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Abstract—The management of many-core systems is evolving 
to meet multiple objectives simultaneously. The Software-Defined 
Networking (SDN) has benefits explored in recent works that 
point it as a candidate to address this requirement at the 
communication level, at the same time that promotes manage-
ment flexibility and reduced hardware complexity. Most of the 
research in SDN for many-cores assumes a centralized SDN (C-
SDN) Controller and single-objective management. This work 
proposes multi-objective management based on a distributed 
SDN (D-SDN) architecture (SELF-SDN). The management is self-
adaptive, addressing QoS and fault-tolerance simultaneously at 
the communication level. Experiments targeting QoS show that 
SELF-SDN provides a reduced amount of latency misses (-67%) 
and fast reaction time (-49.6%) to recover the QoS constraints 
compared to a C-SDN approach. Fault-tolerance experiments 
highlight the simplicity of the SDN paradigm to recover from 
faults in the NoC, not requiring additional hardware. Results 
related to multi-objective management demonstrate the fast 
reaction time of SELF-SDN to recover the communication latency 
faced to QoS loss and faults, reducing, on average, in 43% the 
reaction time compared to a C-SDN approach. 

Index Terms—Distributed Management, Many-core, Network-
on-Chip (NoC), Software-Defined Networking (SDN) 

I . INTRODUCTION 

Many-Core Systems-on-Chip (MCSoC) adopt Networks-
on-Chip (NoCs) as the communication infrastructure due to 
its scalability and parallelism compared to buses. Packet-
switching (PS) is the most commonly adopted switching 
method, which can be compared to "roads", allowing several 
flows to share the same link. Like roads, PS is subject 
to traffic, inducing congestion, and affecting the Quality-of-
Service (QoS) constraints of applications. To ensure QoS, 
techniques available in the literature create "rails" over the 
NoC resources, by using circuit-switching (CS). Such rails 
are dedicated paths between communicating pairs, eliminating 
the interference between different flows, and ensuring high 
throughput with communication predictability. 

Three main CS designs stand-out in NoCs [1]: (i) TDM, 
Time Division Multiplexing, link sharing in predefined time 
slots; (ii) SDM, Spatial Division Multiplexing, dynamic allo-
cation of a set of wires for a given flow; (Hi) MPN, Multiple 
Physical Networks, set of independent sub-networks (subnets) 
allocated at runtime. 

The main CS design challenge, regardless of the adopted 
technique, is the path management at runtime, finding CS 
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paths, and dynamically allocating the CS resources. The ma-
jority of techniques available in the literature adopt hardware-
based management [2], which has as main advantage a reduced 
connection setup time [3]. However, it present drawbacks: 

• Hardware complexity: dedicated hardware components to 
find paths, establish and release connections [3], 

• Fixed objective: the path search algorithm follows a 
specific objective, as find the shortest path [4]. The 
lack of flexibility of hardware approaches inhibits the 
simultaneous exploration of multiple goals. For example, 
consider the search for shortest paths, load distribution, 
and fault tolerance simultaneously. 

Hardware-based CS management is not suitable for large 
MCSoC, which increasingly request for reduced physical com-
plexity and energy consumption. Moreover, multi-objective 
resource management is fundamental in complex systems, an 
ability that hardware-based management can hardly achieve. 

The Software-Defined Networking (SDN) [5] is a concept 
that moves the communication management from the hard-
ware level to the software level. In SDN, routers become 
programmable hardware units, with the ability to change its 
connections according to commands sent by an SDN Con-
troller. This approach simplifies the on-chip communication 
architecture since it promotes a generic and straightforward 
communication design paradigm [2] [6], and also leveraging 
to self-adaptivity and multi-objective due to the high-level 
knowledge of the communication resources by the Controller. 

The goal of this work is to exploit a state-of-the-art 
distributed SDN (D-SDN) architecture [7] to achieve multi-
objective management. The original contribution of this work 
is a self-adaptive framework (SELF-SDN), able to ensure QoS 
for soft real-time (RT) flows and fault-tolerance at the link and 
router level. 

