
Distributed SDN Architecture for NoC-based Many-core SoCs

Marcelo Ruaro
marcelo.ruaro@acad.pucrs.br

PUCRS, Porto Alegre
Brazil

Nedison Velloso
nedisonnfv@gmail.com
PUCRS, Porto Alegre

Brazil

Axel Jantsch
axel.jantsch@tuwien.ac.at

TU Wien, Vienna
Austria

Fernando G. Moraes
fernando.moraes@pucrs.br

PUCRS, Porto Alegre
Brazil

ABSTRACT

In the Software-Defined Networking (SDN) paradigm, routers are
generic and programmable forwarding units that transmit packets
according to a given policy defined by a software controller. Recent
research has shown the potential of such a communication concept
for NoC management, resulting in hardware complexity reduction,
management flexibility, real-time guarantees, and self-adaptation.
However, a centralized SDN controller is a bottleneck for large-scale
systems.

Assuming an NoC with multiple physical subnets, this work
proposes a distributed SDN architecture (D-SDN), with each con-
troller managing one cluster of routers. Controllers work in parallel
for local (intra-cluster) paths. For global (inter-cluster) paths, the
controllers execute a synchronization protocol inspired by VLSI
routing, with global and detailed routing phases. This work also
proposes a short path establishment heuristic for global paths that
explores the controllers’ parallelism.

D-SDN outperforms a centralized approach (C-SDN) for larger
networks without loss of success rate. Evaluations up to 2,304 cores
and 6 subnets shows that: (i) D-SDN outperforms C-SDN in path
establishment latency up to 69.7% for 1 subnet above 32 cores, and
51% for 6 subnets above 1,024 cores; (ii) D-SDN achieves a smaller
latency then C-SDN (on average 54%) for scenarios with more than
70% of local paths; (iii) the path success rate, for all scenarios, is
similar in both approaches, with an average difference of 1.7%; (iv)
the data storage for the C-SDN controller increases with the system
size, while it remains constant for D-SDN.

CCS CONCEPTS

·Computer systems organization→Multicore architectures;
System on a chip; · Hardware → Networking hardware;

KEYWORDS

Network-on-Chip (NoC), Software-Defined Networking (SDN), Dis-
tributed Management, System-on-Chip (SoC), Many-core.

ACM Reference format:

Marcelo Ruaro, Nedison Velloso, Axel Jantsch, and Fernando G. Moraes.
2019. Distributed SDN Architecture for NoC-based Many-core SoCs . In
Proceedings of International Symposium on Networks-on-Chip, New York, NY,

USA, October 17–18, 2019 (NOCS ’19), 8 pages.
https://doi.org/10.1145/3313231.3352361

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
NOCS ’19, October 17–18, 2019, New York, NY, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6700-4/19/10. . . $15.00
https://doi.org/10.1145/3313231.3352361

1 INTRODUCTION

A state-of-the-art Many-Core SoC (MCSoC) contains up to hun-
dreds of homogeneous or heterogeneous processing elements (PEs),
leading to significant design complexity. While researchers have
proposed solutions to separately provide QoS, fault-tolerance, ag-
ing, security, energy, power and temperature management, the next
SoC generation must integrate and combine available techniques to
solve all these issues simultaneously in a scalable, multi-objective,
and self-adaptive management. The need for such comprehensive
design drives the research for self-adaptation properties [5].

Networks-on-Chip (NoCs) implement parallel and scalable com-
munication in MCSoCs [6]. To obtain self-adaptation in the com-
munication infrastructure, the MCSoC needs to be able to know
and control the NoC resources at runtime. Past works for NoC
management focus on hardware-centric approaches, with specific
router designs [1, 6]. These approaches have the advantage of high-
performance. However, they do not allow effectively to manage
the network due to their lack of a holistic view of the system.
Software-based management also has been explored to meet spe-
cific purposes, as to manage dynamic Time Division Multiplexing
(TDM) [20] or Spatial Division Multiplexing (SDM) allocation for
real-time guarantees [11].

The Software-Defined Networking (SDN) paradigm [14] is a
concept in the computer network field and stands as a promis-
ing proposal to be applied for NoC management in MCSoCs. SDN
means to remove the communication control logic from the hard-
ware level bringing it to the software level. This approach simplifies
the on-chip communication architecture since it promotes a generic
and simple communication design paradigm, and also leveraging
to a self-adaptive communication infrastructure due to its global
view of the system and flexible management. In SDN, routers that
conventionally have its design customized for a specific purpose,
become programmable hardware units, with the ability to change
its connections according to applications’ needs. The routers are
configured by a software SDN Controller, which establishes and
releases connections between PEs at runtime following a single or
multi-objective policy.

Recent research highlight the benefits of the SDN paradigm for
NoC management in MCSoCs [7, 10, 17], which can be summarized
as: (i) hardware complexity reduction; (ii) management flexibility;
(iii) real-time guarantees; (iv) security; (v) self-adaptation.

SDN presents two challenges: (i) higher path setup latency com-
pared to hardware-based approaches (typically two orders of mag-
nitude higher); and (ii) lack of scalability due to the adoption of a
centralized controller. Challenge (i) is inherent to software-based
approaches, such overhead is not prohibitive when the connections
do not need to be made for every packet (which is costly even
for hardware approaches), and the priority is flexible and multi-
objective management. Recent research [4, 16, 17] show that the

NOCS ’19, October 17–18, 2019, New York, NY, USA Ruaro, et al.

setup latency can be mitigated establishing connections at the appli-
cation startup (in parallel o to the object code loading) and releasing
at the end of application execution. Thus, the applications use the
connections previously established, without the need to wait for
new connections during their execution.

Regarding challenge (ii), related work on SDN for NoC assume
only centralized controllers, without evaluations for large-scale
systems (more than 256 PEs). To achieve scalability, computer net-
works already adopt distributed SDN management [14].

Thus, motivated by challenge (ii), this work has as main goal

the proposition and evaluation of a distributed SDN architecture
for large scale MCSoCs. Routers are grouped into clusters, with
one controller per cluster. For local paths (i.e., intra-cluster paths)
each controller defines the paths independently and in parallel to
other controllers. For a global path, (i.e., extra-cluster paths), the
controllers cooperate in a synchronized way to manage the path
setup and release. The global path establishment is inspired by
VLSI routing [3], with global and detailed routing phases and the
adoption of the Hadlock shortest path search algorithm[3].

