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Abstract—For years, transistor size reduction led to a linear
decrease in power dissipation. This is the Dennard scaling law,
which ended in 2000’s technology nodes because the supply
voltage no longer scales. The consequence is the increase of the
power density in integrated circuits, leading to high temperatures,
accelerating aging effects. Dynamic thermal management (DTM)
is a technique adopted at runtime to act in the system using
the components’ current temperature to minimize hotspots and
peak temperatures. This paper aims to present a DTM for
NoC-based many-cores, using an abstract model, to estimate the
temperature at the processing element level and task migration
as the main actuation mechanism. Results show up to 12% of
temperature reduction and almost 10oC of peak temperature
reduction, highlighting the approach’s effectiveness, compared
to the pattering and spiral mappings.

Index Terms—Many-core, NoC, Dynamic Thermal Manage-
ment, Mapping.

I. INTRODUCTION

From the beginning of the integrated circuit age, transistors
scaled every new generation. Scaling down the supply voltage
with the transistor size makes it possible to maintain the power
density [1]. However, in the early 2000s, the transistor scaling
could not sustain Dennard’s law, leading to an increased power
density for new transistors’ generations. The increase in power
density motivated the use of power-aware techniques such
as power gating [2], clock gating [3], and dynamic voltage
and frequency scaling (DVFS). Even though those techniques
brought benefits regarding energy efficiency, it is impossible
to keep all hardware blocks powered on simultaneously at
maximum speed, an effect named dark silicon [4, 5].

Dark silicon effects defy IC designers to overcome the
increasing design cost in new technology nodes in such a way
to sustain performance gains for each new transistors’ gen-
erations [6]. Hence, effective and efficient power and thermal
management techniques are gaining momentum, especially for
keeping the performance gain with the technology scaling,
without incurring high cooling costs and avoiding overheating
and hotspots [7]. Dynamic Thermal Management (DTM) is
required for dealing with thermal limits. DTM relies on system
temperatures monitoring to decide at runtime when to trigger
actuation knobs to keep the system below thermal limits while
attending a specific goal [8].

The evaluation of DTM heuristics requires accuracy in
capturing thermal data to produce confident results and sim-
ulation time for periods long enough to observe transient and
steady temperature behaviors. Simulations at the RTL level
can provide trustful thermal data, but their simulation time
is not scalable. In contrast, abstract models allow simulations
for long periods. Thus, this work has two main goals. The

first one is to present the Chronos platform, which abstractly
models an NoC-based many-core with an instruction-cycle
accuracy by using power characterization at the RTL level.
The second goal is to apply a DTM heuristic for large-scale
systems (64 cores) and perform a comparison of the proposed
heuristics with static mapping techniques, such as patterning
(dark silicon technique [9, 10]) and spiral (performance-driven
heuristic [11]).

The original contribution of this paper comprises the pro-
posal and evaluation of a DTM technique for NoC-based
systems, using RTL level power characterization. The adoption
of a virtual platform enables long simulation periods, in the
orders of seconds, compared to milliseconds at the RTL level.
Results show that temperature monitoring allied with task
migration and DVFS allows keeping the temperature below
the designer’s predefined limits.

II. RELATED WORKS

Singh et al. [12] survey dynamic energy and thermal man-
agement for mobile platforms, presenting the challenges for
multi-core systems. Works discussed in this Section target
NoC-based many-core systems, where the core count increases
the DTM complexity.

The first challenge in DTM is to measure or estimate the
temperature at runtime. Per-core thermal monitoring is the
key for DTM development to manage applications entering
and leaving the system dynamically. Although recent proposed
DTMs [10, 13] employ analytical thermal models to predict
per-core temperature by profiling the applications at design
time, these DTMs prevent thermal monitoring due to the high
computational costs and the data-dependency algorithms. An-
other alternative to avoid thermal monitoring is patterning the
many-core to map applications [9]. Patterning mapping may
lead to either resources underutilization (excessive number
of dark cores) or communication performance degradation to
meet power and temperature requirements. The DTM herein
proposed can deal with the unpredictability inherent in ap-
plications’ dynamic behavior because the thermal monitoring
supports our DTM decisions and does not rely on average data
from pre-execution profiling or static mapping pattern.

