
Multiple-objective Management based on a
Distributed SDN Architecture for Many-cores

Marcelo Ruaro, Fernando G. Moraes
School of Tecnhology - PUCRS - Av. Ipiranga 6681, 90619-900, Porto Alegre, Brazil

marcelo.ruaro@acad.pucrs.br, fernando.moraes@pucrs.br

Abstract—The management of many-core systems is evolving
to meet multiple objectives simultaneously. The Software-Defined
Networking (SDN) has benefits explored in recent works that
point it as a candidate to address this requirement at the
communication level, at the same time that promotes manage-
ment flexibility and reduced hardware complexity. Most of the
research in SDN for many-cores assumes a centralized SDN (C-
SDN) Controller and single-objective management. This work
proposes multi-objective management based on a distributed
SDN (D-SDN) architecture (SELF-SDN). The management is self-
adaptive, addressing QoS and fault-tolerance simultaneously at
the communication level. Experiments targeting QoS show that
SELF-SDN provides a reduced amount of latency misses (-67%)
and fast reaction time (-49.6%) to recover the QoS constraints
compared to a C-SDN approach. Fault-tolerance experiments
highlight the simplicity of the SDN paradigm to recover from
faults in the NoC, not requiring additional hardware. Results
related to multi-objective management demonstrate the fast
reaction time of SELF-SDN to recover the communication latency
faced to QoS loss and faults, reducing, on average, in 43% the
reaction time compared to a C-SDN approach.

Index Terms—Distributed Management, Many-core, Network-
on-Chip (NoC), Software-Defined Networking (SDN)

I . INTRODUCTION

Many-Core Systems-on-Chip (MCSoC) adopt Networks-
on-Chip (NoCs) as the communication infrastructure due to
its scalability and parallelism compared to buses. Packet-
switching (PS) is the most commonly adopted switching
method, which can be compared to "roads", allowing several
flows to share the same link. Like roads, PS is subject
to traffic, inducing congestion, and affecting the Quality-of-
Service (QoS) constraints of applications. To ensure QoS,
techniques available in the literature create "rails" over the
NoC resources, by using circuit-switching (CS). Such rails
are dedicated paths between communicating pairs, eliminating
the interference between different flows, and ensuring high
throughput with communication predictability.

Three main CS designs stand-out in NoCs [1]: (i) TDM,
Time Division Multiplexing, link sharing in predefined time
slots; (ii) SDM, Spatial Division Multiplexing, dynamic allo-
cation of a set of wires for a given flow; (Hi) MPN, Multiple
Physical Networks, set of independent sub-networks (subnets)
allocated at runtime.

The main CS design challenge, regardless of the adopted
technique, is the path management at runtime, finding CS

978-1-7281-9625-1/20/$31.00 ©2020 IEEE

paths, and dynamically allocating the CS resources. The ma-
jority of techniques available in the literature adopt hardware-
based management [2], which has as main advantage a reduced
connection setup time [3]. However, it present drawbacks:

• Hardware complexity: dedicated hardware components to
find paths, establish and release connections [3],

• Fixed objective: the path search algorithm follows a
specific objective, as find the shortest path [4]. The
lack of flexibility of hardware approaches inhibits the
simultaneous exploration of multiple goals. For example,
consider the search for shortest paths, load distribution,
and fault tolerance simultaneously.

Hardware-based CS management is not suitable for large
MCSoC, which increasingly request for reduced physical com-
plexity and energy consumption. Moreover, multi-objective
resource management is fundamental in complex systems, an
ability that hardware-based management can hardly achieve.

The Software-Defined Networking (SDN) [5] is a concept
that moves the communication management from the hard-
ware level to the software level. In SDN, routers become
programmable hardware units, with the ability to change its
connections according to commands sent by an SDN Con-
troller. This approach simplifies the on-chip communication
architecture since it promotes a generic and straightforward
communication design paradigm [2] [6], and also leveraging
to self-adaptivity and multi-objective due to the high-level
knowledge of the communication resources by the Controller.

