning problem.

To exemplify the output of the landmark extraction algorithm from (Hoffmann et al.,
2004), consider the Logistics4 problem example in Figure 3. Fact landmarks extracted for
this example are shown respectively in Listing 1 and Figure 4. While Listing 1 shows one
possible serialization of the landmarks, Figure 4 represents the same landmarks ordered
from bottom-up by facts that must be true together. These landmarks allow us to monitor
way-points during a plan execution to determine which goals this plan is going to achieve.

This landmark extraction algorithm is referred to as function ExtractLandmarks,
which takes as input a planning domain definition Ξ = 〈Σ,A〉, an initial state I, and a
set of candidate goals G or a single goal G. In case the input is a set of candidate goals G,
this function outputs a map LG that associates candidate goals to their respective ordered
fact landmarks (i.e., a set of landmarks with an order relation). Alternatively, in case the
input is a single goal G, this function outputs a map LG that associates the goal G to its
respective ordered fact landmarks.

4. The Logistics domain consists of airplanes and trucks transporting packages between locations (e.g.,
airports and cities).
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at BOX AIRPORT-E

at PLANE AIRPORT-E in BOX PLANE

at BOX B at TRUCK B

at TRUCK A at TRUCK C at TRUCK D

at PLANE AIRPORT-C at BOX AIRPORT-C

at TRUCK D

at PLANE AIRPORT-E in BOX TRUCK at TRUCK AIRPORT-C

Figure 4: Ordered fact landmarks extracted from Logistics problem example shown in
Figure 3. Fact landmarks that must be true together are represented by con-
nected boxes, which are conjunctive facts, i.e., representing conjunctive land-
marks. Disjunctive landmarks are represented by octagon boxes that are con-
nected by dashed lines.

We note that many landmark extraction techniques, including that of Hoffmann et
al. (Hoffmann et al., 2004), might infer incorrect landmark orderings, which can lead to
problems if the goal recognition process relies on the ordering information to make infer-
ences. Nevertheless, our empirical evaluation shows that landmark orderings do not affect
detection performance in the experimental datasets. We discuss landmark orderings later
(Section 4.1) in the paper.
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3.2 Classifying Facts into Partitions

Pattison and Long ((2010)) classify facts into mutually exclusive partitions in order to infer
whether certain observations are likely to be goals for goal recognition. Their classification
relies on the fact that, in some planning domains, predicates may provide additional infor-
mation that can be extracted by analyzing preconditions and effects in operator definitions.
We use this classification to infer if certain observations are consistent with a particular
goal, and if not, we can eliminate a candidate goal. We formally define fact partitions in
what follows.

Definition 14 (Strictly Activating). A fact f is strictly activating if f ∈ I and ∀a ∈ A,
f /∈ eff(a)+ ∪ eff(a)−. Furthermore, ∃a ∈ A, such that f ∈ pre(a).

Definition 15 (Unstable Activating). A fact f is unstable activating if f ∈ I and
∀a ∈ A, f /∈ eff(a)+ and ∃a, b ∈ A, f ∈ pre(a) and f ∈ eff(b)−.

Definition 16 (Strictly Terminal). A fact f is strictly terminal if ∃a ∈ A, such that
f ∈ eff(a)+ and ∀a ∈ A, f /∈ pre(a) and f /∈ eff(a)−.

A Strictly Activating fact (Definition 14) appears as a precondition, and does not appear
as an add or delete effect in an operator definition. This means that unless defined in the
initial state, this fact can never be added or deleted by an operator. An Unstable Activating
fact (Definition 15) appears as both a precondition and a delete effect in two operator
definitions, so once deleted, this fact cannot be re-achieved. The deletion of an unstable
activating fact may prevent a plan execution from achieving a goal. A Strictly Terminal
fact (Definition 16) does not appear as a precondition of any operator definition, and once
added, cannot be deleted. For some planning domains, this kind of fact is the most likely
to be in the set of goal facts, because once added in the current state, it cannot be deleted,
and remains true until the final state.

The fact partitions that we can extract depend on the planning domain definition. For
example, from the Blocks-World domain, it is not possible to extract any fact partitions.
However, it is possible to extract fact partitions from the IPC-Grid5 domain, such as
Strictly Activating and Unstable Activating facts. In this work, we use fact partitions to
obtain additional information on fact landmarks during the goal recognition process. For
example, consider an Unstable Activating fact landmark Lua, so that if Lua is deleted from
the current state, then it cannot be re-achieved. We can trivially determine that goals for
which this fact is a landmark are unreachable, because there is no available action that
achieves Lua again.

4. Landmark-Based Goal Recognition

We now describe our goal recognition approaches that rely on planning landmarks. First, we
start with a method to monitor and compute the evidence of landmarks from observations
in Section 4.1. Second, we develop a landmark-based filtering method that can be used with
any other planning-based goal and plan recognition approach in Section 4.2. Finally, we
describe how we build goal recognition heuristics using landmarks in Sections 4.3 and 4.4.

5. IPC-Grid domain consists of an agent that moves in a grid using keys to open locked locations.
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4.1 Computing Achieved Landmarks in Observations

An essential part of our approaches to goal recognition is the ability to monitor and compute
the evidence of achieved fact landmarks in the observations. To do so, we compute the
evidence of achieved fact landmarks in preconditions and effects of observed actions during
a plan execution (Pereira et al., 2017) using the ComputeAchievedLandmarks function
shown in Algorithm 1. This algorithm takes as input an initial state I, a set of candidate
goals G, a sequence of observed actions O, and a map LG containing candidate goals and
their extracted fact landmarks (provided by the ExtractLandmarks function). Note that
Algorithm 1 can be easily modified to allow it to deal with observations as states, so instead
of analyzing preconditions and effects of actions, we compare the observations directly to
computed landmarks.

Algorithm 1 Compute Achieved Landmarks in Observations.

Input: I initial state, G set of candidate goals, O observations, and LG goals and their
extracted landmarks.
Output: A map of goals to their achieved landmarks.

1: function ComputeAchievedLandmarks(I,G, O,LG)
2: ΛG := 〈〉 . Map goals G to their respective achieved landmarks.
3: for each goal G in G do
4: LG := fact landmarks of G s.t 〈G,LG〉 in LG
5: LI := all fact landmarks L ∈ I
6: L := ∅
7: for each observed action o in O do
8: L := all fact landmarks L in LG such that L ∈ pre(o) ∪ eff (o)+ and L /∈ L
9: L≺ := predecessors L≺ of all L in L, such that L≺ /∈ L

10: ALG := ALG ∪ {LI ∪ L ∪ L≺}
11: end for
12: ΛG(G) := ALG . Achieved landmarks of G.
13: end for
14: return ΛG
15: end function

Algorithm 1 iterates over the set of candidate goals G (Line 3) selecting the fact land-
marks LG of each goal G in LG in Line 4 and computes the fact landmarks that are in
the initial state in Line 5. With this information, the algorithm iterates over the observed
actions O to compute the achieved fact landmarks of G in Lines 7 to 10. For each observed
action o in O, the algorithm computes all fact landmarks of G that are either in the precon-
ditions and effects of o in Line 8. As we deal with partial observations in a plan execution
some executed actions may be missing from the observation sequence, thus whenever we
identify a fact landmark, we also infer that its predecessors must have been achieved in
Line 9. For example, consider that the set of fact landmarks to achieve a goal from a state
is represented by the following ordered facts: (at A) ≺ (at B) ≺ (at C) ≺ (at D),
and we observe just one action during a plan execution, and this observed action contains
the fact landmark (at C) as an effect. From this observed action, we can infer that the
predecessors of (at C) must have been achieved before this observation (i.e., (at A) and
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(at B)), and therefore, we also include them as achieved landmarks. At the end of each
iteration over an observed action o, the algorithm stores the set of achieved landmarks of
G in ALG in Line 10. Finally, after computing the evidence of achieved landmarks in the
observations for a candidate goal G, the algorithm stores the set of achieved landmarks ALG
of G in ΛG (Line 12) and returns a map ΛG containing all candidate goals and their respec-
tive achieved fact landmarks (Line 14). Example 3 illustrates the execution of Algorithm 1
to compute achieved landmarks from the observations of our running example.

Example 3. Consider the Blocks-World example from Figure 2, and the following ob-
served actions: (unstack E A) and (stack E D). Thus, from these observed actions,
the candidate goal RED, and the set of fact landmarks of this candidate goal (Figure 5), our
algorithm computes that the following fact landmarks have been achieved:

• ALRED = {[(clear R)], [(on E D)],
[(clear R) (ontable R) (handempty)],
[(on E A) (clear E) (handempty)],
[(clear D) (holding E)],
[(on D B) (clear D) (handempty)]}

In the preconditions of (unstack E A) the algorithm computes [(on E A) (clear
E) (handempty)]. Subsequently, in the preconditions and effects of (stack E D) the
algorithm computes [(clear D) (holding E)] and [(on E D)], while it computes
the other achieved landmarks for the word RED from the initial state. Figure 5 shows the set
of achieved landmarks for the word RED in gray. Listing 2 shows in bold the set of achieved
landmarks that our algorithm computes for the set of candidate goals in Figure 2.

on E D on R E ontable D

clear D holding E clear E holding R holding D

on E A clear E handempty clear R ontable R handempty clear D on D B handempty

clear R on E D

Figure 5: Ordered fact landmarks extracted for the stacked blocks for the word RED. Fact
landmarks that must be true together are represented by connected boxes. Con-
nected boxes in grey represent achieved fact landmarks. Edges represent prereq-
uisites between landmarks.

The complexity of computing achieved landmarks in observations (Algorithm 1) with
the process of extracting landmarks (EL) is: O(EL+ |G| · |O| · |LG |), where G is the set of
candidate goals, O is the observation sequence, and LG is the extracted landmarks for G.
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4.2 Filtering Candidate Goals from Achieved Landmarks in Observations

We now develop an approach to filter candidate goals based on the evidence of fact land-
marks and partitioned facts in preconditions and effects of observed actions in a plan ex-
ecution (Pereira & Meneguzzi, 2016). This filtering method analyzes fact landmarks in
preconditions and effects of observed actions, and selects goals, from a set of candidate
goals, that have achieved most of their associated landmarks.

This filtering method is detailed in function FilterCandidateGoals of Algorithm 2.
This algorithm takes as input a goal recognition problem TGR, which is composed of a
planning domain definition Ξ, an initial state I, a set of candidate goals G, a set of observed
actions O, and a filtering threshold θ. Our algorithm iterates over the set of candidate goals
G, and, for each goal G in G, it extracts and classifies fact landmarks and partitions for G
from the initial state I (Lines 4 and 5). Function PartitionFacts(Lg,A) takes a set of
goals and the actions in the domain and returns the fact partitions induced by the actions
in A into the sets Fsa of strictly activating (from Definition 14), Fua of unstable activating
(from Definition 15), and Fst of strictly terminal (from Definition 16) facts. We then check
whether the observed actions O contain fact landmarks or partitioned facts in either their
preconditions or effects. At this point, if any Strictly Activating facts for the candidate goal
G are not in initial state I, then the candidate goal G is no longer achievable, so we can
discard it (Line 6). Subsequently, we check for Unstable Activating and Strictly Terminal
facts of goal G in the preconditions and effects of the observed actions O, and if we find any,
we discard the candidate goal G (Line 12). If we observe no facts from partitions as evidence
from the observed actions in O, we move on to checking landmarks of G within the observed
actions in O. If we observe any landmarks in the preconditions and positive effects of the
observed actions (Line 17), we compute the evidence of achieved landmarks for the candidate
goal G (Line 19). Like Algorithm 1, we deal with missing observations by inferring that the
unobserved predecessors of observed fact landmarks must have been achieved in Line 18.
Given the number of achieved fact landmarks of G, we then estimate the percentage of fact
landmarks that the observed actions O have achieved according to the ratio between the
amount of achieved fact landmarks and the total amount of landmarks (Line 24). Finally,
after computing the percentage of landmark completion for all candidate goals in G, we
return the goals with the highest percentage of achieved landmarks within our filtering
threshold θ (Line 26). We follow Definition 6 of fact landmarks and consider conjunctive
landmarks as a single landmark when counting achieved landmarks (Line 24), except for the
sub-goals, where each fact is a separate landmark. With respect to the threshold value, note
that, if threshold θ = 0, the filter returns only the goals with maximum completion, given
the observations. The threshold gives us flexibility when dealing with missing observations
and sub-optimal plans, which, when θ = 0, it may cause some potential candidate goals
to be filtered out before we get additional observations. Example 4 shows how our filtering
method prunes efficiently goals from a set of candidate goals.
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Algorithm 2 Filter Candidate Goals in Observations.

Input: Ξ = 〈Σ, A〉 planning domain, I initial state, G set of candidate goals, O observa-
tions, and θ threshold.
Output: A set of filtered candidate goals ΛG with the highest percentage of achieved land-
marks in observations O.

1: function FilterCandidateGoals(Ξ, I,G, O, θ)
2: ΛG := 〈〉 . Map goals to % of achieved landmarks.
3: for each goal G in G do
4: LG := ExtractLandmarks(Ξ, I, G)
5: 〈Fsa, Fua, Fst〉 := PartitionFacts(Lg,A) . Fsa: set of Strictly Activating

facts, Fua: set of Unstable Activating facts, and Fst: set of Strictly Terminal facts.
6: if Fsa ∩ I = ∅ then
7: continue . Goal G is no longer possible.
8: end if
9: ALG := 〈 〉 . Achieved landmarks for G.

10: LI := all fact landmarks L ∈ I
11: for each observed action o in O do
12: if (Fua ∪ Fst) ⊆ (pre(o) ∪ eff(o)+ ∪ eff(o)−) then
13: discardG = true
14: break
15: else
16: L := remove all fact landmarks L in LG such that L ∈ eff (o)− and L ∈ L
17: L := all fact landmarks L in LG s.t L ∈ pre(o) ∪ eff (o)+ and L /∈ L
18: L≺ := predecessors L≺ of all L in L, s.t L≺ /∈ L
19: ALG := ALG ∪ {LI ∪ L ∪ L≺}
20: end if
21: end for
22: if discardG then break . Avoid computing achieved landmarks for G.
23: end if
24: ΛG := ΛG ∪ 〈G,

(
|ALG|
|LG|

)
〉 . Percentage of achieved landmarks for G.