I I . RELATED WORK AND MOTIVATION 

Table I reviews SDN related works applied to MCSoCs. 
This research subject is recent, demonstrating an interest 
in adopting this paradigm to simplify the communication 
infrastructure. It is possible to classify SDN proposals in 
three categories (first column of Table I): (i) adoption of 
a centralized SDN (C-SDN) control [4], [6], [8]-[ll]; (ii) 
distributed NoC control implemented inside each router or 
operating system (OS) [12], [13]; (Hi) distributed SDN control 
(D-SDN), similar to C-SDN but with each Controller in charge 
of a cluster of resources instead to the whole system [7], 
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TABLE I 
RELATED WORKS ON S D N FOR N O C S AND M C S O C S (generic : PROPOSAL NOT CONCERNED WITH A SPECIFIC OBJECTIVE). 

Classification Work Objective Model Summary 

Centralized 

Ellinidou et al. 
[6] 2019 Security Mininet Secure SDN configuration protocol of switches that implement 

the communication in a System-on-Package environment 

Centralized 

Kostrzewa et al. 
[4] 2018 QoS RTL Controller manages the NoC packet injection aiming to fulfill QoS of applications 

Centralized Sandoval et al. 
[8] 2016 generic Noxim Explore die SDN concept in NoCs, presenting a layered organization 

and performance experiments related to the NoC performance 

Centralized 

Berest et al. 
[9] 2017 generic OMNET++ Propose an SDN framework along with performance evaluations of the applications' 

execution time (no QoS bound) 

Centralized 

Fathi et al. 
[10] 2017 generic RTL Explores the SDN into NoC with experiments related to NoC performance 

Centralized 

Ruaro et al. 
[11] 2019 QoS RTL SDN Controller manages CS connection at runtime 

Distributed 
(OS or 
Router level) 

Scionti et al. 
[12] 2018 Power RTL SDN implemented as an instruction set architecture that allows die OS to control 

the network topology by partially or fully switching off unused links Distributed 
(OS or 
Router level) Cong et al. 

[13] 2014 generic Noxim Explore the SDN into NoC with experiments related to NoC performance 

Distributed 
(Cluster-based) 

— et al. 
[7] 2019 generic RTL Propose a cluster-based distributed SDN management with a distributed SDN 

synchronization protocol among clusters Distributed 
(Cluster-based) 

This work QoS 
Fault-tolerance RTL Multi-objective management framework based on distributed SDN 

Most works apply SDN without being concerned with a 
specific objective (generic in the third column of Table I). 
Other works adopt a single objective, like QoS [4], [11], 
security [6], and power [12]. A multi-objective SDN proposal 
is a gap observed in the literature, tackled in this work. 

Note that the SDN paradigm differs from existing software-
based management techniques already explored in NoCs, e.g., 
dynamic TDM [14] or SDM allocation [15]. Such techniques 
are focused on specific goals and do not support the dynamic 
change of its path search rules according to runtime con-
straints. 

The motivations for electing SDN paradigm as a suitable 
technology to be adopted in multi-objective management for 
MCSoCs are the following [2], [4], [6]: 

1) hardware complexity reduction: straightforward CS 
router design only requiring configuration support and 
packet forwarding, without the need for routing and 
arbitration; 

2) management flexibility: SDN allows changing and up-
dating of policies that define paths at runtime without 
the need to redesign routers; 

3) multi-objective management: SDN allows multi-
objective path management due to its software 
implementation; 

4) self-awareness: SDN leads to a self-aware communica-
tion infrastructure due to the knowledge of the status of 
each router at a high-level of abstraction. 

