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Abstract—Systems-on-Chip (SoCs) with a large number of
cores adopt Networks-on-chip (NoCs) as the communication
infrastructure due to its scalability. The complexity to distribute a
skew-free synchronous clock signal over the entire chip increases
in current fabrication technologies due to the process variability.
Thus, designers may choose among fully asynchronous and
Globally Asynchronous, Locally Synchronous (GALS) NoCs. This
work proposes an intermediate solution. Each Intellectual Prop-
erty (IP) core may have its clock domain, and the NoC supports
both synchronous and asynchronous communication. The NoC
has its own clock domain, with the synchronous communication
used to establish end-to-end paths. Once the end-to-end path is
established, the NoC connects the IPs asynchronously, as wires
with repeaters. The message is transmitted using handshake
protocol at the source IP frequency. The benefit of the proposal
is the reduction in the communication energy consumption (up
to 52%). The cost is a latency increase (16% to 30%) and area
overhead (4%).

Index Terms—NoC, GALS, asynchronous communication,
clock domain crossing.

I. INTRODUCTION

GALS design is a technique where each IP core has its
own clock domain. This approach assumes that it is not
feasible to distribute a global clock signal with acceptable
skew, but it is still achievable within a limited region, named
clock domain. The communication between two clock domains
requires synchronizers among each domain to avoid meta-
stability [1]. The literature presents examples of GALS NoCs
[2], where each router is in the same clock domain as its IP.
The problem with this approach is the need for successive
synchronizations starting at the source router up to the target
one, increasing the communication latency between IPs. Fully
asynchronous NoCs may also be used. The drawback of
asynchronous NoCs is the design complexity and the lack of
Electronic Design Automation (EDA) tools.

Our goal is to present an end-to-end GALS approach to
solve those problems, avoiding synchronizers in the paths,
using a synchronous NoC with support for packet- and circuit-
switching (PS and CS). The path establishment and release
use PS, while messages are transmitted using CS, bypassing
all routers’ buffers. Thus, our NoC can directly connect
two IPs, each one in its own clock domain, providing an

asynchronous communication path, based on an asynchronous
handshake protocol. The NoC operates at lower frequencies
than system IPs decreasing the portion of energy spent in clock
distribution.

Computation requirements of current applications, such as
machine learning, computer vision, autonomous driving and
big data, demand huge computational power, leading to a
further increase in power densities and dark silicon issues. The
constant increase in power density leads to thermal issues, that
are known for generating reliability and aging problems in the
chip. Experiments show that at 22 nm, 21% of the chip must
be dark to meet power restrictions, and may increase to 50%
for 8 nm technology [3].

The motivation for using synchronous NoC operating at
lower frequencies than system IPs and supporting direct con-
nections, comes from the following observations [4]: (i) the
IPs’ injection rate is low (less than 10%) and in bursts, favoring
the asynchronous transmission; (ii) NoCs consume 20 to 30%
of the SoCs energy [5][6], thus, by reducing the buffers’ depth
and the router frequency, the overall SoC consumption is also
reduced due to the reduction on the switching activity; (iii)
in nanoscale technologies, signals may traverse several hops
using wires with repeaters.

The original contribution of this paper is the proposed
method mixing synchronous and asynchronous communica-
tion for reducing the communication energy consumption.

This paper is organized as follows – Section II reviews
methods presented in the literature that exploit the buffer
bypass technique. Section III and Section IV detail the NoC
communication protocol and the NI asynchronous circular
FIFO that supports the asynchronous end-to-end communica-
tion. Section V presents the results in terms of area, energy,
and latency. Section VI concludes this paper.

II. RELATED WORK

The buffer bypass approach has been explored in different
works [7][8], aiming performance gains and energy consump-
tion reduction. Perez et al. [7] propose a mechanism that
can be applied to wormhole and virtual-cut-through, each of
them with different advantages. The method selects the best
flow control for each packet situation, maximizing the bypass
utilization. Their results show a reduction in latency and
dynamic power up to 30% and 23%, respectively. Kodi et al.978-1-7281-9625-1/20/$31.00 c©2020 IEEE
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[8] present a combination of two techniques, adaptive channel
buffers, and router pipeline bypassing, aiming to reduce the
energy consumption and improve performance. The technique
presented a power reduction of 62% over the baseline and
improved performance by more than 10%.

