
Mapping and Migration Strategies for Thermal
Management in Many-Core Systems

Alzemiro Lucas da Silva∗, André Luı́s del Mestre Martins†, Fernando G. Moraes∗
∗PUCRS – School of Technology, Porto Alegre, Brazil – alzemiro.silva@edu.pucrs.br, fernando.moraes@pucrs.br

†Sul-Rio-Grandense Federal Institute, IFSul, Charqueadas, Brazil – almmartins@charqueadas.ifsul.edu.br

Abstract—New technology nodes enable the integration of
billions of transistors in a small silicon area by replicating
identical structures, resulting in many-core systems. However,
power density may limit the amount of energy the system
can consume. A many-core at its maximum performance may
lead to safe temperature violations and, consequently, result
in reliability issues. Dynamic Thermal Management (DTM)
techniques proposals guarantee that many-core systems run at
good performance without compromising reliability. In this paper,
we review recent DTM works, discussing their limitations, and
propose new heuristics for thermal-aware application mapping
and migration, using a hardware accelerator that enables temper-
ature monitoring on systems with a large number of processing
elements. Results show that using straightforward heuristics,
with reactive actions based on runtime temperature monitoring,
reduce the peak temperature in high workload scenarios (6.8%),
and improve thermal distribution significantly on a large (8x8)
many-core system.

Index Terms—Many-core; resource management; thermal
management; dark silicon; temperature estimation.

I. INTRODUCTION

The steady transistor scaling and the increasing demand
for performance led to the development of NoC-based many-
core systems. Networks-on-chip (NoCs) provide enhanced
performance and scalability for communication on systems
with thousands of Processing Elements (PEs) [1]. The design
of many-core systems takes advantage of the large number of
transistors provided by recent CMOS technologies, exploring
parallelism at the task-level to increase the overall system
performance.

A significant challenge related to the design of many-cores
in recent technology nodes is the increased power density,
which causes the effect called Dark Silicon [2], where parts
of the circuit need to be switched-off (dark) or underclocked
to keep the system within the physical limits of power density
and safe temperature. Although the number of PEs increases in
many-core designs, the power consumed by each PE remains
constant, since the threshold and supply voltage does not scale
down with the size of the transistor as in previous technologies
[3, 4].

The increase in power density also generates the effect of lo-
calized overheating, called hotspots. The dynamic temperature
behavior can create reliability threats, increase power leakage,
and add cooling costs [5]. The literature presents various

many-core management techniques to deal with the increasing
challenges imposed by the dark silicon phenomenon. For
example, the management can frequently set PEs as active
or dark at different moments to control the system power con-
sumption under a power budget or below a critical temperature
[6]. Recent proposals assume the system itself manages the
adaptation, to increase its performance while keeping it within
the physical limits of operation [7].

Monitoring system temperatures allow the implementation
of Dynamic Thermal Management (DTM) techniques to en-
sure the operation within the specified limits, increasing reli-
ability, reducing energy consumption, and possibly increasing
lifetime [5]. Temperature monitoring is also a challenge in
many-core designs since the number of sensors required to
measure the temperature in a many-core system has several
overheads, as their granularity, often measuring the tempera-
ture of a large system area instead of a PE area.

Recent DTM works propose thermal management strategies,
using both software and hardware actuation. Most works focus
on proactive approaches that require extensive knowledge
of the applications executing in the system. Other works
make use of complex thermal models or require advanced
monitoring mechanisms, frequently omitted from the work
description. However, system management should be able
to deal with dynamic workloads, considering thermal-aware
mapping and actuation to keep the system with a uniform
thermal distribution.

In this context, the goal of this work is to explore mapping
and migration heuristics to propose a thermal management
solution. The heuristics use power and temperature monitoring,
that can manage systems with dynamic workloads, offering the
best performance within the physical limits of power density
and temperature.

