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ABSTRACT

Advances in hardware platforms boosted the use of Convolutional

Neural Networks (CNNs) to solve problems in several fields such

as Computer Vision and Natural Language Processing. With the

improvements of algorithms involved in learning and inferencing

for CNNs, dedicated hardware architectures have been proposed

with the goal to speed up the CNNs’ performance. However, the

CNNs’ requirements in bandwidth and processing power challenge

designers to create architectures fitted for ASICs and FPGAs. Em-

bedded applications targeting IoT (including sensors and actuators),

health devices, smartphones, and any other battery-powered device

may benefit from CNNs. For that, the CNN design must follow a

different path, where the cost function is a small area footprint

and reduced power consumption. This paper is a step towards this

goal, by proposing an architecture for the main modules of modern

CNNs. The proposal uses as case-study the Alexnet CNN, targeting

Xilinx FPGA devices. Compared to the literature, results show a

reduction up to 9 times in the amount of required DSP modules.
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1 INTRODUCTION

The number of applications using CNNs is countless. The two most

common fields of application are Natural Language Processing and

Computer Vision. Convolutional Neural Networks have shown a

great deal of improvement on audio, video, image classification, and

segmentation to name a few. There are even networks that achieve

better than human-level performance in some tasks, such as the

ResNet that in 2015 achieved error rates lower than human experts

in image classification [4]. Unfortunately, this performance comes

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SBCCI ’19, August 26–30, 2019, Sao Paulo, Brazil

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6844-5/19/08. . . $15.00
https://doi.org/10.1145/3338852.3339840

at a cost. The algorithms employed by the most modern artificial

neural networks require high memory bandwidth and extensive

use of computational resources.

Memory is the first challenge to address when developing hard-

ware for deep learning. A neural network consists of a set of neurons

organized in layers. Each layer can be viewed as a series of multi-

ply and accumulate operations between the input data and some

parameters. It turns out that the number of layers is getting larger

with each new network made public. From a hardware perspec-

tive, the growth in the number of layers means that the amount

of data to be transferred from memory to the processing unit and

then saved back to memory is also increasing. For instance, in 2012

Alexnet [7] won the Imagenet competition with a network of 60

million parameters to process a single image. Two years later in

2014, VGGNet [11] won the same contest, but instead, this network

has seven times more parameters to load. Hence, it is expected that

the architectures make good use (and reuse) of data to minimize

the time consumed by memory transfers.

The extensive use of computational power comes from convolu-

tions and fully connected layers. For instance, a convolution slides

a window over the inputs, computing a sum of products several

times. The fully connected layer can be viewed as a sequence of

matrix multiplications, which can also be computationally chal-

lenging for any hardware implementation. Taking the networks

previously cited, Alexnet has five convolutional layers and three

fully connected layers while VGGNet consists of 16 convolutional

layers and three fully connected layers.

There are three design paths to follow when developing hard-

ware architectures for CNNs. The first one is adopting the use of

GPUs [9], where developers implement a network by programming

these and taking advantage of the high level of parallelism. The

other two paths include FPGAs or ASICs. The former is the most

flexible choice due to its reconfigurability, and the latter achieves

the highest performance [8].

The goal of this paper is to present a parameterizable design for

the main modules of modern CNNs. The cost function of the design

is a small area footprint, by optimizing the usage of the arithmetic

operations required in the convolutional layers. The motivation

for proposing a lightweight design is to enable battery-powered

embedded devices to take benefit from CNNs.

The original contribution of our work is in the detailing of the

architecture, with the modules to access the memory and the way

to execute the convolution through a pipeline that allows the reuse

of arithmetic operators for different layers.

This paper is organized as follows. Section 2 presents the Alexnet

CNN. Section 3 describes the hardware modules used in the imple-

mentation. Section 4 is the paper core, detailing the architecture of

the generic convolutional layer. Section 5 reviews related works.

Section 6 presents results and compare our proposal to the reviewed

works. Finally, Section 7 concludes the paper.
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Figure 1: The Alexnet CNN [3].

2 THE ALEXNET CNN

The architecture chosen to be implemented in this work is the

Alexnet [7]. There are two main reasons for this choice. First, the

network is a state-of-the-art large-scale CNN [10]. Alexnet enables

to exercise all the main operations of any modern CNN such as

multiple layers of cascaded convolutions, fully connected layers,

activation, and max-pooling layers. Second, the Alexnet is a popular

choice of network to many authors who are working on dedicated

hardware architectures, which makes it possible to compare our

work to other implementations.