The contributions of this work can be summarized as follows:
(1) a cluster-based SDN architecture; (2) a synchronized path es-
tablishment and release protocol among clusters; (3) a heuristic to
define short paths among clusters.

The rest of this paper is organized as follows. Section 2 discusses
related work, positioning our work w.r.t the state-of-the-art. Sec-
tion 3 presents the cluster-based SDN architecture (contribution
1). Section 4 details the distributed SDN protocol (contribution 2).
Section 5 presents the heuristic to define short paths (contribution
3). Section 6 evaluates the SDN proposal, and Section 7 concludes
this paper.

2 RELATED WORK

Table 1 classifies the related work on SDN for NoCs, detailing the
similarities and differences to the work herein proposed.

Table 1, 2nd column details the SDN proposal goal. Works [7, 10,
18] use SDN for specific purposes as QoS, security and power saving.
Works [2, 4, 8] propose a generic SDN architecture as proposed
in this work. The rules implemented inside the controller can be
designed according to different policies, for fault-tolerance, security
and QoS.

Table 1, 3rd column details the adopted NoC architecture that
are majority based on a 2D-mesh topology [2, 4, 7, 8, 18], due to
its easy implementation and reusability. Berestizshevsky et al. [2]
use two physical networks, one for control and another one for the

application’s data. We adopt a Multiple Physical Network (MPN)
architecture. MPNs enable communication isolation and a higher
path diversity by implementing several simple and replicated net-
works. Previous works show the benefits to adopt MPNs. Authors
in [6, 12] compare MPNs to SDM. With an equivalent bandwidth,
MPN increases the area following an O(n) complexity, while SDM
increases O(n2). The path delay increases with the number of sub-
channels (SDM) with a complexity of O(n), while it is constant for
MPN. Yoon et al. [21] present a comparison of MPN and Virtual
Channels (VC) and conclude that MPN presents better area scala-
bility. Also, MPNs scale better regarding power dissipation and are
better suited for new technology nodes.

Table 1, 4th column details the evaluated system sizes (i.e., maxi-
mum PE count). An important observation can be drawn from this
column: as most works adopt a centralized controller, evaluations
are limited to a small number of PE count (≤ 256). The work of [18]
addresses up to 1,024 PEs; however, the SDN concept adopted in
this work follows a different paradigm, without an SDN controller
able to achieve global and self-aware communication management.
The system size of 16x16 found in the related work points to a
possible limit of the centralized control in SDNs, as empirically
observed in [2, 4]. This work aims to address such limitation by
proposing a distributed SDN management.

Table 1, 5th column qualitatively compares the router complexity.
Works [4, 7, 8] embed additional hardware features in the router
design increasing its complexity. We argue that in SDN, routers
must be as simple as possible, having only the role to forward
packets and to accept configuration from a controller. Such design
philosophy drives the SDN router design of computer networks
[14], which this work also follows, as detailed in Section 3.1.

Table 1, 6th column presents works that validate the proposal
using RTL simulations. Our work uses a SystemC-RTL model for
simulations. We argue this level is necessary since it enables to
measure the real overheads of the proposed methods. Virtual simu-
lators as Mininet [7], and Omnet++ [2] can hide communication
bottlenecks and deadlocks in an MCSoC context.

The last column of Table 1 presents themethod to design the SDN
controller. Most works adopt a centralized controller [2, 7, 8, 10].
Consequently, the study of distributed SDNs is the main motivation
and goal of the work herein presented.

3 SDN ARCHITECTURE

This Section presents two SDN architectures, the baseline central-
ized SDN (C-SDN) architecture (based on [17]), and the proposed

Table 1: Related work in SDN for NoCs.

Work Goal NoC Architecture System

Size

Router

Complex.
RTL SDN Controller

Cong et al.[4] 2014 Generic SDN Mesh, 2D, One physical network 256 High No Inside each router
Sand. et al.[8] 2016 Generic SDN Mesh, 2D, One physical network 70 High Yes Centralized, Intra-chip
Bere. et al.[2] 2017 Generic SDN Mesh, 2D, Two physical networks 256 Minimal No Centralized, Intra-chip

Scion. et al.[18] 2018
SDN for power

saving
Mesh, 2D, Two hierarch. networks 1,024 Medium Yes

Does not exist, made by

each OS
Kostrzewa et al. [10]

2018
SDN for QoS Torus, 2D, One physical network 10 N.A. Yes Centralized, Intra-chip

Ellinidou et al. [7] 2019 SDN for security Mesh, 2D, Multiple many-core chips 30 High No Centralized, Off-chip
This work Generic SDN Mesh, 2D, Multiple physical networks 2,304 Minimal Yes Distributed, Intra-chip

Distributed SDN Architecture for NoC-based Many-core SoCs NOCS ’19, October 17–18, 2019, New York, NY, USA

distributed SDN architecture (D-SDN). Figure 1(a) overviews the
assumed baseline MCSoC architecture. It contains a set of PEs in-
terconnected by an NoC. Each PE has a CPU, a local scratchpad
memory, a Network Interface (NI), and a Packet-Switching (PS)
router. The presence of a shared-memory is also frequent, with
the local memory assuming the role of an L1 cache. In Figure1(a),
the PEs are homogeneous, but heterogeneous PEs can also be as-
sumed. Shared-memory and heterogeneous systems are orthogonal
features to our proposal.

(a)

0x0

0x1

0x2

0x3

1x0

1x1

1x2

2x3

2x0

2x1

2x2

2x3

3x0

3x1

3x2

3x3

4x0

4x1

4x2

4x3

5x0

5x1

5x2

5x3

0x4

0x5

1x4

1x5

2x4

2x5

3x4

3x5

4x4

4x5

5x4

5x5

L
o

c
a

l
M

e
m

o
ry CPU

PS

NI

L
o

c
a

l
M

e
m

o
ry CPU

PS
SR

SR

NI

L
o

c
a

l
M

e
m

o
ry CPU

PS
SR

SR

NI

(b) (c)

0x0

0x1

0x2

0x3

1x0

1x1

1x2

1x3

2x0

2x1

2x2

2x3

3x0

3x1

3x2

3x3

4x0

4x1

4x2

4x3

5x0

5x1

5x2

5x3

0x4

0x5

1x4

1x5

2x4

2x5

3x4

3x5

4x4

4x5

5x4

5x5

0x0

0x1

0x2

0x3

1x0

1x1

1x2

1x3

2x0

2x1

2x2

2x3

3x0

3x1

3x2

3x3

4x0

4x1

4x2

4x3

5x0

5x1

5x2

5x3

0x4

0x5

1x4

1x5

2x4

2x5

3x4

3x5

4x4

4x5

5x4

5x5

Controller

0x0

Controller

1x0

Controler

0x1

Controller

1x1

Controler

Figure 1: (a) BaselineMCSoC, (b) C-SDN, (c) proposed D-SDN

with a cluster-based SDN management.