II. RELATED WORK

Concerning thermal management strategies, the following
topics are highlighted and discussed in the next paragraphs:

• application profiling is a data set to support management
decisions derived from the applications’ execution at
design time (e.g., energy consumption, execution time);

• workload behavior is dynamic when applications (pro-
filed or not) enter and leave the system at any time.
Otherwise, the static workload is when the management
is aware of the starting time of incoming applications at
design time;978-1-7281-9625-1/20/$31.00 c©2020 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 01,2021 at 18:50:40 UTC from IEEE Xplore. Restrictions apply.

• actuation approach is reactive when triggered after the
occurrence of events, e.g., the temperature reaching a
threshold in a given PE. Otherwise, proactive actuation
strategies predict the occurrence of events and aim to
avoid or mitigate them.

Profiling based thermal management [8, 9] execute a pre-
characterized applications’ set (profiling). The management
strategies rely on profiling information extracted at design
time. Therefore, profiling based thermal management requires
a previous step of profiling to execute new applications (out
of the original applications’ set) and to keep the manage-
ment strategies working accordingly. Whether an application
without profiling has assigned to profiling based thermal
management, the application profiling at runtime could enable
the application execution. However, there are no evaluations
of the impact in the execution time to perform an on-demand
application profiling strategy. Furthermore, algorithms to ex-
ecute profiling have high computational complexity, and the
many-core is not in charge of performing the profiling since
an external entity provides the profiling data ready to use [10].

Dynamic workload means that an unknown set of appli-
cations may enter and leave the system at any time [11].
The application mapping relies on the current resources
utilization by other running applications, i.e., the incoming
application is unlikely to share the same area of system
with a running application. Assuming that mapping of an
incoming application does not leverage running applications,
mapping becomes more complex concerning thermal hotspots.
Further, traffic issues are more likely to appear. Thermal
management techniques [8] are not able to deal with the issues
induced by dynamic workloads properly because they require
a mapping review of running applications. Since most of the
thermal managements employ mostly design time strategies
[10, 12, 13], remapping all applications may require a strategy
to pause the applications’ execution and induce the system
to a non-negligible overhead. Similarly, when an application
leaves the system, it may create an opportunity for a better
thermal distribution for the remaining running applications. To
take advantage of this opportunity, design time based thermal
management needs to remap the running applications.

Reactive actuation strategies, e.g., task migration and DVFS,
require online monitoring to guide management decisions. Ac-
curate thermal models present high computational complexity
and data dependency. Due to the complexity of thermal mod-
els, system characterization and application profiling compose
the temperature estimation for replacing thermal monitoring in
thermal management [8, 9]. Therefore, thermal management
strategies usually do not include reactive actuation because
they would impact on temperature estimation [14]. For ex-
ample, task migration is a management strategy to deal with
traffic issues and perform occasional task remapping with low
overhead [15]. In the context of the dynamic workload of
unknown applications, task migration is an essential strategy
in thermal management.

This work stands out from related ones by employing
reactive actuation strategies in the dynamic workload of an

unknown applications’ set. Accurate thermal monitoring sup-
ported by a hardware accelerator [14] enables the proposed
management strategies. Our management strategies allow more
flexibility and adaptability to deal with thermal hotspots by
running effective and low-complexity computational algo-
rithms.

III. REFERENCE ARCHITECTURE

Figure 1 presents the main components of the many-core
system. The architecture is derived from a platform with two
regions [16]: (i) a homogeneous set of PEs - GPPC region;
(ii) peripherals attached to the GPPC borders. Peripherals
may be dedicated hardware to inject new applications into
a GPPC (as Application Injector at Figure 1), or hardware
accelerators. Each PE (SP, CM, GM) has a processor, a
network interface, local memory, and the NoC router.

GM

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

CM

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

CM

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

CM

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

CM Cluster Manager PE - CM

SP Slave PE - SP

SP SP

Peripheral 2

GM Global Manager PE - GM

Peripheral 3 TEAApplication
Injector

General Purpose Processing Cores
(GPPC). A homogeneous PE region that
employs cluster-based management.