The goal of this work is to exploit a state-of-the-art
distributed SDN (D-SDN) architecture [7] to achieve multi-
objective management. The original contribution of this work
is a self-adaptive framework (SELF-SDN), able to ensure QoS
for soft real-time (RT) flows and fault-tolerance at the link and
router level.

I I . RELATED WORK AND MOTIVATION

Table I reviews SDN related works applied to MCSoCs.
This research subject is recent, demonstrating an interest
in adopting this paradigm to simplify the communication
infrastructure. It is possible to classify SDN proposals in
three categories (first column of Table I): (i) adoption of
a centralized SDN (C-SDN) control [4], [6], [8]-[ll]; (ii)
distributed NoC control implemented inside each router or
operating system (OS) [12], [13]; (Hi) distributed SDN control
(D-SDN), similar to C-SDN but with each Controller in charge
of a cluster of resources instead to the whole system [7],

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 01,2021 at 18:51:19 UTC from IEEE Xplore. Restrictions apply.

TABLE I
RELATED WORKS ON S D N FOR N O C S AND M C S O C S (generic : PROPOSAL NOT CONCERNED WITH A SPECIFIC OBJECTIVE).

Classification Work Objective Model Summary

Centralized

Ellinidou et al.
[6] 2019 Security Mininet Secure SDN configuration protocol of switches that implement

the communication in a System-on-Package environment

Centralized

Kostrzewa et al.
[4] 2018 QoS RTL Controller manages the NoC packet injection aiming to fulfill QoS of applications

Centralized Sandoval et al.
[8] 2016 generic Noxim Explore die SDN concept in NoCs, presenting a layered organization

and performance experiments related to the NoC performance

Centralized

Berest et al.
[9] 2017 generic OMNET++ Propose an SDN framework along with performance evaluations of the applications'

execution time (no QoS bound)

Centralized

Fathi et al.
[10] 2017 generic RTL Explores the SDN into NoC with experiments related to NoC performance

Centralized

Ruaro et al.
[11] 2019 QoS RTL SDN Controller manages CS connection at runtime

Distributed
(OS or
Router level)

Scionti et al.
[12] 2018 Power RTL SDN implemented as an instruction set architecture that allows die OS to control

the network topology by partially or fully switching off unused links Distributed
(OS or
Router level) Cong et al.

[13] 2014 generic Noxim Explore the SDN into NoC with experiments related to NoC performance

Distributed
(Cluster-based)

— et al.
[7] 2019 generic RTL Propose a cluster-based distributed SDN management with a distributed SDN

synchronization protocol among clusters Distributed
(Cluster-based)

This work QoS
Fault-tolerance RTL Multi-objective management framework based on distributed SDN

Most works apply SDN without being concerned with a
specific objective (generic in the third column of Table I).
Other works adopt a single objective, like QoS [4], [11],
security [6], and power [12]. A multi-objective SDN proposal
is a gap observed in the literature, tackled in this work.

Note that the SDN paradigm differs from existing software-
based management techniques already explored in NoCs, e.g.,
dynamic TDM [14] or SDM allocation [15]. Such techniques
are focused on specific goals and do not support the dynamic
change of its path search rules according to runtime con-
straints.

The motivations for electing SDN paradigm as a suitable
technology to be adopted in multi-objective management for
MCSoCs are the following [2], [4], [6]:

1) hardware complexity reduction: straightforward CS
router design only requiring configuration support and
packet forwarding, without the need for routing and
arbitration;

2) management flexibility: SDN allows changing and up-
dating of policies that define paths at runtime without
the need to redesign routers;

3) multi-objective management: SDN allows multi-
objective path management due to its software
implementation;

4) self-awareness: SDN leads to a self-aware communica-
tion infrastructure due to the knowledge of the status of
each router at a high-level of abstraction.

Despite the above benefits, SDN on MCSoCs presents the
challenge related to the higher path setup latency compared
to hardware-based approaches. Such a challenge is inherent to
software-based approaches, with a path setup latency typically
two orders of magnitude higher compared to hardware [2].
However, a fast setup latency is not a requirement consider-
ing the frequency of CS establishment. The SDN approach
may control the CS establishment, if executed once at the
beginning of the application execution, or when a monitoring
process detects a QoS constraint violation (as detailed in
Section m-B). The NoC infrastructure to support reserved

paths requires a rich path diversity at a low cost. This work
adopts a lightweight MPN with one PS subnet and a set of
CS subnets. The use of MPNs is due to its smaller area and
power compared to TDM and SDM [1].