To enable thermal monitoring in DTMs, temperature sensors
are not an option for per-core thermal monitoring or vali-
dation purposes due to their size and limited number. Even
considering global monitoring, the sensors’ noise is a topic
of discussion [14]. To face the inherent errors of thermal
models and improve DTM benefits, Chen et al. [15] propose an
adaptive thermal model to predict the temperature dynamically
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according to machine-learning algorithms. Another strategy
to support thermal monitoring is a neural network-based
online thermal estimation based on performance counters [16].
Alternatively, our RC thermal parameters are extracted from
a synthesizable VHDL version of the reference platform to
overcome the difficulty of validating thermal models and
reduce thermal model errors.

Concerning thermal monitoring in DTMs, an adaptation
of an RC thermal model [17] aims to mitigate the data-
dependency for enabling a distributed thermal management
[18]. Each application belongs to a contiguous cluster of cores
and has an agent that communicates between other agents
to update the cluster borders temperatures and calculate the
cluster/application temperature. Per-core thermal monitoring
is also a requirement for a thermal-aware management for
reliability purposes [19]. Our approach employs a hardware
accelerator for fast computation of per-core temperature based
on power and performance counters [20].

Khdr et al. [18] propose a distributed thermal management
running task-to-core mapping where cores can have their volt-
age/frequency levels set, and applications can resize at runtime
to avoid thermal violations. Haghbayan et al. [19] propose a
DTM for reliability purposes by coordinating task mapping,
task-to-core scheduling, and per-core DVFS to increase the
lifetime of shared-memory many-cores. Our DTM employs a
PID-inspired heuristic, considering instantaneous, average, and
trend temperature data for taking decisions. Task migration is
the coarse-grain actuation mechanism responsible for moving
tasks from hot PEs (Processing Elements) to colder PEs. DVFS
is the fine-grain actuation policy for keeping PEs under the
thermal threshold.

III. CHRONOS - VIRTUAL PLATFORM DESCRIPTION

The reference of the virtual platform is an RTL model of
an heterogeneous many-core [21]. This RTL platform allows
collecting performance data, as performance and power, from
system characterization. This work adopts the set of tools
provided by Imperas (OVP – Open Virtual Platforms [22])
to generate the abstract model of the reference platform.

OVP adopts a quantum-based simulation paradigm, which
divides the time into discrete time steps. The number of
instructions that each PE execute in a step is called quantum.
The quantum size is parameterizable, and its size affects
the simulation performance and the synchronization between
PEs. Each PE simulates sequentially by one quantum. Once
every processor executes a quantum, the simulation advances
to the next quantum. Summarizing, this paradigm simulates
parallelism by alternating each processor’s execution. Note
that there is a trade-off between the quantum size and the
communication synchronism. A large quantum delays the
communication between PEs, and a small quantum increases
the simulation time. Experimentally, we tuned the quantum
to 250 instructions, a value that brought the abstract platform
behavior closer to the RTL behavior.

OVP does not provide support for NoCs but provides an API
to create peripherals that can be connected to processors. Thus,
according to the RTL behavior, we modeled the router and a
NI (Network Interface) as a peripheral. As OVP peripherals
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Fig. 1. (a) 4x4 Chronos instance; (b) main PE components.

do not have their execution associated with the quantum
size, they are triggered by callbacks executed atomically.
The virtual platform received a peripheral called iterator to
synchronize the communication between processors at the end
of each quantum execution. The iterator evaluates all routers
sequentially with flits to transmit, sending one flit to the next
router or local port. This process stops when there are no more
flits to transmit. After this condition, a new quantum starts.