25: end for
26: return all G s.t 〈G, v〉 ∈ ΛG and v ≥ (maxvi 〈G′, vi〉 ∈ ΛG)− θ
27: end function

Example 4. Consider the Blocks-World example shown in Figure 2 and that the fol-
lowing actions have been observed in the plan execution: (unstack E A) and (stack
E D). Using θ = 0, Algorithm 2 returns just the goal RED because this goal has achieved
6 out of 10 fact landmarks, so it is the goal in the set of candidate goals with the highest
percentage of achieved landmarks in observations. From the first observed action (unstack
E A), the algorithm computes in its preconditions the following fact landmark:

• fact landmarks in preconditions: [(on E A) (clear E)
(handempty)];

16



Landmark-Based Approaches for Goal Recognition as Planning

Subsequently, the second observed action (stack E D) has in its preconditions and
effects the following fact landmarks:

• fact landmarks in preconditions: [(clear D) (holding E)]; and

• fact landmarks in effects: [(on E D)] (which is also a sub-goal);

From the initial state, it is also possible to compute the following set of achieved fact
landmarks:

• [(clear R) (ontable R) (handempty)];

• [(clear D) (on D B) (handempty)];

• [(clear R)] (which is also a sub-goal);

Thus, the estimated percentage of achieved fact landmarks for the goal RED is 60%,
because it has achieved 6 out of 10 fact landmarks. Note that we consider sub-goals like,
such as (clear R) and (on E D), as independent fact landmarks. Although all sub-
goals of a goal must be true together for achieving the goal, in our filtering method we use
them separately to estimate the percentage of achieved landmarks.

By contrast, for goals BED and SAD, the observed actions allow the filtering method to
conclude that, respectively, 5 out of 10 and 5 out of 11 fact landmarks have been achieved
for these goals. Thus, the estimated percentage of achieved fact landmarks for the BED is
50%, and for SAD is 45%. From the evidence of fact landmarks in observations (unstack
E A) and (stack E D), Figures 5, 6, and 7 show the achieved fact landmarks for the
candidate goals RED, BED, and SAD. Boxes in dark gray denote fact landmarks that have
been achieved in observations.

clear B ontable D on B E

clear D on D B handempty

holding D holding B clear E clear D holding E

clear B ontable B handempty clear E handempty on E A

on E D

Figure 6: Fact landmarks for the word BED. Boxes in dark gray show achieved fact land-
marks from the observed actions (unstack E A) and (stack E D).

Example 4 does not show the real impact of using the set of partition facts (Section 3.2)
in our filtering method. However, we argue that the evidence of such partitions in ob-
servations can immediately prune impossible candidate goals, avoiding the computation of
achieved landmarks for such goal, improving the recognition time. We also show in Section 5
that our filtering method can be used with other planning-based goal and plan recognition
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on A D on S A ontable D

holding S clear A holding Dclear D holding A

clear E handempty on E Aclear S ontable S handempty clear D on D B handemptyclear A ontable A handempty

clear S

Figure 7: Fact landmarks for the word SAD. Boxes in dark gray show achieved fact land-
marks from the observed actions (unstack E A) and (stack E D).

approaches (Ramı́rez & Geffner, 2009; Ramı́rez & Geffner, 2010; Sohrabi et al., 2016), im-
proving significantly the recognition time for all domains and problems, by reducing the
number of calls to a planner (or heuristic).

The complexity of filtering candidate goals (Algorithm 2) in the worst case, including
the process of extracting landmarks (EL) and fact partitions (FP ) is: O(|G| ·EL ·FP · |O| ·
|LG |), where G is the set of candidate goals, O is the observation sequence, and LG is the
extracted landmarks for G. Classifying facts into partitions is a simple iteration over the set
of instantiated actions A.

Proposition 1 (Soundness of the Goal Filtering Algorithm). Let TGR = 〈Ξ, I,G, O〉
be a goal recognition problem with candidate goals G, a complete and noiseless observation
sequence O = 〈o1, o2, ..., on〉. If G∗ ∈ G is the correct hidden goal, then, for any landmark
extraction algorithm that generates fact landmarks LG and computed landmarks ΛG, function
FilterCandidateGoals(Ξ, I,G, O, θ) never filters out G∗ for any threshold θ.

Proof. The proof of this proposition depends on two conditions: first that the reasoning
performed over fact partitions never discards G∗; and second, that the ranking using the
percentage of achieved landmarks always ranks G∗ highest (with possible ties).

The first property then relies on three conditions, namely that we never discard the true
goal reasoning about: Strictly Activating facts Fsa (from Definition 14), Unstable Activating
facts Fua (from Definition 15), and Strictly Terminal facts Fst (from Definition 16). Since
we only eliminate goals whose landmarks are Strictly Activating (Fsa) that are not in the
initial state I, this condition only eliminates goals for which there is no possible plan from
the initial state. By Definition 9, O must correspond to a plan from I that achieves G∗, so,
if any landmark of G∗ is Strictly Activating, it must be in I. Similarly, we only eliminate
goals whose landmarks L are Unstable Activating (Fua) and Strictly Terminal (Fst) if they
are part of the preconditions or effects of the observations that occur before l is needed
(i.e., that they have become false throughout the plan before they were needed). Since,
landmarks L are necessary conditions, then any valid plan from I to G∗ must only delete
L after they are needed, and thus only goals G ∈ G for which observation O is not a valid
plan can be discarded. The second property follows from Theorem 1.

As a consequence of Proposition 1, the filtering mechanism can do no worse than the goal
recognition algorithm that uses the results of FilterCandidateGoals as candidate goals
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in full observability. Indeed the empirical results of Section 5.3 corroborate this theoretical
result, as the accuracy for the filtered version of the Ramı́rez and Geffner ((2009)) algorithm
is strictly superior to the algorithm alone for full observability.

4.3 Landmark-Based Goal Completion Heuristic

We now describe a goal recognition heuristic that estimates the percentage of completion
of a goal based on the number of landmarks that have been detected, and are required to
achieve that goal (Pereira et al., 2017). This estimate represents the percentage of sub-goals
in a goal that have been accomplished based on the evidence of achieved fact landmarks in
the observations. We note that a candidate goal is composed of sub-goals comprised of the
atomic facts that are part of a conjunction of facts in the goal definition.

Our heuristic method estimates the percentage of completion towards a goal by using the
set of achieved fact landmarks computed by Algorithm 1 (ComputeAchievedLandmarks).
More specifically, this heuristic operates by aggregating the percentage of completion of each
sub-goal into an overall percentage of completion for all facts of a candidate goal. We denote
this heuristic as hgc , and it is formally defined by Equation 1, where ALg is the number of
achieved landmarks from observations of every sub-goal g of the candidate goal G in ALG,
and Lg represents the number of necessary landmarks to achieve every sub-goal g of G in
LG.

hgc(G,ALG,LG) =

∑g∈G
|ALg∈ALG|
|Lg∈LG|

|G|

 (1)

Thus, heuristic hgc estimates the completion of a goal G by calculating the ratio between

the sum of the percentage of completion for every sub-goal g ∈ G, i.e.,
∑

g∈G
|ALg∈ALG|
|Lg∈LG| ,

and the size |G| of the set of sub-goals, that is, the number of sub-goals in G. Algorithm 3
describes how to recognize goals using the hgc heuristic and takes as input a goal recog-
nition problem TGR, as well as a threshold value θ. The θ threshold gives us flexibility to
avoid eliminating candidate goals whose the percentage of goal completion are close to the
highest completion value. In Line 2, the algorithm uses the ExtractLandmarks function
to extract fact landmarks for all candidate goals. By taking as input the initial state I, the
observations O, and the extracted landmarks LG , in Line 3, our algorithm first computes
the set of achieved landmarks ΛG for every candidate goal using Algorithm 1. Finally, the
algorithm uses the heuristic hgc to estimate goal completion for every candidate G in G, and
as output (Line 5), the algorithm returns those candidate goals with the highest estimated
value within the threshold θ. Example 5 shows how heuristic hgc estimates the completion
of a candidate goal.
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Algorithm 3 Recognize Goals using the Goal Completion Heuristic hgc .

Input: Ξ planning domain definition, I initial state, G set of candidate goals,O observations,
and θ threshold.
Output: Recognized goal(s).

1: function Recognize(Ξ, I,G, O, θ)
2: LG := ExtractLandmarks(Ξ, I,G)
3: ΛG := ComputeAchievedLandmarks(I,G, O,LG)
4: maxh := max

G′∈G
hgc(G

′,ΛG(G′),LG(G′))

5: return all G s.t G ∈ G and
hgc(G,ΛG(G),LG(G)) ≥ (maxh − θ)

6: end function

Example 5. As an example of how heuristic hgc estimates goal completion of a candi-
date goal, recall the Blocks-World example from Figure 2. Consider that among these
candidate goals (RED, BED, and SAD) the correct hidden goal is RED, and we observe the
following partial sequence of actions: (unstack E A) and (stack E D). Thus, based
on the achieved landmarks ALRED computed using Algorithm 1 (Figure 5), our heuristic hgc
estimates that the percentage of completion for the goal RED is 0.66: (clear R) = 1

1 +
(on E D) = 3

3 + (on R E) = 1
3 + (ontable D) = 1

3 , and hence, 2.66
4 = 0.66. For the

words BED and SAD our heuristic hgc estimates respectively, 0.54 and 0.58.

Besides extracting landmarks for every candidate goal (EL), our landmark-based goal
completion approach iterates over the set of candidate goals G, the observations sequence
O, and the extracted landmarks LG . The heuristic computation of hgc (HC) is linear on the
number of fact landmarks. Thus, the complexity of this approach is: O(EL+ |G| · |O| · |LG |+
HC). Finally, the goal ranking based on hgc always ensures (in full observability) that the
correct goal ranks highest (i.e., it is sound), with possible ties, as stated in Theorem 1.

Theorem 1 (Soundness of the hgc Goal Recognition Heuristic). Let TGR = 〈Ξ, I,G, O〉
be a goal recognition problem with candidate goals G such that ∀G1∀G2 ∈ G(G1 6⊂ G2), a
complete and noiseless observation sequence O = 〈o1, o2, ..., on〉. If G∗ ∈ G is the cor-
rect hidden goal, then, for any landmark extraction algorithm that generates fact land-
marks LG and computed landmarks ΛG, the estimated value of hgc will always be highest
for the correct hidden goal G∗, i.e., ∀G ∈ G it is the case that hgc(G∗,ΛG(G∗),LG(G∗)) ≥
hgc(G,ΛG(G),LG(G)).

Proof. The proof is straightforward from the definition of fact landmarks ensuring they are
necessary conditions to achieve a goal G and that all facts g ∈ G are necessary. Let us
first assume that any pair of goals G1, G2 ∈ G are different, i.e., G1 ∩G2 6= ∅, and that no
action a in the domain Ξ achieves facts that are in any pair of goals simultaneously. Since
any landmark extraction algorithm includes all facts g ∈ G1 as landmarks for a goal G1,
then, for every other goal G2, there exists at least one fact g such that g ∈ G1 ∧ g 6∈ G2

that sets it apart from G2. Under these circumstances, an observation sequence O for the
correct goal G∗ will have achieved a set of landmarks ΛG(G∗) that is exactly the same as the
complete computed set of landmarks LG(G∗) for G∗. Hence hgc(G∗,ΛG(G∗),LG(G∗)) = 1,
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and hgc(G,ΛG(G),LG(G)) < 1 for any other goal G ∈ G, since the numerator of the hgc
computation will be missing fact g for G as g is not a landmark of G. If we drop the
assumption about the actions not achieving facts simultaneously in any pair of goals or that
goals are identical, it is possible that hgc(G∗,ΛG(G∗),LG(G∗)) = hgc(G,ΛG(G),LG(G)) = 1,
which still ensures that the under hgc , G∗ always ranks at the top, possibly tied with other
goals.

Thus, our goal completion heuristic is sound under full observability in the sense that it
can never rank the wrong goal higher than the correct goal when we observe the landmarks.
We note that there is one specific case when our landmark approach can provide wrong rank-
ings, but which we explicitly exclude from the theorem, which is when the set of candidate
goals contains two goals such that one is a sub-goal of the other (i.e., G1, G2 ∈ G(G1 ⊂ G2)).
In this case, any kind of “distance” to goal metric will report G1 as being more likely than
G2 until the observations take the observed agent past G1 and closer to G2 than G1. We
close this section by commenting on the effect of landmark orderings in the accuracy of
the heuristic. Specifically, although we do use the landmark order to infer the achievement
of necessary prior landmarks that were not observed in partially observable environments,
our heuristic itself does not consider the actual ordering of the heuristics. We infer prior
landmarks to obtain more landmarks when we deal with partial observability. Nevertheless,
we have experimented with different scoring mechanisms to account for landmarks having
been observed in the expected order or not, and these showed almost no advantage over
the current heuristic. Consequently, although there are various different algorithms that
generate better landmark orderings (Hoffmann et al., 2004), the way in which we use the
landmarks does not seem to be affected by more or less accurate landmark orderings.

There are two additional properties provable for our hgc heuristic, first, given how our
heuristic accounts for landmarks, the value of this heuristic is strictly increasing.

Proposition 2 (Monotonicity of hgc). The value of hgc is monotonically (non-strictly)
increasing in the observation sequence.

Proof. By definition, ALG is monotonically increasing, while all other values in hgc remain
constant. Therefore from Equation 1, it is clear that hgc must increase.

Further, a corollary of Theorem 1 is that, under full observation, only the correct goal
can reach a heuristic value of 1. This also illustrates why we restrict our theorems to settings
where candidate goals are not subgoals of each other. Consider a goal to be at position d,
and another to be at position g, with landmarks a, b, c, d, e, f, g, since d itself is a landmark
of g, d is implicitly a subgoal of g. If we observe all landmarks in an observation, then
hgc(d) = 4

4 = 1, and hgc(g) = 7
7 = 1, which leads to Corollary 1.

Corollary 1. If the goal being monitored has no subgoals being monitored under full ob-
servability, then hgc = 1 iff the goal the heuristic is monitoring has been achieved.

