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ABSTRACT
This paper proposes an adaptive pulse generator using Pulse Am-
plitude Modulation (PAM). The circuit was implemented with eight
Pulse Generator Units (PGUs) to produce up to eight monocycles
per pulse. The number of monocycles per pulse is inversely pro-
portional to the Power Spectrum Density (PSD) bandwidth in the
Impulse Radio Ultra-Wide Band (IR-UWB). The complete circuit
contains two pulse generator blocks, each one composed by eight
PGUs to build a rectangular waveform at the output. The PGU has
been implemented with Edge Combiners High (ECH) and Edge
Combiners Low (ECL) to encode the information. Each Edge Com-
biner has a high impedance circuit that is selected by digital control
signals. The circuit has been simulated, showing an output pulse
amplitude of ≈70mV for the high logic level and an amplitude of
≈35mV for the low logic level, both at 100 MHz Pulse Repetition
Frequency (PRF). This produces a mean pulse duration of ≈270ps,
a mean central frequency of ≈3.7GHz and a power consumption
less than 0,22µW. The pulse generator block occupies an area of
0.54mm2.
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1 INTRODUCTION
The global communications market shows that innovations in wire-
less connectivity have enormous potential for the Internet of Things
(IoT) [1], [2] and [3]. This potential is due to the demand of short-
range circuits, such as wireless sensor networks [4], wearable de-
vices and mobile health applications [5]). These advancements are
possible because there had been an evolution in silicon technolo-
gies allowing the development of the Systems-on-Chip (SoC) and
wireless technologies on the same silicon wafer. In communications
area many researchers believe that Impulse-Radio Ultra-Wideband
(IR-UWB) is an excellent alternative for IoT applications. It has ex-
cellent wireless connectivity, low power consumption, high transfer
rates, simple architecture at low cost. The basic architecture of an
IR-UWB transmitter can be implemented using four building blocks:
(i) a modulator that encodes the binary input data using an external
clock; (ii) a pulse generator with pulse output for sub-nanosecond
range; (iii) amplifier circuits; (iv) a driver for 50 Ω antennas [6], as
shown in Figure 1. The IR-UWB devices can support many applica-
tions in environments where distances between devices are very
small [5]. For instance, at home and commercial environments the
IR-UWB is more effective, allowing unique communication chan-
nels with low power. Other advantages of IR-UWB devices include
rejection of multipath fading and security against interception and
jamming.
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Fig. 1.The basic architecture of an IR-UWB transmitter. 
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Moreover, there are various carrierless modulation schemes de-
veloped for UWB systems for data transmission, including Pulse
Amplitude Modulation (PAM), Pulse Position Modulation (PPM)
[7], Binary Phase Shift Keying (BPSK) [8], On-Off-Keying (OOK)
[9]. Theses pulse modulations can be designed in different ways.
For instance, references [9] and [10] proposed an edge combiner
circuit to produce a pulse at the integrated bandpass filter to gen-
erate UWB pulses. This technique is straightforward, but it has
limitations to generate pulses with different waveforms. Besides,
this is expensive, due to the large area occupied by the on-die planar
inductors and capacitors. Reference [11] proposes a pulse genera-
tor using a single NAND gate to generate a voltage pulse that is
applied across an on-chip nMOS-type capacitor and produces a
current-voltage relationship like the first derivative (i. e. monocycle
pulse). A transmitter based on the pulse synthesizing technique
was implemented in [12]. This technique is very simple to apply
but depends on the time control provided by a chain of inverters,
composed by a voltage-controlled delay line (VCDL) circuit where
a rising edge is propagated through tunable delay cells. Reference
[13] suggests implementing an all-digital transmitter with dual
capacitively-coupled pulse-shaping drivers.

This paper proposes an IR-UWB pulse generator that can change
the range of the bandwidth in the Power Spectral Density (PSD) of
the emissions mask, using just a variable using up to 8 monocycles
per pulse at the output. In this design, the variations of monocycles
inside the pulse change the bandwidth, being that just one monocy-
cles per pulse produces a wideband on the power mask. However,
if the pulse has eight monocycles tend a produces a narrowband
on the power mask, as shown Figure 2. The main goal is to make a
transmitter circuit using this concept to fit the signal in the emis-
sion mask [14]. The principle of operation is explained in Section
2. Section 3 discusses architecture description of the adaptive PSD
pulse generator circuit design in detail. The layout and simulations
results are the target of Section 4, followed by a set of conclusions,
drawn in Section 5.

Figure 2: Signal forms of PSD in the emissions mask: (a)
Wideband; (b) Narrowband.