Despite the above benefits, SDN on MCSoCs presents the 
challenge related to the higher path setup latency compared 
to hardware-based approaches. Such a challenge is inherent to 
software-based approaches, with a path setup latency typically 
two orders of magnitude higher compared to hardware [2]. 
However, a fast setup latency is not a requirement consider-
ing the frequency of CS establishment. The SDN approach 
may control the CS establishment, if executed once at the 
beginning of the application execution, or when a monitoring 
process detects a QoS constraint violation (as detailed in 
Section m-B). The NoC infrastructure to support reserved 

paths requires a rich path diversity at a low cost. This work 
adopts a lightweight MPN with one PS subnet and a set of 
CS subnets. The use of MPNs is due to its smaller area and 
power compared to TDM and SDM [1]. 

Additionally, this work adopts D-SDN management that 
helps to reduce the path search latency compared to C-SDN. 
Cores and routers are grouped into clusters, with one SDN 
Controller per cluster. For local paths (i.e., intra-cluster paths), 
each Controller defines paths independently and in parallel 
to other SDN Controllers. For global paths (i.e., inter-cluster 
paths), Controllers cooperate in a synchronized way to manage 
the path establishment. 

Thus, three strategies help to overcome the SDN challenges 
for MCSoCs: (0 small frequency of path setup to avoid the 
delay to setup connections; (ii) adoption of MPN, achieving 
low physical cost and rich path diversity [1]; (Hi) a distributed 
management, enabling at the same time a global view of the 
NoC, and parallelism to setup intra-cluster paths. 

I I I . S E L F - S D N MANAGEMENT 

This Section details the contribution of this work, the SELF-
SDN management. Subsection ni-A presents the MCSoC 
architecture supporting a D-SDN approach. Section III-B 
presents the SELF-SDN framework, resulted from the in-
tegration between D-SDN, MCSoC components, and multi-
objective and self-adaptive management. 

A. Distributed SDN Architecture for MCSoCs 

Figure 1(a) overviews the MCSoC architecture supporting 
D-SDN [7], It contains a set of Processing Elements (PEs) 
interconnected by an MPN NoC. Each PE has a CPU, a local 
memory, a Network Interface (NI), a PS router, and a set of 
CS routers. Figure 1(a) presents a 6x6 MCSoC instance, with 
four 3x3 clusters. Each cluster has an SDN Controller, running 
in a given PE. 

Each router in a PE belongs to an independent network, 
named subnet, and there are no connections between subnets. 
Best-effort flows and management data share the PS subnet. 
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Fig. 1. (a) D-SDN architecture for MCSoCs, adapted from [7], (b) Hierar-
chical approach of the D-SDN protocol for global paths. Green dots in the 
global routing represent CS routers with available links. 

Each PS router has input-buffers (usually 8-flit depth), credit-
based control flow, and wormhole packet switching. A CS 
router has a configuration interface with the NI and an internal 
crossbar to connect an input port to an output port. The CS 
router costs, on average, 25% of the area and power of a PS 
router with the same flit width [2]. To create a path, the SDN 
Controller sends a configuration packet through the PS subnet 
to each CS router in the path. The NI handles the configu-
ration packet, extracting its information and configuring the 
respective CS router of a given subnet. 

Each cluster Controller locally creates intra-cluster paths. 
Global paths (inter-cluster paths) require a synchronization 
protocol among Controllers. Figure 1(b) presents an overview 
D-SDN protocol for finding global paths. The method is 
inspired in VLSI routing algorithms [16], starting with a global 
routing, responsible for finding the clusters where the path will 
traverse, followed by a detailed routing, which is performed 
in parallel by each Controller, and search paths inside each 
cluster. 