Proof. hgc = 1 when
∑

g
|ALG|
L

|G| = 1, which can only occur when |ALg| = |Lg| for all g ∈ G.
This clearly occurs when the goal being monitored is achieved. However, if the heuristic is
also monitoring a subgoal, then this condition can be satisfied for the subgoal, hence the
exception in the proposition.
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4.4 Landmark-Based Uniqueness Heuristic

Many goal recognition problems contain multiple candidate goals that share common fact
landmarks, generating ambiguity for our previous approaches. Clearly, landmarks that are
common to multiple candidate goals are less useful for recognizing a goal than landmarks
that exist for only a single goal. As a consequence, computing how unique (and thus infor-
mative) each landmark is can help disambiguate similar goals for a set of candidate goals.
We now develop a second goal recognition heuristic based on this intuition. To develop this
heuristic, we introduce the concept of landmark uniqueness, which is the inverse frequency
of a landmark among the landmarks found in a set of candidate goals (Pereira et al., 2017).
For example, consider a landmark L that occurs only for a single goal within a set of can-
didate goals; the uniqueness value for such a landmark is intuitively the maximum value
of 1. Equation 2 formalizes this intuition, describing how the landmark uniqueness value is
computed for a landmark L and a set of landmarks for goals LG .

Using the landmark uniqueness value, we estimate which candidate goal is the intended
one by summing the uniqueness values of the landmarks achieved in the observations. Unlike
our previous heuristic, which estimates progress towards goal completion by analyzing sub-
goals and their achieved landmarks, the landmark-based uniqueness heuristic estimates the
goal completion of a candidate goal G by calculating the ratio between the sum of the
uniqueness value of the achieved landmarks of G and the sum of the uniqueness value of all
landmarks of G. This algorithm effectively weighs the completion value by the informational
value of a landmark so that unique landmarks have the highest weight. To estimate goal
completion using the landmark uniqueness value, we calculate the uniqueness value for every
extracted landmark in the set of landmarks of the candidate goals using Equation 2. This
computes the landmark uniqueness value of every landmark L of LG and store it into Υuv.
This heuristic is denoted as huniq and formally defined in Equation 3.

LUniq(L,LG) =

 1∑
L∈LG

|{L|L ∈ L}|

 (2)

huniq(G,ALG,LG,Υuv) =


∑

AL∈ALG

Υuv(AL)∑
L∈LG

Υuv(L)

 (3)

Algorithm 4 formalizes a goal recognition function that uses the huniq heuristic. This
algorithm takes as input the same parameters as the previous approach: a goal recognition
problem and a threshold θ. Like Algorithm 1, this algorithm extracts the set of landmarks for
all candidate goals from the initial state I, stores them in LG (Line 2), and computes the set
of achieved landmarks based on the observations, storing these in ΛG . Unlike Algorithm 3, in
Line 6 this algorithm computes the landmark uniqueness value for every landmark L in LG
and stores it into Υuv. Finally, using these computed structures, the algorithm recognizes
which candidate goal is being pursued from observations using the heuristic huniq , returning
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those candidate goals with the highest estimated value within the θ threshold. Example 6
shows how heuristic huniq uses the concept of landmark uniqueness value to goal recognition.

Algorithm 4 Recognize Goals using the Landmark Uniqueness Heuristic huniq .

Input: Ξ planning domain definition, I initial state, G set of candidate goals,O observations,
and θ threshold.
Output: Recognized goal(s).

1: function Recognize(Ξ, I,G, O, θ)
2: LG := ExtractLandmarks(Ξ, I,G)
3: ΛG := ComputeAchievedLandmarks(I,G, O,LG)
4: Υuv := 〈〉 . Map of landmarks to their uniqueness value.
5: for each fact landmark L in LG do
6: Υuv(L) := LUniq(L,LG)
7: end for
8: maxh := max

G′∈G
huniq(G

′,ΛG(G′),LG(G′),Υuv)

9: return all G s.t G ∈ G and
huniq(G,ΛG(G),LG(G),Υuv) ≥ (maxh − θ)

10: end function

Example 6. Recall the Blocks-World example from Figure 2 consider the following
observed actions: (unstack E A) and (stack E D). Listing 2 shows the set of extracted
fact landmarks for the candidate goals in the Blocks-World example and their respective
uniqueness value. Based on the set of achieved landmarks (shown in bold in Listing 2), our
heuristic huniq estimates the following percentage for each candidate goal: huniq(RED) = 3.66

6.33
= 0.58; huniq(BED) = 2.66

6.33 = 0.42; and huniq(SAD) = 3.66
8.33 = 0.44. In this case, Algorithm 4

correctly estimates RED to be the intended goal since it has the highest heuristic value.

Similar to our landmark-based goal completion approach, this approach iterates over
the set of candidate goals G, the observations sequence O, and the extracted landmarks LG .
However, for this approach we compute the uniqueness value (CLUniq) for every extracted
landmarks, which is linear on the number of landmarks. The heuristic computation of huniq
(HC) is also linear on the number of fact landmarks. Thus, the complexity of this approach
is: O(EL+ |G| · |O| · |LG |+CLUniq +HC). Finally, since this is just a weighted version of
the hgc heuristic, it follows trivially from Theorem 1 that, for full observations, huniq always
ranks the correct goal G∗ highest.

Corollary 2 (Correctness of huniq Goal Recognition Heuristic). Let TGR = 〈Ξ, I,G, O〉
be a goal recognition problem with candidate goals G ∈ G, a complete and noiseless obser-
vation sequence O = 〈o1, o2, ..., on〉. If G∗ ∈ G is the correct goal, then, for any land-
mark extraction algorithm that generates fact landmarks LG and computed landmarks ΛG,
the estimated value of huniq will always be highest for the correct goal G∗, i.e., ∀G ∈
G (huniq(G∗,ΛG(G∗),LG(G∗)) ≥ huniq(G,ΛG(G),LG(G))).
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� �
- (and (clear B) (on B E) (on E D) (ontable D)) = 6.33

[(on E D)] = 0.5, [(clear D) (holding E)] = 0.5,
[(on E A) (clear E) (handempty)] = 0.33, [(ontable D)] = 0.33,
[(on D B) (clear D) (handempty)] = 0.33, [(holding D)] = 0.33,
[(clear B) (ontable B) (handempty)] = 1.0, [(on B E)] = 1.0,
[(clear B)] = 1.0, [(clear E) (holding B)] = 1.0

- (and (clear S) (on S A) (on A D) (ontable D)) = 8.33
[(clear S)] = 1.0, [(on A D)] = 1.0, [(on S A)] = 1.0,
[(clear A) (ontable A) (handempty)] = 1.0, [(ontable D)] = 0.33,
[(clear S) (ontable S) (handempty)] = 1.0, [(holding D)] = 0.33,
[(on E A) (clear E) (handempty)] = 0.33,
[(on D B) (clear D) (handempty)] = 0.33,
[(clear A) (holding S)] = 1.0, [(clear D) (holding A)] = 1.0

- (and (clear R) (on R E) (on E D) (ontable D)) = 6.33
[(clear R)] = 1.0, [(clear R) (ontable R) (handempty)] = 1.0,
[(clear D) (holding E)] = 0.5, [(on E D)] = 0.5,
[(on E A) (clear E) (handempty)] = 0.33, [(ontable D)] = 0.33,
[(on D B) (clear D) (handempty)] = 0.33, [(holding D)] = 0.33,
[(on R E)] = 1.0, [(clear E) (holding R)] = 1.0� �

Listing 2: Extracted fact landmarks for the Blocks-World example in Figure 2 and their
respective uniqueness value.

5. Experiments and Evaluation

In this section, we describe the experiments and evaluation we carried out on our goal recog-
nition approaches. We start with a description of the planning domains and the datasets,
as well as the metrics we use to evaluate our approaches in Section 5.2. Section 5.3 then
details the experiments and evaluation results of our goal recognition approaches.

5.1 Domains, Datasets, and Metrics

We empirically evaluated our approaches using 15 domains from the planning literature6.
Six of these domains are also used in the evaluation of other goal and plan recognition
approaches (Ramı́rez & Geffner, 2009; Ramı́rez & Geffner, 2010)7. We summarize these
domains as follows.

• Blocks-World is a domain that consists of a set of blocks, a table, and a robot
hand. Blocks can be stacked on top of other blocks or on the table. A block that has
nothing on it is clear. The robot hand can hold one block or be empty. The goal is to
find a sequence of actions that achieves a final configuration of blocks;

• Campus is a domain that consists of finding what activity is being performed by a
student from his observations on a campus environment;

6. http://ipc.icaps-conference.org
7. https://sites.google.com/site/prasplanning/
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• Depots is a domain that combines transportation and stacking. For transportation,
packages can be moved between depots by loading them on trucks. For stacking,
hoists can stack packages on palettes or other packages. The goal is to move and stack
packages by using trucks and hoists between depots;

• Driver-Log is a domain that consists of drivers that can walk between locations and
trucks that can drive between locations. Walking between locations requires traversal
of different paths. Trucks can be loaded with or unloaded of packages. Goals in this
domain consists of transporting packages between locations;

• Dock-Worker-Robots (DWR) is a domain that involves a number of cranes,
locations, robots, containers, and piles, in which goals involve transporting containers
to a final destination according to a desired order;

• IPC-Grid domain is a domain consists of an agent that moves in a grid from con-
nected cells to others by transporting keys in order to open locked locations;

• Ferry is a domain that consists of set of cars that must be moved to desired locations
using a ferry that can carry only one car at a time;

• Intrusion-Detection represents a domain where a hacker tries to access, vandalize,
steal information, or perform a combination of these attacks on a set of servers;

• Kitchen is a domain that consists of home-activities, in which the goals can be
preparing dinner, breakfast, among others;

• Logistics is a domain which models cities, and each city contains locations. These
locations are airports. For transporting packages between locations, there are two
types o vehicles: trucks and airplanes. Trucks can drive between cities. Airplanes can
fly between airports. The goal is to get and transport packages from locations to other
locations;

• Miconic is a domain that involves transporting a number of passengers using an
elevator to reach destination floors;

• Rovers is a domain that consists of a set of rovers that navigate on a planet surface
in order to find samples and communicate experiments;

• Satellite is a domain that involves using one or more satellites to make observations,
by collecting data and down-linking the data to a desired ground station;

• Sokoban is a domain that involves an agent whose goal is to push a set of boxes into
specified goal locations in a grid with walls; and

• Zeno-Travel is a domain where passengers can embark and disembark onto aircraft
that can fly at two alternative speeds between locations.

We formalize planning domains and problems using the STRIPS (Fikes & Nilsson, 1971)
fragment of PDDL (McDermott et al., 1998). Based on the datasets provided by Ramı́rez
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and Geffner ((2009, 2010)), which contain hundreds of goal recognition problems for 6
domains, we added non-trivial8 and larger planning problems in their datasets and generated
new datasets9 from the remaining 9 planning domains using open-source planners, such
as Fast-Downward (Helmert, 2011), Fast-Forward (Hoffmann & Nebel, 2001), and
LAMA (Richter & Westphal, 2010), each of which is based on planning problems containing
both optimal and sub-optimal plans of various sizes, including large problems to test the
scalability of the approaches (Pereira & Meneguzzi, 2017). We also generated datasets for
4 domains (Campus, Intrusion, IPC-Grid, and Kitchen) with missing, full, and noisy
observations, which are the same domains that Sohrabi et al. use in ((2016)). The dataset for
Campus domain with missing and noisy observations comes from Sohrabi et al. ((2016))10.
Thus, we evaluate our goal recognition approaches against the state-of-the-art not only using
datasets with missing and full observations, but also using datasets with noisy observations
in the same way as Sohrabi et al. ((2016)).

5.2 Evaluation Metrics

For evaluation of our goal recognition approaches against the state-of-the-art, we use the
Accuracy metric (Equation 4), which represents the fraction of times that the correct goal
was among the goals found to be most likely, i.e., how well the correct hidden goal is
recognized from a set of possible goals for a given goal recognition problem. Most goal
recognition approaches (Ramı́rez & Geffner, 2010; E-Mart́ın et al., 2015; Sohrabi et al.,
2016) refer to this metric as quality, also denoted as Q.

Accuracy =

∑
True positive+

∑
True negative∑

Total population
(4)

Like most goal and plan recognition approaches in the literature, we also evaluate the
average number of returned goals, which is called as Spread in G, and recognition time
(speed), in seconds, representing the time that a goal recognition approach takes to recognize
the most likely goal from a set of possible goals.

5.3 Goal Recognition Experimental Results

Our experiments compare our goal recognition approaches and heuristics (hgc and huniq)
to four other approaches. First, we use the heuristic estimator approach of Ramı́rez and
Geffner ((2009))11, denoted as R&G 2009; as well as a combination of their approach and
our filtering method with threshold θ = 10%, denoted as Filter10%+ R&G 2009. This is

8. A non-trivial planning problem contains a large search space (in terms of search branching factor and
depth), and therefore, modern planners such as Fast-Downward takes up to 5-minutes to solve it. In
our datasets, the number of instantiated (grounded) actions is between 158 and 3258, and plan length
is between 5 and 83.

9. https://github.com/pucrs-automated-planning/goal_plan-recognition-dataset
10. https://github.com/shirin888/planrecogasplanning-ijcai16-benchmarks
11. Ramı́rez and Geffner ((2009)) developed a goal and plan recognition approach which uses a heuristic

method to approximate the planning solution by computing a relaxed plan (Keyder & Geffner, 2008).
The authors show that this heuristic-based approach is their faster and more accurate goal and plan
recognition approach.
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their fastest and most accurate algorithm12. Second, we use the probabilistic framework of
Ramı́rez and Geffner ((2010))13 that allows the use of any off-the-shelf automated planner,
denoted as R&G 2010. The automated planner we used alongside this approach is Fast-
Downward (Helmert, 2011) with the LM-Cut heuristic (Helmert & Domshlak, 2009), a
planning heuristic that relies on landmarks to estimate the distance from a particular state
to a goal state. We also use this approach with our filtering method (threshold θ = 10%),
denoted as Filter10%+ R&G 2010. Third, we use the approach of Sohrabi et al. ((2016))14,
which uses a top-K planner to extract multiple optimal and nearly optimal plans for a
particular goal, denoted as IBM 201615. The automated planner we used alongside this
approach is the most modern top-K planner TK∗ (Katz, Sohrabi, Udrea, & Winterer, 2018)
with the LM-Cut heuristic, and the number of sampled plans parameter K=1000. These
are exactly the same parameters that Sohrabi et al. used in the experiments and evaluation
in (Sohrabi et al., 2016). Note that we use the LM-Cut heuristic (Helmert & Domshlak, 2009)
with the approaches from (Ramı́rez & Geffner, 2010) and (Sohrabi et al., 2016) because
our goal recognition approaches proposed rely on landmarks. The use of this landmark-
based planning heuristic with the planners Fast-Downward (Helmert, 2011) and top-K
planner TK∗ (Katz et al., 2018) aims to provide a fairer comparison against our landmark-
based approaches. Finally, we compare our approaches against the approach of E-Mart́ın et
al. ((2015)), denoted as FGR 2015. Their goal recognition approach also obviates the use
of calling a planner multiple times for the recognition process, and instead, uses a planning
graph, resulting in fast goal recognition in planning settings. As advised by the authors,
we use the FGR 2015 recognizer with interaction information equals to 0, which is their
technique that yields the best results in terms of recognition time and accuracy16. In both
non-noisy (missing) and noisy domains, the IPC-Grid domain timed out for more than
60% of the problems in the FGR 2015 approach, so we do not report results for this specific
domain as they would not be representative.