Alexnet classifies images using an eight-layer deep architecture,

5 of which are convolutional, and 3 of which are fully-connected.

The input is a 227x227 pixels RGB image. Further, the output is a

column vector containing the probability of each of the 1000 classes

from the ImageNet dataset [7]. The network architecture cascades

five convolutional (CONV) layers endingwith three fully-connected

(FC) layers. Table 1 details the shapes of each layer.

Table 1: Shapes for the Alexnet CNN.

Input Size Weight/ Output

Layer Operation (padded) Filter Size Size

1 CONV 227x227x3 11x11x3 (x96) 55x55x96

1 MAX-POOL 55x55x96 3x3 27x27x96

2 CONV 31x31x96 5x5x96 (x256) 27x27x256

2 MAX-POOL 27x27x256 3x3 13x13x256

3 CONV 15x15x256 3x3x256 (x384) 13x13x384

4 CONV 15x15x384 3x3x384 (x384) 13x13x384

5 CONV 15x15x384 3x3x384 (x256) 13x13x256

5 MAX-POOL 13x13x256 3x3 6x6x256

6 FC 6x6x256 6x6x256x4096 4096

7 FC 4096 4096x4096 4096

8 FC 4096 4096x1000 1000

3 HARDWARE INFRASTRUCTURE

This section details the hardware modules that will be used in the

various CNN layers. The hardware modules in this project should be

as generic as possible. Through offline configuration, the designer

can implement a CNN with any set of parameters and size.

3.1 Generic Memory Module

Memory modules are instantiated for both input and output feature

maps, and weight values. The memory configuration uses two pa-

rameters: depth, corresponding to the amount of 1-bit wide memory

blocks – B; width, corresponding to the word width –W . The width

parameter enables to tweak the numeric precision with no need to

rewrite memory modules.

The generic module, named GenMem, is configurable in depth

(B = �nb_words/32Kb�) to store the set of weights and featuremaps
that vary in size across layers. An important feature of the memory

modules is the dual-port read access, enabling to read simultane-

ously two different data, feature explored in the proposed architec-

ture. For instance, the Alexnet layer one input is a 227x227x3 tensor

(Table 1), corresponding to 154,587 29-bit floating-point words, or

145 BRAM to store Alexnet layer one.

3.2 Floating-Point Format

Despite existing studies pointing out that the use of fixed-point has

a little impact on the performance of deep learning accelerators [6],

this work adopted floating-point representation to minimize the

accumulated error between layers and to simplify the verification

against a software implementation (Results, Section 6.1). Our work

adopted the Flopoco framework for floating-point arithmetic [2].

Flopoco provides a list of configurable arithmetic operators tailored

for FPGAs, along with its proper floating-point format.

The format used across all modules of this work is the Flopoco

floating-point configured to an 8-bit exponent and 18-bit mantissa,

as shown in Figure 2. The exponent width was chosen based on the

IEEE-754 standard that uses an exponent of same size. However,

the mantissa was set to the DSP block input width of the target

FPGA [14]. It was necessary to fit the mantissa to the DSP block

input, so that integer multiplications require a single block to be

performed.

Figure 2: The adopted floating-point format.

3.3 Arithmetic Operators

The Flopoco framework offers an extensive list of operators 1. This

section only presents the ones used in this design.

3.3.1 Multiplier. Multiplication is at the core of convolutional

and fully-connected layers. Once generated, the Flopoco floating-

point multiplier was modified by instantiating a DSP Block. After-

wards, a control logic around the multiplier was implemented to

1http://flopoco.gforge.inria.fr
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Figure 3: Architecture top view related to the convolutional layers.

control and synchronize the operation with other modules. The

resulting module multiplies two floating-point numbers in three

clock cycles. It requires 205 LUTs, 166 flip-flops, and a single FGPA

DSP block.

3.3.2 Adder. Another important operation in CNNs is addition.

Most modern accelerators and hardware implementations adopt

multiply and accumulate (MAC) modules [12]. The advantage on

using MACs is precision, because the accumulator comes right after

the multiplication module, and the result of the first operation is not

rounded. We adopted a different architecture in the convolutional

layers, described in Section 4.1.2, based on a pipelined adder tree.

