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Abstract—GPUs became the reference platform for both train-
ing and inference phases of Convolutional Neural Networks
(CNN), due to their tailored architecture to the CNN operators.
However, GPUs are power-hungry architectures. A path to
enable the deployment of CNNs in energy-constrained devices
is adopting hardware accelerators for the inference phase. The
design space exploration of CNNs using standard approaches,
such as RTL, is limited due to their complexity. Thus, designers
need frameworks enabling design space exploration that delivers
accurate hardware estimation metrics do deploy CNNs. This
work aims to propose a framework to explore hardware accelera-
tors’ design space, providing power, performance, and area (PPA)
estimations. The heart of the framework is a system simulator
with TensorFlow as front-end and as back-end performance
estimations obtained from the physical synthesis. Results evaluate
the energy trade-off varying the number of convolutional layers,
showing that it can be necessary to spend approximately 40%
more energy to increase 0.02% in the accuracy.

Index Terms—CNN, Convolution Hardware Accelerator, PPA.

I. INTRODUCTION

One of the most common ways to deliver Machine Learning
(ML) is by using Artificial Neural Networks (ANN). ANNs
contain thousands of interconnected neurons. Synapses have
data input samples, plus a weight that works similarly to a
filter and activation function, which creates an output used
in synapses of next neurons [1, 2]. Convolutional Neural
Networks (CNNs) are a type of ANNs.

The deployment of CNNs comprises two phases: training
and inference [1]. The training phase defines the synapses
weights’ value. The inference phase uses the weights pre-
viously computed to classify or predict output values using
unknown inputs. The success of CNNs led to the development
of frameworks that help developers to build their models.
These frameworks offer mechanisms required for training and
inference. Examples of frameworks include Caffe [3], Pytorch
[4] and TensorFlow [5].

Classically, CPUs have been a common approach to pro-
cess CNNs. Even with optimized instruction set architectures,
CPUs are inefficient in terms of performance and energy
(e.g., AlexNet from 2012 [6] requires billions of operations
to process a single input). Thus, GPUs became the reference
platform for both training and inference phases, due to their
tailored architecture to the CNN operators. The main GPU

drawback is its considerable energy consumption. Consider-
ing energy-constrained applications, such as IoT, autonomous
driving, wearable devices, the adoption of hardware accelera-
tors became a trend for the inference phase [7, 8].

Accelerators are hard to implement and verify using classic
design flows. The design of these blocks using register transfer
level (RTL) abstraction limits the design space exploration.
The RTL flow is the last design step, after defining the CNN
architecture. Despite the efforts to increase the abstraction
level for accelerators using high-level synthesis (HLS) [9, 10],
this approach also has challenges related to performance and
power estimation, once the goal of HLS is to generate an RTL
description as output.

System simulators [11, 12] are a path for accelerators’
design space exploration. These simulators are typically de-
scribed in high-level abstraction languages, as Python and
C++, reducing the design time and providing power, per-
formance, and area (PPA) evaluation. The main drawback
of system simulators is the PPA accuracy, estimated from
the number of executed operations, as multiplier–accumulator
(MAC) [11, 13].

The goal of the present work is to propose a flow to estimate
hardware metrics, using the advantages of the TensorFlow
regarding CNN’s modeling, and the advantages of system
simulators regarding design time and PPA evaluation. This
work brings three main contributions: (i) integrate TensorFlow
to a system simulator to evaluate accelerators in the inference
phase; (ii) improve the accuracy of hardware metric measure-
ments by providing coarse-grain PPA metrics, i.e., not MACs
but CNN operators as convolution, obtained from the physical
layout; (iii) integration of the two first contributions into a
system simulator resulting in a framework enabling design
space exploration from PPA estimations.

The remainder of this paper is organized as follows. Sec-
tion II presents the related works present in the state-of-the-
art. Section III describes the proposed framework. Section IV
presents the PPA results. Finally, Section V provides some
conclusions.