These approaches take as input a goal recognition problem TGR (from Definition 9),
i.e., a domain description as well as an initial state, a set of candidate goals G, a correct
hidden goal G∗ in G, and an observation sequence O. An observation sequence contains
actions that represent an optimal plan or sub-optimal plan that achieves a correct hidden
goal G∗, and this observation sequence can be full or partial. Full observation sequences
contain the entire plan for a correct hidden goal G∗, i.e., 100% of the actions having been
observed. Partial observation sequences represent plans for a correct hidden goal G∗ with
10%, 30%, 50%, or 70% of their actions having been observed. However, for experiments
with noisy observations, the observability of partial observations is quite different because

12. https://sites.google.com/site/prasplanning/file-cabinet/plan-recognition.tar.bz2
13. https://sites.google.com/site/prasplanning/file-cabinet/prob-plan-recognition.tar.bz2
14. Since the exact code from Sohrabi et al. ((2016)) is unavailable, we developed our own version of this

approach with some advice from the main author and the top-k planner she shared.
15. We ran experiments using a top-k planner rather than a diverse planner under advice from the main

author.
16. In an attempt to make a fair comparison, we obtained the code for the algorithms of (E-Mart́ın et al.,

2015) directly from the main author. Running on our datasets, these algorithms performed worse than
the results of (E-Mart́ın et al., 2015). We believe that this could be due to different problem set sizes of
our datasets. In addition, the code behaved unexpectedly on some domains of our datasets (denoted by
a † symbol in the tables), returning the same recognition score for all candidate goals. At the time of
submission we are working with the authors to clarify these discrepancies.
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every observation sequence always includes at least two noisy observations, so a partial
observation sequence with noisy observations represents a plan with 25%, 50%, or 75% of
its actions having been observed.

Our evaluation uses three metrics: accuracy of goal recognition (Equation 4), the average
number of goals in G that have been found to be the most likely, and recognition time
(speed). Note that in many domains, all algorithms return more than one candidate goal.
In the case of Ramı́rez and Geffner ((2009)), i.e., R&G 2009, this may occur when goals
have the same distance from their estimated state. Alternatively, for our goal recognition
heuristics, this may occur when there are ties between the heuristic value of candidate goals
within the threshold margin. Thus, like most goal recognition approaches, we also evaluate
the average number of returned goals for a given goal recognition problem, i.e., the Spread
in G. We ran all experiments using a single core of a 12 core Intel(R) Xeon(R) CPU E5-2620
v3 @ 2.40GHz with 16GB of RAM, set a maximum memory usage limit of 4GB, and set a
20-minute timeout for each recognition process.

5.3.1 Experimental Results with Missing and Full Observations

Our first set of experiments consists of running the various goal recognition algorithms in
datasets containing thousands of problems for 15 domains with missing and full observations.
In what follows, each table shows the total number of goal recognition problems used under
each domain name (first column). Each row in the tables express averages for the number
of candidate goals |G|; the percentage of the plan that is actually observed % Obs; the
average number of observations (actions) per problem |O|; and for each approach, the time
in seconds to recognize the goal given the observations (Time); the Accuracy with which
the approaches correctly infer the goal; and Spread in G represents the average number of
returned goals. For our goal recognition heuristics hgc and huniq , we show their results under
different thresholds: 0%, 10%, and 20%. If the threshold value is θ = 0, our approaches do
not give any flexibility estimating candidate goals, returning only the goals with the highest
estimated value. Tables 1 and 2 show comparative results of our heuristics and previous
approaches for the first set of domains (Blocks-World to Intrusion). Table 1 shows
the results of our goal recognition heuristics hgc and huniq , against R&G 2009 (Ramı́rez &
Geffner, 2009) as well as this approach enhanced with our filtering method with threshold
θ = 10% (Filter10%). Similarly, Table 2 shows the results of R&G 2010 (Ramı́rez & Geffner,
2010), FGR 2015 (E-Mart́ın et al., 2015), and IBM 2016 (Sohrabi et al., 2016). We show
both approaches of R&G 2010 (Ramı́rez & Geffner, 2010) and IBM 2016 (Sohrabi et al.,
2016) individually as well as enhanced with our filtering method (again with θ = 10%).
Tables 3, and 4 show comparative results of our heuristics and previous approaches for the
second set of domains (Kitchen to Zeno-Travel). From these tables, it is possible to see
that our landmark-based approaches are both faster and more accurate than R&G 2009,
R&G 2010, FGR 2015, and IBM 2016, and, when we combine their algorithms with our
filtering method, the resulting approaches get a substantial speedup and often accuracy
improvements. As we increase the threshold, our heuristic approaches quickly surpass the
other approaches in all domains tested. Note that we report the accuracy averaged over all
of the problems for each observability. For example, in Table 2, for the Campus domain,
there are 15 problems with 50% observability (totaling 75 for the entire domain), and the
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IBM 2016 (Sohrabi et al., 2016) includes this goal in its output for 6 out of 15, resulting in
40% accuracy.

The Receiver Operating Characteristic (ROC) curve allows us to provide a summary of
the discriminatory performance of inferences such as goal recognition over diverse datasets.
The ROC curve shows graphically the performance of classifier systems by evaluating true
positive rate against the false positive rate at various threshold settings. We adapt the notion
of the ROC curve into points over the ROC space to compare not only true positive predic-
tions (i.e., Accuracy), but also to compare the false positive ratio of the experimented goals
recognition approaches. Each prediction result of a goal recognition approach represents one
point in the space. In ROC space, the diagonal line represents a random guess to recognize a
goal from observations. This diagonal line divides the ROC space, in which points above the
diagonal represent good classification results (better than random), whereas points below
the line represent poor results (worse than random). The best possible (perfect) prediction
for recognizing goals must be a point in the upper left corner (i.e., coordinate x = 0 and y
= 100) in the ROC space. Thus, the closer a goal recognition approach (point) gets to the
upper left corner, the better it is for recognizing goals. To visualize the comparative per-
formance of the multiple approaches, we adapt the notation of the ROC space, and, rather
than plotting a single point per goal recognition problem, we aggregate multiple problems
for all domains and plot these results in ROC space.

Figure 8 shows the trade-off between true positive results and false positive results in
ROC space for the evaluated goal and plan recognition approaches. Recall that the closer a
goal recognition approach (point) is to the upper left corner, the better it is for recognizing
goals and plans. To compare the recognition results of our approaches against the others
in the ROC space, we select the results of our heuristics using the threshold θ = 20%.
For each approach, we plot its recognition results for all domains into a cloud of points,
which represents (in general) how well each approach recognizes the correct hidden goal
from missing and full observations. Thus, the points in ROC space show that our heuristics
are not only competitive against the four other approaches (R&G 2009, R&G 2010, FGR
2015, and IBM 2016) for all variations of observability, but also surpasses the approaches
in a substantial number of domains.

With respect to recognition time, we compare the time that each approach takes to
recognize the correct hidden goal for different sizes of the observation sequence. Figures 9
and 10 show the runtime as a function of the average length of the observation sequences (|O|
column in the Tables) for all of the approaches we evaluated (apart from IBM 2016, which
timed out for almost all domains), as reported in the time column of Tables 1, 2, 3, and 4).
Figure 9 shows the runtime for our heuristic approaches in comparison with R&G 2009
and this approach alongside our filtering method, whereas Figure 10 shows the runtime of
R&G 2010 with and without the filtering method, and FGR 2015. We used separate graphs
for these techniques, given the widely different magnitude of the time taken to recognize a
goal. When measuring recognition time for our heuristics and the filtering method, we also
include the time to extract the set of landmarks, so that landmark extraction is performed
online, i.e., during the goal recognition process. Curves in the graph represent the average
runtime when observation sizes were the same smoothed over the resulting points. The
graph shows the scalability of the 4 evaluated approaches. Our goal recognition heuristics
never take more than 1 second (≈ 0.7 seconds) to compute the correct hidden goal in the set
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Figure 8: ROC space for all domains with missing and full observations for our landmark-
based heuristics (hgc and huniq) against R&G 2009 (Ramı́rez & Geffner, 2009),
R&G 2010 (Ramı́rez & Geffner, 2010), and FGR 2015 (E-Mart́ın et al., 2015).
The results obtained for Campus domain from IBM 2016 (Sohrabi et al., 2016)
are not included in the ROC space.

of candidate goals, while the other approaches seem to grow super-linearly (for R&G 2009),
and exponentially (for R&G 2010). The approaches of Ramı́rez and Geffner ((2009, 2010)),
R&G 2009 and R&G 2010, took at most ≈ 25 seconds and ≈ 1200 seconds, respectively.
Apart from the Campus domain, the approach of IBM 2016 (Sohrabi et al., 2016) timed out
for all goal recognition problems (all domains) in the datasets we used, probably because the
top-K planner (Katz et al., 2018) (even the latest top-K planning algorithm) does not scale
very well when dealing with non-trivial planning problems, especially when the planner has
to sample 1000 plans for a (transformed) planning problem. In this case, even the use of
our filtering method (which reduces the number of candidate goals) did not improve the
recognition time of the approach from IBM 2016 (Sohrabi et al., 2016). While our filtering
method significantly improves the recognition time of the approaches R&G 2009 and R&G
2010, it sometimes causes a loss of accuracy due to it ruling out the correct hidden from the
set of candidate goals. FGR 2015 took at most ≈ 355 seconds over all evaluated domains
(and timed out for most problems of the IPC-Grid domain). FGR 2015 is much faster than
R&G 2010 and R&G 2010 with our filtering method, though not as fast as our recognition
heuristics and R&G 2009. Finally, the evaluation of the domains DWR and Sokoban shows
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that larger plan lengths lead R&G 2009 and R&G 2010 to rapidly lose accuracy, whereas
our approaches show improved accuracy without affecting the recognition time.

As Tables 1, 2, 3, and 4 show, our goal recognition heuristics are not only competitive
(using thresholds between 10% and 20%) against the other approaches with superior accu-
racy, but also at least an order of magnitude faster (for all evaluated domains), for example,
≈ 2900 times faster than R&G 2010 in DWR domain. Comparison with two other state-
of-the-art recent techniques, we can also see that IBM 2016 is substantially slower, even
compared to R&G, whereas FGR 2015, while consistently much faster than R&G 2010, is
also slower than our heuristics techniques (up to an order of magnitude) across the board.
When comparing with our heuristics, the results show that the goal completion heuristic hgc
is often more accurate than the uniqueness heuristic huniq . However, huniq returns fewer can-
didate goals (Spread in G) than the goal completion heuristic hgc as a result of the landmark
uniqueness value, which weights landmark information among all landmarks for all goals,
making huniq more precise (but sometimes less accurate) than the goal completion heuris-
tic hgc . We use the threshold value to provide flexibility when the heuristic approaches
fail to observe landmarks. While our approach is more accurate than virtually all other
approaches with a recognition threshold value of 20% of optimal (sometimes with larger
spread), the comparison becomes more complex for other thresholds. The only domain in
which the FGR 2015 approach is more accurate than ours is DWR with with observability
under 70%, however, the spread in G is nearly twice as large as ours, meaning that FGR
2015 is worse at disambiguating goals. Apart from the Campus and Kitchen domains,
our approaches have similar or worse accuracy at very low (30% or less) observability. This
loss of accuracy happens for low observability problems because the number of landmarks
that happen to be observed is much lower (as the likelihood of observing a landmark goes
down) creating a challenge to disambiguate and recognize the correct hidden goal. The re-
sults for Campus and Kitchen are explained by the reduced number of goal hypotheses
in each domain and the informativeness of the actions, which yield landmarks that favor
our approaches. For domains such as DWR, Depots, Sokoban, Zeno-Travel, which are
considered more complex because traditional planning heuristics are not very informative
for them, our results are mixed. Sometimes, we are able to achieve high accuracy with low
observability (albeit with high spread in DWR and Depots), whereas sometimes we achieve
lower accuracy with low spread for Sokoban and Zeno-Travel. In this particular setting,
Sokoban is known to be a particularly difficult domain for planning heuristics (Pereira,
Ritt, & Buriol, 2015), and yields a small number of landmarks per goal. Nevertheless, when
our heuristic approaches deal with more than 30% of observability the results are very good
both in Accuracy and Spread in G for all domains.
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Figure 9: Recognition time comparison for missing and full observations for our landmark-
based heuristics (hgc and huniq) against R&G 2009 (Ramı́rez & Geffner, 2009),
and R&G 2009 using our filtering method with 10% of threshold.
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hgc huniq R&G 2009 / Filter10% + R&G 2009

# |G| % Obs |O|
Time

θ (0 / 10 / 20)

Accuracy

θ (0 / 10 / 20)

Spread in G
θ (0 / 10 / 20)

Time

θ (0 / 10 / 20)

Accuracy

θ (0 / 10 / 20)

Spread in G
θ (0 / 10 / 20)

Time Accuracy Spread in G

B
l
o
c
k
s-
W

o
r
l
d

(
1
0
7
6
)

20

10 1.8 0.137 / 0.143 / 0.151 39.9% / 59.2% / 86.4% 1.05 / 4.62 / 8.92 0.131 / 0.139 / 0.146 31.6% / 53.1% / 67.1% 1.03 / 2.77 / 6.06 1.235 / 0.631 86.8% / 60.9% 7.84 / 3.34

30 4.9 0.152 / 0.160 / 0.169 50.6% / 79.4% / 92.1% 1.09 / 3.96 / 7.76 0.144 / 0.153 / 0.164 51.4% / 67.1% / 79.4% 1.06 / 2.51 / 5.18 1.698 / 0.819 87.2% / 75.7% 3.56 / 1.79