Figure 1 presents a 4x4 instance of Chronos, which contains
PEs connected to a 2D-mesh and peripherals attached in
the NoC borders. Each PE has a processor, local scratchpad
memory, NI, and router. TEA (Temperature Estimation Accel-
erator) [23] is a peripheral that periodically receives the power
samples from PEs, computes each PE temperature, and sends
it to the thermal manager PE, responsible for taking actions
to preserve the system TDP (Thermal Design Power). The
estimation model presented in the peripheral is a simplified
version of the MatEx [24] model.

For generating the power samples, the platform has been
instrumented to report which instruction is being executed at
each fetch cycle, classifying them into ten classes (branch,
arithmetic, jump, move, load, store, shift, nop, logical, and
multiplication/division). Each PE periodically generates its
power sample by multiplying the amount of executed in-
structions per class by its pre-characterized power consump-
tion. Besides, memory and router power are also considered,
creating the PE power sample sent to TEA to perform the
temperature estimation. In the current version, each PE sends
its power sample directly to TEA. Larger systems may adopt
a hierarchical distribution, where PEs send their power sample
to a hub-PE that will concentrate several PEs data in only one
packet per hub-PE, reducing the communication with TEA.

After receiving the temperature estimation from TEA, the
thermal manager PE executes the DTM. The platform support
two actuation mechanisms: DVFS and task migration [25].
The processor characterization for a set of voltage-frequency
(V F ) pairs enables DVFS support. Chronos supports DVFS
by dynamically adjusting the quantum size, simulating in this
way changes in the processor frequency. For each V F pair,
there is a set of pre-characterized power values. Chronos also
supports clock gating, by turning off the instruction counting.
Task migration includes suspending the execution in a given
PE, restarting it in another PE. Support for task migration is
performed through checkpoints, which are points where the
task status is stored and transferred to the target processor.
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IV. DTM

Temperature-aware mapping aims to balance the temper-
ature distribution in multi-core architectures with available
temperature sensors [26, 27]. However, mapping decisions
using only the instant temperature can impact the thermal
distribution of the system. For example, if a task is mapped
in a PE with the lowest temperature, but its temperature
is increasing, the resulting peak temperature can be higher
than if mapped in other PE with decreasing temperature. For
this reason, we proposed a first version of the Proportional,
Integral, and Derivative Temperature Management (PIDTM)
in [20]. In this work, PIDTM included DVFS, enabling to act
on PEs that exceeds a predetermined temperature threshold.
The main goal of the PIDTM algorithm is to improve the
thermal balance of the system proactively by monitoring the
instant temperatures. The DVFS actuation keeps the PE’s
temperatures below a threshold defined at design time.

The Proportional value is related to the instantaneous tem-
perature of the PEs, the Integral value is the average temper-
ature value of a predefined number of monitoring windows,
and the Derivative value is the tendency of the temperature
value, and means how fast the temperature is changing. The
goal of using the Derivative value is to guide mapping and
migration decisions, using the temperature tendency of a
specific PE. The adoption of the temperature tendency allows
the heuristics to avoid PEs that are increasing their temperature
or prioritize PEs that are decreasing their temperature. The
Integral value enables to balance the workload between all PEs
since the heuristic avoids PEs that accumulates high average
temperatures.

Algorithm 1 presents part of the PIDTM heuristic, responsi-
ble for defining a vector with the priorities for task migration,
mapping prio. The function is called when there is a new tem-
perature message available, and the input time idx corresponds
to the number of times the function is called. There is a circular
buffer for each PE, named integral buf, which stores the last
INT WINDOW temperature samples. Line 2 receives the
current instantaneous temperature values computed by TEA.
The loop between lines 3 and 10 updates the PID score for
each PE. Lines 4 and 5 insert the current PE temperature
in the circular buffer, while line 6 computes the average PE
temperature in the last INT WINDOW intervals - integral
value. Line 7 computes the derivative value by subtraction the
previous temperature from the new temperature value. Line 8
updates the PE PID score, multiplying each value by a constant
that defines each component’s weight. KP , KI , and KD are
proportional, integral, and derivative constants. It is possible
to tune those constants according to the control objectives.
Using the new PID scores, line 11 sorts the PEs to create
the mapping prio vector. Line 12 invokes the task migration,
which migrates tasks having their scores above a threshold
(THMIG), respecting an interval between migrations (to avoid
a “ping-pong” effect).