TEA – Temperature
Estimation Accelerator

M
at

ri
ce

s
M

em
or

y MAC

NI

T
e

m
p

Power

Fig. 1. NoC-based many-core system with peripherals (adapted from [16]).

The system management adopts a hierarchical organization,
by partitioning the GPCC region in clusters, where each cluster
has its manager PE. All PEs have the same hardware while
the software in each PE may assume the following roles:

- Slave PE – SP: execute applications’ tasks.
- Manager PE – MP: manage the SPs of a given cluster.

MPs may be local to a given cluster (CM) or execute
global actions besides the CM (GM). In this work, CM
is in charge of mapping and migrating tasks and GM
accumulates the application admission to the CM role.

This work uses the TEA (Temperature Estimation Accelera-
tor) IP [14]. TEA implements in hardware a simplified version
of the MatEx temperature estimation method [17]. TEA uses:
(i) three single port memory blocks, responsible for storing
the matrices derived from MatEx and temporary temperature
values; (ii) a register bank to store the power values of each
PE; (iii) a single 32-bit multiplier-accumulator (MAC); (iv) a
network interface (NI).

The temperature monitoring scheme adopts a hierarchical
scheme to minimize the control traffic in the NoC. At the lower
level, SPs monitor their power consumption by observing the
PE activity (executed instructions, transmitted flits, accesses to
the local memory). At the cluster level, MPs receive the power
samples of its corresponding SPs and update lookup tables.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 01,2021 at 18:50:40 UTC from IEEE Xplore. Restrictions apply.

Next, each MP creates a packet with the power information
related to the cluster and transmits this packet to TEA. At
the upper level of temperature monitoring, TEA receives the
power consumed by all PEs and executes the temperature
estimation procedure. Following, TEA sends a packet with the
temperatures of all PEs to the GM. Finally, the GM receives
this temperature message, stores the current temperature data,
and transmits to the CMs the temperature of the SPs belong-
ing to each cluster. This monitoring schemes adopt a fixed
monitoring window for temperature estimation.

IV. DTM ACTUATION POLICIES

This Section presents three actuation policies used by the
heuristics proposed in Section V: (i) application admission
(Algorithm 1), (ii) task mapping (Algorithm 2), and (iii) task
migration (Algorithm 3). These actuation policies avoid the
presence of hotspots during the applications’ execution.

When the Application Injector (Figure 1) interrupts the
GM requesting the admission of a new application into the
system, the first action is to select a cluster to execute the
application, using a procedure called application admission.
The GM selects a cluster based on the temperatures of all
PEs, obtained from TEA, and the availability of resources
in the cluster. Algorithm 1 details the application admission
procedure.

Algorithm 1 Application Admission (executed at GM)
1: Inputs: app, clset
2: Outputs: cloutput
3: cloutput ← ∅,
4: coolestTemp←∞
5: if clset.freeResrc ≥ app.#tasks then
6: for each cl ∈ clset do
7: if cl.temp < coolestTemp then
8: coolestTemp← cl.temp
9: cloutput ← cl

10: end if
11: end for
12: end if
13: return cloutput

Algorithm 1 receives as inputs: (i) the application task graph
description – app; (ii) the set of clusters – clset. The algorithm
starts by initializing the selected cluster as empty, cloutput, and
sets the coolest temperature as infinite (line 3-4). Next, all
clusters are verified to check the availability of resources to
receive the application (line 5). A resource is a memory page
assuming a paged memory system. If there are no clusters
with enough resources, the algorithm returns an empty value
(line 13). Otherwise, the cluster with the lowest temperature
is assigned as the output of the algorithm (lines 6-11).

If it is not possible to execute the application with the
available resources in the cluster (cloutput = ∅), the MP
may borrow resources from another cluster (a process named
reclustering), increasing the cluster size, re-executing the
application admission. In the last case, the application is
enqueued for later execution.

The next step is to map the application’s tasks in the
select cluster. Algorithm 2 receives as inputs: (i) app; and

(ii) mapping prio – a list of SPs belonging to a given cluster
sorted according to one of the prioritizing algorithms (Section
V).