50 7.6 0.179 / 0.187 / 0.196 65.1% / 86.1% / 98.7% 1.09 / 3.13 / 6.11 0.168 / 0.174 / 0.185 60.1% / 77.7% / 90.1% 1.08 / 2.24 / 4.48 2.497 / 1.008 97.9% / 87.2% 2.63 / 1.42

70 11.1 0.192 / 0.201 / 0.214 84.7% / 95.8% / 100% 1.12 / 2.51 / 3.79 0.184 / 0.193 / 0.207 79.1% / 90.5% / 97.9% 1.13 / 2.02 / 3.44 3.704 / 1.225 97.5% / 94.6% 1.83 / 1.18

100 14.5 0.245 / 0.254 / 0.261 100% / 100% / 100% 1.09 / 1.78 / 2.51 0.238 / 0.246 / 0.253 100% / 100% / 100% 1.09 / 1.61 / 2.51 6.123 / 1.567 100% / 100% 1.46 / 1.06

C
a
m
p
u
s

(
7
5
)

2

10 1 0.031 / 0.032 / 0.034 93.3% / 100% / 100% 1.0 / 1.33 / 1.46 0.027 / 0.029 / 0.030 100% / 100% / 100% 1.13 / 1.46 / 1.46 0.084 / 0.082 100% / 100% 1.46 / 1.46

30 2 0.045 / 0.048 / 0.049 100% / 100% / 100% 1.0 / 1.33 / 1.46 0.042 / 0.044 / 0.046 100% / 100% / 100% 1.13 / 1.46 / 1.46 0.097 / 0.096 100% / 100% 1.33 / 1.33

50 3 0.057 / 0.060 / 0.064 93.3% / 100% / 100% 1.0 / 1.33 / 1.46 0.055 / 0.055 / 0.057 93.3% / 100% / 100% 1.13 / 1.46 / 1.46 0.104 / 0.102 100% / 100% 1.33 / 1.33

70 4.4 0.061 / 0.063 / 0.068 100% / 100% / 100% 1.0 / 1.33 / 1.33 0.058 / 0.059 / 0.062 100% / 100% / 100% 1.0 / 1.33 / 1.33 0.115 / 0.113 100% / 100% 1.26 / 1.26

100 5.5 0.066 / 0.067 / 0.070 100% / 100% / 100% 1.0 / 1.0 / 1.0 0.061 / 0.063 / 0.064 100% / 100% / 100% 1.0 / 1.0 / 1.0 0.128 / 0.129 100% / 100% 1.13 / 1.13

D
e
p
o
t
s

(
3
6
4
)

8.5

10 3.1 0.348 / 0.364 / 0.375 35.7% / 66.6% / 85.7% 1.17 / 3.42 / 4.97 0.331 / 0.342 / 0.357 32.1% / 48.8% / 75% 1.09 / 2.70 / 3.86 1.485 / 0.721 77.3% / 66.6% 3.98 / 2.89

30 8.6 0.372 / 0.401 / 0.428 58.3% / 82.1% / 96.4% 1.05 / 2.53 / 3.73 0.356 / 0.389 / 0.410 47.6% / 71.4% / 91.6% 1.07 / 2.57 / 2.84 2.307 / 1.214 77.3% / 76.1% 2.39 / 1.72

50 14.1 0.439 / 0.482 / 0.514 76.1% / 94.1% / 97.6% 1.05 / 1.77 / 2.53 0.415 / 0.447 / 0.470 71.4% / 86.9% / 96.4% 1.02 / 2.10 / 1.75 3.433 / 1.532 84.5% / 89.2% 1.91 / 1.33

70 19.7 0.502 / 0.555 / 0.593 89.2% / 94.1% / 97.6% 1.01 / 1.35 / 1.91 0.481 / 0.528 / 0.562 84.5% / 96.4% / 96.4% 1.01 / 1.09 / 1.46 5.149 / 1.866 91.6% / 94.1% 1.67 / 1.13

100 24.4 0.613 / 0.642 / 0.677 100% / 100% / 100% 1.03 / 1.05 / 1.65 0.575 / 0.601 / 0.633 100% / 100% / 100% 1.03 / 1.09 / 1.46 7.094 / 2.408 92.8% / 100% 1.46 / 1.07

D
r
iv
e
r
-L

o
g

(
3
6
4
)

10.5

10 2.6 0.295 / 0.302 / 0.310 41.6% / 52.3% / 76.1% 1.03 / 1.88 / 2.60 0.284 / 0.292 / 0.298 35.7% / 54.7% / 79.7% 1.10 / 1.84 / 2.88 1.192 / 0.499 96.4% / 61.9% 4.71 / 2.40

30 6.9 0.303 / 0.310 / 0.316 54.7% / 72.6% / 90.1% 1.13 / 1.90 / 2.77 0.291 / 0.299 / 0.305 47.6% / 69.1% / 85.7% 1.09 / 2.03 / 2.40 1.444 / 0.605 92.8% / 72.6% 3.34 / 1.66

50 11.1 0.312 / 0.320 / 0.325 72.6% / 85.7% / 96.4% 1.16 / 1.88 / 2.60 0.290 / 0.297 / 0.301 64.2% / 82.1% / 92.8% 1.14 / 1.84 / 2.35 1.608 / 0.757 94.1% / 86.9% 2.88 / 1.41

70 15.6 0.322 / 0.330 / 0.342 90.4% / 94.1% / 100% 1.14 / 1.58 / 2.15 0.298 / 0.304 / 0.309 90.4% / 97.6% / 100% 1.14 / 1.47 / 2.05 1.925 / 0.846 89.2% / 98.8% 2.46 / 1.35

100 21.7 0.331 / 0.339 / 0.344 100% / 100% / 100% 1.21 / 1.32 / 1.92 0.305 / 0.311 / 0.318 100% / 100% / 100% 1.17 / 1.25 / 1.46 2.809 / 1.213 89.2% / 96.4% 2.14 / 1.14

D
W

R
(
3
6
4
)

7.25

10 5.7 0.523 / 0.534 / 0.541 36.9% / 85.7% / 94.1% 1.09 / 4.32 / 5.83 0.491 / 0.499 / 0.511 33.3% / 70.2% / 85.7% 1.05 / 3.07 / 4.32 1.634 / 0.921 83.3% / 79.7% 4.21 / 2.29

30 16 0.535 / 0.546 / 0.557 60.7% / 95.2% / 98.8% 1.03 / 3.61 / 4.84 0.518 / 0.527 / 0.538 51.1% / 80.1% / 95.2% 1.05 / 2.41 / 3.61 2.977 / 1.204 80.9% / 83.3% 3.34 / 2.89

50 26.2 0.560 / 0.572 / 0.581 66.6% / 97.6% / 100% 1.0 / 3.19 / 3.92 0.533 / 0.541 / 0.552 61.9% / 88.1% / 97.6% 1.04 / 2.16 / 3.19 4.485 / 2.121 72.6% / 85.7% 2.27 / 1.64

70 36.8 0.601 / 0.608 / 0.599 89.2% / 98.8% / 100% 1.0 / 2.50 / 3.07 0.540 / 0.547 / 0.555 78.5% / 98.8% / 98.8% 1.03 / 2 / 2.50 10.432 / 3.555 70.2% / 89.9% 2.04 / 1.48

100 51.9 0.613 / 0.620 / 0.626 100% / 100% / 100% 1.0 / 1.67 / 2.50 0.559 / 0.551 / 0.564 100% / 100% / 100% 1.01 / 1.60 / 1.67 25.091 / 5.921 67.8% / 92.8% 1.67 / 1.14

IP
C
-G

r
id

(
6
7
3
)

9

10 2.9 0.243 / 0.255 / 0.262 66.6% / 86.2% / 94.1% 2.57 / 3.28 / 4.41 0.220 / 0.229 / 0.237 62.7% / 82.3% / 92.8% 2.34 / 3.13 / 4.09 1.084 / 0.708 96.1% / 85.6% 2.45 / 2.11

30 7.8 0.251 / 0.264 / 0.273 81.6% / 87.5% / 88.8% 1.64 / 2.32 / 3.28 0.234 / 0.241 / 0.251 83.6% / 89.5% / 90.1% 1.66 / 2.34 / 3.28 1.475 / 0.960 97.3% / 87.5% 1.42 / 1.25

50 12.7 0.260 / 0.269 / 0.276 90.8% / 93.4% / 93.4% 1.18 / 1.26 / 2.32 0.245 / 0.252 / 0.259 90.1% / 94.7% / 94.7% 1.18 / 1.48 / 2.57 1.932 / 1.125 100% / 93.4% 1.15 / 1.04

70 17.9 0.272 / 0.278 / 0.285 97.3% / 97.3% / 98.1% 1.07 / 1.15 / 1.44 0.253 / 0.260 / 0.267 97.3% / 97.3% / 98.1% 1.11 / 1.16 / 1.48 2.556 / 1.211 100% / 97.3% 1.05 / 1.0

100 24.8 0.286 / 0.289 / 0.291 100% / 100% / 100% 1.0 / 1.0 / 1.0 0.261 / 0.268 / 0.279 100% / 100% / 100% 1.0 / 1.0 / 1.0 3.868 / 1.304 100% / 100% 1.0 / 1.0

F
e
r
r
y

(
3
6
4
)

7.5

10 2.9 0.077 / 0.083 / 0.093 58.3% / 85.7% / 98.8% 1.26 / 3.19 / 4.76 0.068 / 0.083 / 0.087 58.3% / 89.2% / 100% 1.17 / 3.14 / 3.45 0.511 / 0.302 98.8% / 90.4% 3.36 / 2.35

30 7.6 0.084 / 0.092 / 0.099 85.7% / 97.6% / 100% 1.11 / 2.13 / 3.25 0.073 / 0.081 / 0.088 83.3% / 95.2% / 100% 1.05 / 1.90 / 2.28 0.677 / 0.399 100% / 97.6% 1.76 / 1.41

50 12.3 0.091 / 0.096 / 0.102 95.2% / 98.8% / 100% 1.07 / 1.5 / 1.72 0.084 / 0.086 / 0.092 91.6% / 92.8% / 100% 1.01 / 1.38 / 1.40 0.794 / 0.410 100% / 98.8% 1.41 / 1.16

70 17.3 0.098 / 0.100 / 0.107 100% / 100% / 100% 1.01 / 1.13 / 1.17 0.092 / 0.094 / 0.101 100% / 100% / 100% 1.0 / 1.11 / 1.38 1.202 / 0.525 98.8% / 100% 1.14 / 1.02

100 24.2 0.104 / 0.108 / 0.112 100% / 100% / 100% 1.0 / 1.0 / 1.01 0.099 / 0.102 / 0.106 100% / 100% / 100% 1.0 / 1.0 / 1.07 1.693 / 0.571 100% / 100% 1.07 / 1.0

In
t
r
u
si
o
n

(
4
6
5
)

15

10 1.9 0.095 / 0.098 / 0.102 62.8% / 96.1% / 100% 1.14 / 2.56 / 5.12 0.077 / 0.084 / 0.090 64.7% / 100% / 100% 1.23 / 2.54 / 7.29 0.724 / 0.444 100% / 100% 2.53 / 2.53

30 4.5 0.101 / 0.106 / 0.108 94.2% / 100% / 100% 1.01 / 1.96 / 2.56 0.083 / 0.088 / 0.092 85.7% / 100% / 100% 1.02 / 1.96 / 6.12 0.803 / 0.486 100% / 100% 1.11 / 1.11

50 6.7 0.109 / 0.111 / 0.114 99.1% / 100% / 100% 1.01 / 1.19 / 1.61 0.089 / 0.091 / 0.094 94.2% / 100% / 100% 1.04 / 1.91 / 3.31 0.888 / 0.513 100% / 100% 1.02 / 1.0

70 9.5 0.113 / 0.115 / 0.121 100% / 100% / 100% 1.0 / 1.02 / 1.19 0.093 / 0.096 / 0.099 94.2% / 100% / 100% 1.0 / 1.67 / 2.46 1.012 / 0.539 100% / 100% 1.0 / 1.0

100 13.1 0.120 / 0.126 / 0.129 100% / 100% / 100% 1.0 / 1.02 / 1.02 0.098 / 0.100 / 0.102 100% / 100% / 100% 1.0 / 1.60 / 1.88 1.257 / 0.550 100% / 100% 1.0 / 1.0

Table 1: Experiments and evaluation with missing and full observations for hgc , huniq , R&G 2009, and our filtering method (10%
of threshold) with R&G 2009 (Part 1).
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P
e
r
e
ir
a
,
O
r
e
n
&

M
e
n
e
g
u
z
z
i

R&G 2010 / Filter10% + R&G 2010
(Fast-Downward with LM-Cut heuristic)

FGR 2015 IBM 2016 / Filter10% + IBM 2016
(TK∗ with LM-Cut heuristic, top-1000)

# |G| % Obs |O| Time Accuracy Spread in G Time Accuracy Spread in G Time Accuracy Spread in G

B
l
o
c
k
s-
W

o
r
l
d

(
1
0
7
6
)

20

10 1.8 1271.282 / 398.090 41.4% / 68.2% 11.41 / 3.34 36.562 65.8% 9.11 Timeout/ Timeout - / - - / -

30 4.9 1280.655 / 481.905 75.2% / 47.1% 7.76 / 1.84 36.648 78.1% 10.53 Timeout/ Timeout - / - - / -

50 7.6 1284.269 / 445.196 84.1% / 52.4% 7.24 / 1.78 34.290 81.3% 10.68 Timeout/ Timeout - / - - / -

70 11.1 1296.773 / 395.902 88.2% / 59.3% 8.23 / 1.67 37.056 89.8% 8.63 Timeout/ Timeout - / - - / -

100 14.5 1305.220 / 288.751 94.5% / 65.2% 8.66 / 1.71 40.405 100.0% 1.22 Timeout/ Timeout - / - - / -

C
a
m
p
u
s

(
7
5
)

2

10 1 1.021 / 1.038 93.3% / 93.3% 1.33 / 1.33 0.717 53.3% 1.0 45.749 / 44.834 53.3% / 53.3% 1.0 / 1.0

30 2 1.113 / 1.090 100.0% / 100.0% 1.0 / 1.0 0.696 80.0% 1.13 48.438 / 48.112 53.3% / 53.3% 1.0 / 1.0

50 3 1.333 / 1.285 100.0% / 100.0% 1.0 / 1.0 0.676 66.6% 1.26 54.111 / 53.402 40.0% / 40.0% 1.0 / 1.0