The Flopoco dual path adder customized to this work performs a

floating-point addition in six clock cycles, requiring 324 LUTs, 18

shift-registers (SRL) and 208 flip-flops.

3.3.3 Fixed-Point Converter. The third Flopoco operator used

is a converter to fixed-point format. Conversion is necessary to

perform comparisons in the max-pool layer. This layer first converts

all the input values to fixed-point, then finds the maximum value

among them by comparing their fixed-point representation. The

conversion consists of a shifter, by the amount in the exponent,

and a possible truncation. The fixed-point width was set to 32 bits

to avoid overflow and underflow. Where the lower 15 bits are the

fractional part, the next 16 bits represent the integer part, and the

most significant bit gives the sign.

4 HARDWARE ARCHITECTURE

This Section first presents a top view of the architecture. Figure 3

presents the proposed architecture to implement each layer of the

CNN. The left memory (A) contains the pre-processed input image

and memory B contains the set of weights for the first layer. The

first layer includes the convolutional and max-pool modules that fill

the output feature map memory (C). Next, the second layer reads

from memory C, executing the functions related to the second layer.

Once layer two is completed, the Multilayer starts. The multilayer

executes sequentially layers three, four, and five. Note that this

multilayer structure enables to implement an arbitrary number of

layers sequentially. The result of the fifth layer, its output feature

map, is written into memory G. This architecture is, in the Authors

opinion, a relevant contribution, since it allows to implement CNNs

with an arbitrary number of layers.

The "Layer" encapsulates the convolutional and max-pool mod-

ules, interconnected in a ping-pong arrangement. The first advan-

tage of using ping-pong buffers is memory saving, once it requires

less memory space since only two channels need to be stored in-

stead of the entire feature map. For example, the first layer channel

size is 55x55 while the entire feature map contains 96 channels. The

second advantage is the latency reduction since the max-pool layer

starts its computations after each channel is computed, not waiting

for the complete feature map be ready for consumption.

Next sections detail the modules responsible for performing the

convolutional and max-pool layers, access to weight and feature

map memories, as well as themultilayer module, which can execute

an arbitrary number of convolutional layers sequentially, reducing

the area footprint.

4.1 Convolution Implementation

The module responsible for executing the convolutions contains

six functional blocks:

– Address generator block, generates addresses and control sig-

nals to read from or write into memory blocks: Input Feature

Map (IFMAP) memory, weights memory, output channels.

– Input buffers, pair of shift registers that store one window of

the feature map and data from the next stride positions (stride

buffer), being their size equal to the convolution filter length.

There is also an extra pair of buffers, responsible for storing the

weights of two current filters.

– FSMs, control the convolutional tree and manage the write and

read synchronization between the input buffers and the address

generator. The FSMs need to be tightly synchronized to produce

the right set of output values. This synchronization is necessary

because the number of clock cycles taken by the convolutional

tree, loading the current and stride buffers, and memory latency

can vary.

– Convolutional tree, computes a convolution window, being

also parameterizable according to the filter size. The design pro-

cesses two windows in parallel, with the goal to speed up the

inference. At the leaves, it multiplies the IFMAP with the weight

array. Then, it adds the multiplication results using an adder tree.

The output of the convolutional tree produces a value used by

the neuron adder.
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– Neuron adder, is in charge of summing up the results from the

input channels belonging to the same output neuron, and to add

the bias. The results from the first input channel are added with

the bias, and the result is written to the OFMAP memory. The

subsequent channels accumulate the result of the convolutional

tree with the value previously stored in the OFMAP memory.

This process avoids the extra step of the bias addition after the

OFMAP completion.

– ReLU, only when the next layer reads from the output feature

map (OFMAP), the activation function is executed. The address

generated by the next layer is read from the memory, then, it

passes through the activation module that performs the ReLU

operation.

All internal modules are configurable and are instantiated using

a set of user-defined VHDL generics, enabling the same VHDL entity

to be used across all layers.