The mapping and migration procedures consider virtual
regions, named quadrants, to minimize the hop-count between
tasks, avoiding tasks belonging to the same application spread
in the system.

Algorithm 1 PIDTM
1: Inputs: time idx
2: PE temps← receive packet(TEMP PERIF )
3: for each PEi ∈ PE temps do
4: last← time idx mod INT WINDOW
5: integral bufi(last)← PEi.temp

6: integrali ←
∑INT WINDOW

n=1 integral bufi(n)

INT WINDOW

7: derivativei ← PEi.temp− temperature previ
8: pid scorei ← KP ∗ PEi.temp + KI ∗ integrali + KD ∗

derivativei
9: temperature previ ← PEi.temp

10: end for
11: mapping prio← generateMapPrio(pid score)
12: migration(mapping prio)

The migration procedure first verifies if a PE has temper-
ature higher than THMIG to trigger a task migration. If the
number of PEs having temperatures above THMIG is higher
than available PEs to receive tasks, the hottest PEs are selected
for migrating. The DVFS is fired when the PE temperature is
above THDV FS , reducing the V F pair. If the temperature is
below THDV FS and the PE is not operating at the maximum
V F pair, the V F may be increased. PEs running no tasks
compute only the router power, and the processor is considered
powered off.

V. DTM RESULTS

We compare our proposed DTM heuristic with a chessboard
patterning mapping, which is adopted to improve temperature
distribution, and with a spiral mapping [11], that aims to
place tasks of the same application next to each other to
reduce communication latency and improve performance. Both
approaches only adopt DVFS for respecting thermal limits.

Applications use MPI-like communication and are described
in C language. We used 7 applications: (i) DIJ (7 tasks), Di-
jkstra algorithm; (ii) AV (7 tasks), audio and video decoding;
(iii) AES (5 tasks), encryption algorithm; (iv) Sort (5 tasks),
parallel quick sort; (v) MPEG (5 tasks), image decoder; (vi)
DTW (6 tasks), Digital Time Warping algorithm; (vii) SYN (6
tasks), a communication intensive synthetic benchmark. The
temperature monitoring window is set to 1 ms.

Table I presents the four evaluation scenarios, running
in an 8x8 many-core, with four 4x4 quadrants. The AW
scenario seeks to use the maximum number of PEs in the
patterning mapping. The HW presents a high workload along
the simulation time, with more than one application executing
simultaneously at each quadrant. Scenarios DW1 and DW2
present dynamic workloads, with a mixed set of long and short
execution time applications entering the system at different
moments. The number of simultaneously running tasks varies
in DW1 and DW2 to present peaks and valleys of system
utilization.

Figure 2 compares the peak temperature. The peak tem-
perature is the highest temperature a core achieved during
the execution. The Spiral mapping algorithm is the reference
heuristics because the temperature is not the primary cost-
function. In the patterning approach, the temperature is also
not an input of the algorithm, but this approach is usually a
reference to produce a better thermal distribution.
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TABLE I
THERMAL EVALUATION SCENARIOS.

Applications
Scenario MPEG DTW AES SYN DIJ Sort AV #Tasks

AW Average Workload 1 1 0 1 1 1 1 36
HW High Workload 1 2 0 1 1 2 1 47
DW1 Dynamic workload 1 1 2 10 4 4 2 2 142
DW2 Dynamic workload 2 2 6 10 4 4 6 2 192

AW HW DW1 DW2
0.8

0.9

1

1.1

77.54C 79.16C 75.63C 74.94C

-3.9%

2.7%

6.8%

-6.7%

-10.8%

-5.9% -5.7%
-6.7%

Spiral PATT PIDTM

Fig. 2. Spiral, Patterning and PIDTM peak temperature results.