70 4.4 1.725 / 1.706 100.0% / 100.0% 1.0 / 1.0 0.668 86.6% 1.6 89.708 / 89.037 53.3% / 53.3% 1.0 / 1.0

100 5.5 1.809 / 1.771 100.0% / 100.0% 1.0 / 1.0 0.631 93.3% 1.53 183.123 / 182.910 60.0% / 60.0% 1.0 / 1.0

D
e
p
o
t
s

(
3
6
4
)

8.5

10 3.1 1347.85 / 1166.02 59.5% / 50.0% 4.10 / 1.61 † † † Timeout/ Timeout - / - - / -

30 8.6 1369.22 / 1037.97 44.0% / 52.3% 2.44 / 0.90 † † † Timeout/ Timeout - / - - / -

50 14.1 1335.18 / 1034.36 48.8% / 50.0% 2.86 / 0.75 † † † Timeout/ Timeout - / - - / -

70 19.7 1392.55 / 853.40 55.9% / 61.9% 3.32 / 0.74 † † † Timeout/ Timeout - / - - / -

100 24.4 1370.81 / 670.99 67.8% / 75.0% 4.39 / 0.72 † † † Timeout/ Timeout - / - - / -

D
r
iv
e
r
-L

o
g

(
3
6
4
)

10.5

10 2.6 737.530 / 509.306 51.2% / 52.4% 1.64 / 0.89 79.487 42.8% 1.91 Timeout/ Timeout - / - - / -

30 6.9 846.176 / 438.371 50.0% / 60.7% 1.58 / 0.74 60.168 70.2% 3.19 Timeout/ Timeout - / - - / -

50 11.1 851.659 / 379.450 48.8% / 70.2% 1.27 / 0.75 64.427 79.7% 4.59 Timeout/ Timeout - / - - / -

70 15.6 891.158 / 308.775 54.8% / 91.7% 1.61 / 0.93 75.084 82.1% 4.10 Timeout/ Timeout - / - - / -

100 21.7 945.013 / 196.093 46.4% / 96.4% 1.39 / 0.96 96.091 96.4% 1.11 Timeout/ Timeout - / - - / -

D
W

R
(
3
6
4
)

7.25

10 5.7 1246.506 / 1079.001 61.9% / 56.0% 2.99 / 1.63 66.496 92.8% 6.38 Timeout/ Timeout - / - - / -

30 16 1476.392 / 1129.304 29.8% / 39.3% 1.63 / 0.75 54.461 97.6% 6.56 Timeout/ Timeout - / - - / -

50 26.2 1501.524 / 1065.484 33.3% / 40.5% 2.01 / 0.62 56.255 98.8% 6.27 Timeout/ Timeout - / - - / -

70 36.8 1505.305 / 980.959 34.5% / 48.8% 2.17 / 0.63 65.101 98.8% 6.0 Timeout/ Timeout - / - - / -

100 51.9 1351.309 / 891.953 57.1% / 57.1% 3.57 / 0.64 86.459 100.0% 1.0 Timeout/ Timeout - / - - / -

IP
C
-G

r
id

(
6
7
3
)

9

10 2.9 259.349 / 127.138 66.0% / 62.7% 2.46 / 1.35 Timeout - - Timeout/ Timeout - / - - / -

30 7.8 377.482 / 143.669 85.6% / 81.0% 1.44 / 0.90 Timeout - - Timeout/ Timeout - / - - / -

50 12.7 516.035 / 100.172 85.0% / 90.2% 1.39 / 0.93 Timeout - - Timeout/ Timeout - / - - / -

70 17.9 639.157 / 140.685 81.7% / 94.8% 1.76 / 0.95 Timeout - - Timeout/ Timeout - / - - / -

100 24.8 708.007 / 177.43 93.4% / 100.0% 2.54 / 1.0 Timeout - - Timeout/ Timeout - / - - / -

F
e
r
r
y

(
3
6
4
)

7.5

10 2.9 251.648 / 120.596 89.3% / 90.5% 2.08 / 1.44 6.659 91.6% 6.65 Timeout/ Timeout - / - - / -

30 7.6 425.151 / 91.857 83.3% / 97.6% 1.31 / 1.06 6.801 100.0% 7.57 Timeout/ Timeout - / - - / -

50 12.3 662.567 / 54.453 66.7% / 98.8% 1.24 / 1.02 8.296 100.0% 7.57 Timeout/ Timeout - / - - / -

70 17.3 820.501 / 40.898 59.5% / 100.0% 1.26 / 1.0 10.649 100.0% 7.32 Timeout/ Timeout - / - - / -

100 24.2 1015.216 / 46.148 50.0% / 100.0% 1.29 / 1.0 13.625 100.0% 1.07 Timeout/ Timeout - / - - / -

In
t
r
u
si
o
n

(
4
6
5
)

15

10 1.9 5.683 / 2.889 73.3% / 81.0% 3.66 / 2.37 0.475 89.5% 3.18 Timeout/ Timeout - / - - / -

30 4.5 5.908 / 4.348 100.0% / 100.0% 1.11 / 1.11 0.476 90.5% 1.88 Timeout/ Timeout - / - - / -

50 6.7 6.248 / 4.807 100.0% / 100.0% 1.02 / 1.02 0.496 94.3% 1.45 Timeout/ Timeout - / - - / -

70 9.5 6.665 / 5.261 100.0% / 100.0% 1.0 / 1.0 0.637 99.1% 1.05 Timeout/ Timeout - / - - / -

100 13.1 7.372 / 5.815 100.0% / 100.0% 1.0 / 1.0 0.828 100.0% 1.04 Timeout/ Timeout - / - - / -

Table 2: Experiments and evaluation with missing and full observations for R&G 2010 using Fast-Downward with LM-Cut
heuristic, FGR 2015 (E-Mart́ın et al., 2015), and IBM 2016 using TK∗ with LM-Cut heuristic, top-1000 (Part 1).
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L
a
n
d
m
a
r
k
-B

a
se

d
A
p
p
r
o
a
c
h
e
s
f
o
r
G
o
a
l
R
e
c
o
g
n
it
io
n
a
s
P
l
a
n
n
in
g

hgc huniq R&G 2009 / Filter10% + R&G 2009

# |G| % Obs |O|
Time

θ (0 / 10 / 20)

Accuracy

θ (0 / 10 / 20)

Spread in G
θ (0 / 10 / 20)

Time

θ (0 / 10 / 20)

Accuracy

θ (0 / 10 / 20)

Spread in G
θ (0 / 10 / 20)

Time Accuracy Spread in G

K
it
c
h
e
n

(
7
5
)

3

10 1.3 0.003 / 0.003 / 0.004 93.3% / 100% / 100% 1.46 / 2.33 / 3 0.002 / 0.003 / 0.003 100% / 100% / 100% 1.33 / 2.60 / 3 0.085 / 0.084 100% / 100% 1.86 / 1.86

30 3.5 0.004 / 0.005 / 0.006 93.3% / 100% / 100% 1.46 / 2.33 / 3 0.003 / 0.004 / 0.005 100% / 100% / 100% 1.33 / 2.60 / 3 0.097 / 0.098 100% / 100% 1.33 / 1.33

50 4 0.003 / 0.003 / 0.003 93.3% / 100% / 100% 1.46 / 2.33 / 3 0.006 / 0.005 / 0.007 100% / 100% / 100% 1.33 / 2.60 / 3 0.104 / 0.103 100% / 100% 1.46 / 1.46

70 5 0.008 / 0.008 / 0.009 93.3% / 100% / 100% 1.46 / 2.60 / 2.60 0.006 / 0.007 / 0.007 100% / 100% / 100% 1.46 / 2.33 / 2.60 0.115 / 0.116 100% / 100% 1.26 / 1.26

100 7.4 0.008 / 0.009 / 0.009 100% / 100% / 100% 1.0 / 1.0 / 1.0 0.007 / 0.006 / 0.008 100% / 100% / 100% 1.0 / 1.0 / 1.0 0.119 / 0.115 100% / 100% 1.26 / 1.26

L
o
g
is
t
ic
s

(
6
7
3
)

10.5

10 2.9 0.614 / 0.618 / 0.629 55.5% / 84.3% / 94.7% 1.72 / 3.58 / 4.22 0.563 / 0.572 / 0.579 55.5% / 77.1% / 95.4% 1.24 / 2.84 / 3.50 1.201 / 0.705 99.3% / 90.8% 2.98 / 2.69

30 8.2 0.632 / 0.637 / 0.644 80.3% / 95.4% / 99.3% 1.20 / 2.14 / 3.58 0.571 / 0.580 / 0.584 76.4% / 86.9% / 98.1% 1.20 / 1.96 / 2.84 1.798 / 1.166 98.6% / 97.3% 1.39 / 1.35

50 13.4 0.656 / 0.662 / 0.675 90.1% / 99.3% / 100% 1.10 / 1.92 / 2.14 0.599 / 0.603 / 0.607 86.2% / 95.4% / 100% 1.10 / 1.50 / 1.77 2.545 / 1.212 98.6% / 98.6% 1.29 / 1.15

70 18.9 0.670 / 0.674 / 0.683 96.7% / 98.6% / 100% 1.05 / 1.39 / 1.57 0.608 / 0.611 / 0.622 96.7% / 98.6% / 100% 1.05 / 1.47 / 1.50 3.460 / 1.503 100% / 100% 1.13 / 1.11

100 26.5 0.681 / 0.685 / 0.692 100% / 100% / 100% 1.0 / 1.0 / 1.27 0.615 / 0.624 / 0.631 100% / 100% / 100% 1.0 / 1.0 / 1.08 4.887 / 1.691 100% / 100% 1.0 / 1.0

M
ic
o
n
ic

(
3
6
4
)

6

10 3.9 0.350 / 0.361 / 0.366 67.8% / 98.8% / 100% 1.33 / 3.28 / 4.34 0.321 / 0.325 / 0.334 54.7% / 97.6% / 100% 1.26 / 3.40 / 4.05 0.838 / 0.521 100% / 98.8% 3.26 / 3.15

30 11.1 0.357 / 0.369 / 0.370 96.4% / 100% / 100% 1.10 / 2.27 / 3.86 0.326 / 0.333 / 0.341 90.1% / 100% / 100% 1.08 / 2.53 / 3.86 1.196 / 0.707 100% / 100% 1.58 / 1.55

50 18.1 0.368 / 0.373 / 0.375 96.4% / 100% / 100% 1.01 / 1.54 / 2.11 0.339 / 0.342 / 0.352 96.4% / 100% / 100% 1.01 / 1.47 / 1.83 1.722 / 1.099 100% / 100% 1.28 / 1.27

70 25.3 0.372 / 0.378 / 0.384 100% / 100% / 100% 1.01 / 1.20 / 1.57 0.344 / 0.357 / 0.365 100% / 100% / 100% 1.0 / 1.21 / 1.57 2.504 / 1.516 100% / 100% 1.03 / 1.03

100 35.6 0.389 / 0.394 / 0.397 100% / 100% / 100% 1.0 / 1.0 / 1.54 0.356 / 0.363 / 0.372 100% / 100% / 100% 1.0 / 1.0 / 1.47 5.105 / 2.013 100% / 100% 1.0 / 1.0

R
o
v
e
r
s

(
3
6
4
)

6

10 3 0.342 / 0.343 / 0.350 64.2% / 91.6% / 96.4% 1.72 / 2.45 / 3.83 0.310 / 0.318 / 0.324 51.1% / 79.7% / 95.2% 1.10 / 3.01 / 3.42 0.704 / 0.512 98.8% / 95.2% 2.85 / 2.29

30 7.9 0.347 / 0.358 / 0.361 83.3% / 91.1% / 100% 1.23 / 2.14 / 3.72 0.323 / 0.322 / 0.335 69.1% / 90.1% / 97.6% 1.07 / 2.19 / 2.46 1.029 / 0.787 100% / 97.6% 1.66 / 1.41

50 12.7 0.374 / 0.383 / 0.375 92.8% / 96.4% / 100% 1.08 / 1.72 / 3.01 0.331 / 0.338 / 0.344 85.7% / 95.2% / 97.6% 1.01 / 1.57 / 2.19 1.355 / 0.841 100% / 98.8% 1.29 / 1.17

70 17.9 0.389 / 0.382 / 0.391 98.8% / 100% / 100% 1.01 / 1.35 / 2.14 0.345 / 0.350 / 0.353 91.6% / 98.8% / 100% 1.0 / 1.20 / 1.58 1.796 / 1.008 100% / 100% 1.07 / 1.05

100 24.9 0.392 / 0.394 / 0.396 100% / 100% / 100% 1.0 / 1.07 / 1.35 0.356 / 0.361 / 0.365 100% / 100% / 100% 1.0 / 1.03 / 1.25 2.292 / 1.314 100% / 100% 1.07 / 1.0

S
a
t
e
l
l
it
e

(
3
6
4
)

6.5

10 2.1 0.458 / 0.466 / 0.471 57.1% / 85/7% / 100% 1.55 / 2.33 / 2.88 0.431 / 0.445 / 0.456 47.6% / 79.7% / 96.4% 1.21 / 2.09 / 2.33 1.049 / 0.599 97.6% / 90.4% 3.41 / 3.02

30 5.4 0.465 / 0.474 / 0.482 76.1% / 94.1% / 100% 1.31 / 1.92 / 2.13 0.442 / 0.454 / 0.460 69.1% / 89.2% / 97.6% 1.14 / 1.91 / 2.09 1.182 / 0.723 97.6% / 96.4% 2.40 / 1.94

50 8.7 0.472 / 0.485 / 0.494 85.7% / 98.8% / 100% 1.09 / 1.48 / 1.91 0.458 / 0.463 / 0.477 80.9% / 91.6% / 98.8% 1.10 / 1.63 / 1.91 1.398 / 0.901 97.6% / 97.6% 1.69 / 1.47

70 12.2 0.489 / 0.490 / 0.498 97.6% / 100% / 100% 1.07 / 1.48 / 1.75 0.460 / 0.471 / 0.486 94.1% / 98.8% / 100% 1.03 / 1.34 / 1.63 1.884 / 1.076 96.4% / 100% 1.52 / 1.25

100 16.8 0.491 / 0.499 / 0.512 100% / 100% / 100% 1.02 / 1.21 / 1.63 0.475 / 0.482 / 0.490 100% / 100% / 100% 1.07 / 1.21 / 1.50 2.107 / 1.224 96.4% / 100% 1.33 / 1.10