4.1.1 Buffers Operation. The convolution slides a window (the

filter) through the IFMAP. This window reads a certain number

of positions to execute the computation of the next neuron. The

next window is read according to the stride value. Figure 4 shows

the current and stride buffers structure configured to a window

size of 3x3 and stride of 2. At the beginning of an operation (a new

window or a new IFMAP), both buffers are empty. The current buffer

is loaded with a window according to the addresses generated by

the address generator block. After filling the current buffer, the

FSM controlling the convolutional tree starts the computation. In

parallel, the "Stride FSM" switches the IFMAP memory port to

the stride buffer and the address generator starts to request the

addresses for the new window. When the stride buffer is filled and

the multiplications in the convolutional tree executed, the contents

of the stride buffer are shifted to the current buffer, and the next

windowmay start the execution. This process optimizes the loading

from IFMAP by inserting shortcuts in the shift registers. This is

possible by using a memory port that is idle during the arithmetical

operations.

Figure 4: Current and stride buffers.

For instance, in the Alexnet first layer, the window size is 11x11

with a stride of 4. It means that 121 values need to be loaded from

the IFMAP memory for the first window. For the next window,

the addresses increment four positions to the right. Thus, instead

of reading all 121 values, only 44 new values are read (4 * 11).

This reduction represents 63.6% less memory reads in subsequent

windows.

4.1.2 Convolutional Tree. Most of the literature in Deep Learn-

ing accelerators adopts systolic arrays to implement convolutions.

The approach has the advantage of a high level of parallelism. How-

ever, it requires a considerable amount of resources.

An architectural option to systolic arrays is the multiply-add

trees (Figure 5). This approach uses a line of multipliers and an

adder tree [16]. The inputs of the multiply-add tree are the current

buffer and the weight array. Next, the result produced by each pair

of multipliers are added in the next level. The result of the adders

in the first level travels in the tree, up to the root, producing the

final result. The size of the adder tree is configured through VHDL

generic parameters.

Figure 5: Example of a 3x3 pipelinedmultiply-add tree. Each

layer has an input register.

The multiply-add tree is pipelined. The multiplication takes 3

clock cycles and each addition 6 clock cycles. Thus, for layer one

there are 121 multipliers in parallel (plus 7 dummy modules to

obtain a full binary tree), and 8 adder levels (loд2n + 1). The time

to compute one 11x11 convolution in the current implementation

is 51 clock cycles. The convolutional tree behaves as a standard

pipeline, with each stage of the tree computing the convolution of

a given window.

4.2 Max-Pool Layer

The Max-pool Layer makes use of a single FSM that controls a shift

register input buffer and the max-pool tree. A process generates

the address of each window loading the input buffer. When the

window is ready (buffer filled), the FSM starts the max-pool tree.

After the maximum value in the window is found, it is written to

the OFMAP memory.

The input values of the max-pool tree are converted to a fixed-

point format (as presented in Section 3.3.3). Then, the tree of com-

parators evaluates all values. It is important to note that the fixed-

point numbers are not re-converted to floating-point. Instead, they

are only used to execute the comparisons that will select the out-

put value. Hence, no precision is lost, and the comparator can be

simplified to work with integer operands.

4.3 Multilayer

Following the first two Alexnet layers, the Multilayer module im-

plements layers three, four, and five. As shown in the top view

(Figure 3), the Multilayer feedbacks itself creating a loop that could

implement any number of subsequent convolutional layers using

the same filter size. Even that the Multilayer could be used to im-

plement all five convolutional layers on Alexnet, the architecture

dedicates two Layer modules for the first two convolutional layers,

which have filter sizes of 11x11 and 5x5 respectively, while the

remaining layers, executed by the multilayer, have 3x3 filters. The

hardware implementation as it is depends on the off-line configura-

tion to instantiate the convolutional tree. An improvement could

be made to re-configure at run-time the convolutional tree, so it

would be possible to execute convolutions of different filter sizes.
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Another important aspect of the Multilayer module is that it saves

FPGA resources since only one module is capable of performing

multiple CNN layers.

The Multilayer encapsulates a convolutional module, the ping-

pong buffer that interfaces with a max-pool or a bypass module,

and writes the result in the OFMAP memory. Additionally, there

is a control FSM that coordinates the two multiplexers seen in top

view.

In Figure 3, the second layer writes its results into memory E.