II. RELATED WORKS

This Section describes works that generate PPA analyses fo-
cused on ML applications. MAESTRO [14] is a framework to
describe and analyze Neural Network hardware, which allows978-1-7281-7670-3/21/$31.00 ©2021 IEEE
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obtaining the hardware cost to implement a target architecture.
It has a domain-specific language (DSL) to describe the
dataflow that allows specifying the number of PEs, memory
size, and NoC bandwidth parameters. The results generated
by the framework are focused on performance analyses. In
recent work, MAESTRO was used to estimates cost-benefit
tradeoffs between execution time and energy efficiency for
CNN models, such as VGG and AlexNet, and hardware
configuration.

SCALE-Sim (Systolic CNN Accelerator Simulator) [15] is
a systolic array cycle-accurate simulator. According to the
authors, SCALE-Sim is the first simulator tuned to running
DNNs. This simulator allows configuring micro-architectural
features such as array size, array aspect ratio, scratchpad
memory size, and dataflow mapping strategy. Also, it is
possible to configure system integration parameters, such as
memory bandwidth. SCALE-SIM simulates convolutions and
matrix multiplications, and models the compute unit as a
systolic array. Also, it allows simulation in a system context,
with CPU and DMA components. The authors show detailed
experiments to understand the design space and tradeoff in
designing a systolic array-based CNN accelerator. A recent
SCALE-Sim extension provides an analytic model to find the
best accelerator configuration based on parameters like DRAM
bandwidth.

Timeloop [11] is a design space exploration framework for
CNNs. It can emulate a set of accelerators, such as NVDLA
[16]. Its focus on the convolution layer analyses. Timeloop
uses as input a workload description, such as input dimension
and weight values, a hardware architecture description, such as
arithmetic modules, and the hardware architecture constraints,
such as how the computation can be partitioned. Instead of
using a cycle-accurate simulator, Timeloop uses data trans-
fers’ deterministic behavior to perform analytic analyses. As
energy models, Timeloop has memory, arithmetic units, and
wire/network models based in TSMC 16nm FinFET.

STONNE [12] is a cycle-accurate architecture simulator for
CNNs which allows end-to-end evaluation. It is connected
with Caffe framework [3] to generate the CNNs, and models
the MAERI accelerator [17]. The results are focused on
performance and hardware utilization and show an average
difference of 15% in total executed cycles than the original
MAERI results. To estimate area and energy, STONNE uses
the Accelergy energy estimation methodology [13], which
considers basic modules to calculate the energy values, such
as adders.

Previous works present gaps in evaluating CNN’s accel-
erators. MAESTRO does not allow the accelerator simula-
tion, which limits the performance evaluation (e.g., through-
put). SCALE-Sim does not provide power or energy results.
Timeloop provides PPA based on basic operations, such as
adders and multipliers. Methods relying on operations’ count-
ing do not consider how these operators are interconnected
(e.g., 1D or 2D systolic arrays or adder trees), resulting in
imprecise hardware metrics. STONNE is the most similar
framework to our proposal. Its main limitation is power
analysis, based on a single accelerator (Accelergy), limiting
the design space exploration. The proposed framework fills
these gaps by integrating TensorFlow to a system simulator,
with hardware metrics related to CNN operators.

III. PROPOSED FLOW

Figure 1 presents the proposed flow. TensorFlow models
the CNN, being responsible for training and inference phases,
followed by the weights extraction. The weights are stored
in a dictionary format, used at the inference step, which
validates the weights’ extraction accuracy. This work adopts
an integer quantization to avoid floating-point operations in
the accelerator. The last action executed in TensorFlow is
exporting a header file to be used by the system simulator.

Accelarator 
Modelling

Import Weights

Import PPA 
Information

Simulation

TensorFlow System Simulator Physical Synthesis

Accelarator 
RTL Modelling

Accelarator 
Synthesis

PPA Extraction

Define 
Convolutional 

Neural Network

Training Step

Weight 
Extraction

Fig. 1. Convolution Accelerator Hardware Metric Extraction Flow.

The physical synthesis corresponds to the synthesis of
NVDLA modules [16]. This step generates CNN operators’
layout, e.g., a 3x3 convolution, and a netlist with extracted
parasitic capacitances. The simulation of this netlist enables
extracting the switching activity to characterize the accelerator
dynamic power. The result of the physical synthesis is PPA
reports.