Figure 1(b) depicts the C-SDN. This architecture contains an
MPN,with one PS subnet and a set of Circuit-Switching (CS) subnets
with SDN routers (SR). The subnets are not connected to each other.
The PS subnet is shared between best-effort applications’ data and
SDN control data. Each PS router has input-buffers (usually 8-flit
depth), credit-based control flow, and wormhole packet switching
(PS).

Figure 1(c) presents the proposed D-SDN. The hardware architec-
ture is the same as the C-SDN. The proposed software architecture
comprises of several controllers, and each one is in charge to man-
age a cluster of SRs. The definition of the cluster size occurs at
design-time.

3.1 SDN Router (SR)

The SR, Figure 1(b) and (c), is a forwarding unit that connects a given
input port to an output port. Instead of using input buffers, SRs use
Elastic Buffers (EB) [13]. A crossbar connects the input port with its
respective output port. The SDN controller configures the crossbar
through a configuration packet. The SR has a configuration interface
connected to the NI. When the NI detects the configuration packet
in the PS subnet, it drops the packet, avoiding it to be handled by
the CPU, extracts its contents, and configures one of the SRs. It has
been shown that the 32-bit SR router area (1,177 gates) amounts to
25% of an 8-buffer depth 32-bit PS router, without virtual channels
[17].

3.2 SDN Controllers

The C-SDN controller is a software task with exclusive access to OS
services and assigned to some PE. The C-SDN controller implements
the Hadlock shortest-path algorithm [9] that find paths in a given
CS subnet. The CS subnet is selected following a utilization-based
heuristic among all CS subnets [17].

The D-SDN management is implemented as a high priority dis-
tributed application. Each task of the application is a controller. The

controllers work in parallel for local paths. When a global path is
requested, the controllers execute the distributed SDN protocol.

4 DISTRIBUTED SDN PROTOCOL

This Section details the distributed protocol to establish and release
a path. When a given path requester (e.g., application, OS, hardware
module, among others) needs a path establishment or release for
communicating PEs it sends a PATH_REQ message to the controller
of the cluster where the source PE address is located. Such a con-
troller becomes a temporary coordinator, which is responsible for
coordinating a global path establishment or release.

4.1 Global Path Establishment

Global path establishment requires a consistent global state of the
network, achieved through the communication between controllers.
A token manager provides a token to one controller of the system
at each time.

Figure 2(a) presents the global path establishment protocol. The
requester asks a path to the controller. The receiving controller
becomes the coordinator of the path, storing requests into a FIFO.
The FIFO size is equal to the number of system PEs. The coordinator
starts to handle a new global path request by removing it from the
FIFO, sending a TOKEN_REQUESTmessage to the token manager, and
continues in an IDLE state working on local paths only. When the
coordinator receives a TOKEN_GRANT message it begins to execute
the path establishment protocol, divided into three phases.
Phase 1 - Consistency. Consistency is the phase where the coordi-
nator achieves the global view of network. It sends a BORDER_STATUS
_REQ message to all controllers of the system. These controllers
stop to handle new requests and start to work in cooperation with
the coordinator to define a global path. All controllers execute in
parallel the update_border () function, which creates the status of
the cluster border (Bstat). The border status of each cluster is gath-
ered at the coordinator after it receives all BORDER_STATUS_ACK
messages.
Phase 2 - Path search. The coordinator starts to search for the
path. Figure 2(b) overviews the process. The process is hierarchi-
cally divided in global and detailed routing. Global routing is a
coarse-grain search heuristic that selects the clusters where the
path will traverse. Detailed routing is a fine-grain heuristic that de-
fines the intra-cluster routers of the path. After selecting the cluster
in global routing, the coordinator sends a DETAILED_ROUTING_REQ
to the involved controllers. Both the coordinator and controllers
execute the detailed routing. When a given controller finishes the
detailed routing, it sends a DETAILED_ROUTING_RESPONSE to the
coordinator, informing about path success or failure. If one of the
controllers fails in the detailed routing, the coordinator either can
choose to re-execute the global routing with different parameters
or it concludes that such path cannot be created. If successful, the
protocol advances to the last phase.
Phase 3 - Path Configuration. With a GLOBAL_PATH_END mes-
sage the coordinator notifies all controllers that the previous phase
ended. Controllers not involved in the path just send a GLOBAL_

PATH_END_ACKmessage to the coordinator, and are released to han-
dle new path requests. The controllers belonging to the path de-
fine their intra-cluster paths by sending configuration packets to
each SR router. Note, that the configuration process is also exe-
cuted in parallel since each controller keeps the list of its path’s

NOCS ’19, October 17–18, 2019, New York, NY, USA Ruaro, et al.

NoC Controller

Coordinator

NoC Controllers

Path

PATH_REQ

TOKEN_REQ
Token

Manager
TOKEN_GRANT

GLOBAL_ROUTING()

DETAILED_ROUTING()

RETURN IF PATH NOT

FOUND

GLOBAL_PATH_END

PATH_REQ_ACK

update_border()

BORDER_STATUS_ACK

TOKEN_RELEASE
Token

Manager

NoC Controllers

Others

configure path == TRUE

GLOBAL_PATH_END

DETAILED_ROUTING_RESPONSE

GLOBAL_PATH_END_ACK

GLOBAL_PATH_END_ACK

BORDER_STATUS_ACK

BORDER_STATUS_REQ

BORDER_STATUS_REQ

update_border()

DETAILED_ROUTING_REQ

IDLE

IDLE

update_border

()

DETAILED_ROUTING()

0x0

0x1

1x0

1x1

CONFIGURE_ROUTER

Previous

Cluster

Global Routing

(executed at Coordinator = *)

Detailed Routing

(executed in paralell)

s

I

0x1*

0x0 1x0

1x1

Current

Cluster

O I

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Source router

Target router

Entry router

Exit router

(b)

s

O

0x1*

0x0

I

1x1

O

T

1x0

I

Previous

Cluster

Current

Cluster

.