Additionally, this work adopts D-SDN management that
helps to reduce the path search latency compared to C-SDN.
Cores and routers are grouped into clusters, with one SDN
Controller per cluster. For local paths (i.e., intra-cluster paths),
each Controller defines paths independently and in parallel
to other SDN Controllers. For global paths (i.e., inter-cluster
paths), Controllers cooperate in a synchronized way to manage
the path establishment.

Thus, three strategies help to overcome the SDN challenges
for MCSoCs: (0 small frequency of path setup to avoid the
delay to setup connections; (ii) adoption of MPN, achieving
low physical cost and rich path diversity [1]; (Hi) a distributed
management, enabling at the same time a global view of the
NoC, and parallelism to setup intra-cluster paths.

I I I . S E L F - S D N MANAGEMENT

This Section details the contribution of this work, the SELF-
SDN management. Subsection ni-A presents the MCSoC
architecture supporting a D-SDN approach. Section III-B
presents the SELF-SDN framework, resulted from the in-
tegration between D-SDN, MCSoC components, and multi-
objective and self-adaptive management.

A. Distributed SDN Architecture for MCSoCs

Figure 1(a) overviews the MCSoC architecture supporting
D-SDN [7], It contains a set of Processing Elements (PEs)
interconnected by an MPN NoC. Each PE has a CPU, a local
memory, a Network Interface (NI), a PS router, and a set of
CS routers. Figure 1(a) presents a 6x6 MCSoC instance, with
four 3x3 clusters. Each cluster has an SDN Controller, running
in a given PE.

Each router in a PE belongs to an independent network,
named subnet, and there are no connections between subnets.
Best-effort flows and management data share the PS subnet.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 01,2021 at 18:51:19 UTC from IEEE Xplore. Restrictions apply.

®

m

0 R
0 o
1 S
2 = Q OP

I

Fig. 1. (a) D-SDN architecture for MCSoCs, adapted from [7], (b) Hierar-
chical approach of the D-SDN protocol for global paths. Green dots in the
global routing represent CS routers with available links.

Each PS router has input-buffers (usually 8-flit depth), credit-
based control flow, and wormhole packet switching. A CS
router has a configuration interface with the NI and an internal
crossbar to connect an input port to an output port. The CS
router costs, on average, 25% of the area and power of a PS
router with the same flit width [2]. To create a path, the SDN
Controller sends a configuration packet through the PS subnet
to each CS router in the path. The NI handles the configu-
ration packet, extracting its information and configuring the
respective CS router of a given subnet.

Each cluster Controller locally creates intra-cluster paths.
Global paths (inter-cluster paths) require a synchronization
protocol among Controllers. Figure 1(b) presents an overview
D-SDN protocol for finding global paths. The method is
inspired in VLSI routing algorithms [16], starting with a global
routing, responsible for finding the clusters where the path will
traverse, followed by a detailed routing, which is performed
in parallel by each Controller, and search paths inside each
cluster.

Global paths require a consistent global state of the network.
Thus, the Controller of the source PE becomes a temporary
coordinator of the path establishment (cluster 3 in Figure
1(b)), managing the following phases of the protocol:
Phase 1 - Consistency. The coordinator achieves a global view
of the network, exchanging messages with other Controllers.
All Controllers send abstracted information of their cluster's
borders status to the coordinator. The border status consists of
the links' availability of CS routers located at cluster borders.
Phase 2 - Path search. The path coordinator executes the
global routing (Hadlock algorithm at cluster level [16]), se-
lecting the clusters that the path will traverse. Figure 1(b)
overviews the process. After selecting the clusters (clusters 3,
4, and 2), the coordinator sends a message to the involved
Controllers to execute in parallel the detailed routing. The
detailed routing searches the input (I) and output (O) routers of

the cluster, and a path between I and O (Hadlock algorithm at
router level). When a Controller finishes the detailed routing,
it sends the result to the coordinator, informing about path
success or failure. If one of the Controllers fails in the detailed
routing, the coordinator either can choose to re-execute the
global routing using a different subnet, or it concludes that
such a path cannot be created. If successful, the protocol
advances to the last phase.