Global paths require a consistent global state of the network. 
Thus, the Controller of the source PE becomes a temporary 
coordinator of the path establishment (cluster 3 in Figure 
1(b)), managing the following phases of the protocol: 
Phase 1 - Consistency. The coordinator achieves a global view 
of the network, exchanging messages with other Controllers. 
All Controllers send abstracted information of their cluster's 
borders status to the coordinator. The border status consists of 
the links' availability of CS routers located at cluster borders. 
Phase 2 - Path search. The path coordinator executes the 
global routing (Hadlock algorithm at cluster level [16]), se-
lecting the clusters that the path will traverse. Figure 1(b) 
overviews the process. After selecting the clusters (clusters 3, 
4, and 2), the coordinator sends a message to the involved 
Controllers to execute in parallel the detailed routing. The 
detailed routing searches the input (I) and output (O) routers of 

the cluster, and a path between I and O (Hadlock algorithm at 
router level). When a Controller finishes the detailed routing, 
it sends the result to the coordinator, informing about path 
success or failure. If one of the Controllers fails in the detailed 
routing, the coordinator either can choose to re-execute the 
global routing using a different subnet, or it concludes that 
such a path cannot be created. If successful, the protocol 
advances to the last phase. 

Phase 3 - Path Configuration. The path coordinator transmits 
the order to the involved Controllers to configure its CS 
routers. When all Controllers reply the configuration to the 
coordinator, it concludes the global path protocol, releasing 
all Controllers to execute new path searches. 

The path release has the advantage of dismissing a synchro-
nization protocol and the physical configuration of CS routers. 
As the CS routers allocation status is kept at the software level, 
each Controller only needs to update the status of a router as 
free. 

B. Multi-objective and Self-adaptive Management 
This Section presents the SELF-SDN framework, depicted 

in Figure 2. Each cluster has a dedicated PE for management 
purposes, named Mpe, and a set of PEs executing user's tasks. 

Observation Decision Actuation 

SDN Controller 
(D-SDN) 

SELF-SDN 
Management 

Adaptation Manager 
QoS fulfillment 

Dynamic Switching 
Management 

monitoring"'. 

Fault-tolerance 
(Router/link fault) MPE 

Fig. 2. Overview of the proposed SELF-SDN management. 

The SELF-SDN management adopts the ODA (Observe, 
Decide, Act) paradigm [17]. The ODA paradigm comprises a 
loop that is always aware of the system status. It is generic and 
can be adapted to different many-core architectures. The left 
part of Figure 2 presents the SELF-SDN components and the 
right part of the Figure the cluster view, with the Mpe and the 
SDN Controller (Controller). The Controller is implemented as 
a high priority task that executes in a different PE from Mpe, 
allowing the Controller to execute in parallel with Mpe . Thus, 
the management processes inside Mpe keep running while the 
Controller is working configuring paths into CS routers. 

SELF-SDN takes decisions according to observation mes-
sages. Green arrows in Figure 2 represent the following 
observation messages: 

1) Latency miss: message sent by the OS of each PE 
reporting a communication latency violation; 

2) Fault notification: message sent by a fault detection 
mechanism reporting a permanent fault in links or 
routers. The fault detection mechanism is out of the 
scope of this work, examples of methods available in 

* 3 4 

2 1 

(latency miss) 
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the literature include invariance checking at router level 
[18] and cyclic redundancy check (CRC) at the link level 
[19]. 

The Adaptation Manager (AM) decides the moment to 
trigger adaptations according to its awareness about the 
system and application provided by the observed information. 

Quality-of-Service Adaptations. QoS is provided to soft real-
time tasks. Communication between two real-time tasks forms 
a communicating task pair - ctp = {s, r}, with a sender task 
s sending messages to a receiver task r. 

The SELF-SDN adopts the following threshold parameters 
to control QoS of a ctp (each ctp has thresholds defined 
according to the application constraints): 

1) latency _TH\ maximum message latency, in clock cycles, 
for a given ctp. 

2) latency _miss_TH: maximum number of latency misses 
for a given ctp. Inversely proportional to the AM reac-
tion time. 

When an r task enters into the system, it has available 
the system call SetLatencyContraint(sender_id, lat_th), where 
sender_id is the s ID, and latjth is the latencyJH of the 
ctp. Such system call sets the latency_TH into the OS where 
the r task is running. An r task can invoke at any moment 
the SetLatencyContraint(), allowing the task to informs its QoS 
constraints at different communication loads and with different 
s tasks. 