At line 2, Algorithm 2 sorts the application’s tasks according
to the communication dependence, i.e., traversing the CTG
(communicating task graph) from initial tasks up to final
ones. The main loop (lines 3-13) iterates on every task of the
application. Line 6 selects the SP with the highest mapping
priority. If the SP has resources to receive the task (line 7), the
task is mapped into the SP (line 8). Otherwise, the search for
resource goes to the next PE in mapping prio (line 11). Note
that Algorithm 2 always finds an SP for task mapping, because
the Application Admission (Algorithm 1) ensured resources
availability.

Algorithm 2 Task Mapping (executed at GM or CMs)
1: Inputs: app, mapping prio
2: sortTasks(app) . sort app tasks according to the comm. dependence
3: for each task ∈ app do
4: mapped← false
5: while task is not mapped do
6: SP ← mapping prio.top()
7: if SP.#free resources > 0 then
8: map task(task, SP)
9: mapped← true

10: end if
11: mapping prio.pop() . next PE in mapping prio
12: end while
13: end for

Each time an MP receives a packet with temperature data
from thermal monitoring, Algorithm 3 evaluates the need to
migrate tasks. In general, a task migration occurs when a given
SP is above a temperature threshold. If the cluster presented
a recent task event (as task mapping or task migration),
migration is temporarily blocked in such a way to wait for
a steady state temperature (currently set to 20 monitoring
windows).

Algorithm 3 Task Migration (executed at GM or CMs)
1: Inputs: mapping prio, cl
2: for each SPsrc ∈ cl do
3: if SPsrc.temp > Mig Threshold then
4: for each task ∈ SPsrc.tasks do
5: migrated← false
6: while task is not migrated do
7: SPtgt ← mapping prio.top()
8: if SPtgt.#free resources > 0 then
9: migrate task(task, SPsrc, SPtgt)

10: migrated← true
11: end if
12: mapping prio.pop() . next PE in mapping prio
13: end while
14: end for
15: end if
16: end for

The inputs of Task Migration, Algorithm 3, are: (i) mapping
priority – mapping prio; (ii) the monitoring data of SPs
belonging to the cluster – cl, obtained from TEA. Algorithm
3 starts a search in all SPs of the cluster (line 2). If there are
SPs with temperature above the Mig Threshold (line 3), all
tasks running on the SPs, denoted as SPsrc, must migrate to

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 01,2021 at 18:50:40 UTC from IEEE Xplore. Restrictions apply.

another SP, denoted as SPtgt (lines 4-15). The search of SPtgt

to receive the migrated task from SPsrc (lines 6-13) follows
mapping priority order, similarly to the mapping algorithm. If
SPtgt has resources to receive a new task (line 8), the task is
migrated from SPsrc to SPtgt (line 9). Otherwise, the search
for a SPtgt goes to the next PE in mapping prio (line 12).

V. THERMAL MANAGEMENT STRATEGIES

Previous Section described algorithms to map and mi-
grate tasks relying on an input called mapping prio. We
define three strategies to prioritize the PEs of a cluster
(mapping prio) described in the following Subsections.

A. Temperature PE Selection With Migration

Temperature PE Selection With Migration (TPESM) algo-
rithm is a straightforward strategy that prioritizes the coldest
PEs for mapping and migration. Algorithm 4 presents the
main steps executed in this heuristic. Each time an MP
receives a packet with temperature data (line 1), the procedure
generateMapPrio() creates a vector that sorts PEs by its
temperatures (line 2). The procedure generateMapPrio() is
a generic function that receives scores and generates a vector
of PE indexes ordered by the received scores, used by all
proposed heuristics.

Algorithm 4 TPESM
1: cluster temps← receive packet(TEMP PERIF)
2: mapping prio← generateMapPrio(cluster temps)
3: migration(mapping prio, cluster temps) . Algorithm 3

The execution of algorithm 4 is triggered by the reception
of a temperature packet by a manager PE and the migration
procedure runs every time a new temperature data arrives (line
3). However, the application admission and the task mapping
procedures (Algorithms 1 and 2) are triggered by the injection
of a new application in the system. In this case, the priority
used in algorithm 2 is the last one generated when receiving
a temperature packet.