Jain et al. [9] propose a multi-synchronous NoC (each router
operating at the IP frequency), which avoids the synchroniza-
tion overhead at the intermediate nodes via an Asynchronous
Bypass Channel (ABC) around these nodes. Limitations of this
approach include: (i) when a packet needs to make a direction
turn (e.g., east to north), it must be latched, increasing the
overall latency; (ii) since there is no connection establishment
(our approach), routers employ bi-synchronous FIFOs to store
packets in the event of congestion, also increasing the trans-
mission latency.

Krishna et al. [10][11] propose a low-swing link circuit
using clockless repeaters. They replace conventional links
with SMART (Single-cycle Multi-hop Asynchronous Repeated
Traversal) links at design time. However, it is required prior
knowledge of the application communication to configure the
paths that will use the SMART links. Also, if packet collision
occurs, it is necessary to store packets in buffers. Pérez et al.
[12] propose SMART++, witch reduces the cost and improve
efficiency of the original approach. Daya et al. [13] propose the
SCEPTER NoC, a bufferless version of SMART. SCEPTER
uses deflection routing when a flit is blocked due to the
congestion in the links.

Stensgaard et al. [14] present the Reconfigurable NoC
(ReNoC), with the goal to enable reconfiguration of the
network topology. ReNoC contains a conventional NoC router,
wrapped by a topology switch. According to the implemented
logical topology, some routers are bypassed by the topology
switches. The reconfiguration is static, and a logical topology
configuration must ensure that the delay of the longest logical
link does not exceed a clock period.

Lines [15] presents Nexus, an asynchronous crossbar that
connects synchronous IPs through asynchronous channels.
Each IP can have an independent clock frequency. Clock
domain converters connect the asynchronous crossbar to each
synchronous IP. The drawback of crossbar interconnections is
the quadratic area growth, sacrificing scalability.

From one side the bypass approach is adopted in NoC
designs, but on the other side, buffers or deflection routing are
used to deal with congestion. We assume a different approach
by mixing switching modes. At runtime the NoC establishes
connections, using the routing algorithm to determine the
path, with no need of prior knowledge of the application.
In case of congestion, the routers’ buffers only need to store
the header flit, resulting in shallow buffers. Once the path
is established, the NoC clock domain no longer impacts the
communication, since it becomes a dedicated link between
the source and target IPs. Due to the asynchronous handshake
protocol employed in the end-to-end communication, the NoC
frequency does not limit the number of hops in a path, which
makes the approach scalable. Our proposal also addresses the
clock domain crossing drawback that still is a concern in the

GALS paradigm [16][17].

III. NOC DESIGN

The NoC, named Arke [18], adopts a 2D-mesh topology.
Figure 1 presents the router main blocks and interfaces. Each
port has an input buffer for flit storage during PS commu-
nication. The router has a control logic (switch control) that
implements the routing algorithm and arbitrates new connec-
tions between input and output ports, and a crossbar to connect
an input port to an output port. Each transmitted packet has
a header flit with the communication type (synchronous or
asynchronous) and the packet destination address. After the
header, it follows the payload with the last flit signaled by the
control signal eop (end-of-packet). Once transmitted the last
flit, the router releases the internal connection.
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Fig. 1. Arke router. Dotted signals are the bypass paths, used for asynchronous
communications. All ports have the same structure presented for the East port.

The synchronous communication mode employs wormhole
PS, using the stall-and-go flow control protocol. This method
uses a buffer in the receiver side and a return signal (stall go)
to inform if there is available buffer space. Valid data on
data in bus is signalized by the transmitter to the receiver
through the tx signal.

The asynchronous communication employs a CS connec-
tion with three phases: (i) establishment, (ii) transmission, and
(iii) release.