During system execution, the OS monitors the latency 
(based on the message's timestamp) of each received message 
addressed to r. If the latency is higher than latency_TH, the 
OS increments a latency miss counter for that ctp. When the 
counter reaches the value defined in latency_miss_TH the OS 
sends a latency miss to SELF-SDN and resets the counter. 

The default communication mode between tasks is PS. 
When the SELF-SDN receives a latency miss message, it 
invokes the Controller to set a CS connection for the affected 
ctp. As the Controller abstracts the communication manage-
ment for AM, the AM only executes a path request to the 
Controller and returns to its monitoring and decision activities. 

The Controller receives the path request and, based on 
its knowledge of the MPN status, sets the path for the 
affected ctp. If the s task of the ctp is running in a different 
cluster than the r task, the D-SDN executes the protocol for 
global paths. Otherwise, the path is local, and the Controller 
searches and defines the path locally independent from the 
other Controllers. 

Fault-tolerance Adaptations. A fault detection mechanism 
detects a permanent fault in a link or router, signalizes the fault 
to the NI, which sends the fault notification to the SELF-SDN. 

If the faulty link or router is not assigned to any path, the 
SELF-SDN executes the following actions according to the 
fault location: (i) PS router: the PE is removed from the PE 
set since its CPU cannot communicate using PS; (ii) CS router 
or CS link: the fault notification makes the Controller avoid the 
faulty router by future paths; (iii) link: isolated by wrappers. 

On the other side, if the fault breaks a current path of a 
ctp, the method considers the fault location and if there is a 
"broken" packet: 

• fault location: (i) PS router: isolation of the router by 
wrappers, and use of adaptive routing; (ii) CS router: iso-
lation of the router, with the Controller using a different 
subnet for the same path, or if not possible, searching 
and defining a new path; (iii) link: isolation of the port 
connected to faulty link; 

• "broken" packet: the target PE detects an incomplete 
packet reception, requesting retransmission to the source 
PE. Before the retransmission, occurs the computation of 
the new path according to the fault location. 

IV. EXPERIMENTAL RESULTS 

This Section first evaluates QoS (Section IV-A) and fault 
tolerance (Section IV-B) objectives individually. Section IV-C 
evaluates both objectives simultaneously. Section IV-D dis-
cusses the path search impact of SELF-SDN. 

The work was implemented using the MCSoC plataform 
described in [20], A SystemC-RTL description models the 
hardware. The software is modeled in C code (mips-gcc cross-
compiler, version 4.1.1, optimization 02). The CPU is a 
MIPS processor running at 100 MHz. The C-SDN used for 
comparison is similar to D-SDN but with one "cluster" equal 
to the system size, making the C-SDN Controller always 
compute local paths. 

A. Self-adaptive QoS Case Study 
This experiment evaluates the capability of SELF-SDN to 

provide QoS by dynamically establishing CS for dps, and 
also compares D-SDN to C-SDN. Figure 3(a)-(b) show the 
test-case mapping used in the experiments, in an 8x8 system, 
partitioned in four 4x4 clusters. Eight dps run in the system, 
two at each cluster. Each ctp has an S task transmitting packets 
to a R task (blue arrows), with a latency_TH = 5.500 clock 
cycles (cc). The latency_miss_TH was set to 2 violations, 
aiming the AM to ignore random latency misses while keeps 
a fast reaction time. 

Disturbing flows start at 15,000 cc, represented by red 
arrows. Figure 3(a) shows the D-SDN mapping, assuming one 
D-SDN Controller per cluster. Figure 3(b) shows the C-SDN 
mapping, with one C-SDN Controller. 