We observed that the patterning mapping, in some scenarios,
can produce a peak temperature higher than the spiral mapping
but still producing a better thermal distribution with a lower
average temperature. The higher peak temperature happens
because applications may have a dominant thread, which
consumes more power than the other tasks. The spiral mapping
usually maps applications far away from each other, while
the patterning mapping may map two dominant tasks near
to each other, increasing peak temperature. In contrast, the
PIDTM heuristic avoids the mapping of dominant tasks near to
each other. If this happens, the DTM identifies the temperature
increase and migrate one of the tasks.

PIDTM effectively reduced the peak temperature in all
scenarios. In AW, we observed a 10.8% peak temperature
reduction related to the spiral mapping algorithm, which
represents more than 8◦C of peak temperature reduction.
The HW scenario penalized the patterning mapping, while
DTM presented a peak temperature reduction. In DW1, we
observed a 12,7% temperature reduction in PIDTM related
to the patterning approach, representing almost 10◦C of peak
temperature reduction. DW2 is the worst-case scenario for
PIDTM, with a result equal to the patterning approach. This
situation may happen because two dominant tasks have not
been placed next to each other in the patterning mapping. Even
though PIDTM just matched the patterning algorithm in DW2,
its execution time and the average temperature was lower.

This first evaluation shows that the patterning approach
might not be a good option for temperature aware-mapping.
On the other side, an approach using monitoring and actuation,
as PIDTM, is a path to follow to reduce peak temperature,
improving the system reliability and lifetime.

Figure 3 compares the peak temperature between the
PIDTM heuristic and the patterning mapping for HW and
DW1 scenarios. We observe that the peak temperature is
significantly lower with the proposed heuristic (10◦C). The
better thermal distribution obtained by using PIDTM causes
a lower peak temperature most of the time. This behavior
obtained with the PIDTM heuristic can potentially increase
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Fig. 3. Comparison between peak temperatures in 2 scenarios: (a) High
Workload (HW); (b) Dynamic Workload (DW1).

the chip’s lifetime and reliability and open temperature room
for more applications to execute.

In addition to temperature monitoring, we also measured the
applications’ execution time. On average, applications mapped
by the spiral algorithm performed 10.2% faster than those
mapped by PIDTM. This loss is expected since the spiral algo-
rithm’s goal is to approximate communicating tasks, reducing
the hop-count and the NoC congestion. On the other hand,
compared with the patterning, which has the characteristic of
spreading the tasks in a pre-defined pattern to decrease the
chip’s heat concentration, the PIDTM difference on execution
time was minimal (0.01%). These results show that PIDTM
has a low impact on application performance while improving
thermal distribution.

VI. CONCLUSION

This paper presented DTM results for the PIDTM algorithm,
with results obtained using a virtual platform model. Accuracy
was a concern during modeling, with a platform calibration
using data from the RTL level. The virtual platform model
allowed long simulations, enabling to observe the system
behavior during the steady-state temperature operation of
the system. Results showed that the proposed heuristic can
improve significantly the thermal distribution of the system
when compared with a spiral mapping and with a patterning
approach. We were able to achieve up to 10.8% in peak tem-
perature reduction without significant performance penalties.

This work showed how important is fine-grain temperature
monitoring, i.e., at the PE level, and a constant actuation on
the system (migration and DVFS in our work) to keep the
temperature at safe levels. Approaches as patterning, using
only DVFS, are not thermal efficient with high workloads.

Future works includes: the development and evaluation of
new heuristics to provide better DTM approaches, the study
of the reliability and lifetime impact using the proposed DTM
techniques, as well as the implementation of time sharing mul-
titasking in Chronos platform for further temperature analysis.
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