The ORCA cycle-accurate system simulator [18] models
the hardware accelerator, integrated with the CNN model
generated by TensorFlow and the PPA reports generated by the
physical synthesis. The simulator captures information related
to the CNN execution, presenting a summary with accelerator
performance, area, and energy results considering minimum,
average, and maximum dynamic power dissipation at the end
of the simulation. Next sections detail the framework.

A. TensorFlow

TensorFlow [5] is a Google framework providing libraries to
implement ML applications. TensorFlow allows implementing
CNNs, including the training and inference phases. It is
possible to use CNN’s functions such as 2D convolution, max
pooling, and ReLU. This work uses the TensorFlow for:

1) Modeling the CNN, exploring its architecture;
2) Extracting the weight values of the selected network;
3) Evaluating the weights’ quantization from 16-bits

floating-point to 16-bits integer.
Figure 2 shows an example of a TensorFlow code. The

environment allows exploring CNN architectures and their
accuracy regarding the network depth, stride dimension, acti-
vation functions, and the number of filters. Thus, it is possible
to tune the CNN architecture based on an accuracy target. This
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example shows a CNN with four convolution layers with 16,
8, 3, and 1 filters, a fully connected layer, and strides with
dimensions 2x2 and 1x1.

1 # Clearup everything before running
2 keras.backend.clear_session()
3
4 # Create model
5 model = keras.models.Sequential()
6
7 # Add layers
8 model.add(keras.layers.Conv2D(16, (3,3), strides=(2, 2), activation='relu',

input_shape=(28, 28, 1))),!
9 model.add(keras.layers.Conv2D(8, (3,3), strides=(1, 1), activation='relu'))

10 model.add(keras.layers.Conv2D(3, (3,3), strides=(2, 2), activation='relu'))
11 model.add(keras.layers.Conv2D(1, (3,3), strides=(1, 1), activation='relu'))
12 model.add(keras.layers.Flatten())
13 model.add(keras.layers.Dense(10, activation='softmax'))
14
15 # Build model and print summary
16 model.build(input_shape=featureShape)
17 model.summary()

Fig. 2. TensorFlow Environment Code Example.

TensorFlow also allows extracting the weights’ values after
reaching the target accuracy – training phase. A post-extraction
quantization happens after the training phase by converting the
floating-point weights to 16-bit integers by multiplying the
weights’ values by a power of two. Adopting integer values
avoids floating-point arithmetic in the accelerator, reducing its
area and power consumption.

It is necessary to simulate the CNN after quantization to
evaluate if there is accuracy loss. If the quantization presents
a small accuracy penalty, TensorFlow exports the weights in
a header format to the system simulator.

B. PPA Extraction

NVIDIA Deep Learning Accelerator (NVDLA) [16] is an
open-source framework from NVIDIA to implement machine
learning applications, providing RTL codes. This work uses
NVDLA for building the accelerator RTL description by con-
figuring multiplier, adders, and ReLU activation function units.
Figure 3 illustrates an instance of the accelerator array (3x3
convolution). The accelerator array parameters is a function of
the CNN configuration generated in TensorFlow, considering
the filter dimension.
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Fig. 3. Proposed hardware accelerator architecture based on the NVDLA
modules [16].

The accelerator, Figure 3, is an array of 3x3 multipliers
(MULT), an accumulator, and a ReLU module (ReLU). The
SHIFT is a module responsible for quantization, in such a way
to normalize the convolution result to 16 bits. The accelerator
inputs are shifted horizontally through the array, while the
multipliers’ output is shifted vertically until the accumulator.
The accumulator output passes through the SHIFT and sets
the ReLU input, which produces a zero value if the input value
is negative, else by-pass the value to the output. The system
simulator models the accelerator in a high-level abstraction
description, using the same architecture.

After generating the RTL array description, Cadence Genus
and Innovus tools are employed to execute synthesis and place
and route (P&R). The accelerator area includes gates and
wires, and not only cell counting. The simulation of the post-
P&R netlist furnishes the accelerator performance (operating
frequency) and the switching activity (value change dump
(VCD) file). The VCD file is the source for power estimation.
The PPA (power, performance, and area) metrics are exported
to the system simulator.