Figure 3(c)-(d) presents the packet latency for each ctp. Ini-
tially, the dps communicate using PS. When disturbing flows 
start, the latency of the dp increases due to the interference on 
the PS subnet. The dps start to generate latency miss messages 
to SELF-SDN, which decides to invoke the Controller to setup 
CS. After the CS setup, all dps return to the expected latency 
since they are now using CS. 

Comparing Figure 3(c)-(d), it is observable that D-SDN 
outperforms C-SDN. The D-SDN latency penalization time for 
each dp is reduced, on average, 49.6% against C-SDN. This 
occurs because, in D-SDN, the management is performed in 
parallel, which increases the reaction time. Consequently, the 
total number of latency misses decreases in 67% with D-SDN 
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*The y-axis (packet latency) of all plots in Figures (c-d) varies 
between 4,500 to 18,000 cc 
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Fig. 3. Self-adaptive QoS support using dynamic CS establishment, for D-SDN and C-SDN. 

(29 latency misses) when compared to C-SDN (88 latency 
misses). 

This experiment shows that both approaches, C-SDN and 
D-SDN, may provide QoS for RT ctps. The clear advantage 
of the D-SDN approach is scalability for large scale systems 
since it reduces the CS setup time, especially when there are 
multiple CS requests. 

B. Fault-Tolerance Evaluation 
The methodology of this experiment comprises a 3x3 clus-

ter, with a synthetic 4-task application (p) mapped on it, and 
assuming all CS routers on PEs 1x2 and lxl as faulty at 3 
ms. When the Controller receives the fault messages, it just 
excludes the faulty CS router from path search. Figure 4(a) 
presents the p mapping, where blue arrows denote the com-
munication between tasks, without faults. SELF-SDN invokes 
the SDN Controller to establish CS connections to all flows 
at 5 ms, with the new flows represented by red arrows. 

0x2 

taskA 

1x2 

3 . 
2x2 

taskB 

(1 

taskC 

(0 

1x1 2x1 

taskD 

MR, 

1 7 0 - 2x0 

(a) 
20 40 60 B0 100 120 140 160 180 

Application iterations 

Fig. 4. (a) Mapping and communication flows of a synthetic application with 
faults and without faults (dotted paths), (b) Application iteration latency with 
faults and without faults. 

Figure 4(b) presents the latency iteration measured at task 
D. This experiment results in the following periods: warm-up 
(iterations 0-20), PS mode (iterations 21-89), CS setup (90-
105), and CS mode (106-186). The PS communication mode 
results in an average iteration latency of 5,102 cc for both 
scenarios. In the CS setup period, the scenario without faults 
has an increase in the latency of 4.5% against 5.4% of the 

scenario with faults. Such an increase of 0.9% comes from 
the higher computational complexity to find new CS paths due 
to the faults in the CS routers. After the CS establishment, 
the iteration latency is similar for both scenarios. Despite 
simple, this experiment confirms the effectiveness of the D-
SDN Controller to deal with faulty routers. 

C. Multi-objective Case Study 
This experiment evaluates the multi-objective adaptation, 

handling QoS and fault-tolerance simultaneously. Figure 5(a) 
shows the MPEG benchmark mapping, where blue arrows rep-
resent the communication between MPEG tasks. Red arrows 
represent disturbing flows, and the two red rays represent 
faulty CS routers. Figure 5(b) presents the MPEG iteration 
latency measured at the output task. The latency thresh-
old (latency_TH) defined for each iteration corresponds to 
58,000 cc, with latency_miss_TH = 2 . The communication 
between tasks starts in PS mode. As there is no disturb-
ing traffic, the NoC can meet latency_TH. At 800,000 cc 
disturbing flows start, generating an increase in the iteration 
latency, and consequently, triggering a CS setup for the two 
affected ctps (input ivlc, iquant idct). At 936,116 
cc, both ctps communicate using CS mode, restoring its QoS 
constraints. At 1,800,000 cc, faults occur at CS routers in the 
PEs executing ivlc and idct tasks, which makes SELF-SDN 
switch the affected ctps to PS mode. As the disturbing traffic 
is still active in PS subnet, the iteration latency increases, 
generating latency misses and making the SELF-SDN to setup 
CS again for the same ctps. As the D-SDN Controller was 
notified about the faulty CS routers, it sets CS using different 
subnets than previously. After 1,984,991 cc, both affected ctps 
meet the QoS constraint latency by using CS. 