S
o
k
o
b
a
n

(
3
6
4
)

7.25

10 3.1 0.549 / 0.552 / 0.554 53.5% / 86.9% / 88.1% 2.05 / 2.89 / 3.78 0.523 / 0.530 / 0.539 51.1% / 67.8% / 88.1% 1.85 / 2.78 / 3.04 3.025 / 1.857 69.1% / 71.4% 4.02 / 2.51

30 8.7 0.555 / 0.560 / 0.562 57.1% / 77.3% / 84.5% 1.36 / 1.81 / 2.69 0.531 / 0.538 / 0.543 55.9% / 69.1% / 84.5% 1.21 / 1.77 / 2.69 4.429 / 2.081 89.2% / 76.1% 4.10 / 1.67

50 14.1 0.568 / 0.571 / 0.573 71.4% / 88.1% / 94.1% 1.32 / 1.80 / 2.02 0.540 / 0.544 / 0.551 69.1% / 83.3% / 91.6% 1.20 / 1.80 / 1.82 7.553 / 2.409 89.2% / 85.7% 4.16 / 1.63

70 19.8 0.577 / 0.580 / 0.585 83.3% / 91.6% / 96.4% 1.04 / 1.31 / 1.80 0.554 / 0.556 / 0.558 86.9% / 92.8% / 95.2% 1.08 / 1.60 / 1.77 9.112 / 2.572 89.2% / 86.9% 4.17 / 1.19

100 35.5 0.586 / 0.591 / 0.598 100% / 100% / 100% 1.0 / 1.0 / 1.0 0.562 / 0.572 / 0.574 100% / 100% / 100% 1.0 / 1.03 / 1.28 12.008 / 2.610 89.2% / 100% 4.53 / 1.03

Z
e
n
o
-T

r
a
v
e
l

(
3
6
4
)

7.5

10 2.6 0.502 / 0.511 / 0.528 39.2% / 55.9% / 80.9% 1.15 / 1.92 / 3.04 0.491 / 0.502 / 0.509 36.9% / 48.8% / 70.2% 1.04 / 1.92 / 2.13 1.834 / 1.207 96.4% / 66.6% 3.41 / 1.58

30 6.7 0.517 / 0.523 / 0.536 70.2% / 78.5% / 91.6% 1.10 / 1.73 / 2.26 0.504 / 0.515 / 0.520 60.7% / 79.7% / 90.4% 1.02 / 1.71 / 1.73 2.528 / 1.396 88.1% / 79.7% 2.11 / 1.29

50 10.8 0.521 / 0.534 / 0.544 78.5% / 86.9% / 95.2% 1.07 / 1.40 / 1.71 0.516 / 0.521 / 0.528 76.1% / 88.1% / 95.2% 1.0 / 1.57 / 1.61 3.071 / 1.513 92.8% / 90.4% 1.41 / 1.14

70 15.2 0.535 / 0.542 / 0.550 97.6% / 97.6% / 100% 1.04 / 1.14 / 1.40 0.522 / 0.533 / 0.539 90.4% / 95.2% / 100% 1.0 / 1.29 / 1.57 3.986 / 1.605 96.4% / 100% 1.13 / 1.0

100 21.1 0.548 / 0.555 / 0.564 100% / 100% / 100% 1.0 / 1.0 / 1.07 0.530 / 0.541 / 0.552 100% / 100% / 100% 1.0 / 1.07 / 1.10 4.815 / 1.722 100% / 100% 1.07 / 1.0

Table 3: Experiments and evaluation with missing and full observations for hgc , huniq , R&G 2009, and our filtering method (10%
of threshold) with R&G 2009 (Part 2).
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R&G 2010 / Filter10% + R&G 2010
(Fast-Downward with LM-Cut heuristic)

FGR 2015 IBM 2016 / Filter10% + IBM 2016
(TK∗ with LM-Cut heuristic, top-1000)

# |G| % Obs |O| Time Accuracy Spread in G Time Accuracy Spread in G Time Accuracy Spread in G
K
it
c
h
e
n

(
7
5
)

3

10 1.3 1.310 / 1.222 93.3% / 93.3% 1.33 / 1.33 0.373 100.0% 1.86 Timeout/ Timeout - / - - / -

30 3.5 1.365 / 1.238 93.3% / 93.3% 1.20 / 1.13 0.360 100.0% 1.33 Timeout/ Timeout - / - - / -

50 4 1.571 / 1.438 100.0% / 100.0% 1.33 / 1.33 0.392 100.0% 1.33 Timeout/ Timeout - / - - / -

70 5 1.702 / 1.609 100.0% / 100.0% 1.20 / 1.20 0.378 100.0% 1.20 Timeout/ Timeout - / - - / -

100 7.4 2.144 / 1.983 100.0% / 100.0% 1.40 / 1.40 0.483 100.0% 1.40 Timeout/ Timeout - / - - / -

L
o
g
is
t
ic
s

(
6
7
3
)

10.5

10 2.9 334.315 / 288.357 65.4% / 69.3% 3.57 / 1.52 † † † Timeout/ Timeout - / - - / -

30 8.2 411.948 / 321.727 81.7% / 83.0% 2.26 / 0.99 † † † Timeout/ Timeout - / - - / -

50 13.4 431.775 / 218.848 78.4% / 88.9% 1.97 / 0.93 † † † Timeout/ Timeout - / - - / -

70 18.9 409.629 / 181.421 83.0% / 92.2% 2.22 / 0.94 † † † Timeout/ Timeout - / - - / -

100 26.5 310.563 / 109.189 91.8% / 95.1% 2.43 / 0.95 † † † Timeout/ Timeout - / - - / -

M
ic
o
n
ic

(
3
6
4
)

6

10 3.9 313.117 / 258.977 89.3% / 92.9% 2.07 / 1.63 † † † Timeout/ Timeout - / - - / -

30 11.1 590.095 / 338.774 59.5% / 88.1% 1.18 / 1.0 † † † Timeout/ Timeout - / - - / -

50 18.1 578.263 / 224.679 61.9% / 100.0% 1.10 / 1.04 † † † Timeout/ Timeout - / - - / -

70 25.3 577.087 / 123.984 61.9% / 100.0% 1.07 / 1.0 † † † Timeout/ Timeout - / - - / -

100 35.6 155.422 / 30.114 100.0% / 100.0% 1.0 / 1.0 † † † Timeout/ Timeout - / - - / -

R
o
v
e
r
s

(
3
6
4
)

6

10 3 551.746 / 524.997 88.1% / 48.8% 4.18 / 0.95 † † † Timeout/ Timeout - / - - / -

30 7.9 589.213 / 518.466 94.0% / 57.1% 3.29 / 0.64 † † † Timeout/ Timeout - / - - / -

50 12.7 640.802 / 518.649 88.1% / 56.0% 3.20 / 0.62 † † † Timeout/ Timeout - / - - / -

70 17.9 641.881 / 517.961 81.0% / 57.1% 3.04 / 0.61 † † † Timeout/ Timeout - / - - / -

100 24.9 589.669 / 518.319 85.7% / 57.1% 3.0 / 0.57 † † † Timeout/ Timeout - / - - / -

S
a
t
e
l
l
it
e

(
3
6
4
)

6.5

10 2.1 477.756 / 418.734 65.5% / 81.0% 2.40 / 1.74 14.821 89.3% 4.86 Timeout/ Timeout - / - - / -

30 5.4 488.884 / 278.747 79.8% / 89.3% 1.98 / 1.30 32.172 86.9% 4.21 Timeout/ Timeout - / - - / -

50 8.7 553.301 / 208.331 79.8% / 90.5% 1.79 / 1.11 51.567 88.1% 3.65 Timeout/ Timeout - / - - / -

70 12.2 520.356 / 186.682 79.8% / 94.0% 1.54 / 1.06 75.363 92.8% 2.89 Timeout/ Timeout - / - - / -

100 16.8 455.197 / 172.089 82.1% / 96.4% 1.71 / 1.04 113.381 100.0% 2.57 Timeout/ Timeout - / - - / -

S
o
k
o
b
a
n

(
3
6
4
)

7.25

10 3.1 637.342 / 377.933 70.8% / 70.8% 1.31 / 0.85 461.701 67.8% 2.98 Timeout/ Timeout - / - - / -

30 8.7 850.272 / 310.082 51.4% / 62.5% 1.15 / 0.63 370.412 83.3% 3.14 Timeout/ Timeout - / - - / -

50 14.1 1029.601 / 310.888 38.9% / 68.1% 1.19 / 0.74 358.028 82.1% 2.27 Timeout/ Timeout - / - - / -

70 19.8 1082.685 / 176.873 37.5% / 86.1% 1.11 / 0.88 353.721 85.7% 1.84 Timeout/ Timeout - / - - / -

100 35.5 1153.979 / 108.782 29.2% / 95.8% 1.21 / 0.96 353.183 85.7% 1.03 Timeout/ Timeout - / - - / -

Z
e
n
o
-T

r
a
v
e
l

(
3
6
4
)

7.5

10 2.6 782.17 / 405.126 45.2% / 53.6% 1.70 / 0.76 93.917 66.6% 1.63 Timeout/ Timeout - / - - / -

30 6.7 829.058 / 458.575 46.4% / 66.7% 1.27 / 0.76 88.285 78.6% 2.27 Timeout/ Timeout - / - - / -

50 10.8 884.339 / 382.015 39.3% / 71.4% 1.13 / 0.75 105.814 91.6% 2.56 Timeout/ Timeout - / - - / -

70 15.2 922.641 / 221.105 38.1% / 81.0% 1.07 / 0.81 125.652 94.1% 2.58 Timeout/ Timeout - / - - / -

100 21.1 949.088 / 153.976 39.3% / 89.3% 1.07 / 0.89 168.674 100.0% 1.0 Timeout/ Timeout - / - - / -

Table 4: Experiments and evaluation with missing and full observations for R&G 2010 using Fast-Downward with LM-Cut
heuristic, FGR 2015 (E-Mart́ın et al., 2015), and IBM 2016 using TK∗ with LM-Cut heuristic, top-1000 (Part 2).
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5.3.2 Experimental Results with Missing, Noisy, and Full Observations

Our second set of experiments uses datasets containing hundreds of problems for four do-
mains with missing, noisy, and full observations. Tables 5 and 6 compare results for the
experiments with missing, noisy, and full observations for our goal recognition heuristics
(using a threshold between 0% and 10%) against R&G 2009 (Ramı́rez & Geffner, 2009),
R&G 2010 (Ramı́rez & Geffner, 2010), FGR 2015 (E-Mart́ın et al., 2015), and Sohrabi
et al. ((2016)), denoted as IBM 2016. We use our filtering method with 10% of thresh-
old alongside all these three approaches, denoted as Filter10%. For this set of experiments,
we used the same 4 domains used by Sohrabi et al. ((2016)). In these experiments, col-
umn |N | represents the average number of noisy observations, i.e., extra observations that
we added randomly to the observation sequence O. These two extra observations repre-
sent 12% of noise regarding the total number of observations (Sohrabi et al., 2016). Since
Sohrabi et al. ((2016)) timed out for all recognition problems, we are unable to provide a
direct comparison of accuracy and runtime performance against this approach. However,
given our understanding of the underlying technique, we believe that our approaches are
almost certainly more computationally efficient, since they use a top-K planner (Katz et al.,
2018) during the recognition process (extracting 1000 sampled plans), much like (Ramı́rez
& Geffner, 2010). The FGR 2015 approach is closer to ours in runtime performance for
noisy observations, but still two to ten times slower.

Under noisy observations, it is clear from the results in Tables 5 and 6 that the ap-
proaches R&G 2009 and R&G 2010 are not only much slower but substantially less accu-
rate (with threshold value of 10%) than our heuristics for virtually all 4 domains, reaching
a low of 4.4 and 3.3 percent (respectively) of accuracy in the IPC-Grid domain. However,
using the recognition threshold = 0%, the R&G 2009 and R&G 2010 approaches are more
accurate than our heuristics for two particular domains, more specifically, for Intrusion
and Campus (respectively), while the FGR 2015 approach is more accurate than ours for
the Intrusion domain, as well as Campus and Kitchen under some conditions (multiple
noisy observations). Our uniqueness heuristic huniq performed better (more accurate and
faster) than the goal completion heuristic hgc for all 4 domains. Regarding the difference in
accuracy for hgc and huniq in the Kitchen domain under low observability, note the number
of useful actions actually observed (2.5, 2 of which are known to be noise) at that observ-
ability level. This means that on average, in this domain, each experiment will have seen
mostly noise and possibly one or two actions, or at times, no non-noisy action. Under these
conditions being able to get the most information out of the observation (and correctly
ignoring noise) is key. Here, the analysis of propositions that are not landmarks performed
by the FGR 2015 approach seems to allow coping with a substantial amount of noisy versus
non-noisy observations better than our approach. Note that by increasing the threshold
parameter, we increase the spread to closer values to FGR 2015 and reach similar levels of
accuracy.