.

.

.

.

.

.

.

. s
T

I

O

.

.

.

.

.

.

.

.

.

T

Requester

FIFO

1
st

 CONCISTENCY

2
nd

PATH

SEARCH

3
rd

PATH

CONFIGURATION

(a) (c)

configure path == FALSE

Figure 2: (a) Global path protocol. (b) Global and detailed routing. (c) Representation of the cluster’s border status (Bstat).

routers. After the end of the configuration, the controller sends a
GLOBAL_PATH_END_ACKmessage to the coordinator. When the coor-
dinator receives all messages from the controllers, it concludes the
path establishment protocol by sending a PATH_REQ_ACK message
to the path requester and releases the token at the token manager.

The information related to the border status is mandatory since
it represents the free crossing points between clusters. The first
phase of the protocol obtains this information. Figure 2(c) illustrates
how the update_border () function computes the border status. The
goal is to return the status of the crossing points. The simplest
solution would be to gather the status of the input port of the input
router (blue router) at current cluster. However, we observed that
this approach leads to a poor path success rate during detailed
routing, since the router could be blocked due to the usage of all its
neighbors’ inputs (as is the case of the blue router of Figure 2(b)).
The same applies to the output router (red router) of the previous
cluster. In a worst-case scenario, a path can not reach it since all
its input ports could be already blocked (this is not the case for the
red router because only its south input is blocked).

To compute the border status accurately, we evaluate all inputs,
as illustrated in Figure 2(c). A path can cross from a cluster to
another if the output router can be reached for, at least, one input
port, and if the input router has at least one free output port.

The communication complexity of this protocol in terms of num-
ber of messages isO(4.N +2.N .GRa +2.M), where N is the number
of controllers in the system, M is the path’s length (hops), and
GRa is the number of global routing re-executions. The compu-
tational complexity is related to the update_border () and global
and detailed routing heuristics. The update_border () complexity
is O(4.CSn), where CSn is the number of CS subnets, and 4 is the
border number. Section 5 presents the complexity of both heuristics.

4.2 Global Path Release

The requester starts the path release protocol, by notifying the co-
ordinator. The path release is entirely done is software, using one
structure (sr_input) that stores the status of each SR’s input port.
Thus, it is not necessary to release physically the SR. The controller

releases a path by tracking sr_input from the source router until
reaching a cluster border or the target router. When the path release
reaches a cluster border, the controller sends a LOCAL_RELEASE_

REQ message to the controller of the next cluster. If the release
process reaches the target router, the controller checks if it is the
coordinator of the path. If the controller is not the coordinator, it
sends a LOCAL_RELEASE_ACK message to the coordinator. The coor-
dinator finishes the path release protocol by sending the response
to the path requester.

This protocol does not require a token to start its execution
because the release process does not require a global view of the
system, i.e., it is local to each cluster.

The communication complexity in terms of number of messages
is O(N), where N is the number of clusters that the path crosses.
The computation complexity is O(NR) where R is the path’ length
in hops.

5 SPESH HEURISTIC

This Section details the path establishment heuristic, SPESH ś Short
SDN Path Establishment Heuristic. Paths found by the heuristic
may not be the shortest ones, because the global routing reduces
the path search space due to its coarse grain search method [3].

5.1 Global Routing

Algorithm 1 presents the GLOBAL_ROUTING(). The global routing
goal is to find clusters for a given path. The global routing only
selects the clusters, and not the entry and exit point of each clus-
ter. Hence, after global routing, the coordinator sends the border
information (cluster side and status of each crossing point) to each
controller, and each one computes the crossing point in parallel,
as part of the detailed routing. Such approach reduces the global
routing overhead.

The GLOBAL_ROUTING() algorithm assume as inputs:

CSn : number of Circuits Switched (CS) subnets;
Sc , Tc : addresses of the source and target clusters, respectively;
GSu : global subnet utilization, stores the utilization of each system’s clus-

ter subnet;

Distributed SDN Architecture for NoC-based Many-core SoCs NOCS ’19, October 17–18, 2019, New York, NY, USA

AVc : available controllers, stores the controllers that failed during detailed
routing. Initialized with all controllers as available;

GRa : global routing attempts, stores the number of GLOBAL_ROUTING()
calls made by coordinator. Initialized with 1. Incremented when
global routing is re-executed;

CB: cluster border status, stores the status of all input/output ports that
are in the 4 borders of each system’s cluster.

The first phase of the protocol, consistency, fills the GSu and CB
variables.

ALGORITHM 1: GLOBAL_ROUTING

Input: CSn, Sc, Tc, GSu, AVc, GRa, CB
Ouput: set C, subnet
1. C ← Ø
2. Umin ← MAX_UTIL + 1
3. PLmin ← MAX_LENGTH + 1
4. min_path ← TRUE
5. If GRa > 1 then
6. min_path ← FALSE
7. EndIf

8. Do
9. For s in range 1 to CSn do

10. PLcur ← HADLOCK(SC, TC, CB, AVc, min_path)

11. If PLcur > 0 then
12. Ctemp ← RETRACE()
13. Utemp ← compute_path_subnet_util(Ctemp, s, GSu)
14. If Utemp < Umin or (Utemp = Umin and PLcur < PLmin) then
15. Umin ← Utemp
16. PLmin ← PLcur
17. C ← Ctemp
18. subnet ← s
19. EndIf

20. EndIf

21. EndFor

22. prev_min_path ← min_path // enables two iterations of the loop when GRa=1

23. min_path ← FALSE
24. While C = Ø and prev_min_path = TRUE

25. Return C, subnet

CSn Number of CS subnets

Sc Source cluster address (coordinat.)

Tc Target cluster address

GSu Global subnet utilization

AVc Available controllers

GRa Global routing attempts

CB Clusters border input and output

PLcur, min Current and minimal path length
(hops)

Utemp, min Temp. and minimal subnet utilizat.

C Set of cluster addresses

The default operation mode of the algorithm is to find minimal
global paths,min_path = TRUE (line 4). If the number of attempts
to execute the global routing is higher than one (GRa > 1), the
algorithm switches to shortest paths,min_path = FALSE (line 6).