Phase 3 - Path Configuration. The path coordinator transmits
the order to the involved Controllers to configure its CS
routers. When all Controllers reply the configuration to the
coordinator, it concludes the global path protocol, releasing
all Controllers to execute new path searches.

The path release has the advantage of dismissing a synchro-
nization protocol and the physical configuration of CS routers.
As the CS routers allocation status is kept at the software level,
each Controller only needs to update the status of a router as
free.

B. Multi-objective and Self-adaptive Management
This Section presents the SELF-SDN framework, depicted

in Figure 2. Each cluster has a dedicated PE for management
purposes, named Mpe, and a set of PEs executing user's tasks.

Observation Decision Actuation

SDN Controller
(D-SDN)

SELF-SDN
Management

Adaptation Manager
QoS fulfillment

Dynamic Switching
Management

monitoring"'.

Fault-tolerance
(Router/link fault) MPE

Fig. 2. Overview of the proposed SELF-SDN management.

The SELF-SDN management adopts the ODA (Observe,
Decide, Act) paradigm [17]. The ODA paradigm comprises a
loop that is always aware of the system status. It is generic and
can be adapted to different many-core architectures. The left
part of Figure 2 presents the SELF-SDN components and the
right part of the Figure the cluster view, with the Mpe and the
SDN Controller (Controller). The Controller is implemented as
a high priority task that executes in a different PE from Mpe,
allowing the Controller to execute in parallel with Mpe . Thus,
the management processes inside Mpe keep running while the
Controller is working configuring paths into CS routers.

SELF-SDN takes decisions according to observation mes-
sages. Green arrows in Figure 2 represent the following
observation messages:

1) Latency miss: message sent by the OS of each PE
reporting a communication latency violation;

2) Fault notification: message sent by a fault detection
mechanism reporting a permanent fault in links or
routers. The fault detection mechanism is out of the
scope of this work, examples of methods available in

* 3 4

2 1

(latency miss)

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 01,2021 at 18:51:19 UTC from IEEE Xplore. Restrictions apply.

the literature include invariance checking at router level
[18] and cyclic redundancy check (CRC) at the link level
[19].

The Adaptation Manager (AM) decides the moment to
trigger adaptations according to its awareness about the
system and application provided by the observed information.

Quality-of-Service Adaptations. QoS is provided to soft real-
time tasks. Communication between two real-time tasks forms
a communicating task pair - ctp = {s, r}, with a sender task
s sending messages to a receiver task r.

The SELF-SDN adopts the following threshold parameters
to control QoS of a ctp (each ctp has thresholds defined
according to the application constraints):

1) latency _TH\ maximum message latency, in clock cycles,
for a given ctp.

2) latency _miss_TH: maximum number of latency misses
for a given ctp. Inversely proportional to the AM reac-
tion time.

When an r task enters into the system, it has available
the system call SetLatencyContraint(sender_id, lat_th), where
sender_id is the s ID, and latjth is the latencyJH of the
ctp. Such system call sets the latency_TH into the OS where
the r task is running. An r task can invoke at any moment
the SetLatencyContraint(), allowing the task to informs its QoS
constraints at different communication loads and with different
s tasks.

During system execution, the OS monitors the latency
(based on the message's timestamp) of each received message
addressed to r. If the latency is higher than latency_TH, the
OS increments a latency miss counter for that ctp. When the
counter reaches the value defined in latency_miss_TH the OS
sends a latency miss to SELF-SDN and resets the counter.

The default communication mode between tasks is PS.
When the SELF-SDN receives a latency miss message, it
invokes the Controller to set a CS connection for the affected
ctp. As the Controller abstracts the communication manage-
ment for AM, the AM only executes a path request to the
Controller and returns to its monitoring and decision activities.