Figure 11 shows the trade-off between true positive results and false positive results in
a ROC space for all 4 domains with missing, noisy, and full observations. Figures 12 and 13
show a comparison of recognition time for our heuristics against the approaches R&G 2009
and R&G 2010. We used separate graphs for R&G 2010, Filter10%+ R&G 2010, and FGR
2015 given the widely different magnitude of the time taken to recognize a goal.
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Figure 11: ROC space for all domains with missing, noisy, and full observations for
our landmark-based heuristics (hgc and huniq) against R&G 2009 (Ramı́rez &
Geffner, 2009), R&G 2010 (Ramı́rez & Geffner, 2010), and FGR 2015 (E-Mart́ın
et al., 2015).
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Figure 12: Recognition time comparison for missing, noisy, and full observations for our
landmark-based heuristics (hgc and huniq) against R&G 2009 (Ramı́rez &
Geffner, 2009), and R&G 2009 using our filtering method with 10% of threshold.
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Figure 13: Recognition time comparison for missing, noisy, and full observations for R&G
2010 using Fast-Downward with LM-Cut heuristic (Ramı́rez & Geffner, 2010),
R&G 2010 using our filtering method with 10% of threshold, and FGR 2015 (E-
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hgc huniq R&G 2009 / Filter10% + R&G 2009

# |G| % Obs |N | |O +N | Time

θ (0 / 10)

Accuracy

θ (0 / 10)

Spread in G
θ (0 / 10)

Time

θ (0 / 10)

Accuracy

θ (0 / 10)

Spread in G
θ (0 / 10)

Time Accuracy Spread in G

C
a
m
p
u
s

(5
1
6
)

2

25 2 3.1 0.031 / 0.034 68.2% / 89.9% 1.0 / 1.28 0.030 / 0.032 82.1% / 90.6% 1.13 / 1.44 0.073 / 0.060 88.3% / 78.2% 1.27 / 1.13

50 2 4.5 0.033 / 0.035 75.9% / 93.7% 1.0 / 1.20 0.031 / 0.032 78.2% / 93.7% 1.02 / 1.43 0.076 / 0.068 89.9% / 82.1% 1.26 / 1.09

75 2 6.4 0.035 / 0.039 73.6% / 96.2% 1.0 / 1.22 0.034 / 0.036 73.6% / 96.1% 1.0 / 1.42 0.079 / 0.071 90.6% / 85.2% 1.27 / 1.10

100 2 7.5 0.038 / 0.041 72.1% / 95.3% 1.0 / 1.23 0.037 / 0.039 72.1% / 95.3% 1.0 / 1.41 0.084 / 0.080 89.1% / 85.2% 1.22 / 1.06

In
t
r
u
si
o
n

(3
0
0
)

16.6

25 2 3.6 0.125 / 0.127 33.3% / 68.8% 1.11 / 4.43 0.102 / 0.032 30.0% / 58.8% 1.11 / 3.94 0.537 / 0.456 71.1% / 63.3% 2.65 / 2.34

50 2 6.7 0.134 / 0.135 83.3% / 93.3% 1.06 / 2.04 0.116 / 0.118 64.4% / 88.8% 1.03 / 2.68 0.649 / 0.483 95.5% / 94.4% 1.28 / 1.27

75 2 10.2 0.146 / 0.150 94.4% / 98.8% 1.01 / 1.33 0.124 / 0.130 87.7% / 94.4% 1.03 / 1.82 0.712 / 0.524 100% / 98.8% 1.01 / 1.01

100 2 15.1 0.155 / 0.159 100% / 100% 1.0 / 1.10 0.136 / 0.138 100% / 100% 1.0 / 1.63 0.805 / 0.659 100% / 100.0% 1.0 / 1.0

IP
C
-G

r
id

(3
0
0
)

8.3

25 2 4.1 0.253 / 0.260 58.8% / 75.5% 1.76 / 2.95 0.208 / 0.211 53.3% / 75.5% 1.72 / 2.83 0.462 / 0.301 12.2% / 11.1% 7.55 / 2.81

50 2 7.6 0.261 / 0.267 85.5% / 85.5% 1.33 / 1.71 0.212 / 0.220 83.3% / 86.6% 1.33 / 1.71 0.469 / 0.312 4.4% / 4.4% 8.06 / 1.61

75 2 11.5 0.269 / 0.272 94.4% / 94.4% 1.08 / 1.23 0.224 / 0.233 94.4% / 94.4% 1.08 / 1.15 0.475 / 0.323 6.6% / 7.7% 7.88 / 1.10

100 2 16.9 0.275 / 0.288 100% / 100% 1.0 / 1.0 0.239 / 0.246 100% / 100% 1.0 / 1.0 0.476 / 0.330 10.0% / 10.0% 7.76 / 1.0

K
it
c
h
e
n

(1
5
0
)

3

25 2 2.5 0.094 / 0.097 11.1% / 11.1% 0.22 / 0.22 0.081 / 0.083 88.8% / 88.8% 2.55 / 2.55 0.139 / 0.098 71.1% / 62.2% 1.57 / 1.46

50 2 4.8 0.095 / 0.099 28.8% / 31.1% 0.64 / 0.66 0.084 / 0.088 64.4% / 66.6% 1.71 / 1.73 0.135 / 0.102 57.7% / 51.1% 1.42 / 1.20

75 2 7.3 0.097 / 0.101 24.4% / 24.4% 0.66 / 0.66 0.090 / 0.092 57.7% / 57.7% 1.66 / 1.66 0.138 / 0.103 57.7% / 48.8% 1.31 / 1.24

100 2 11 0.104 / 0.105 60.0% / 60.0% 0.93 / 0.93 0.093 / 0.095 66.6% / 66.6% 1.13 / 1.13 0.144 / 0.109 60.0% / 66.6% 1.46 / 1.13

Table 5: Experiments and evaluation with missing, noisy, and full observations for hgc , huniq , R&G 2009, and our filtering method
(10% of threshold) with R&G 2009 (Part 1).
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n
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R&G 2010 / Filter10% + R&G 2010

(Fast-Downward with LM-Cut heuristic)
FGR 2015

IBM 2016 / Filter10% + IBM 2016

(TK∗ with LM-Cut heuristic, top-1000)

# |G| % Obs |N | |O +N | Time

θ (0 / 10)

Accuracy

θ (0 / 10)

Spread in G
θ (0 / 10)

Time Accuracy Spread in G Time Accuracy Spread in G

C
a
m
p
u
s

(5
1
6
)

2

25 2 3.1 1.958 / 1.862 88.3% / 88.3% 1.24 / 1.24 0.713 79.8% 1.33 Timeout/ Timeout - / - - / -

50 2 4.5 2.255 / 2.220 94.5% / 94.5% 1.13 / 1.13 0.666 90.6% 1.67 Timeout/ Timeout - / - - / -

75 2 6.4 2.784 / 2.731 99.2% / 99.2% 1.11 / 1.11 0.655 94.6% 1.79 Timeout/ Timeout - / - - / -

100 2 7.5 2.808 / 2.790 99.2% / 99.2% 1.10 / 1.10 0.644 97.7% 1.81 Timeout/ Timeout - / - - / -

In
t
r
u
si
o
n

(3
0
0
)

16.6

25 2 3.6 6.216 / 2.750 35.5% / 38.8% 0.78 / 0.81 0.494 43.3% 2.31 Timeout/ Timeout - / - - / -

50 2 6.7 6.792 / 1.881 74.4% / 78.8% 1.10 / 0.93 0.511 81.1% 1.78 Timeout/ Timeout - / - - / -

75 2 10.2 8.081 / 1.686 91.1% / 93.3% 0.94 / 0.94 0.654 93.3% 1.10 Timeout/ Timeout - / - - / -

100 2 15.1 8.753 / 1.670 100% / 100% 1.0 / 1.10 0.885 100.0% 1.06 Timeout/ Timeout - / - - / -

IP
C
-G

r
id

(3
0
0
)

8.3

25 2 4.1 36.275 / 20.612 8.8% / 10.0% 0.91 / 1.0 Timeout - - Timeout/ Timeout - / - - / -

50 2 7.6 16.310 / 4.304 3.3% / 3.3% 0.98 / 0.98 Timeout - - Timeout/ Timeout - / - - / -

75 2 11.5 33.358 / 2.737 7.7% / 7.7% 1.03 / 0.92 Timeout - - Timeout/ Timeout - / - - / -

100 2 16.9 35.850 / 4.328 10.0% / 10.0% 1.0 / 1.0 Timeout - - Timeout/ Timeout - / - - / -

K
it
c
h
e
n

(1
5
0
)

3

25 2 2.5 3.038 / 2.343 53.3% / 57.4% 1.35 / 0.70 0.381 53.3% 1.33 Timeout/ Timeout - / - - / -

50 2 4.8 13.291 / 5.009 48.8% / 44.4% 1.17 / 0.48 0.410 51.1% 1.22 Timeout/ Timeout - / - - / -

75 2 7.3 6.467 / 2.756 51.1% / 44.4% 1.22 / 0.53 0.426 53.3% 1.20 Timeout/ Timeout - / - - / -

100 2 11 5.289 / 1.818 73.3% / 66.6% 1.4 / 0.66 0.538 73.3% 1.26 Timeout/ Timeout - / - - / -

Table 6: Experiments and evaluation with missing, noisy, and full observations for R&G 2010 using Fast-Downward with
LM-Cut heuristic, FGR 2015 (E-Mart́ın et al., 2015), and IBM 2016 using TK∗ with LM-Cut heuristic, top-1000 (Part
2).
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6. Related Work

In this section, we compare our work to some of the most relevant recent work on goal and
plan recognition in recent past years. We highlight differences and similarities between our
goal recognition approaches and the surveyed related work.

Hong ((2001)) developed one of the first goal recognition approach that extends the
concept of planning graph (which they call a goal graph), developing a similar structure
that represents every possible path (e.g., state transitions that connect facts and actions)
from an initial state to a goal state. Pattison and Long ((2010)) propose AUTOGRAPH
(AUTOmatic Goal Recognition with A Planning Heuristic), a probabilistic heuristic-based
goal recognition over planning domains. AUTOGRAPH uses heuristic estimation and do-
main analysis to determine which goals an agent is pursuing. Ramı́rez and Geffner ((2009))
developed planning approaches for plan recognition, and instead of using plan libraries,
they model the problem as a planning domain theory with respect to a known set of goals.
Their work uses a heuristic, an optimal and modified sub-optimal planner to determine the
distance to every goal in a set of goals after an observation. We compare their most accurate
approach directly with ours. Follow-up work ((2010)) extended the idea of plan recognition
as planning into a probabilistic approach using off-the-shelf planners that provide a posterior
probability distribution over goals, given an observation sequence as evidence. E-Mart́ın et
al. ((2015)) developed a planning-based goal recognition approach that propagates cost
and interaction information in a planning graph, and uses this information to estimate goal
probabilities over the set of candidate goals. Sohrabi et al. ((2016)) developed a probabilistic
plan recognition approach that deals with unreliable observations (i.e., noisy or missing ob-
servations), and recognizes both goals and plans. Unlike these last three approaches, which
provide a probabilistic interpretation of the recognition problem, we do not deal with proba-
bilities. Nevertheless, our heuristic computation is a good proxy for the posterior probability
distribution of the goals, given the observations, and thus could be extended to provide a
probabilistic interpretation as we intend to do in future work. In (Vered, Kaminka, & Biham,
2016), Vered et al. introduce the concept of mirroring to develop an online goal recognition
approach for continuous domains. Masters and Sardiña ((2017)) propose a fast and accu-
rate goal recognition approach for path-planning, providing a new probabilistic framework
for goal recognition. In (Vered & Kaminka, 2017), Vered and Kaminka develop a heuristic
approach for online goal recognition that deals with continuous domains. Vered, Pereira,
Magnaguagno, Meneguzzi, and Kaminka ((2018)) propose an online goal recognition ap-
proach that combines the use of landmarks and goal mirroring, showing this combination
can improve not only the recognition time, but also the accuracy for recognizing goals in
the online fashion. Most recently, Kaminka, Vered, and Agmon ((2018)) develop a novel
plan recognition approach that deals with both continuous and discrete domains.

Secondly, there has been substantial recent work on goal and plan recognition design,
that is optimize the domain design so that goal and plan recognition algorithms can provide
inferences with as few observations as possible. Keren et al. ((2014, 2015, 2016)) develop
an alternate view of the goal recognition problem, and rather than developing new goal
recognition algorithms, they develop a novel approach that modifies the domain description
in order to facilitate the goal recognition process. Their work could potentially be used
alongside our techniques, and the relation between worst case distinctiveness (their measure
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of how difficult can it be to disambiguate goals) and the information gain from unique
landmarks would provide an interesting avenue for further investigation.

Finally, (Freedman, Fung, Ganchin, & Zilberstein, 2018) recently proposed an approach
to perform probabilistic plan recognition along the lines of (Ramı́rez & Geffner, 2010),
that, instead of running a full-fledged planner for each goal, takes advantage of multiple
goal heuristic search (Davidov & Markovitch, 2006) to search for for all goals simultaneously
and avoid repeatedly expanding the same nodes. Their approach has not been implemented
and evaluated yet and it aims to overcome the limitation of our technique to only be able
to account for progress towards goals when we have evidence of landmarks being achieved,
while retaining the speed gains we achieve. While we do not have empirical evidence about
its accuracy and efficiency, we believe this is an exciting direction for goal recognition, and
we expect it to approach and overcome the accuracy of (Ramı́rez & Geffner, 2010).
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7. Conclusions

We have developed novel goal recognition approaches based on planning techniques that
rely on landmarks. Landmarks provide key information about what cannot be avoided to
achieve a goal, and we have shown that they can be used efficiently, with simple heuristics,
to recognize goals from missing and noisy observations. Our goal completion heuristic hgc
computes the ratio between achieved landmarks and the total number of landmarks for a
particular goal, whereas our uniqueness heuristic huniq , uses a landmark uniqueness value to
represent how informative a landmark is among the known landmarks for all candidate goals.
These landmark-based heuristics show that it is possible to recognize goals quickly with high
accuracy as well as to use them as a filtering mechanism to refine existing planning-based
goal and plan recognition approaches (Ramı́rez & Geffner, 2009; Ramı́rez & Geffner, 2010;
E-Mart́ın et al., 2015; Sohrabi et al., 2016), such that they can also be made substantially
more efficient.

We have proved that our heuristic approaches are sound both as a filtering mechanism
and as a goal recognition algorithm on its own, thus showing that, under certain conditions,
we are guaranteed to find the correct hidden goal. Our experiments show that our goal
recognition approaches yield not only superior accuracy results but also substantially faster
recognition time for all fifteen planning domains used in evaluating against the state-of-the-
art (Ramı́rez & Geffner, 2009; Ramı́rez & Geffner, 2010; E-Mart́ın et al., 2015; Sohrabi et al.,
2016) at varying observation completeness levels, for both missing and noisy observations.
The main limitation of our approaches lie in conditions of very low observability of 30% or
less. Specifically, for problems with very short plans, and thus, where the number of actually
observed action consists of one or two actions, the odds of observing one of the problem’s
landmarks are very low, jeopardizing recognition accuracy. Under these conditions, our
filtering mechanism still provides a major improvement on the runtime (and often accuracy)
of existing goal recognition approaches.

As future work, we intend to explore multiple avenues to improve our goal recogni-
tion approaches. First, we aim to use other planning techniques, such as heuristics and
symmetries in classical planning (Shleyfman, Katz, Helmert, Sievers, & Wehrle, 2015), and
traps, invariants, and dead-ends (Lipovetzky, Muise, & Geffner, 2016). Second, we intend to
explore other landmark extraction algorithms to obtain additional information from plan-
ning domains (Zhu & Givan, 2003; Keyder et al., 2010). Third, we aim to evaluate our
landmark-based heuristics for online goal and plan recognition, and we have started work
in that direction (Vered et al., 2018).
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