Next, when the Multilayer starts the computation of the third layer

the FSM sets the multiplexers in such a way that the Multilayer

reads the IFMAP frommemory E and writes the OFMAP to memory

G. As soon as the third layer finishes, the FSM re-configure both

multiplexers, so the Multilayer starts to perform the fourth convo-

lutional layer, reading the IFMAP from memory G and writing the

resulting OFMAP to memory E. Finally, the fifth layer can start its

execution. The FSM returns to the initial configuration, where the

IFMAP comes from memory E, and the OFMAP goes to memory G.

Additionally, the FSM manage the load of the filters’ weights for

each layer (memory F ).

5 RELATEDWORK

Zhang et al. proposed a method that chooses the best optimization

parameters (such as loop tiling and unrolling) using the roofline

model [16]. The architecture, configured by an FPGA embedded

processor, executes the CNN layers serially performing ping-pong

buffer operations between the external and internal memories to

load weights and feature maps. A set of parallel multipliers followed

by a group of adder trees are the core of the authors’ computation

engine. The accelerator achieved a 61.62 GFLOPS on a Virtex7

VX485T at 100 MHz.

In contrast, authors in [10] proposed a pipelined architecture

capable of running all layers in the device. First, the weights are read

from the external memory; next, the computation engine is made of

a set of Processing Elements (PEs). A number of input feature maps

are processed in parallel by a group of PEs, and then an adder tree

adds the result from all PEs concerning the same receptive region.

The architecture, which uses a 16-bit fixed precision, executes the

Alexnet at a performance of 565.4 GOPS (156 MHz).

Caffeine was proposed in 2016 [15], providing full integration

with the software framework Caffe [5]. In addition, Zhang et al.

focused on optimizing memory bandwidth requirements. The pro-

posed method involves a memory reorganization, implicating in

fewer memory accesses during convolutions. Also, the architecture

is fully tunable, including numeric precision and number of PEs

in the systolic array. Running the Alexnet in a Virtex7 690t, the

authors were able to achieve 636 GOPS at 150 MHz (16-bit fixed

precision).

Aydonat et al. presented an architecture that, not only, made

used of Discrete Fourier Transform to reduce the number of multi-

plications and additions in convolutional layers, but also, the 16-bit

format encompasses shared exponent techniques. The architecture

was synthesized from a software description in OpenCL. Imple-

mented on an Arria 10 device, the overall system performance

achieved 1382 GFLOPS (303 MHz) running the Alexnet CNN [1]. A

similar approach was taken by Wang et al. [13], where a quantiza-

tion method was applied to weights and feature maps. Additionally,

the convolutional layers were implemented following a Finite Im-

pulse Response filter implementation, which reduced the number of

the necessary multiplications and additions. This implementation

was able to run the VGG-16 CNN with 1250.21 GFLOPS perfor-

mance at 170 MHz.

The primary goal of these works is performance, measured in

GOPS or GFLOPS. Next section evaluates the performance of our

proposal, putting it into perspective the area used regarding DSP

modules, showing that our goal, lightweight implementation, is

achieved but with performance sacrifice.

6 RESULTS

This section first describes the method to assess the accuracy of

the proposed hardware. Next, the main result, which is the area

evaluation with its comparison w.r.t. related works. Finally, the

throughput of convolutional layers is presented.

6.1 Accuracy of the Hardware Implementation

A software implementation, the Tiny-Dnn Framework 2, was used

for verification. Output feature maps produced during the hardware

simulation were compared against the software-generated ones.

The verification is performed in three steps. First, a dump file from

the hardware simulation is processed, converting the 29-bit floating-

point numbers into their decimal representations. Second, it is

selected in the C++ source code to write its values to a file, from

the equivalent point in the CNN to where the hardware simulation

values were taken. Last, both files are compared for errors.

Consequently, a small error between the software and the hard-

ware implementation is observed. It comes from the numeric rep-

resentation (C++: float single-precision, hardware: 29-bit floating-

point format). Such validations were performed across all layers

during development. For instance, the relative error observed up

to the fifth convolutional layer is below 0.01%, demonstrating the

accuracy of the proposed hardware architecture.

6.2 Resource Utilization

The design was synthesized using the Xilinx Vivado framework.

Table 2 gives the resource utilization for the convolutional layers.