C. System Simulator - ORCA

ORCA [18] is a system simulator that allows modeling
hardware using a high-level language and execute simulations
with cycle accuracy. This work uses the ORCA for:

1) Model and simulate the accelerator;
2) Validate the CNN accuracy in hardware;
3) Generate PPA evaluation of the CNN.
ORCA uses C++ to describe circuits architectures, making

modeling easier than the RTL approach that uses VHDL/Ver-
ilog. Also, it allows simulating the circuit behavior faster than
other languages such as SystemC/SystemVerilog.

The CNN is modeled into the ORCA simulator, using the
header generated in Section III-A and the accelerator array.
Thus, it is possible to validate the accuracy obtained after
the quantization in the hardware model. The simulator reports
the CNN power and performance estimation at the end of the
simulation according to the number of executed convolutions.

This first version of the framework only supports CNN ar-
chitectures composed by convolution layers. To overcome this
limitation, it is necessary to include accelerators responsible
for executing other CNN operations.

IV. RESULTS

Results use CNNs generated by TensorFlow. Three networks
were generated using convolution operations, changing the
network depth by 2, 3, and 4 layers, with 4, 12, and 38 filters
respectively. All three CNNs were trained based on the MNIST
dataset using 3x3 filters with strides between 1x1 and 2x2,
ReLU as activation function, and a fully-connected layer with
softmax activation function. The training step was performed
in TensorFlow for 5 epochs. The fully-connected layer is not
accelerated in hardware and is executed in software in the
system simulator.

Six VCD files were created from a post P&R simulation.
Each VCD represents a simulation scenario that generates one
pixel of a convolution output feature map. Scenarios include a
real convolution operation, two scenarios with random values,
and three scenarios with constant input values (x“AAAA”,
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TABLE I
PPA RESULTS FOR NVDLA-BASED ACCELERATOR RUNNING A MNIST APPLICATION.

Tech. Freq. Area # Conv. # Conv. Accu. (%) Exec. Enegy (mJ)
MHz µm2 Layers Oper. TensorFlow ORCA Time (ms) Min. Avg. Max.

28nm 1.6 GHz 35003
2 62800 0.95 0.90 0.5 11 14 17
3 174000 0.95 0.92 1.4 32 38 47
4 375600 0.96 0.93 3.1 69 84 102

65nm 1.0 GHz 97890
2 62800 0.95 0.90 0.8 24 31 39
3 174000 0.95 0.92 2.4 68 87 109
4 375600 0.96 0.93 5.2 147 189 236

x“5555”, x“FFFF”). The simulation of these scenarios gener-
ates minimal, average, and maximum power dissipation values
for a convolution operation. The power values are used to
compute energy consumption.

Table I presents results for 28nm and 65nm technology
nodes. The accuracy was extracted using 100 inputs from
MNIST dataset. Results show that the quantization causes a
small penalty in the hardware accelerator’s accuracy compared
to the TensorFlow results. Also, the Table shows that accuracy
increases together with the CNN depth. On the other side, the
execution time and energy increase. Although these results
are expected, the goal is to show the framework’s potential to
explore different CNN configurations for different technolo-
gies, obtaining PPA metrics. Thus, these results demonstrate
the potential of the environment for the CNN design space
exploration.

Figure 4 presents energy values in the x-axis and the
CNN accuracy in the y-axis. It is possible to note that it is
necessary to spend approximately 40% more energy in the
28nm technology node to increase 0.02% in the accuracy. This
increase is more pronounced in the 65nm technology node,
reaching approximately 60%.
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V. CONCLUSION

This work proposed a framework to analyze hardware
metrics regarding convolution accelerators. The framework
allows to: (i) build CNNs with TensorFlow; (ii) extract
their weights; (iii) execute the network using a high-level
accelerator model in a system simulator; (iv) estimate PPA
results and to perform design space exploration. Thus, it is

possible to analyze the trade-offs to increase the accuracy
regarding power, performance, and area to a given hardware
configuration.

We propose to analyze power regarding the entire accelera-
tor, not only isolated models, once it results in more accurate
PPA values. Future works include extending the framework to
support other CNN operations, like max-pooling, to explore
different CNNs’ configurations.
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