Intervals tl and t2 in Figure 5(b) corresponds to the SELF-
SDN reaction time to restore QoS and recovery from faults. 
We evaluate the reaction time of the D-SDN and the C-SDN. 
Although both approaches can restore QoS and faults, the D-
SDN delay (interval to search and configure a path) was, on 
average, 1,475 cc, resulting in a reduction of 43.2% on average 
compared to C-SDN. 
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Fig. 5. (a) MPEG mapping: blue arrows represent the MPEG flows, red 
arrows the disturbing flows, red ray faulty CS routers; (b) MPEG iteration 
latency with multi-objective management. 

T h e r eason fo r expla in ing this d i f f e r ence c o m e s f o r the 
larger search space of the C - S D N approach , w h i c h requ i res 
larger da ta s t ructures , increas ing its pa th search complexi ty . 

D. SDN Delay Discussion 

T h e S D N delay in search ing and conf igur ing pa ths var ies 
accord ing to the fo l lowing character is t ics : ( i) pa th search algo-
r i thm; {ii) ru les of the pa th search (min imal , energy-ef f ic ient , 
load ba lanc ing , etc.) ; {Hi) cent ra l ized or dis t r ibuted control ; 
( iv ) pa th se tup f requency . Addi t ional ly , the compu ta t i on of a 
pa th in a fau l ty reg ion takes longer than in a f au l ty - f r ee reg ion 
(as explo i ted in F igu re 4). Thus , w e a rgue that S E L F - S D N 
adopts sui table pa th search app roach fo r la rge-sca le M C S o C 
d u e to the fo l lowing des ign pr inciples : 

1) A d o p t i o n of the H a d l o c k a lgor i thm, ensur ing shortes t 
pa ths wi th r e d u c e d m e m o r y and computa t iona l complex -
ity [16]. 

2) T h e D - S D N approach r educes the pa th search t ime 
s ince it ha s a r e d u c e d search space c o m p a r e d to C - S D N 
and can , m o s t of the t ime , w o r k in para l le l w i th o ther 
Contro l le rs . 

3) T h e pa th se tup f r e q u e n c y is p e r f o r m e d w h e n necessa ry 
f aced to Q o S degrada t ion or fau l t s and r e m a i n s act ive 
dur ing the ctp l i f e t ime d u e to the r ich pa th diversi ty of 
M P N [5]. 
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V. CONCLUSION AND FUTURE WORK 

This work showed the dynamism of the SELF-SDN framework 
based on D-SDN to meet multiple objectives simultaneously. The 
QoS evaluation showed that SELF-SDN management reduces latency 
misses due to the distributed SDN execution. It is worthwhile to 
mention that task mapping heuristics usually try to group communi-
cating tasks close to each other to minimize congestion and latency. 
Thus, most paths between communicating tasks are local, favoring 
parallelism of D-SDN. The fault-tolerance evaluation demonstrated 
that SDN creates at runtime new paths, not requiring any further 
protocol or hardware support to deal with faulty-routers. The fault-
detection mechanism notifies the SELF-SDN manager, which updates 

D-SDN Controllers to avoid faulty routers or links when computing 
new paths. The evaluation of QoS and fault-tolerance in a single 
scenario showed that SELF-SDN has the self-awareness of the system 
and application characteristics, which, combined with the high-level 
communication knowledge of the SDN approach, allows it to make 
efficient decisions and adaptations at runtime. 

Future work includes extending management objectives by ad-
dressing power and energy (turning off unused CS routers) and 
security (allowing only authorized tasks to use a given CS subnet). 
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