The number of BRAMs is high because the weights were statically

stored. In the final design, a fetching mechanism will load the

weights from an external memory, reducing this usage. The LUTs

and register usage come from the design complexity and the fact

that the floating-point additions do not use DSP modules, which is

an optimization to consider in future implementations. Also, if the

target is an ASIC implementation, the adder-tree may be optimized

with multiple input carry-save adders, resulting in a small silicon

area. The most relevant result is related to the number of used DSPs:

310 ( 2x11x11 in the first layer, 2x5x5 in the second layer and 2x3x3

in the Multilayer). This result is relevant since it corresponds to

the number of required multipliers by the CNN, and thus the final

silicon area.

Table 3 presents the performance (second column) and resources

utilization (third and fourth column). Besides the similar number of

LUTs in most designs, the proposed design requires 7 to 10 fewer

DSP blocks than the related works. These results corroborate for

the goal of a CNN architecture with a small area footprint.

2https://github.com/tiny-dnn/
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Table 2: Resource utilization for the 5 convolutional layers,

XC7VX690T device.

Resource Used Available Utilization (%)

Clock 1 32 3.13

BRAM 1,247 1,470 84.83

Slice LUTs 199,174 433,200 45.98

Slice Registers 144,256 866,400 16.65

DSPs 310 3,600 21.18

Table 3: Comparison of the proposal w.r.t the state-of-the-

art.

Work GOPS/GFLOPS LUTs DSPs

Wang et al., 2018 [13] 1,250.21 N.A. 2296

Aydonat et al., 2017 [1] 1,382.00 246,000 1476

Zhang et al., 2016 [15] 636.00 300,000 2833

Zhang et al., 2015 [16] 64.62 186,251 2240

Li et al., 2016 [10] 565.94 233,805 2144

This proposal 2.46 199,174 310

6.3 Performance Results

The hardware description was simulated to assess the performance

and synthesized targeting a frequency of 250 MHz. Table 4 presents

the number of clock cycles to execute each layer (3rd col.), and

the number of floating-point operations (4th col.). As expected, the

execution time is dominated by the convolutions. Considering the

layers working as a pipeline, the throughput is a function of the

slower stage, in this case, the Multilayer (layers 3 to 5), correspond-

ing to 2.46 GFLOPS@250MHz, or 1 image every 0.87 sec.

Table 4: Number of clock cycles and floating point opera-

tions for a forward execution (convolutional layers only).

Layer Operation Clock Cycles FP oper. 106

1: Loading Input image 154,587

2: CONV Layer 1 23,134,272 210.83

3: Max-Pool Layer 1 8,028 0.92

4: CONV Layer 2 89,235,456 895.79

5: Max-Pool Layer 2 1,868 0.58

6: CONV Layer 3 62,668,800 299.04

7: By-pass Layer 3 24,597 0.65

8: CONV Layer 4 94,003,200 448.56

9: By-pass Layer 4 676 0.65

10: CONV Layer 5 62,668,800 299.04

11: Max-Pool Layer 5 404 0,13

Total: 331,900,688 2,155.02

The obtained throughput, compared to the state-of-the-art, may

be considered low. Nonetheless, note that: (i) the convolution through-

put is a function of two convolutional trees, which in the best case

generate a new data every 3 clock cycles (6 cycles for each tree).

On the other side, related works use arrays of PEs at each layer

to increase the throughput; (ii) the design choice to reduce area,

through the Multilayer, serialized layers 3 to 5.

Thus, these results comply with our goals, demonstrating the

feasibility of implementing a CNN with low area consumption and

accuracy equivalent to a software implementation of reference.

7 CONCLUSIONS

This work proposed a parametrizable architecture capable of exe-

cuting multiple CNN convolutional layers. The work presented a

detailed hardware architecture, being reproducible by other design-

ers. Despite the adoption of Alexnet as a case-study, the hardware

can be configured to other CNNs by modifying the set of parame-

ters. The implementation of the first two layers showed that a set of

layers could be pipelined in the presence of available resources on

the target FPGA. On the other hand, the Multilayer module enables

the designer to implement an arbitrary number of convolutional

layers with a limited amount of resources. Results show that the

hardware design is suitable for battery-powered embedded devices,

due to the smallest number of DSPs.

As ongoing work, we enumerate: (i) finish the interface with

the external SRAM to feed the weights to the memories; (ii) imple-

ment the fully-connected layers with a similar architecture to the

convolutional layers; (iii) evaluate the power.
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