The Controller receives the path request and, based on
its knowledge of the MPN status, sets the path for the
affected ctp. If the s task of the ctp is running in a different
cluster than the r task, the D-SDN executes the protocol for
global paths. Otherwise, the path is local, and the Controller
searches and defines the path locally independent from the
other Controllers.

Fault-tolerance Adaptations. A fault detection mechanism
detects a permanent fault in a link or router, signalizes the fault
to the NI, which sends the fault notification to the SELF-SDN.

If the faulty link or router is not assigned to any path, the
SELF-SDN executes the following actions according to the
fault location: (i) PS router: the PE is removed from the PE
set since its CPU cannot communicate using PS; (ii) CS router
or CS link: the fault notification makes the Controller avoid the
faulty router by future paths; (iii) link: isolated by wrappers.

On the other side, if the fault breaks a current path of a
ctp, the method considers the fault location and if there is a
"broken" packet:

• fault location: (i) PS router: isolation of the router by
wrappers, and use of adaptive routing; (ii) CS router: iso-
lation of the router, with the Controller using a different
subnet for the same path, or if not possible, searching
and defining a new path; (iii) link: isolation of the port
connected to faulty link;

• "broken" packet: the target PE detects an incomplete
packet reception, requesting retransmission to the source
PE. Before the retransmission, occurs the computation of
the new path according to the fault location.

IV. EXPERIMENTAL RESULTS

This Section first evaluates QoS (Section IV-A) and fault
tolerance (Section IV-B) objectives individually. Section IV-C
evaluates both objectives simultaneously. Section IV-D dis-
cusses the path search impact of SELF-SDN.

The work was implemented using the MCSoC plataform
described in [20], A SystemC-RTL description models the
hardware. The software is modeled in C code (mips-gcc cross-
compiler, version 4.1.1, optimization 02). The CPU is a
MIPS processor running at 100 MHz. The C-SDN used for
comparison is similar to D-SDN but with one "cluster" equal
to the system size, making the C-SDN Controller always
compute local paths.

A. Self-adaptive QoS Case Study
This experiment evaluates the capability of SELF-SDN to

provide QoS by dynamically establishing CS for dps, and
also compares D-SDN to C-SDN. Figure 3(a)-(b) show the
test-case mapping used in the experiments, in an 8x8 system,
partitioned in four 4x4 clusters. Eight dps run in the system,
two at each cluster. Each ctp has an S task transmitting packets
to a R task (blue arrows), with a latency_TH = 5.500 clock
cycles (cc). The latency_miss_TH was set to 2 violations,
aiming the AM to ignore random latency misses while keeps
a fast reaction time.

Disturbing flows start at 15,000 cc, represented by red
arrows. Figure 3(a) shows the D-SDN mapping, assuming one
D-SDN Controller per cluster. Figure 3(b) shows the C-SDN
mapping, with one C-SDN Controller.

Figure 3(c)-(d) presents the packet latency for each ctp. Ini-
tially, the dps communicate using PS. When disturbing flows
start, the latency of the dp increases due to the interference on
the PS subnet. The dps start to generate latency miss messages
to SELF-SDN, which decides to invoke the Controller to setup
CS. After the CS setup, all dps return to the expected latency
since they are now using CS.

Comparing Figure 3(c)-(d), it is observable that D-SDN
outperforms C-SDN. The D-SDN latency penalization time for
each dp is reduced, on average, 49.6% against C-SDN. This
occurs because, in D-SDN, the management is performed in
parallel, which increases the reaction time. Consequently, the
total number of latency misses decreases in 67% with D-SDN

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 01,2021 at 18:51:19 UTC from IEEE Xplore. Restrictions apply.

*The y-axis (packet latency) of all plots in Figures (c-d) varies
between 4,500 to 18,000 cc

1 5 © I <S7 R7

MPE
! D-SDN

MPE
@ ® j (S3) R3

(S2 @ @

MPE MPE
! D-SDN

MPE Mpe
(a) D-SDN testcase mapping

<S5 R5 I <S7 R7

i r IVIJ,

MPE MPE
<S1 @ (S3) R3

S2 S4 qu)

MPE Mpe
(b) C-SDN testcase mapping

5 (clock cycles xlOOOOO)

(c) D-SDN ctps latencies*
(clock cycles xlOOOOO)

(d) C-SDN ctps latencies*

Fig. 3. Self-adaptive QoS support using dynamic CS establishment, for D-SDN and C-SDN.