B. Proportional, Integral and Derivative Temperature Man-
agement

TPESM is a strategy to balance the temperature distribution
in a system and has been used by multi-core architectures
with available temperature sensors [18, 19]. However, some
mapping decisions using only the instant temperature value
can impact the thermal distribution of the system. For example,
if a task is mapped in a PE with the lowest temperature but it is
increasing, the resulting peak temperature can be higher than
if mapped in other PE with decreasing temperature. For this
reason, we proposed the Proportional, Integral, and Derivative
Temperature Management (PIDTM). The Proportional, Inte-
gral and Derivative temperature management should not be
confused with PID from control theory, where the objective is
to set the value of a signal equal to a reference value. In our
algorithm, the objective is to avoid hotspots.

The Proportional value is related to the instantaneous
temperature of a cluster or a PE, the Integral value is the

average temperature value of a predefined number of moni-
toring windows, and the Derivative value is the tendency of
the temperature value, and means how fast the temperature is
changing.

Algorithm 5 shows the PIDTM computation score to
generate the mapping priority vector. The time idx en-
try corresponds to the number of times the function was
called, increased after its execution. For each SP, there is
a circular buffer, named integral buf, which stores the last
INT WINDOW temperature samples. Every time a new tem-
perature sample arrives, the algorithm computes the PID score
for each SP in the cluster. Lines 4 and 5 replace the last
temperature value in the circular buffer by the current SP
temperature, while line 6 computes the average SP temperature
in the last INT WINDOW intervals. The derivative value is
the subtraction of the previous temperature from the new
temperature value (line 7). The final PIDTM score is the sum
of the proportional value, which is the current temperature,
the integral value and the derivative value, each one multiplied
by a constant that defines the weight of each component of
the sum in the final score (line 8). KP , KI , and KD are
proportional, integral, and derivative constants, respectively.
It is possible to tune those constants according to the control
objectives. Finally, line 11 generates the mapping priority, used
in task mapping and task migration procedures, as shown in
algorithms 2 and 3.

Algorithm 5 PIDTM
1: Inputs: time idx
2: cluster temps← receive packet(TEMP PERIF)
3: for each SPi ∈ cluster temps do
4: last← time idx mod INT WINDOW
5: integral bufi(last)← SPi.temp

6: integrali ←
∑INT WINDOW

n=1 integral bufi(n)

INT WINDOW
7: derivativei ← SPi.temp− temperature previ
8: pid scorei ← KP ∗ SPi.temp + KI ∗ integrali + KD ∗

derivativei
9: temperature previ ← SPi.temp

10: end for
11: mapping prio← generateMapPrio(pid score)
12: migration(mapping prio, cluster temps) . Algorithm 3

C. Temperature Management With Energy Constraint

The main drawback of TPESM and PIDTM strategies is
the risk of always selecting the same PEs to provide a bal-
anced temperature distribution in the system. Thus, a balanced
temperature distribution may not always generate a balanced
workload across all PEs in a cluster, which may stress some
PEs while others are left unused. For this reason, we pro-
posed the Temperature Management With Energy Constraint
(TMEC) strategy, which takes the energy consumption of each
PE to generate the score of mapping priority.

In this strategy, we add the energy consumption to the
PIDTM score (Algorithm 5, line 8), since PIDTM tends to
generate a better temperature distribution when compared with
TPESM. The same procedures of task mapping and migration
are used (Algorithms 2 and 3), based on the calculated

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 01,2021 at 18:50:40 UTC from IEEE Xplore. Restrictions apply.

TMEC score, to keep a uniform thermal distribution during
the execution of applications while balancing the workload
between all PEs.