2 PRINCIPLE OF OPERATION
The IR-UWB pulse generator, proposed in this paper, uses a simple
PAMmodulation scheme to produce two pulse amplitude variations

at the output to represent either the high logic level or low logic
level at input. In other words, the pulse requires only a single
polarity to represent a data signal: high amplitude represents high
logic level and the low amplitude represents low logic level. Besides,
each pulse at output of the pulse generator can generates up to 8
monocycles per pulse to adapt in the PSD emission mask, as shown
in Figure 2. This circuit was implemented with four main blocks:
a demultiplexer circuit to select the clock forward between Edge
Combiner High (ECH) and Edge Combiner Low (ECL).This circuit
was implemented with two AND gates (G1 and G2) connected to an
inverter circuit to select the edge combiner into a PGU and to encode
the data signal in the PAM modulation; eight PGUs connected in
parallel and each PGU uses two edge combiner circuits(e.g. ECH
and ECL), each one generating up to 8 eight monocycles per pulse;
a digital selector block composed by static logic gates to select the
PGUs; a polarized filter at the output connected to all PGUs, as
shown in Figure 3.

Figure 3: The operation mode of pulse generator. (a) when
Data=1 the ck1and ECH are actived; (b) whenData=0 the ck2
and ECL are actived.

The principle of operation of the pulse generator using the PAM
modulation is relatively simple. It can use two values of the signal
amplitude as described above. When the data signal is set to high,
the logic AND gate G1 of the Demultiplex (DEMUX) circuit is
activated and the clock signal of the input goes to the output of the
logic gate. This output signal is called "Ck1" and is connected to
ECH PGUs, as shown in Figure 3(a). Then, the digital circuit block
will select the number of oscillations of the output pulse. This pulse
selection defines the number of PGUs that will be used to generate
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the pulse at high amplitude output. This pulse is connected to the
filter and to properly form the output pulse oscillations. When the
data signal is set to low, the logic AND gate G2 of the demultiplex
circuit is activated and the clock signal of the input goes to the
output of the logic gate. This output signal is called "Ck2" and
is connected to ECL PGUs, as shown in Figure 3(b). The digital
circuitry at the digital block will select the quantity of monocycles
per pulse at the output of PGUs. This monocycles will be sent to
the filter to correctly waveform at output of pulse generator.

3 ARCHITECTURE DESCRIPTION
The proposed IR-UWB circuit generates rectangular pulses that
can be adjusted up to eight monocycles, using a PAM modulation
scheme. It consists of three main blocks: a demultiplex circuit block;
PGU blocks generates monocycles; Digital Selector Block (DSB) to
select number of PGUs. The main blocks are explained in detail as
follows.

3.1 Demultiplex Block
The decision circuit, in this design, was implemented with a 1:2
Demultiplex (DEMUX) circuit using two static CMOS NAND gates,
and an inverter circuit to select output, as shown in Figure 3(a, b).

3.2 Pulse Generator Unit (PGU)
Many techniques can be used to design of edge combiner circuits
in the PGU. In the proposed design, we implement both edge com-
biners were modified from previous publications [4]. Under these
circumstances, each PGU was implemented with ECH and ECL
techniques using pMOS and nMOS transistors connected in series,
as shown in Figure 4. Thus, each PGU behaves like a charge pump
circuit to control charge and discharge current on the polarized
filter to generate the output voltage. In other words, the PGU con-
trols the current flow from VDD to Vout and Vout to GND to form
one monocycle. When the PGU is not selected, transistors Mp13,
Mn11, Mp23 and Mn21 are off, and as a result the node output is
in high impedance state. Thus, there is no output voltage peak in
the polarized filter. However, when the PGU is selected, the ECH as
well as the ECL are selected through transistors Mp13, Mn11, Mp23
and Mn21, which are on. When the data signal is high, just the
ECH is selected to generates high amplitude monocycles at Vout as
shown Figure 4(a), conversely when the data signal is low, just the
ECL is selected to generates low amplitude monocycles at Vout as
shown Figure 4(b). In this block, the monocycle is generated at the
output, due the phase difference among delay signals V(a), V(b) and
V(c), as shown in Figure5 (b). This delay signals generate a positive
peak amplitude of the monocycle in 3 states:
(1) First state, before transition: suppose that signals V(a)=1 and

V(b)=0, then signal (I+)=’0’ (at high impedance condition). In
this condition, Mp11 is on and Mp12 is off;

(2) Second state, when V(a) goes from high to low , and V(b) goes
from low to high , Mp11 and Mp12 goes on, generating a narrow
pulse of current with a width of the phase difference, then the
electric current flows from VDD to polarized filter;

(3) Third state: after the transition, suppose that signals V(a)=0 and
V(b)=1, then pulse current (I-)=’0’ (at high impedance condition).
In this condition, Mp11 is off, Mp12 is on.