(29 latency misses) when compared to C-SDN (88 latency
misses).

This experiment shows that both approaches, C-SDN and
D-SDN, may provide QoS for RT ctps. The clear advantage
of the D-SDN approach is scalability for large scale systems
since it reduces the CS setup time, especially when there are
multiple CS requests.

B. Fault-Tolerance Evaluation
The methodology of this experiment comprises a 3x3 clus-

ter, with a synthetic 4-task application (p) mapped on it, and
assuming all CS routers on PEs 1x2 and lxl as faulty at 3
ms. When the Controller receives the fault messages, it just
excludes the faulty CS router from path search. Figure 4(a)
presents the p mapping, where blue arrows denote the com-
munication between tasks, without faults. SELF-SDN invokes
the SDN Controller to establish CS connections to all flows
at 5 ms, with the new flows represented by red arrows.

0x2

taskA

1x2

3 .
2x2

taskB

(1

taskC

(0

1x1 2x1

taskD

MR,

1 7 0 - 2x0

(a)
20 40 60 B0 100 120 140 160 180

Application iterations

Fig. 4. (a) Mapping and communication flows of a synthetic application with
faults and without faults (dotted paths), (b) Application iteration latency with
faults and without faults.

Figure 4(b) presents the latency iteration measured at task
D. This experiment results in the following periods: warm-up
(iterations 0-20), PS mode (iterations 21-89), CS setup (90-
105), and CS mode (106-186). The PS communication mode
results in an average iteration latency of 5,102 cc for both
scenarios. In the CS setup period, the scenario without faults
has an increase in the latency of 4.5% against 5.4% of the

scenario with faults. Such an increase of 0.9% comes from
the higher computational complexity to find new CS paths due
to the faults in the CS routers. After the CS establishment,
the iteration latency is similar for both scenarios. Despite
simple, this experiment confirms the effectiveness of the D-
SDN Controller to deal with faulty routers.

C. Multi-objective Case Study
This experiment evaluates the multi-objective adaptation,

handling QoS and fault-tolerance simultaneously. Figure 5(a)
shows the MPEG benchmark mapping, where blue arrows rep-
resent the communication between MPEG tasks. Red arrows
represent disturbing flows, and the two red rays represent
faulty CS routers. Figure 5(b) presents the MPEG iteration
latency measured at the output task. The latency thresh-
old (latency_TH) defined for each iteration corresponds to
58,000 cc, with latency_miss_TH = 2 . The communication
between tasks starts in PS mode. As there is no disturb-
ing traffic, the NoC can meet latency_TH. At 800,000 cc
disturbing flows start, generating an increase in the iteration
latency, and consequently, triggering a CS setup for the two
affected ctps (input ivlc, iquant idct). At 936,116
cc, both ctps communicate using CS mode, restoring its QoS
constraints. At 1,800,000 cc, faults occur at CS routers in the
PEs executing ivlc and idct tasks, which makes SELF-SDN
switch the affected ctps to PS mode. As the disturbing traffic
is still active in PS subnet, the iteration latency increases,
generating latency misses and making the SELF-SDN to setup
CS again for the same ctps. As the D-SDN Controller was
notified about the faulty CS routers, it sets CS using different
subnets than previously. After 1,984,991 cc, both affected ctps
meet the QoS constraint latency by using CS.

Intervals tl and t2 in Figure 5(b) corresponds to the SELF-
SDN reaction time to restore QoS and recovery from faults.
We evaluate the reaction time of the D-SDN and the C-SDN.
Although both approaches can restore QoS and faults, the D-
SDN delay (interval to search and configure a path) was, on
average, 1,475 cc, resulting in a reduction of 43.2% on average
compared to C-SDN.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 01,2021 at 18:51:19 UTC from IEEE Xplore. Restrictions apply.

t l t2

J/J
PS Interf. & CS Faul
mode CS setup mode CS s

ts & CS
etup mode

1000000 1500000 2000000 2500000
T i m e (c lock cycles)

Fig. 5. (a) MPEG mapping: blue arrows represent the MPEG flows, red
arrows the disturbing flows, red ray faulty CS routers; (b) MPEG iteration
latency with multi-objective management.