The establishment phase starts with the source IP injecting
the header into the local router, which stores it waiting for
the routing process and crossbar configuration. Next, the input
buffer and control signals are set to bypass state (dotted signals
in Figure 1). Once bypassed the input buffer and control
signals, the source IP becomes connected directly to the next
router in the path. This process is repeated up to the target
IP. At the end of this phase, the source and target IPs are
connected, bypassing all input buffers in the path.

During the transmission phase, the IPs communicate
through a 2-phase Non-Return-to-Zero bundle-data protocol.
Signals tx and stall go assume the role of request and ac-
knowledgment, respectively. In order to transmit data, the
source IP first makes a flit available (data in), followed by
a transition in the request signal (tx/req). The target IP read
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the flit and answers with a transition in the stall go/ack signal.
After receiving the acknowledgment, the source IP may send
a new flit.

The connection release phase starts with the last packet flit.
As can be seen in Figure 1, the eop signal is not bypassed,
which means that it is synchronized with the NoC clock
domain and transmitted synchronously, in the same way as
the header. Upon receiving the eop signal, the router starts the
process of disconnecting the path. The disconnection follows
the same process of the first phase, one router at a time, and
to avoid losing the last flit, it is stored at each disconnected
router until it reaches the target IP.

Hazards are not a concern in synchronous design because
data and control signals are sampled only after stabilization
and clock synchronization. On the other hand, they are harmful
in asynchronous designs since a single signal transition can
change the state of the circuit.

Attention was given to avoid hazards during the asyn-
chronous protocol. The post logical synthesis simulation with
annotated delay revealed that the table controlling the crossbar
connections does not update all code bits at the same time.
As a consequence, during the table updating, hazards were
observed in req and ack signals, leading to unwanted requests
and acknowledgments. The solution was the adoption of one-
hot encoding to guarantee the stability of req and ack signals
during the crossbar switching transitions. Also, hazards were
identified during the establishment phase, being generated by
the final router in the path as depicted in the Figure 2.
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Fig. 2. Hazard demonstration in the NoC output.

The router is directly connected to the asynchronous circular
FIFO (inside the NI, presented in the next section), which in
turn connects to the target IP. Once the router delivers the
header to the NI (event 1 in Figure 2), an acknowledgment
is sent confirming the flit reception (2) and the last router
changes to the state of bypass (3) starting the end-to-end
communication. At this point, hazards occurs in the reqout
signal, leading to unwanted writing in the asynchronous cir-
cular FIFO (4). To solve this problem, we changed the regular

multiplexer responsible for the reqout signal by an anti-hazard
multiplexer and also set the states changing (that controls the
multiplexer) so that each change only switches one bit of state
code, avoiding static, dynamic and functional hazards.

IV. NETWORK INTERFACE (NI)
Instead of a traditional bi-synchronous FIFO, the NI em-

ploys an asynchronous circular FIFO which allows IPs to
bypass the NoC clock domain once the end-to-end connection
is established. The communication throughput is bounded by
the slower communicating IP since the NoC buffers in the
path are bypassed. Our proposal needs buffering only at the
receiver’s side, contrasting with the bi-synchronous FIFO that
requires buffering in both sender and receiver sides, in order
to enable cross-domain clock between IP→NoC (sender) and
NoC→IP (receiver). Figure 3 presents the NI architecture.
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Fig. 3. Architecture of Network Interface transmitter and receiver modules.

The receiver NI side (Figure 3 bottom) employs a FIFO
based on Mousetrap pipeline stages [19]. Data and its corre-
sponding requests are latched while waiting for the IP reading.
The latches implementing the FIFO slots are standard level-
sensitive D-type. Johnson counters are used as read and write
pointers. The write counter is triggered by transitions on
the req signal generated remotely by the transmitter while
transitions on the ack signal, generated locally by the receiver,
triggers the read counter. An XNOR operation between the
read and write pointers is used to indicate the storage status.
Free slots (slot free bus) are indicated by ‘1’ (transparent
latch) and occupied ones indicated by ‘0’ (opaque latch).
Based on the slot free bus, a multiplexer selects which slot
is the next one to be read by target IP.