The negative peak amplitude of the monocycle is generated
similarly, as follows:
(1) First state, before transition: suppose that signals V(b)=0 and

V(c)=1, then signal (I-)=’0’ (at high impedance condition). In
this condition, Mn11 is on, Mn12 is off;

(2) Second state, when V(b) goes from high to low , and V(c) goes
from low to high , Mn11 andMn12 goes on, generating a narrow
pulse of current with a width of the phase difference, then the
electric current flows from polarized filter to GND.

(3) Third state: after the transition, suppose that signals V(a)=0 and
V(b)=1, then pulse current (I-)=’0’ (at high impedance condition).
In this condition, Mn11 is off, Mn12 is on.

Figure 4: Block diagram of reconfigurable pulse generator
with 8 PGUs using PAMmodulation scheme: (a) ECH circuit
– top part of the Figure; (b) ECL circuit – lower part of the
Figure.

The delay circuit was implemented with three cascaded inverters
to control the delay time in the PGUs. Thus, was chosen a current
starved, a conventional static inverter, and a pseudo-nMOS inverter
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[15] [16], to enhance the control of the delay between the inverter
input and outputs, as shown in the Figure 5(a). When compared,
these inverters represent a trade-off among them. For example, the
current starved is often used to control delay in the ring oscillator,
because current sources limit the current available to the inverter.
In the static inverter there is no DC current flow through it and
consequently the power consumption is smaller. As a result, the
design takes advantage of the fact that the current starved and
pseudo-nMOS circuits need a current mirror to control the current
at the output of the inverter. This justifies the configuration choice
here, to operate as delay circuits, given its simplicity to keep a
fixed frequency. Besides, it presents an excellent delay response,
resulting in a better IR-UWB output pulse frequency. This signal
voltage will be produced on the edge combiner output. It presents
a satisfactory delay response, making possible a better IR-UWB
output pulse frequency.

(a)

(b)
Figure 5: Delay circuits schematic: (a) Delay circuit; (b) Delay
voltage phase difference.

3.3 Digital Selector Block
The digital selector block was implemented to select eight PGUs,
generating up to eight monocycles per pulse. It was implemented
using a simple circuit with AND and OR static gates. Each PGU
has been designed with a high impedance circuit that is activated

when a logic level at input goes to high, as shown in Figure 3(a,b).
In this condition, the transistor mp13 and mn13 of the ECH block
are on. Similarly, transistors Mp23 and Mn21 of ECL block are on.
For example, when Binary Coded Decimal (BCD) is ”000” at the
input of the block selector, the pulse Vs1 (first output of this block)
at output goes to high logic level and the other outputs, Vs2 up to
Vs8, goes to low. In this condition, just one PGUs are activated and
one monocycle is generated at the output of the pulse generator.
However, when the BCD signal is ”111” , eight PGUs are activated
and eight oscillations per pulse are activated. In this condition, the
pulses from Vs1 up to Vs8 goes to high logic level, as shown in
Table 1.
Table 1: The selection of ECH and ECL circuits using Binary
Code Decimal (BCD).
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The selection of PPG and NPG circuits using  

Binary Code Decimal (BCD). 

 

BCD 
Number of the PGUs circuits actived. 

Vs1 Vs2 Vs3 Vs4 Vs5 Vs6 Vs7 Vs8 

000 1 0 0 0 0 0 0 0 

001 1 1 0 0 0 0 0 0 

010 1 1 1 0 0 0 0 0 

011 1 1 1 1 0 0 0 0 

100 1 1 1 1 1 0 0 0 

101 1 1 1 1 1 1 0 0 

110 1 1 1 1 1 1 1 0 

111 1 1 1 1 1 1 1 1 
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The Power Spectral Density (PSD) obtained using Discrete 
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output node [17], as shown Figure 6. The PAM pulses at output 
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4 SIMULATION RESULTS
This section presents simulation results of the PAM pulse generator
using a PRF of the 100 MHz and a power supply at 1.2V in the
130nm CMOS process . Besides, was implemented a resistor with
50Ω and a parasitic capacitances (Cp) of nMOS and pMOS transis-
tors. In addition, there is an external 500mV supply voltage (Vr),
to polarize the PGU output, as depict Figure 4. Table 2 compares
our proposal to related works through implementation technology,
voltage supply, design method, area, PRF, power consumption and
modulation technique choice. All simulations were carried out us-
ing the LTSpice electrical simulator. Figure 6 presents the layout
of the pulse generator circuit without PADs, with an area equal to
0.54mm2. The proposal in this works stands out in terms of power
consumption and adaptivity.