T h e r eason fo r expla in ing this d i f f e r ence c o m e s f o r the
larger search space of the C - S D N approach , w h i c h requ i res
larger da ta s t ructures , increas ing its pa th search complexi ty .

D. SDN Delay Discussion

T h e S D N delay in search ing and conf igur ing pa ths var ies
accord ing to the fo l lowing character is t ics : (i) pa th search algo-
r i thm; {ii) ru les of the pa th search (min imal , energy-ef f ic ient ,
load ba lanc ing , etc.) ; {Hi) cent ra l ized or dis t r ibuted control ;
(iv) pa th se tup f requency . Addi t ional ly , the compu ta t i on of a
pa th in a fau l ty reg ion takes longer than in a f au l ty - f r ee reg ion
(as explo i ted in F igu re 4). Thus , w e a rgue that S E L F - S D N
adopts sui table pa th search app roach fo r la rge-sca le M C S o C
d u e to the fo l lowing des ign pr inciples :

1) A d o p t i o n of the H a d l o c k a lgor i thm, ensur ing shortes t
pa ths wi th r e d u c e d m e m o r y and computa t iona l complex -
ity [16].

2) T h e D - S D N approach r educes the pa th search t ime
s ince it ha s a r e d u c e d search space c o m p a r e d to C - S D N
and can , m o s t of the t ime , w o r k in para l le l w i th o ther
Contro l le rs .

3) T h e pa th se tup f r e q u e n c y is p e r f o r m e d w h e n necessa ry
f aced to Q o S degrada t ion or fau l t s and r e m a i n s act ive
dur ing the ctp l i f e t ime d u e to the r ich pa th diversi ty of
M P N [5].

ACKNOWLEDGEMENT

This study was financed in part by the Coordenagao de
Aperfeigoamento de Pessoal de Nivel Superior - Brasil (CAPES)
- Finance Code 001. Fernando Gehm Moraes supported by
FAPERGS (17/2551-0001196-1 and 18/2551-0000501-0) and CNPq
(302531/2016-5).

V. CONCLUSION AND FUTURE WORK

This work showed the dynamism of the SELF-SDN framework
based on D-SDN to meet multiple objectives simultaneously. The
QoS evaluation showed that SELF-SDN management reduces latency
misses due to the distributed SDN execution. It is worthwhile to
mention that task mapping heuristics usually try to group communi-
cating tasks close to each other to minimize congestion and latency.
Thus, most paths between communicating tasks are local, favoring
parallelism of D-SDN. The fault-tolerance evaluation demonstrated
that SDN creates at runtime new paths, not requiring any further
protocol or hardware support to deal with faulty-routers. The fault-
detection mechanism notifies the SELF-SDN manager, which updates

D-SDN Controllers to avoid faulty routers or links when computing
new paths. The evaluation of QoS and fault-tolerance in a single
scenario showed that SELF-SDN has the self-awareness of the system
and application characteristics, which, combined with the high-level
communication knowledge of the SDN approach, allows it to make
efficient decisions and adaptations at runtime.

Future work includes extending management objectives by ad-
dressing power and energy (turning off unused CS routers) and
security (allowing only authorized tasks to use a given CS subnet).

REFERENCES

[1] Y. J. Yoon, N. Concer, M. Petracca, and L. R Carloni, "Virtual Channels
and Multiple Physical Networks: Two Alternatives to Improve NoC
Performance," IEEE Trans, on CAD of ICs and Systems, vol. 32, no. 12,
pp. 1906-1919, 2013.

[2] M. Ruaro, H. M. Medina, and F. G. Moraes, "SDN-Based Circuit-
Switching for Many-Cores," in ISVLSI. IEEE, 2017, pp. 385-390.

[3] S. Liu, A. Jantsch, and Z. Lu, "Parallel probing: Dynamic and constant
time setup procedure in circuit switching NoC," in DATE, 2012, pp.
1289-1294.