During the transmission phase, the transmitter IP writes
directly into the receiver’s FIFO transitioning the req signal.
To know the receiver’s FIFO occupation and avoid overwrites,
the transmitter module has the same aforementioned Johnson
counters. In the transmitter module, the read counter is trig-
gered remotely by the receiver IP through the ack signal and
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the write counter is triggered locally through the req signal.
The same process occurs at the receiver’s end, where the write
counter is triggered remotely by the transmitter IP through the
req signal and the read counter is triggered locally through the
ack signal.

The FIFO depth is equal to seven. This depth was chosen
so that in a scenario with two IPs working at the same
clock frequency but different phases, could communicate at
maximum rate (one flit per cycle). The FIFO’s main function
is actually to maximize the communication throughput keep-
ing an uninterrupted flow of flits. Since the FIFO’s control
signals (req, ack, slots free) are asynchronous, they must be
synchronized at the IPs clock domain. Such synchronization is
based on the traditional pair of flip-flops. To cover the entire
round trip latency caused by the synchronization, there must be
seven positions in the FIFO, which consists in: one source IP
writing cycle, two cycles for request synchronization at target
IP (slots free), one target IP cycle for reading and another
two cycles for acknowledgment synchronization at source IP
(slots free). Thus, considering that both communicating IPs
are on the same frequency, when source IP is writing in the
seventh FIFO position, the acknowledgment for the first flit
will be arriving. Hence, in the next clock cycle, the IP can
write a new flit without interrupting the data transmission.
Note that, the source IP does not need to wait for the
acknowledgment from each flit before request the next one,
since the Johnson counters keep the information about the
target’s FIFO occupation.

The presented asynchronous infrastructure covers only the
data transmission phase. The NI performs the connection
establishment and closure phases synchronously operating in
the NoC clock domain.

V. RESULTS

Results obtained in this Section comes from a gate-level
simulation, with the netlist generated by logic synthesis. Such
a procedure considers delays for asynchronous communica-
tions and switching activity.

The first experiment evaluates the latency behavior as a
function of the packet size, varying the NoC frequency, and
using asynchronous communication. Figure 4 presents the
latency results considering one pair of communicating IPs
operating at the same frequency. The dotted horizontal lines
present the normalized latency w.r.t. the NoC using the syn-
chronous protocol latency (baseline) - IPs and NoC at the same
frequency. The solid curves present the normalized latency
for communication using the asynchronous protocol with IPs
operating at the baseline frequency, and NoC’s frequency
ranging from one (NoC1) to one fifth (NoC1/5) times the
baseline frequency (e.g., NoC1/5 means: IPs at 1 GHz and
NoC at 200 MHz).

The asynchronous communication latency has an asymptotic
behavior w.r.t. to the packet size. For small packets, the impact
on establishing/releasing CS paths is higher than for large
packets. In particular, when the relationship between IPs and
NoC frequency is equal to two (NoC1/2), the latency overhead
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Fig. 4. Synchronous and asynchronous latency, varying the packet size and
the NoC frequency w.r.t. the IP frequency.

is 30% and 16% for 128- and 256- flit packets (typical packet
size for a cache refill packet). If IPs run at the NoC frequency,
the asynchronous communication overhead is 6% for 256-
flit packets. Summarizing, IPs operating at the double of the
nominal frequency (NoC1/2), with packets ranging from 64 to
256 flits, the latency impact is in the range of 16-53%.

To highlight the advantage of the asynchronous communica-
tion, it is worth mentioning that the latency doubles (overhead
equal to 100%) with the synchronous NoC running at half
of the nominal frequency. For example, suppose a scenario
where IPs and NoC run at 1 GHz. In this case, both baseline
and Arke will operate using the synchronous protocol (the
asynchronous protocol is available, but it will always present
latency penalty w.r.t. the synchronous in this situation), with
the same latency to transmit packets. Eventually, for example,
due to a temperature violation, the system changes the NoC
frequency to 500 MHz to reduce the energy consumption. In
this situation, the baseline NoC latency penalty is 100%, as
presented in the violet dotted line (Baseline1/2), doubling the
amount of time required to deliver a packet. On the other hand,
the system with Arke can use the asynchronous protocol that
will provide better results, with the latency varying according
to the packet size as presented by the blue line (NoC1/2).