Figure 5(b) depicted that timeTpHL eTpLH have different times
because the gate capacitance of transistors (Mp11 and Mn13) are
high, and consequently increase the rise time at node v(b). Under
this condition, the channel width of the pMOS transistor must be
increased to higher values to decrease the rise time. The resulting
circuit has a propagation delay of 249 ps between PGUs (ECH or
ECL) to produce one oscillation at the output. Thus, each inverter
presents a TpHL of 131ps, TpLH of 118ps. The total delay time of
the pulse depends on the number of delay blocks selected in the
signal path.

The central frequency when Data = ’1’ is ≈4.3 GHz and when
Data = ’0’ this frequency is ≈3.7 GHz. The difference between the
central frequencies is due to non-uniformity of pulses generated at
output. This happens because the same circuits produce both pulses,
hence zero and one pulses have the same slope, but zero pulses
have smaller amplitude, ending each monocycle in less time than
one pulses. Consequently, zero pulses carryless energy per pulse
and have higher frequency than their corresponding one pulses.
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Table 2: Comparative summary of IR-UWB pulse generators (NA: information not available in the reference) 

This happens because the same circuits produce both pulses, 
hence zero and one pulses have the same slope, but zero pulses 
have smaller amplitude, ending each monocycle in less time 
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V. CONCLUSION 

This work discussed an efficient small pulse generator using 
PAM modulation designed in a 130nm CMOS technology. Its 
generated pulse has an output pulse amplitude of ~70mV for 
high logic level and an amplitude of ~35mV for logic level 0, 
both at 100 MHz Pulse Repetition Frequency (PRF), producing 
a mean pulse duration of ~270ps, mean central frequency of 
~3.7GHz and low power consumption. The full block of the 
pulse generator occupies an area of 0.54mm². This design 
presents a small area, low power consumption and low 
complexity that can be applied in adaptive and reconfigurable 
transmitters in future designs.  

TABLE II 
COMPARATIVE SUMMARY OF IR-UWB PULSE GENERATORS (NA MEANS THE INFORMATION IS NOT AVAILABLE IN THE CONSULTED REFERENCE) 

Results This work *Ref. [7] Ref. [9] Ref.[18] Ref. [19] Ref. [20] *Ref. [21] 
CMOS technology (nm) 130 180 130 180 180 40 180 
Voltage Supply (V) 1.2 1.8 1.2 ~1.8 1.8 0.9 1.2 

Method Edge 
combiner LO-based Filtered Edge 

Combination 
Filtered Edge 
Combination LO-based Edge 

combiner Double PLL 

Area (core)  0.54mm² 0.2mm² 0.54mm² 0.09mm² 0.55mm² 8200µm² 0.04mm² 
PRF (MHz) 100 40.5 100 100-1000 125 100 31.25 
Power consumption (mW) 0.047-0.215 1.97 3.84 0.26-0.th76 4 NA NA 
Modulation PAM PAM OOK OOK PPM+BPSK NA OOK 

*UWB transmitter 

 
Fig. 5. The complete layout of the proposed pulse generator (without PADs). 

 
Fig. 6. Power Spectrum Density simulation: (a) Data = 0, (b) Data = 1. 

 

Figure 6: Proposed pulse generator complete layout without PADs.

Figure 7: Power Spectrum Density simulation: (a) Data = 0, (b) Data = 1.

Another consequence appears when pulses with more monocycles
have more energy than pulses with less monocycles, and because
those pulses are longer than the former, their frequencies are smaller
than the frequencies of the latter.

The total duration of the pulse with eight monocycles at the
output is ≈1.9 ns. The PSD obtained using Discrete Fourier Trans-
formation (DFT) is ≈32dBm for high logic level and ≈42dBm for low
level, with a 50Ω load impedance on the output node [17], as shown
Figure 7.The pulse generator circuit presents a pulse amplitude of

≈70mVpp for high logic level and ≈35mVpp for low logic level, as
shown in Figure 8.

5 CONCLUSION
This work discussed an efficient small pulse generator using PAM
modulation designed in a 130nm CMOS technology. Its generated
pulse has an output pulse amplitude of ≈70mV for high logic level
and an amplitude of ≈35mV for low logic level, both at 100 MHz
Pulse Repetition Frequency (PRF), producing a mean pulse duration
of ≈270ps, mean central frequency of ≈3.7GHz and low power
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Figure 8: Time-domain waveform of the complete pulse gen-
erator circuit: top graph is the output voltage; middle graph
shows when Data signal =1 and when Data=0; bottom graph
shows the clock signal.

consumption. The full block of the pulse generator occupies an
area of 0.54mm2. This design presents a small area, low power
consumption and low complexity that can be applied in adaptive
and reconfigurable transmitters in future designs.
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