VI. EXPERIMENTAL RESULTS

We compare our three thermal management strategies with
a patterning mapping, and with a Multi-Objective Resource
Management (MORM) approach [7]. Recent works on DTM
use the patterning approach [12, 13] in a known applications’
set, without the support of remapping by migrating tasks.
MORM manages applications without taking temperature into
account (it uses power consumption and performance instead)
using task migration dynamically.

Directed acyclic task graphs model the applications, A =
(T,E), where the vertex ti ∈ T is a task and the directed edge
eij ∈ E is the communication between tasks ti and tj . The
temperature monitoring window is set to 1 ms.

To create the evaluation scenarios, we used 7 applications:
(i) DIJ (7 tasks), Dijkstra algorithm; (ii) AV (7 tasks), audio
and video application that implements a video and audio
decoding pipeline in parallel; (iii) AES (5 tasks), encryption
algorithm; (iv) Sort (5 tasks), parallel quick sort algorithm; (v)
MPEG (5 tasks), image decoder; (vi) DTW (6 tasks), Digital
Time Warping algorithm; (vii) SYN (6 tasks), a communica-
tion intensive synthetic benchmark. Applications use MPI-like
communication and are described in C language.

We generated the results based on four different scenarios
in an 8x8 many-core system with 64 PEs divided into 4 4x4
clusters. Table I presents the applications used to create each
scenario. The first scenario consists of a typical workload
scenario, with a mixed set of long and short execution time
applications, entering the system at different moments. The
second scenario presents a high workload period, with more
than one application executing simultaneously at each cluster.
The third scenario is a regular workload with one application
per cluster. The fourth scenario presents a low workload,
considering one free cluster. Although the larger number of
tasks in the dynamic workload than the remaining ones, the
number of running tasks varies in the dynamic workload to
present peaks and valleys of system utilization.

TABLE I
THERMAL EVALUATION SCENARIOS.

Scenario Applications #Tasks
1 Dynamic MPEG, DTW, AV, AES, 2xSYN, 2xDIJ, 2xSort 57
2 High Workload MPEG, DTW, AV, SYN, DIJ, Sort 35
3 Reg. Workload DTW, AV, SYN, DIJ 26
4 Low Workload MPEG, DTW, DIJ 18

Figure 2 compares the peak temperature (obtained with
TEA) for the four scenarios, using the five heuristics. The
peak temperature is the highest temperature that one core
has achieved during the execution. MORM algorithm is the
reference to compare other heuristics because, in MORM, the
temperature is not an input of the mapping algorithm. In the
patterning approach, the temperature is also not an input of the

Scenario 1 Scenario 2 Scenario 3 Scenario 4
0.8

0.9

1

1.1

74.2C 86.8C 77C 70.7C
-1.6%

0.9%

2.9%
1.8%

-0.8%

-3.9%

-0.4%

-2.2%-2.3%

-6.8%

-1.7% -2.2%-1.8%

-4.8%

-2%
-1.3%

MORM PATT TPESM PIDTM TMEC

Fig. 2. MORM, Patterning, TPESM, PIDTM, TMEC peak temperature
results.

algorithm, but this approach is usually a reference to produce
a better thermal distribution.

Analyzing the results, we observed that the patterning
approach produces peak temperature higher than MORM
while achieving negligible improvements in overall average
temperature. The reason for these results is mainly due to the
hierarchical management used in MORM, which forces some
physical separation between different applications among the
PEs.

TPESM, which is a simple heuristic that always chooses the
coldest PE, and the proposed PIDTM and TMEC, presented
improvements in the thermal distribution when compared with
MORM and patterning approaches. The PIDTM approach pre-
sented the best results in terms of peak temperature, losing to
TMEC only on Scenario 3. In Scenario 2, high workload, the
PIDTM got an improvement of 6.8% in the peak temperature
relative to MORM algorithm, while TMEC got 4.8%. The
reason that PIDTM gets better results than TPESM, is that
this heuristic takes into consideration the change rate of the
temperature, i.e., if the temperature is rising or decreasing
during mapping or migration, and also the history of the
temperature, which tends to balance the workload.