The internal loop, lines 9-21, seeks a path for all subnets. Line
10 executes the Hadlock algorithm at cluster level to find a cluster
path, returning the path length (PLcurr). If the Hadlock algorithm
succeeded (line 11), the retrace procedure is executed, returning the
setCtemp , with the clusters’ addresses in the path (line 12). The next
step computes the impact of the path in the subnet utilization (line
13). If the cluster subnet utilization reduces, or if it is the same but
with a shortest path length (line 14), the path is set as a candidate
path (lines 15-18). The algorithm distributes the communication
load because it selects the subnet that achieved lower utilization.
This approach also helps to increase the success rate during the
detailed routing since the path uses the clusters with a smaller load.

Next, the path search mode switches to shortest paths (line 23). If
the previous searchmode was set to find onlyminimal paths and the
path was not found (line 24), the internal loop executes one more
time. Thus, the algorithm explores all subnets, with minimal and
non-minimal paths lengths, trying to reduce the subnets utilization.

The GLOBAL_ROUTING() algorithm finishes returning the se-
lected subnet, and a set C = {c1x,y , c2x,y , ...} with the addresses
of the clusters that the path will cross. With C = ∅ the coordina-
tor sends a GLOBAL_PATH_END message to all controllers finishing
the global path search. With C , ∅, the coordinator sends the

DETAILED_ROUTING_REQ for the clusters in C , starting the detailed
routing at each controller.

The coordinator verifies if the detailed routing failed in some
cluster at a given subnet after receiving all DETAILED_ROUTING_
RESPONSE messages. The AVc array set the index related to all clus-
ters/subnet where the detailed routing failed as not available for the
next global routing execution. The GRa increments if the detailed
routed failed in some cluster, which leverages the global routing
re-execution.

The number of runs that the algorithms make is a trade-off
between runtime and success rate to find the paths. Our experiments
adopt empirically the number of re-execution to be less or equal
to CSn (GRa ≤ CSn), as we observed that the success rates slightly
improve increasing the number of iteration.

The global routing complexity isO(CSn ·CH), whereCH is Had-
lock’s complexity CH = O(X · Y), with X and Y the numbers of
clusters along the X and Y axes.

5.2 Detailed Routing

The detailed routing has two steps: (i) from the entry and exit border
information sent by the coordinator, select the entry and the exit
routers of the cluster; (ii) find the shortest path between these two
routers using the Hadlock’s algorithm at router’s level.

A controller receiving a DETAILED_ROUTING_REQmessage should
select two routers addresses to establish the path. If the path starts
or ends in the cluster, one of the routers’s address is the source or
target routers’ addresses of the path (Sr and Tr). Otherwise, the
path crosses the cluster’s borders.

The algorithm tries to align the crossing point to Sr or Tr . This
approach maximizes the chances to find a minimal path since it tries
to find a router inside a rectangle defined by Sr and Tr addresses.
Note that the crossing point selection is synchronizedwith neighbor
clusters without the need for communication between them since
they have the same Bstat (border status) sent by the coordinator.

Figure 3 shows an example of crossing point selection at the
borders of cluster 1x1. The entry border is located at the west
side, and exit border in the south side. The green dots represent
free crossing points, and the black ones represent blocked crossing
points. The example adopts a 16x16 system, with an 8x8 cluster.

I

0x1

0x0 1x0

1x1

.

.

.

.

.

.
 .

.

.

0 1 2 3 4 5 6 7

7

6

5

4

3

2

1

0

Sr = 1x14

Tr = 14x1

B
s
t
a
t

Bstat

s

T

Figure 3: Example of crossing point selection at cluster 1x1.

For the entry border, west, the free crossing points indexes are
2, 3, 6. In this case, the crossing point selection algorithm chooses
index 6 because it is at same axis than Sr . For the exit border, south,
the free crossing points indexes are 2, 3, 4, 5. In this case, the selected
index is 5 since it is the nearest index to Tr .

The detailed routing executes the Hadlock’s algorithm locally
(router’s level) after selecting the routers’ addresses. The Hadlock
in this level uses the subnet selected in global routing, and the
entry and exit routers addresses selected in the first step. After the
Hadlock execution, the controller sends the DETAILED_ROUTING_

NOCS ’19, October 17–18, 2019, New York, NY, USA Ruaro, et al.

RESPONSE message to the coordinator informing if the path was
found or not.

The detailed routing complexity is O(2N +CH), where N is the
cluster border size in number of PEs, 2 is due the double execution
of step 1. CH is Hadlock’s complexity CH = O(X · Y), with X and
Y as the cluster dimensions.

6 EXPERIMENTAL RESULTS

This Section presents the experimental results. Work [16] evaluates
the centralized SDN (C-SDN) against a distributed hardware-based
search path algorithm, with an average difference on the path search
success equal to 0.23%. Such result allows defining the C-SDN
approach as the baseline reference.

6.1 Experimental Setup

A SystemC-RTL description models the hardware. The software is
modeled in C code (mips-gcc cross-compiler, version 4.1.1, optimiza-
tion O2). The CPU running the controller is a Plasma processor
[15] (MIPS processor) at 100 MHz.

Each scenario has a set of total_path requisitions with the source-
target pairs randomically generated according to a locality rate L.
The size of total_path is equal to #PE ·CSn , corresponding to the
maximum number (worst-case) of simultaneous paths that can be
established into the system. L is the local path rate, corresponding
to the number of local paths in total_path.

A synthetic task (requester) serves as path requester. The number
of requester tasks is the same as the number of controllers. The

number of path requests per requester is
total_path

number of clusters
.

Results evaluate the path establishment, using the following
performance figures:

Total Latency: Time that each approach needs to establish to-

tal_path. It comprises the time from the first PATH_REQ to
the last PATH_REQ_ACK. Includes FIFO time and token wait-
ing time. The parallelism between controllers favors this
metric when establishing local paths.

Setup Latency: Individual path setup latency. Time measured at
the coordinator, from the moment that it starts to define a
path up to its configuration. Excludes FIFO time and the
token waiting time in case of global paths.

Success rate:
success_paths
total_paths .

6.2 Scalability Evaluation

This section evaluates the scalability of the approach, by varying the
system size, CSn , and with L = 0.8. Five system sizes are evaluated:
36 PEs ś 6x6(3x3) (6x6 system, 3x3 clusters), 64 PEs ś 8x8(4x4), 256
PEs ś 16x16(8x8), 1024 PEs ś32x32(16x16), 2304 PEs ś 48x48(16x16).
The reason to adopt L = 0.8 comes from the fact that task mapping
heuristics try to place communicating tasks near to each other [19].