[4] A. Kostrzewa, S. Tobuschat, and R. Ernst, "Self-Aware Network-on-
Chip Control in Real-Time Systems," IEEE Design Test, vol. 35, no. 5,
pp. 19-2, 2018.

[5] Y. Oktian, S. Lee, H. Lee, and J. Lam, "Distributed SDN controller
system: A survey on design choice," Computer Networks, vol. 121, pp.
100-111, 2017.

[6] S. Ellinidou, G. Sharma, T. Rigas, T. Yanspouwen, O. Markowitch,
and J. Dricot, "SSPSoC: A Secure SDN-Based Protocol over MPSoC,"
Security and Communication Networks, vol. 2019, no. 4869167, pp. 1 -
11, 2019.

[7] M. Ruaro, N. Yelloso, A. Jantsch, and F. G. Moraes, "Distributed SDN
Architecture for NoC-Based Many-Core SoCs," in NOCS, 2019, p. 8.

[8] R. Sandoval-Arechiga, R. Parra-Michel, J. L. Vazquez-Avila, J. Flores-
Troncoso, and S. Ibarra-Delgado, "Software Defined Networks-on-Chip
for multi/many-core systems: A performance evaluation," in ANCS,
2016, pp. 129-130.

[9] K. Berestizshevsky, G. Even, Y. Fais, and J. Ostrometzky, "SDNoC:
Software defined network on a chip," Microprocessors and Microsys-
tems, vol. 50, pp. 138-153, 2017.

[10] A. Fathi and K. Kia, "A Centralized Controller as an Approach in
Designing NoC," International Journal of Modern Education and Com-
puter Science(IJMECS), vol. 9, no. 1, pp. 60-67, 2017.

[11] M. Ruaro, A. Jantsch, and F. G. Moraes, "Self-Adaptive QoS Manage-
ment of Computation and Communication Resources in Many-Cores
SoCs," ACM Transaction on Embedded Computing Systems, vol. 18,
no. 7, pp. 1-24, 2018.

[12] A. Scionti, S. Mazumdar, and A. Portero, "Towards a Scalable Software
Defined Network-on-Chip for Next Generation Cloud," Sensors, vol. 18,
no. 7, pp. 1-24, 2018.

[13] L. Cong, W. Wen, and W. Zhiying, "A configurable, programmable and
software-defined network on chip," in WARTIA, 2014, pp. 813-816.

[14] R. Stefan, A. Neja, and K. Goossens, "Online Allocation for Contention-
free-routing NoCs," in INA-OCMC, 2012, pp. 13-16.

[15] A. Leroy, D. Milojevic, D. Verkest, F. Robert, and F. Catthoor, "Concepts
and Implementation of Spatial Division Multiplexing for Guaranteed
Throughput in Networks-on-Chip," IEEE Trans, on Computers, vol. 57,
no. 9, pp. 1182-1195, 2008.

[16] N. Sherwani, Algorithms for VLSI Design Automation, 3rd ed. Springer,
2005.

[17] H. Hoffmann, M. Maggio, M. D. Santambrogio, A. Leva, and A. Agar-
wal, "A generalized software framework for accurate and efficient
management of performance goals," in EMSOFT, 2013, pp. 1-10.

[18] A. Prodromou, A. Panteli, C. Nicopoulos, and Y. Sazeides, "NoCAlert:
An On-Line and Real-Time Fault Detection Mechanism for Network-
on-Chip Architectures," in MICRO, 2012, pp. 60-71.

[19] A. Vitkovskiy, Y. Soteriou, and C. Nicopoulos, "A Dynamically Ad-
justing Gracefully Degrading Link-Level Fault-Tolerant Mechanism for
NoCs," IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 31, no. 8, pp. 1235-1248, 2012.

[20] M. Ruaro, L. Caimi, V. Fochi, and F. Moraes, "Memphis: a framework
for heterogeneous many-core socs generation and validation," Design
Automation for Embedded Systems, vol. 23, no. 3, p. 103-122, Aug
2019.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 01,2021 at 18:51:19 UTC from IEEE Xplore. Restrictions apply.