Although PIDTM tends to present better results than TMEC,
we observed that in clusters with a low workload, some PEs
were left unused during the simulation when using this algo-
rithm. Then, to increase the workload distribution between all
PEs, we argue that is also important to use energy consumption
as an input of the algorithm, not only the temperature. For
this reason, we consider that the TMEC algorithm is a good
candidate when the focus is to reduce the probability of
failures caused by the temperature stress in the same PE.

Figure 3 presents a visual comparison between the map-
ping heuristics, at different time snapshots, using Scenario
3, regular workload. Each slice represents one snapshot of
temperatures in five different moments of the simulation, and
each colored square represents one temperature. We observed
that the different spacing obtained with MORM and patterning
mapping approaches still produces hotspots. The proposed
heuristics can react dynamically to the produced hotspots,
producing a better thermal distribution, as observed in the fifth

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 01,2021 at 18:50:40 UTC from IEEE Xplore. Restrictions apply.

 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

 20

 40

 60

 80

 100

 120

(a) MORM

45

50

55

60

65

70

75

80

 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

 20

 40

 60

 80

 100

 120

time
(ms)

(b) Patterning

time
(ms)

45

50

55

60

65

70

75

80

 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

 20

 40

 60

 80

 100

 120

time
(ms)

(c) TPESM

time
(ms)

45

50

55

60

65

70

75

80

 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

 20

 40

 60

 80

 100

 120

time
(ms)

(d) PIDTM

time
(ms)

45

50

55

60

65

70

75

80

 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

 20

 40

 60

 80

 100

 120

time
(ms)

(c) TMEC

time
(ms)

45

50

55

60

65

70

75

80

Fig. 3. Heatmaps comparison between different mapping and migration strategies.

slice of the figure. The figure also shows that TMEC produced
a better result for this scenario.

VII. CONCLUSIONS

In this paper, we presented reactive mapping and migra-
tion strategies to provide a better thermal distribution in a
many-core system supported by a runtime thermal estimation,
considering a dynamic workload. Using simple thermal mod-
els to predict the future state of the system before a task
mapping enables the use of proactive approaches but does
not allow quick reactions to avoid hotspots during system
execution. The proposed heuristics produced an improvement
of up to 6.8% in the peak temperature of the system in
a high workload scenario, which is a worst-case scenario
for temperature management. The results show that a better
thermal distribution provided by the proposed strategies also
reduces the occurrence of hotspots when compared with state-
of-the-art approaches.

Despite using a single hardware accelerator for tempera-
ture estimation, the proposed thermal management strategies
use a hierarchical structure. Manager processors execute the
proposed algorithms, which present a low computational com-
plexity, do not affecting the overall system performance.

Future works include the application of DVFS to control the
temperature distribution even further and the study of the per-
formance benefits obtained with a better thermal distribution
of the system.

ACKNOWLEDGMENT

Alzemiro Lucas da Silva is supported by CAPES
(88887.184847/2018-00). Fernando Gehm Moraes is supported
by FAPERGS (17/2551- 0001196-1) and CNPq (302531/2016-5).

REFERENCES

[1] S. Borkar, “Thousand Core Chips: A Technology Perspective,” in DAC,
2007, pp. 746–749.

[2] H. Esmaeilzadeh, E. Blem, E. S. Amant, K. Sankaralingam, and
D. Burger, “Dark Silicon and the End of Multicore Scaling,” in ISCA.
IEEE, 2011, pp. 365–376.

[3] T. Iizuka, “CMOS technology scaling and its implications,” in Digitally-
Assisted Analog and Analog-Assisted Digital IC Design. Cambridge
University Press, 2015, pp. 1–10.

[4] M. Bohr, “A 30 Year Retrospective on Dennard’s MOSFET Scaling
Paper,” IEEE Solid-State Circuits Society Newsletter, vol. 12, no. 1, pp.
11–13, 2007.

[5] M. El Ahmad, M. Najem, P. Benoit, G. Sassatelli, and L. Torres,
“PoETE: A Method to Design Temperature-Aware Integrated Systems,”
Journal of Low Power Electronics, vol. 14, no. 1, pp. 1–7, 2018.