The goal of the following experiment is to determine when D-
SDN is faster than C-SDN. Figure 4(a) presents the total latency
with D-SDN values normalized in relation to C-SDN. For CSn = 1,
the D-SDN is always faster than the C-SDN, reaching an improve-
ment of 69.7% for 2,304 PEs. For CSn = 6, D-SDN outperformed
C-SDN for all system’s sizes starting from 1,024 PEs and reaching
an improvement up to 51% for 2,304 PEs. The total latency increases
with the number of subnets (CSn) because the space exploration
of global routing increase, leveraging the algorithm to perform

more re-executions. In summary, the C-SDN presents a better total
latency for smaller systems, on average, lower than 256 PEs, while
D-SDN outperform C-SDN for the larger system sizes.

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

36 603 1170 1737 2304

T
o

ta
l

la
te

n
cy

 (
N

O
R

M
.)

Processing Elements

C-SDN

CSn=1, D-SDN

CSn=2, D-SDN

CSn=4, D-SDN

CSn=6, D-SDN

0

20

40

60

80

100

120

140

160

180

36 603 1170 1737 2304

A
v
g
.
 s

et
u

p
 l
at

en
cy

 (
K

cy
cl

es
)

Processing Elements

CSn=1,D-SDN
CSn=1,C-SDN
CSn=2,D-SDN
CSn=2,C-SDN
CSn=4,D-SDN
CSn=4,C-SDN
CSn=6,D-SDN
CSn=6,C-SDN

(a) (b)

Figure 4: Total and average setup latency for different sys-

tem sizes and subnets (CSn), for L = 0.8.

While total latency reflects parallelism since the time is measured
from the first path setup request until the last path setup ack, the
graph of Figure 4(b) presents the average setup latency (ASL) per
path. For system sizes below 1024 PEs on average, it is possible to
observe that the D-SDN presents a higherASL. The main reason ex-
plaining this result is that in D-SDN, even a short path can traverse
two different clusters, requiring the execution of the distributed
protocol. Note that the C-SDN ASL increases with the system size,
due to the larger path search space. In the D-SDN the cluster size
for 1,024 and 2,304 is the same, 16x16. Thus, the search space for
local paths (80%) is the same, which explain the small difference be-
tween both results. This result unveils the improvements achieved
due to the parallel execution of detailed routing and the routers’
configuration phase.

Figure 5 evaluates the success rate, setup latency and path length,
considering the 1024 PEs system, CSn = 4, and L = 0.8 (other
scenarios follows the same behavior).

Figure 5(a)(b) presents the success rate for D-SDN and C-SDN,
respectively. The success rate is similar for both approaches. Both
curves sustain a success rate equal to 100% up to 10% of total_paths
for D-SDN and 11.3% for C-SDN. After such path saturation point,
the number of established path reduces, reaching 23.7% for D-SDN
and 22.76% for C-SDN for total_paths equal to 100%. As mentioned
in the experimental setup, the total_paths is a worst-case scenario,
with all possible paths in the NoC being requested.

Figure 5 (c)(d) depicts the setup latency, each dot corresponding
to a path setup. Such graphs should be analyzed with the success
rate graphs. In the beginning, with a success rate of 100% and
few paths established, the setup latency is lower than 200K clock
cycles. Near to the saturation point, the worst setup latency is
achieved, with higher latencies observed in C-SDN (again, due to
the larger path search space). After this point, both approaches
fail to find some paths, which reduces the setup latency. The fact
that it is not necessary to configure the routers when a path fails
also contributes to reduce the setup latency. Figure 5(c) presents an
interesting behavior, the division between global paths (top cluster
of points) local path (bottom cluster of points). Such division occurs
because the global paths have a setup latency overhead on average
7.3 times over local paths for this scenario (explained bellow).

Figure 5(e) presents the path length distribution. The x-axis
corresponds to the path length, in hops, and the y-axis to the number
of established paths (973 for D-SDN and 932 for C-SDN). The C-SDN
applies a centralized shortest path algorithm (Hadlock), enabling

Distributed SDN Architecture for NoC-based Many-core SoCs NOCS ’19, October 17–18, 2019, New York, NY, USA

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 20 40 60 80 100

S
et

u
p
 l
at

en
cy

 (
K

cy
cl

es
)

Total paths (%)

D-SDN

Local paths

Global paths

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 20 40 60 80 100

S
u

cc
es

s
ra

te

Total paths (%)

D-SDN

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 20 40 60 80 100

S
u

cc
es

s
ra

te
Total paths (%)

C-SDN

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 20 40 60 80 100

S
et

u
p

 l
at

en
cy

 (
K

cy
cl

es
)

Total paths (%)

C-SDN

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60

P

at
h

 e
st

ab
li
sh

ed

Path lenght (hops)

D-SDN

C-SDN

4.2%

4.7%

0.6%

-1.0% -0.7%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

36 64 256 1024 2304

S
u

cc
es

s
ra

te

Processing Elements

D-SDN

C-SDN

(a) (b)

(c) (d)

(e) (f)

Figure 5: (a,b) Success rate evaluation; (c,d) setup latency

evaluation; (e) path length distribution; (f) success rate for

different system’s sizes, CSn = 4, L = 0.8.

this approach to find paths not reached by the distributed approach.
According to the graph, C-SDN longest path has 64 hops, while
D-SDN 57 hops. Note that, while in C-SDN the saturation point is
reached later (13% better - Figure 5(a,b)), the C-SDN also has longer
paths, creating more congestion and explaining its lowest final
success rate. Thus, D-SDN has a higher number (10%) of established
paths below 20 hops (843 against 767 for the C-SDN).

Figure 5(f) details the success rate for different systems sizes.
The rate is slightly higher in C-SDN for system smaller than 256
PEs but lower in larger systems. The threshold of 256 PEs can
also be observed for the other subnets. Below 256 PEs, the C-SDN
outperforms D-SDN on average by 4.9%, and from 256 PEs, the
D-SDN outperform C-SDN on average by 0.4%. The overall success
rate difference between both approaches is 1.7%. Such difference
allows us to conclude that the smaller path search space exploration
does not negatively impact the path quality provided by D-SDN.