The second experiment evaluates the NoC energy for a 4x4
NoC, with IPs sending packets to random targets with random
sizes (varying from 16 to 512 flits). The NoC frequency
is constant, while the IPs’ frequency increases – Figure 5.
We obtained the energy values using the switching activity
generated after logic synthesis simulation (CADENCE tools).

The dotted horizontal line corresponds to the baseline
synchronous NoC, with buffer depth equal to 4. Its consumed
energy does not change with the increase of the IP’s frequency.
In this case, the consumed energy is constant (Baseline)
due to the bi-synchronous FIFO’s limitation that converts
the flit injection generated at IP’s frequency to the NoC
frequency (constant in the experiment). Using asynchronous
communication, besides four-slot buffers (b4), we also present
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results considering two-slot buffers (b2) since the buffer depth
does not affect the latency due to the bypass. The NoC
energy consumption decreases with the reduction in the buffer
depth due to the reduction in the gate count. There is also
a reduction in energy consumption for packet transmissions
because buffers are bypassed, so there is no switching activity
related to the temporary flit storage. For a 2-slot buffer, the
energy reduces by 42.4% and 52.6% considering IPs operating
2.0 and 2.5 faster than Arke. Note that the 42.4% on energy
reduction corresponds to a latency overhead around 16%
(Figure 4). Such latency overhead is for 128 and 256 flit
packets, and Figure 5 considers a broader packet size range
(16 to 512 flits).

Table I presents the router and NI area results for logic
synthesis using an IBM 180 nm standard cells library. The
asynchronous NI (27,448 µm2) presented an area reduction of
42% when compared to the bi-synchronous NI (47,860 µm2).
This result is expected due to the fact that the bi-synchronous
NI requires two buffers: one to cross the clock domain from
source IP to NoC and one to cross the clock domain from NoC
to target IP. In the other hand the proposed NI requires only
one buffer at the target IP. The area overhead in the router,
for the same buffer depth, reaches 28.2% due to the addition
of circuitry to avoid hazards, logic elements to control the
new communication technique and the asynchronous bypass
channel. The pair router-NI presents an area overhead of
4% for a buffer depth equal to 4, but when using a buffer
depth equal to 2 the pair area is reduced by 2.2%. The
comparison using the pair router-NI is valid due to the fact
that each router typically has a NI associated. Also it is
important to highlight that the proposed router supports both
communication protocols (synchronous and asynchronous).
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TABLE I
ROUTER AND NI AREA (µm2), IBM 180 nm. b2/b4 STANDS FOR INPUT
BUFFER DEPTH EQUAL TO 2 AND 4, RESPECTIVELY. EG: EQUIVALENTE

GATE (NAND2 AREA).

Module Sync. – baseline Async. – Arke
NI 47,860 (3,179 EG) 27,448 (1,823 EG)
Router - b4 89,603 (5,953 EG) 114,836 (7,629 EG)
Router - b2 64,839 (4,307 EG) 81,964 (5,445 EG)

supported by FAPERGS (17/2551-0001196-1 and 18/2551-
0000501-0) and CNPq (302531/2016-5).

VI. CONCLUSION

This paper proposed the Arke NoC, with support to
synchronous (PS) and asynchronous (CS) communication
modes. Results demonstrated important energy savings (50%)
with moderate latency overhead for medium packets (128-256
flits). Even if there are in the literature works with direct
links between IPs, the proposed approach is, in the Authors’
knowledge, the first work using a hybrid switching mode
to leverage energy gains. The proposal also benefits from
the synchronous design approach, enabling to synthesize the
NoC and NI with standard EDA tools. Future works include
physical design implementation, exploration of power and
clock gating during asynchronous transmission and keep the
connection established for a set of packets, instead of creating
it for each packet.
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