[6] H. Khdr, M. Shafique, S. Pagani, A. Herkersdorf, and J. Henkel, “Com-
binatorial Auctions for Temperature-Constrained Resource Management
in Manycores,” IEEE Trans. Parallel Distrib. Syst., vol. 31, no. 7, pp.
1605–1620, 2020.

[7] A. L. Martins, A. H. L. da Silva, A. M. Rahmani, N. Dutt, and F. G.
Moraes, “Hierarchical adaptive Multi-objective resource management for
many-core systems,” Journal of Systems Architecture, vol. 97, pp. 416–
427, 2019.

[8] M. Li, W. Liu, L. Yang, P. Chen, and C. Chen, “Chip Temperature
Optimization for Dark Silicon Many-core Systems,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 37,
no. 5, pp. 941–953, 2018.

[9] S. Sha, W. Wen, S. Ren, and G. Quan, “M-Oscillating: Perfor-
mance Maximization on Temperature-Constrained Multi-Core Proces-
sors,” IEEE Transactions on Parallel and Distributed Systems, vol. 29,
no. 11, pp. 2528–2539, 2018.

[10] S. Pagani, H. Khdr, W. Munawar, J. Chen, M. Shafique, M. Li, and
J. Henkel, “TSP: Thermal Safe Power - Efficient Power Budgeting for
Many-core Systems in Dark Silicon,” in CODES+ISSS, 2014, pp. 1–10.

[11] E. Carvalho, C. A. M. Marcon, N. Calazans, and F. Moraes, “Evaluation
of static and dynamic task mapping algorithms in NoC-based MPSoCs,”
in SOC, 2009, pp. 87–90.

[12] L. Yang, W. Liu, W. Jiang, M. Li, P. Chen, and E. H.-M. Sha, “Fotonoc:
A Folded Torus-like Network-on-chip Based Many-core Systems-on-
chip In The Dark Silicon Era,” IEEE Transactions on Parallel and
Distributed Systems, vol. 28, no. 7, pp. 1905–1918, 2017.

[13] W. Liu, L. Yang, W. Jiang, L. Feng, N. Guan, W. Zhang, and N. D.
Dutt, “Thermal-aware Task Mapping on Dynamically Reconfigurable
Network-on-Chip based Multiprocessor System-on-Chip,” IEEE Trans-
actions on Computers, vol. 67, no. 12, pp. 1818–1834, 2018.

[14] A. L. da Silva, A. Martins, , and F. G. Moraes, “Fine-grain Temperature
Monitoring for Many-Core Systems,” in SBCCI, 2019, pp. 1–6.

[15] M. Ruaro and F. G. Moraes, “Demystifying the Cost of Task Migration
in Distributed Memory Many-Core Systems,” in ISCAS, 2017, pp. 148–
151.

[16] M. Ruaro, L. Caimi, V. Fochi, and F. G. Moraes, “Memphis: a framework
for heterogeneous many-core socs generation and validation,” Design
Automation for Embedded Systems, vol. 23, no. 3, p. 103–122, Aug
2019.

[17] S. Pagani, J.-J. Chen, M. Shafique, and J. Henkel, “MatEx: Efficient
Transient and Peak Temperature Computation for Compact Thermal
Models,” in DATE, 2015, pp. 1515–1520.

[18] R. Rao and S. Vrudhula, “Efficient Online Computation of Core Speeds
to Maximize the Throughput of Thermally Constrained Multi-core
Processors,” in ICCAD, 2008, pp. 537–542.

[19] A. K. Coskun, T. T. Rosing, K. Whisnant, and K. C. Gross, “Static
and Dynamic Temperature-aware Scheduling for Multiprocessor SoCs,”
IEEE Trans. on VLSI Systems, vol. 16, no. 9, pp. 1127–1140, 2008.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 01,2021 at 18:50:40 UTC from IEEE Xplore. Restrictions apply.