The experiment depicted in Figure 6 evaluates the impact of
the cluster size. This experiment adopts the 48x48 system, CSn =
4 and L = 0.8, with four different cluster sizes All four D-SDN
scenarios achieve better performance than C-SDN, and the 16x16
case enjoys the lowest latency. The C-SDN latency is constant due
to the absence of clusters. In general, we conclude that cluster size
affects performance significantly. Hence, it is mandatory to identify
the optimal configuration for a given system.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

8x8 (64) 12x12 (144) 16x16 (256) 24x24 (576)

S
u

cc
es

s
R

at
e

Cluster size (#PEs)

D-SDN

C-SDN

0

20

40

60

80

100

120

64 160 256 352 448 544

A
v
g
.
se

tu
p

 l
at

en
cy

 (
K

cy
cl

es
)

Cluster size (#PEs)

D-SDN

C-SDN

(a) (b)

Figure 6: Cluster size: (a) Success rate, (b) Avg. setup latency.

6.3 Locality

This Section evaluates the locality effect in the C-SDN and D-SDN
approaches. Figure 7 presents experimental results with L varying
from 0 (all paths being global) to 1 (all paths being local). This
experiment adopts the 32x32(16x16) system, and CSn = 4 (other
CSn presents similar behaviour). Figure 7(a) addresses the total
latency. As expected the D-SDN total latency reduces as the number
of local paths increases (higher parallelism). D-SDN achieves the
worst latency (on average 30%) for scenarios with L<0.7. This result
is due to the higher number of global routing runs. For scenarios
with local paths with L ≥ 0.7, the D-SDN outperforms C-SDN on
average by 54%. We argue that scenarios presenting L ≥ 0.7 are
those that correspond to real workloads due to the tasks mapping
heuristics that favors local paths [19].

Figure 7(b) shows the success rate for this experiment. It is pos-
sible to observe that both approaches present a similar success rate,
with a difference not higher than 1%. Also, the success rate is a
function of the locality, because global paths lead to congestion,
which reduces the number of available paths.

0.1%

-0.1%
0.6%

-0.5%
0.9%-0.6%

0%
-0.7%-1%

-0.2%
0.1%

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
u

cc
es

s
ra

te

L

D-SDN

C-SDN

0.E+00

1.E+08

2.E+08

3.E+08

4.E+08

5.E+08

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
o

ta
l
la

te
n

cy
 (

cy
cl

es
)

L

D-SDN

C-SDN

(a) (b)

Figure 7: Locality: (a) Total latency, (b) Success rate.

6.4 D-SDN Protocol and Memory Overheads

Figure 8(a) presents the relationship between the setup latency to
establish global and local paths (y-axis), with the same Manhattan
distance, for different D-SDN system sizes (x-axis). According to
the results, the distributed protocol imposes a significant overhead
in small system sizes, e.g., the global path setup latency is 21.9 times
higher for the smallest system and CSn = 4. This graph represents
the trade-off between the time to execute local and global paths.
For small cluster sizes, the local path search is much faster than
the search of global paths. The relationship reduces to 5ś10 times
by increasing the cluster size. This result follows the scalability
evaluation related to the cluster size, where 16x16 clusters achieved
the best results.

The second evaluated overhead is the memory footprint. The
algorithm size (text segment) corresponds to ≈ 17 Kbytes for D-SDN
and ≈ 7 Kbytes for C-SDN. Figure 8(b) presents the data memory
requirement per controller. C-SDN presents a linear growth, while

NOCS ’19, October 17–18, 2019, New York, NY, USA Ruaro, et al.

0

5

10

15

20

25

30

35

40

36 603 1170 1737 2304

G
lo

b
al

 p
at

h
 o

v
er

h
ea

d
 o

v
er

 l
o

ca
l

p
at

h
s

(s
et

u
p
 l
at

en
cy

 r
at

e)

Processing Elements

CSn = 1

CSn = 2

CSn = 4

CSn = 6

0

10

20

30

40

50

60

70

80

90

36 603 1170 1737 2304

D
at

a
p

er
 c

o
n

tr
o

ll
er

 (
K

b
y

te
s)

Processing Elements

D-SDN, CSn = 1
C-SDN, CSn = 1
D-SDN, CSn = 2
C-SDN, CSn = 2
D-SDN, CSn = 4
C-SDN, CSn = 4
D-SDN, CSn = 6
C-SDN, CSn = 6

(a) (b)

Figure 8: (a) Overhead of global vs. local paths with same

Manhattan distance. (b) Data requirements per controller.

in D-SDN the memory footprint is a function of the cluster size, and
not to the system size. Thus, the D-SDN memory footprint scales
with the system size, while the C-SDN not.

6.5 Individual Setup Latency

This last experiment adopts a different data set from previous ones.
The experiment consists in requesting only one path with its source
and target addresses located at the opposite corners of the system,
thus exploring the maximum Manhattan distance for a given path.
The goal of this experiment is twofold: (i) evaluate the performance
for a scenario without congestion; (ii) evaluate how the setup la-
tency behaves increasing the number of clusters. The cluster size is
equal to 8x8 for all scenarios, and only the system size changes.

Figure 9 compares the setup latency for D-SDN and C-SDN
for this single path request. It is possible to observe that D-SDN
always outperforms C-SDN. The improvement increases with larger
systems regardless of the number of clusters, reaching up to 85.5%
for 36 clusters (48x48(8x8)). The lower setup latency of D-SDN is
due to the parallel phases of detailed routing and path configuration.

0

50

100

150

200

250

300

4 8 12 16 20 24 28 32 36

S
et

u
p
 l
at

en
cy

 (
K

cy
cl

es
)

Clusters

D-SDN

C-SDN

Figure 9: Setup latency w.r.t cluster number.

ACKNOWLEDGMENTS

We acknowledge financial support by ÖAW Austria and CAPES/FAPERGS

Brazil ś Fernando GehmMoraes supported by FAPERGS (17/2551-0001196-1

and 18/2551-0000501-0) and CNPq (302531/2016-5) and Marcelo Ruaro by

CAPES/FAPERGS (88887.196173/2018-00).

7 CONCLUSION AND FUTUREWORKS

This work proposed and evaluated a distributed SDN architecture
for the management of MCSoCs. The D-SDN has an inherent chal-
lenge that is the synchronization protocol. However, the cost of
the protocol becomes relatively lower as the system grows. On
average, D-SDN outperformed C-SDN in total latency in systems
larger than 256 cores without loses in success rate. The goal of our
proposal is to adopt SDN in systems with hundreds of PEs. Using
larger systems, the results showed that the amount of memory for

the controllers and the total latency for the establishment of paths
scale with the size of the system. Also, the path quality, considering
the path length and the success path establishment rate, does not
suffer from the distributed approach, being slightly better than
the C-SDN approach. Therefore, the proposed D-SDN approach
advances the state-of-the-art related to a self-adaptive management
of large NoC-based MCSoCs.

Future works are directed to develop a fault-tolerance protocol
among controllers and providing QoS and security services for
user’s applications based on the distributed SDN architecture.

REFERENCES
[1] A. Abousamra, A. Jones, and R. Melhem. 2013. Proactive circuit allocation in

multiplane NoCs. In DAC. ACM, 35:1ś35:10. https://doi.org/10.1145/2463209.
2488778

[2] K. Berestizshevsky, G. Even, Y. Fais, and J. Ostrometzky. 2017. SDNoC: Software
defined network on a chip. Microprocessors and Microsystems 50 (2017), 138ś153.
https://doi.org/10.1016/j.micpro.2017.03.005

[3] H. Chen and Y. Chang. 2009. Electronic Design Automation: Synthesis, Ver-
ification, and Test. Morgan Kaufmann Publishers/Elsevier, Burlington, MA,
Chapter 12, 687ś748.

[4] L. Cong, W. Wen, and W. Zhiying. 2014. A configurable, programmable and
software-defined network on chip. In WARTIA. 813ś816. https://doi.org/10.1109/
WARTIA.2014.6976396

[5] N. Dutt, F. Kurdahi, R. Ernst, and A. Herkersdorf. 2016. Conquering MPSoC
complexity with principles of a self-aware information processing factory. In
CODES+ISSS. ACM, 37:1ś37:4. https://doi.org/10.1145/2968456.2973275

[6] A. Ejaz and A. Jantsch. 2013. Costs and Benefits of Flexibility in Spatial Division
Circuit Switched Networks-on-chip. In NoCArc. 41ś46. https://doi.org/10.1145/
2536522.2536526

[7] S. Ellinidou, G. Sharma, T. Rigas, T. Vanspouwen, O. Markowitch, and J. Dricot.
2019. SSPSoC: A Secure SDN-Based Protocol over MPSoC. Security and Commu-
nication Networks 2019, 4869167 (2019), 11 pages. https://doi.org/10.1155/2019/
4869167

[8] R. Sandoval-Arechiga et al. 2016. Software Defined Networks-on-Chip for
multi/many-core systems: A performance evaluation. In ANCS. 129ś130. https:
//doi.org/10.1145/2881025.2889474

[9] F. Hadlock. 1977. A shortest path algorithm for grid graphs. Networks 7, 4 (1977),
323ś334.

[10] A. Kostrzewa, S. Tobuschat, and R. Ernst. 2018. Self-Aware Network-on-Chip
Control in Real-Time Systems. IEEE Design Test 35, 5 (2018), 19ś2. https://doi.
org/10.1109/MDAT.2017.2763598

[11] A. Leroy, D. Milojevic, D. Verkest, F. Robert, and F. Catthoor. 2008. Concepts and
Implementation of Spatial Division Multiplexing for Guaranteed Throughput
in Networks-on-Chip. IEEE Trans. on Computers 57, 9 (Sept. 2008), 1182ś1195.
https://doi.org/10.1109/TC.2008.82

[12] S. Liu, A. Jantsch, and Z. Lu. 2015. MultiCS: Circuit switched NoC with multiple
sub-networks and sub-channels. Journal of Systems Architecture 61, 9 (Oct. 2015),
423ś434. https://doi.org/10.1016/j.sysarc.2015.07.013

[13] G. Michelogiannakis and W. J. Dally. 2013. Elastic-Buffer Flow Control for On-
Chip Networks. IEEE Trans. on Computers 62, 2 (Feb. 2013), 295ś309. https:
//doi.org/10.1109/HPCA.2009.4798250

[14] Y. Oktian, S. Lee, H. Lee, and J. Lam. 2017. Distributed SDN controller system:
A survey on design choice. Computer Networks 121 (2017), 100ś111. https:
//doi.org/10.1016/j.comnet.2017.04.038

[15] S. Rhoads. 2016. Plasma - most MIPS I(TM). (2016). https://opencores.org/
projects/plasma

[16] M. Ruaro, H. Medina, A. Amory, and F. Moraes. 2018. Software-Defined Net-
working Architecture for NoC-based Many-Cores. In ISCAS. IEEE, 385ś390.
https://doi.org/10.1145/2881025.2889474

[17] M. Ruaro, H. M. Medina, and F. G. Moraes. 2017. SDN-Based Circuit-Switching
for Many-Cores. In ISVLSI. IEEE, 385ś390. https://doi.org/10.1109/ISVLSI.2017.74

[18] A. Scionti, S. Mazumdar, and A. Portero. 2018. Towards a Scalable Software
Defined Network-on-Chip for Next Generation Cloud. Sensors 18, 7 (2018), 1ś24.
https://doi.org/10.3390/s18072330

[19] A. Singh, P. Dziurzanskiand, H. Mendis, and L. Indrusiak. 2017. A Survey and
Comparative Study of Hard and Soft Real-Time Dynamic Resource Allocation
Strategies for Multi-/Many-Core Systems. ACM Comput. Surv. 50, 2 (April 2017),
24:1ś24:40. https://doi.org/10.1145/3057267

[20] R. Stefan, A. Neja, and K. Goossens. 2012. Online Allocation for Contention-
free-routing NoCs. In INA-OCMC. ACM, 13ś16. https://doi.org/10.1145/2107763.
2107767

[21] Y. J. Yoon, N. Concer, M. Petracca, and L. P. Carloni. 2013. Virtual Channels and
Multiple Physical Networks: Two Alternatives to Improve NoC Performance.
IEEE Trans. on CAD of ICs and Systems 32, 12 (Dec. 2013), 1906ś1919. https:
//doi.org/10.1109/TCAD.2013.2276399

	Abstract
	1 Introduction
	2 Related Work
	3 SDN Architecture
	3.1 SDN Router (SR)
	3.2 SDN Controllers

	4 Distributed SDN Protocol
	4.1 Global Path Establishment
	4.2 Global Path Release

	5 SPESH Heuristic
	5.1 Global Routing
	5.2 Detailed Routing

	6 Experimental Results
	6.1 Experimental Setup
	6.2 Scalability Evaluation
	6.3 Locality
	6.4 D-SDN Protocol and Memory Overheads
	6.5 Individual Setup Latency

	Acknowledgments
	7 Conclusion and Future Works
	References

